
The Journal of Supercomputing, 28, 91–117, 2004

2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Run-Time Support for the Automatic Parallelization
of Java Programs

BRYAN CHAN chanb@eecg.toronto.edu

The Edward S. Rogers Sr., Department of Electrical and Computer Engineering, University of Toronto,

Toronto, Ontario, Canada M5S 3G4

TAREK S. ABDELRAHMAN tsa@eecg.toronto.edu

The Edward S. Rogers Sr., Department of Electrical and Computer Engineering, University of Toronto,

Toronto, Ontario, Canada M5S 3G4

Abstract. We describe and evaluate a novel approach for the automatic parallelization of programs that

use pointer-based dynamic data structures, written in Java. The approach exploits parallelism among

methods by creating an asynchronous thread of execution for each method invocation in a program. At

compile time, methods are analyzed to determine the data they access, parameterized by their context. A

description of these data accesses is transmitted to a run-time system during program execution. The run-

time system utilizes this description to determine when a thread may execute, and to enforce dependences

among threads. This run-time system is the main focus of this paper. More specifically, the paper details

the representation of data accesses in a method and the framework used by the run-time system to detect

and enforce dependences among threads. Experimental evaluation of an implementation of the run-time

system on a four-processor Sun multiprocessor indicates that close to ideal speedup can be obtained for a

number of benchmarks. This validates our approach.

Keywords: automatic parallelization, parallelizing compilers, Java optimizations, run-time

parallelization, task-level parallelism

1. Introduction

There has been considerable research during the past decade on parallelizing
compilers and automatic parallelization of programs. Traditionally, this research
focused on ‘‘scientific applications’’ that consist of loops and array references, typical
of Fortran programs [2, 11]. Regrettably, this focus has limited the widespread use of
automatic parallelization in industry, where the majority of programs are written in
C, Cþþ, or more recently in Java. These programs extensively use pointer-based
dynamic data structures such as linked lists and trees, and often use recursion. Such
features make it difficult to directly utilize parallelizing compiler technology
developed for array structures and simple loops.
In this paper, we describe and evaluate a novel approach for the automatic

parallelization of programs that use pointer-based dynamic data structures, written
in Java. The approach exploits parallelism among methods by creating an
asynchronous thread of execution for each method invocation in a program. The
novelty of our approach stems from its use of combined compile time and run-time
analyzes to automatically detect dependences and exploit parallelism among threads.

Methods in a sequential program are analyzed at compile time to determine the data
they access, parameterized by methods’ contexts. A description of these data accesses
is transmitted to a run-time system during program execution. The run-time system
uses this description to determine when a thread corresponding to an invoked
method may execute, and to detect and enforce dependences among executing
threads.
On the one hand, the proposed approach leads to increased run time overhead. On

the other hand, it facilitates automatic parallelization of pointer-based programs,
where compile-time-only approaches have been limited, mostly by the lack of precise
alias and/or pointer analyses [9, 12]. We have implemented the approach in the zJava
(pronounced ‘‘zed Java’’) system at the University of Toronto. Our experimental
evaluation of the system on a 4-processor Sun Ultra machine indicates that scaling
performance can be obtained for a number of benchmarks, which validates our
approach.
The goal of this paper is to describe the run-time component of the zJava system.

More specifically, the paper describes the symbolic access path notation and data
access summaries, and how they are used to capture and represent data accesses in a
method. The paper then describes the framework used at run time to create, execute,
and synchronize threads. In particular, the paper describes the framework used to
detect dependences among running threads, and to enforce sequential execution
order.
The remainder of this paper is organized as follows. Section 2 gives an overview of

the zJava system. Section 3 describes symbolic access paths and data access
summaries. Section 4 describes the zJava run-time system in details. Section 5
presents our experimental evaluation of the system. Section 6 describes related work.
Finally, Section 7 gives concluding remarks.

2. The zJava system

2.1. Model of parallelism and data sharing

The zJava system executes sequential Java programs, automatically extracting,
packaging and synchronizing parallelism among methods. The main method of a
program is considered the main thread and it starts executing sequentially. For each
method invocation, an independent thread is created to asynchronously execute the
body of the method. This thread may run on a separate processor, concurrently with
the thread that created it, and with other threads in the system. It may in turn create
child threads by invoking more methods. In general, the execution of the program
may be viewed as a set of threads executing concurrently, with each thread
sequentially executing the body of its associated method, and creating more threads
whenever it invokes methods. A thread terminates when it reaches the end of its
method. The program terminates when all threads terminate.
Threads share data in two ways. First, the actual parameters of a method

invocation become input to the new thread, making it possible for a parent thread to
pass values to its child threads. Second, threads may share data by accessing

92 CHAN AND ABDELRAHMAN

(reading/writing) data in the shared memory. In a Java program, class field variables
are accessible by all methods of a class, and thus are shared by all threads executing
these methods. In addition, threads may also share dynamically allocated data since
a method may pass references to this data to other methods. In general, threads
share data if they access the same data at some address in shared memory.
The flow of data in the sequential execution of the program results in data

dependences among methods. Hence, synchronization of corresponding threads is
necessary to preserve program correctness. The zJava system preserves the
program’s sequential semantics by enforcing serial execution order for threads
performing conflicting operations on the same data. In other words, threads that
write the same shared data must be executed in the same order in which their
corresponding methods execute in the sequential program. Similarly, serial execution
order is preserved between a thread that writes data and another thread that reads
the same data. Threads accessing different data, or only reading the same data, may
execute concurrently.

2.2. System overview

The zJava system extracts parallelism out of sequential Java programs and executes
the resulting parallel programs on top of a standard Java Virtual Machine (JVM). A
high-level overview of the system is shown in Figure 1. It consists of two main
components: a compiler and a run-time system. The compiler analyzes the input
sequential program to determine how shared variables and objects are used by every
method in the program. The compiler captures this information in the form of
symbolic access paths, and then collects these paths into a data access summary for

Figure 1. Overview of the zJava parallelization system.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 93

each method.1 The compiler also restructures the input program into a parallel
threaded program that contains calls to routines in the run-time system, which
create, execute, and synchronize threads.
The run-time system receives the data access summaries for methods in a class

when the class is loaded by the JVM. It stores these summaries in a set of data
structures, which we refer to collectively as the registry. The run-time system
contains code to compute run time data dependences among threads using the data
access summaries stored in the registry. Threads are then synchronized according to
these dependences.

3. Data access summaries

The zJava compiler associates with every method a data access summary. In this
section, we first describe the symbolic access path notation, which is used to
succinctly record data accessed in a method. We then explain how data access
summaries are formed from symbolic access paths.

3.1. Symbolic access paths

A symbolic access path [7, 13] is a pair o ? f consisting of an object o, and a sequence
of field names f ¼ f1; . . . ; fn. Each successive field name fi is the name of a reference-
type instance variable defined within the object pointed to by fi�1. The object o is the
source object of the path, and the object pointed to by fn�1 is the destination object
of the path; fn in the destination object is a field variable, which may be of any type.
The example shown in Figure 2 illustrates this basic notation of symbolic access

paths. The class ListNode is a linked list node class. It contains a static head field
that is a reference to the head node of a linked list, an integer data field, and a next
field that is a reference to the following node in the linked list. The method
zeroHeadNode assigns the value 0 to the data field of the head node. The
symbolic access path for the method is simply ListNode.head.data, represent-
ing the access that occurs in line 6 of the code. The source object of the access path is
ListNode.head, and the destination object is data.

Figure 2. An example illustrating symbolic access paths.

94 CHAN AND ABDELRAHMAN

In the zJava system, symbolic access paths are used to represent accesses to only
two types of objects in a method m: global objects, and objects passed to m as actual
parameters (including the receiver object itself; i.e., this). Objects created locally
inside a method, and do escape the method (i.e., objects whose lifetime extends
beyond that of the method [6]), can only escape through assignment to global
variables and/or parameters, or through return values [6]. Hence, accesses to these
escaping objects will be captured by the symbolic access paths of these variables. In
contrast, accesses to local objects constructed within m, but do not escape m, need
not be represented by symbolic access paths since they cannot be shared among
threads. In addition, symbolic access paths for objects returned by methods called
within m are also not represented because the run-time system uses a mechanism
called a future to synchronize accesses to them, without relying on data access
summaries, as will be discussed in Section 4.3.5. Consequently, the zJava compiler
generates symbolic access paths only for accesses to global objects and for accesses to
objects passed as actual parameters to a method.
Symbolic access paths for a method are generated in terms of the formal

parameters of the method. However, the actual parameters of the method vary from
one call site to another. Also, the actual parameters may not be known until run
time. Consequently, the actual source objects of a method’s symbolic access paths
may not be fully determined until run time. Therefore, we introduce a special
notation to represent the source object in a symbolic access path, which we refer to as
the anchor. The anchor ‘‘$n’’ denotes the n-th parameter of the method. Hence,
‘‘$1’’ denotes the first parameter and ‘‘$2’’ denotes the second parameter. The
special anchor ‘‘$0’’ denotes the receiver object, passed to the method as the implicit
parameter this. The actual source object of a symbolic access path can then be
determined at run time using its anchor and the context of the method call. It should
be noted that when the source of a symbolic access path is a static field, no anchor is
required; a static field is unique within a program.
The example shown in Figure 3 illustrates anchors in access paths using the earlier

example of the ListNode class, but with the method UpdateNode. This methods
updates the fields of the receiver node object in the list from otherNode, as shown
in the figure. The symbolic access paths for this method are $0.data, $0.next,

$1.data, and $1.next, corresponding to accesses to this.data, this.next,

otherNode.data, and otherNode.next, respectively.

Figure 3. An example illustrating anchors in symbolic access paths.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 95

3.1.1. Recursive accesses. In some cases, it may not be feasible to enumerate all
possible symbolic access paths of a method. For example, the method may use a
variable v to traverse a recursive data structure in a loop, and the number of times
the loop iterates is determined by a condition that is evaluated at run time. The
objects v refers to during the execution of the method are the successive elements of
the recursive data structure. Hence accesses to v give rise to many (potentially
infinite) symbolic access paths. We refer to such accesses as recursive accesses.
To address the above problem, we use a single symbolic access path to represent

the successive accesses to elements of the data structure. The component of the
access path that is used for the traversal is ‘‘factored out’’ and is annotated to
indicate the traversal. This factored out component of the access path is referred to
as the basis of the path. In effect, this form of the symbolic access path is a k-limited
representation of the traversal of the data structure [7].
The example shown in Figure 4 illustrates symbolic access paths for recursive

accesses. The method zeroAllNodes traverses the linked list and assigns 0 to the
data field of every node. The access at line 8 is a recursive data access and it requires
the following symbolic access paths: ‘‘ListNode.head.data’’, ‘‘ListNode.-
head.next.data’’, ‘‘ListNode.head.next.next.data’’, ‘‘ListNode.-
head.next.next.next.data’’, etc. The number of access paths cannot be
determined at compile time because it is not possible to statically determine when the
loop terminates. Instead, the access is represented by the following single symbolic
access path: ‘‘ListNode.head(.next)*.data’’. The basis ‘‘.next’’ is followed
by an asterisk to form a 0-limited representation of the traversal; that is to say, it
may occur zero or more times using the next field.

3.1.2. Array accesses. Array elements are treated as individual fields in the array
object. It is also possible to aggregate multiple array elements and denote the
collection with a single access path in which the name of the array is suffixed with
two integers, enclosed in brackets, that indicate the section of the array being
accessed. The first integer marks the element that starts the array section, and the
second, larger, integer marks the element that ends the section. All the elements of an

Figure 4. An example illustrating symbolic access paths for recursive accesses.

96 CHAN AND ABDELRAHMAN

array are represented using an asterisk instead of an index range. For example, the
access path ‘‘$1.children[0–9]’’ can be used to specify the first ten elements in
the children array in lieu of the ten symbolic access paths: ‘‘$1.children[0]’’,
‘‘$1.children[1]’’, . . . , ‘‘$1.children[9]’’. Similarly, the access path
‘‘$1.children[*] represents all the elements of the array, and the path
‘‘$1.children[$2–$3] represents a section of the array whose start and end
indices are the second and third parameters to the method in which the access occurs.

3.2. Constructing data access summaries

A data access summary specifies the read set and the write set of a method m, i.e., the
sets of variables which m reads and writes, respectively. The summary consists of a
list of entries. Each entry in the list is a (symbolic access path, access type) pair that
specifies a shared variable v. The access type determines whether v belongs to the
read set or the write set of m. If v belongs to both the read and write sets of m, then
its access type is indicated as ‘‘write’’.
The data access summary of a method m includes the data access summaries of all

methods called by m. In other words, if a method m0 called by m writes to a variable
v, then m is assumed to also write to v, even if it does not directly write to the variable
in its own body. We refer to this as the inclusion property of data access summaries,
and it is essential for proper synchronization, as will be discussed in Section 4.3.2.
The Java code shown in Figure 5 is used to illustrate the construction of data

access summaries. Instances of the Point class represent points in the Cartesian
plane. The midpoint method computes the mid-point between the point
represented by the receiver object and the point represented by the parameter p,
and returns the result as a new Point object, complete with a unique serial
identifier, which is incremented for every Point object allocated.

Figure 5. A simple method midpoint.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 97

The data access summary for the midpoint method is shown in Figure 6. The
first two entries indicate that the fields x and y of the receiver object are read by the
method. The next two entries indicate that the same fields of the parameter p are also
read. The last entry is the access to the static variable nextId. It is included in the
data access summary of midpoint, even though midpoint does not access
nextId, because of the inclusion property described above; the method updateId

accesses nextId and is called by midpoint. The fully qualified name of the static
variable is used as the anchor in the symbolic access path. It is marked as ‘‘write’’
since updateId reads and then increments the value of the specified field. Accesses
to the variable q are not included in the data access summary, because it is local to
the method, and the object it points to never escapes the method. Accesses to the
variable r are also not included in the data access summary, because it is local to the
method, and the object it points to only escapes as a return value.

4. The run-time system

This section describes the components of the run-time system and how they operate.
The notion of regions, which are used to represent and control accesses to shared
variables within the run-time system, is first defined. The main component of the
run-time system, called the registry, is then introduced. Finally, the various
operations performed by the run-time system, including creating, synchronizing, and
terminating threads, are described.

4.1. Regions

The run-time system translates symbolic access paths into regions, which represent
variables in the system and describe how they are shared. Each region corresponds to
an area of memory in the heap that is potentially accessed by multiple, possibly
concurrent, threads. A region is usually a variable (of an object or primitive type),
but it can also be a section of an array, containing many individual elements. A
region is identified by the address in memory of the variable it represents.

4.2. The registry

During the execution of the program, the zJava run-time system maintains a set of
data structures, that we collectively refer to as the registry. The purpose of the

Figure 6. Data access summary for the midpoint method.

98 CHAN AND ABDELRAHMAN

registry is twofold: it is used to determine data dependences among methods, and it is
used to synchronize the threads that have been created to execute those invoked
methods.
The registry consists of a set of region nodes and a set of thread nodes. A region

node rv corresponds to the region of a variable v, and represents the variable within
the registry. A thread node tt describes a thread t that has been created by the run-
time system, and contains the ID of its parent thread, a pointer to the method
which it executes, and pointers to region nodes representing data accessed by the
thread.
The registry is structured as a table of region nodes that represent all shared

variables in use by the program at a given point in time. Each region node points to a
list of thread nodes representing threads that access the associated region during
their lifetimes. A region node is also associated with a reader/writer lock, which
ensures proper synchronization of concurrent threads. The lock is designed so that
multiple reader threads (threads that access, but do not write to, a given region) can
share the reader lock and execute concurrently, while writer threads (threads that do
write to a given region) can only execute one at a time.
Thread nodes are created and enqueued in the thread list of a region node when a

new thread is created to execute a method body. The enqueuing of threads is
performed so that a thread list remains always sorted by the serial execution order of
the methods associated with the thread. That is, the order in which thread nodes
appear on a thread list is the same as the order in which their corresponding methods
are executed in the sequential program. The mechanism for ensuring that threads are
enqueued in this order will be described in Section 4.3.3.
Figure 7 shows a graphical view of a simple registry. It contains three region nodes

rx, ry, and rz, corresponding to the variables x, y, and z, respectively. The registry
also contains thread nodes tt and ts corresponding to threads t and s. The two
threads execute methods mt and ms, respectively. Region rx is accessed by both
threads. In sequential execution, ms executes and accesses x before mt.
Consequently, thread node ts appears ahead of (i.e., to the left of) thread node tt
on the thread list of region rx. In addition, mt accesses y, and ms also accesses z.

Figure 7. The zJava registry maintains sorted thread lists for shared regions.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 99

Hence, thread nodes tt and ts appear on the thread lists of regions ry and rz,
respectively.
The registry is updated dynamically; new thread nodes and region nodes are

created for newly created threads and newly allocated shared variables, respectively,
and are inserted into the registry. The registry is unaware of the existence of a
variable v until the creation of a thread that registers v as possibly shared, at which
point a region node rv is allocated in the registry. Thread nodes are deleted from the
registry as threads terminate, and region nodes are deleted when their associated
objects are garbage-collected.
The following notation will be used for the remainder of this paper. Variables are

denoted by x, y, and z. Their corresponding regions are denoted by rx, ry, and rz,
respectively. Executing threads are referred to as t, s, and g. Their corresponding
thread nodes are denoted by tt, ts, and tg, respectively, and they execute methods mt,
ms, and mg, respectively.

4.3. Registry operations

4.3.1. Region creation. When a class is loaded by the JVM, the zJava run-time
system receives the data access summaries of all the methods of that class. These data
access summaries are stored in a look-up table. When a thread t calls a method ms, a
child thread s is created. Compiler-inserted code in the parent thread t retrieves the
data access summary for ms from the summary look-up table, and creates regions
from this summary.
The creation of regions for a method ms proceeds in three main steps. In the first

step, the run-time system identifies the real sources of the access paths for the
methods, and hence determines what objects are accessed by ms. We refer to this step
as source resolution. This step is accomplished by replacing the anchors in the access
path with actual source objects available to the method at run time, i.e., objects
passed as actual parameters to the method.
In the second step, each resolved access path is expanded into all its sub-paths.

Hence, an access path o ? f1; . . . ; fn is expanded into n access paths, namely, o ? f1,
o ? f1 ? f2, o ? f1 ? f2 ? f3 and so on, up to o ? f1; . . . ; fn. This expansion is necessary
because the access to o ? f1; . . . ; fn requires accesses (reads) to the intermediary fields
f1; . . . ; fn�1. Consequently, these intermediary fields must be represented in the
registry by individual region nodes to ensure proper synchronization with other
threads that may access them. We refer to this step as path expansion. Symbolic
access paths for recursive data accesses are similarly expanded. For example,
the symbolic access path $0.head{.next}* translates to this.head,

this.head.next, this.head.next.next, etc. The expansion stops when
the current next field contains null.
In the third and final step of region creation, the run-time system searches the

registry for the region node rv for every variable v that was expanded from the
resolved access path. If a region node does not already exist for a given variable, a
new node is allocated for it and is added to the registry.

100 CHAN AND ABDELRAHMAN

As an example, consider the program in Figure 8, in which the main method
invokes the readMatrix method on the object a. The data access summary for
readMatrix is shown in Figure 9. The summary includes $0.nCols and
$0.data even though they are not accessed in readMatrix because they are
accessed by readRow, which is called in readMatrix.
For each symbolic access path in this summary, the run-time system replaces its

anchor with the actual reference-type argument to the method. Hence, $0.nRows is
resolved to a.nRows, $0.nCols is resolved to a.nCols, etc. Since each of the
symbolic access paths of the readMatrix method has only one field, path

Figure 8. A matrix multiplication example.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 101

expansion for this example is straightforward. Each path translates to one region,
and the corresponding region node is simply added to the registry. The resulting
region nodes (with empty thread lists) are shown in Figure 10.

4.3.2. Thread creation. A thread t creates a child thread s when t invokes a
method ms in its body. However, before the child thread can begin to execute,
regions accessed by the child thread must be determined, and thread nodes for the
child thread must be allocated and inserted on the thread lists of the corresponding
region nodes. These steps are performed by the run-time system; the code of mt is
restructured to make the appropriate calls to the zJava run-time library.
When the parent thread t creates the child thread s, the data access summary of

ms is resolved and expanded (as described in the previous section) into a set of
variables V used by ms. Corresponding region nodes are allocated for variables in V
if necessary. A thread node for s is then inserted into the thread list of each of those
region nodes. Once the insertion of the region nodes is complete, the parent thread t
continues the execution of its own body. The child thread s can proceed to execute
when it acquires the locks for its regions, as will be described in Section 4.3.4.
The parent thread t must wait for all threads that precede it on a thread list of a

region rv; v [V , and that write v, to complete before it can insert any of the thread
nodes of the child thread s. This is necessary to ensure that s’s thread nodes are
indeed enqueued onto the thread lists of the correct regions. Consider, for example,
an access o ? f1 ? f2 by s, which translates into two regions, one representing the
variable o ? f1 and the other representing the variable o ? f1 ? f2. If a thread g that
precedes t writes to o ? f1, and t does not wait for g to complete, an incorrect value
(with respect to sequential execution) of o ? f1 will be used to evaluate o ? f1 ? f2 and
hence, to identify the corresponding region node. Consequently, the thread node of s
will then be inserted on the thread list of the wrong region node. By waiting for g to
complete its write to o ? f1, the correct value of o ? f1 is used, and the thread node of s
is inserted on the thread list of the correct region node.

Figure 10. Region nodes are added for all regions that the readMatrix method will access.

Figure 9. Data access summary for readMatrix.

102 CHAN AND ABDELRAHMAN

The inclusion property described earlier in Section 3.2 ensures that a thread node
of t exists on the thread list of rv even if t does not access v in its body (since ms is
called in the body of t). Hence, it will always be possible to determine the threads
that precede t on the thread lists of every region accessed by s.

4.3.3. Thread ordering. Thread nodes in any given thread list must be kept sorted
by serial execution order of the associated methods to preserve program correctness.
Furthermore, the order of thread nodes must be consistent among all thread lists in
the registry. That is, if the thread nodes of a thread s precede the thread nodes of
another thread t on one thread list, then thread nodes of s must precede thread
nodes of t on all thread lists. This serial execution order of thread nodes can be
achieved by inserting the thread nodes of a newly created thread immediately
preceding those of its parent thread on any thread list. We present the following
informal argument for justification; a formal proof can be found in Chan [4].
Consider two threads s and t, corresponding to methods ms and mt, respectively.

We say that s > t if ms should access a variable v before mt when the two methods
are invoked in the sequential program. Since we require the inclusion property of
data access summaries, then, for a given thread s in the thread list of a region rv, all
of s’s ancestor threads must also have thread nodes in the same thread list. Suppose
s is the most recent child thread of its parent t, and that both access rv. Since, in a
sequential program, a called method must terminate before the calling method
continues, once s has been created, s must finish accessing rv before t accesses rv
again, even though t may have been using the variable before s was created. Thus,
s > t, and the thread nodes of smust precede the thread nodes of t on the thread list
of rv. Now suppose t creates a new thread g after s. Hence, s > g and the thread
nodes of s must precede those of g. At the same time, g > t, for the same reason that
s > t, as described above. Hence, the thread nodes of g must precede those of t.
Consequently, the thread nodes of gmust be inserted between those of s and those of
its parent t. In general, the thread nodes of a thread must be inserted between those
of its parent and those of its older sibling. This can only be achieved by inserting the
thread nodes of a thread immediately preceding those of its parent.
The ordering of threads according to serial execution order eliminates the

possibility of deadlock in the run-time system since it serial execution order imposes
a total order on the threads in the system [4].
Consider the matrix multiplication program shown earlier in Figure 8. The

readMatrix and multiply methods operate on a row-by-row basis; the former
calls the readRow method nRows times to fill the matrix with data, and the latter
calls the multRowmethod nRows times to multiply the matrix with the other matrix
m. Calls to readMatrix and multiply will result in multiple threads. The call
sites of these calls are the fork points for these threads.
At the first fork point (see comments in code), a new thread is created for the call

to readMatrix, regions nodes are allocated for all regions that the invoked method
will access, and the registry is modified as shown in Figure 11. It should be noted that
as a new thread node is inserted into a thread list, thread nodes for all its ancestors
are also inserted, if they are not already on the list. This is consistent with the
requirement that the data access summary of a method include those of its callees.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 103

Thus, in Figure 11, a thread node for the main thread is automatically inserted after
every node for the readMatrix thread.
At the second fork point, the method multiply is called, which calculates the

product of the matrices a and b. This causes a second thread (labeled multiply1 in
Figure 12) to be created. Region nodes are allocated for b.nRows, b.nCols, and
b.data, which are in the read set of the new thread, but for which there are no
existing region nodes. The new thread also writes to the product matrix c, so a
region node is created for c as well. A thread node for multiply1 is then inserted
into each of the thread lists of these regions. A thread node is also inserted into the
thread lists of existing region nodes for a.nRows and a.data because multiply1

reads the corresponding variables. The new thread node is placed immediately
preceding that of its parent main, and thus behind that of its sibling thread running
readMatrix. This is consistent with the serial execution order in which the method
readMatrix must complete before the call to multiply occurs.
The registry is similarly updated for the third forked thread, which runs

multiply a second time, but on the matrices a and d, producing the matrix e.

Figure 11. New thread nodes are created for the readMatrix thread; the nodes are inserted into the

thread lists corresponding to regions accessed by the thread.

Figure 12. The registry is updated as the two multiply threads are created; the thread lists of shared

regions keep the threads in serial execution order.

104 CHAN AND ABDELRAHMAN

Region nodes are allocated for the fields of d and the matrix e, which are accessed by
the new thread (labeled multiply2). The new thread node is inserted into the
thread list of the regions that it uses, including those of a.nRows and a.data,
where the run-time system again preserves the serial execution order by placing the
thread nodes of the new thread immediately preceding those of its parent main. The
resulting registry is shown in Figure 12.

4.3.4. Thread synchronization. A reader method (or thread) is defined as a method
(or thread) that accesses a shared variable (or region) but never writes to it. In
contrast, a writer (or thread) is a method (or thread) that accesses a shared variable
(or region) and possibly writes to it. It should be stressed that even if a writer thread
does not actually write to a region at run time, perhaps due to branching from a
conditional statement, or the throwing of an exception, it may not be possible to
predict such behavior at compile time. Consequently, the compiler must be
conservative and classify a method as a writer of the variable, and at run time, the
thread executing this method must be synchronized as a writer.
As described earlier, every region node in the registry is associated with a reader/

writer lock. Each reader thread must acquire a reader lock on the region node rx
prior to accessing the region x. The reader lock allows concurrent reads of the same
region by multiple threads, as explained below. In contrast, a writer thread must
acquire a writer lock, which is an exclusive lock, i.e., acquiring the lock blocks the
execution of all other threads that access the same region. If a thread is unable to
acquire a (reader or writer) lock, its execution must block until it can.
A reader thread t is immediately granted the reader lock of a region rx if its thread

node tt is the first in the thread list of rx, or if all preceding other threads on the
thread list are also readers. Otherwise t is blocked and waits for a preceding thread
to signal it. When t acquires the reader lock on rx, it checks if the successor of tt
belongs to another waiting reader thread. If it does, t signals the waiting reader
thread and grants it a reader lock as well. A writer thread s is granted a writer lock
only if its thread node ts is the first node in the thread list of rx. This means that all
other accesses to the variable x must complete before ms may write. This preserves
data dependences and ensures correctness of execution. When the writer thread
terminates (or otherwise relinquishes its writer lock), it signals the next thread (if
any) on the thread list of rx, and grants it the lock it has been waiting for. This
scheme allows multiple threads that read the same variable to execute concurrently,
yet prevents any conflicting accesses to occur at the same time.
This synchronization scheme is illustrated using the example in Figure 8. Suppose

the program is restructured to create a thread for every call to the readRow and
multRow methods. The thread executing the i-th call to the readRow method,
which modifies row i of the matrix a, must terminate before either of the two
threads running the multiply method makes the i-th call to the multRow method
to perform multiplication on the same row. Otherwise, the thread(s) executing the
multRow method will use values from an undefined row in its calculation, and yield
incorrect results. However, once the entire matrix a has been read in, both
multiply threads, and their child threads running multRow, can proceed with
their multiplications concurrently. None of the threads modifies the shared data

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 105

array contained in the matrix a; in other words, they are all readers of the shared
array. Hence there is no conflicting data accesses among them, and they may execute
concurrently.
To facilitate inter-thread synchronization, the zJava compiler inserts region-based

synchronization primitives into the bodies of methods. Figure 13 shows the
definition of the readRow and the multRow methods after such a transformation.
The synchronization routines are provided by the run-time system in normal Java
classes.

4.3.5. Thread termination. A thread terminates when the method the thread is
executing returns. The thread stores any return value of the method in a future [3],
waits for its child threads to terminate, and finally removes its own thread nodes
from thread lists of all region nodes the registry. At that point, the registry has no
more reference to the thread, and the thread can terminate itself.
The future is a synchronization device for handling return values from child

threads. If the parent thread attempts to get the value of the future before it has been
set by the child thread, the parent thread is blocked until the child thread returns.
This maximizes the concurrency between the parent thread and the child thread, in
those cases where the return value from the child thread is not used immediately (or
used at all) by the parent thread.

Figure 13. The zJava compiler inserts code at synchronization points to ensure that data dependences are

not violated at run time.

106 CHAN AND ABDELRAHMAN

5. Experimental evaluation

We implemented the zJava run-time system in Java. It comprises 49 Java classes of a
total of 10,532 lines of code, including JavaDoc comments. The run-time system is
implemented as a user-level library and, as a result, requires no changes to the JVM.
This makes the run-time system portable—it can be used on any multiprocessor on
which a JVM with native threading2 exists. We used Sun Microsystems’ Java 2
Software Development Kit, Standard Edition, version 1.2.2, both to develop the run-
time system and to experiment with it. The Java compiler provided in this version of
the Java 2 SDK is conservative, and performs very little optimization on the code.
We evaluated the performance of the system on a dedicated Sun Microsystems

Enterprise 450 server equipped with four 296MHz UltraSPARC II CPUs and
1.5GB of main memory. In this section, we report the performance of the run-time
system using five benchmarks. Since the analyses required to compute data access
summaries are not yet fully implemented in our compiler, the data access summaries
were manually computed (mimicking what the compiler does) for these benchmarks.
Each program was also manually restructured to transmit the data access summaries
to the run-time system and to insert thread creation and synchronizations calls. The
benchmarks are summarized in Table 1. It should be noted that while some of these
benchmarks use arrays as the main data structure, their code uses references and
dynamically creates its objects. Traditional array-based parallelizing compiler
technology would fail to to extract parallelism in these benchmarks, even though
they may manipulate arrays in loops.
The performance of the benchmarks is reported using speedup, which is defined as

the ratio of the execution time of the sequential program (running without the run-
time system) to the execution time of the parallel program, for a given number of
processors. The speedup is ideal when it equals the number of processors used.
The speedup of the benchmarks is shown in Figure 14.3 The figure indicates that

while the benchmarks do not achieve ideal speedup, scalable performance is
achieved: the speedup of each benchmark increases with increasing numbers of
processors. The main sources of speedup degradation are run time overhead and lack
of parallelism in some benchmarks.
There are three main sources of run time overhead. First, a parent thread incurs

overhead to create a child thread. The parent thread must resolve and expand the
data access summary of the child thread to determine its regions. Further, the parent

Table 1. Summary of the benchmarks and their sequential

execution time

Benchmark name Sequential execution time (seconds)

ReadTest (100, 800) 80

Matrix ð100061000Þ 188.7

TSP 566.0

Mergesort (2M, 32K) 6.4

15-puzzle 53.0

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 107

thread must insert thread nodes of the child thread onto the thread lists of the
corresponding region nodes. In the process, the parent thread may block, waiting for
preceding writers on a thread list to finish. Also, the parent must create the child
thread itself. Second, the registry is a shared data structure in itself, and it must be
accessed atomically. Consequently, overhead is incurred at run time to coordinate
registry access by the running threads. Third, a child thread uses the registry in order
to determine when it can execute, which introduces some run time overhead. There
are other sources of overhead, such as that incurred at class load time to transmit
data access summaries to the run-time system, but they occur only during
initialization, and can be assumed negligible. It is difficult to non-intrusively profile
the run-time system to obtain a breakdown of the contribution of each of these
sources of overhead. Hence, we describe them collectively as run time overhead for
creating, executing, and synchronizing threads. The overhead varies from one
benchmark to another depending on the number of threads created and the nature of
the benchmark. We consider the performance of each benchmarks in some details in
the following sections.

5.1. ReadTest: A synthetic micro-benchmark

The ReadTest program is a micro-benchmark that aims to measure the
performance improvement that can be achieved by executing multiple reads (of
the same data item) in concurrent threads. The benchmark consists of a loop that
creates m threads, each of which reads (but does not write) only one object and
performs n computations with it.4 Hence the benchmark is a good indicator of the

Figure 14. The speedup of the benchmarks.

108 CHAN AND ABDELRAHMAN

overhead of parallelizing a program without thread blocking. Its performance
provides an upper bound on the speedups that can be obtained by the system, and is
also indicative of the overhead incurred in accessing and using the registry of the
run-time system.
The speedup of ReadTest at four processors is shown in Figure 15 as a

function of thread granularity (i.e., different values of n), when the number of
threads is equal to 100. The granularity of each thread is expressed in milliseconds.
The figure indicates that the performance of the benchmark is poor when the
granularity of a thread is very small (less than 1 millisecond). Indeed, the
performance reflects a slow-down in execution time. This is because at such small
granularities, the costs of creating, executing, and synchronizing threads outweigh
benefits gained from parallelism. However, when the granularity of a thread
becomes greater than 50 milliseconds, close to ideal speedup is achieved. Indeed,
for thread granularity greater than 100 milliseconds, the speedup is close to ideal
(3.6 at four processors).
The effect of the number of threads in the ReadTest benchmark (i.e., the value of

m) on its speedup is shown in Figure 16. The speedup of the ReadTest benchmark
when the granularity of each thread is 800 milliseconds is shown for different number
of threads in the system. The figure indicates that when the number of threads is very
small (less than 10), the speedup of the benchmark is low. This is because at such
small number of threads, parallelism is limited. When the number of threads is
increased (to about 100), close to ideal speedup can be achieved. However, when the
number of threads is large (about 1,000), speedup degrades slightly. This is due to the
contention resulting from sharing the registry and from the blocking of parent
threads as they create child threads.

Figure 15. The effect of thread granularity on the performance of the run-time system.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 109

5.2. The Matrix benchmark

The Matrix benchmark program is the matrix multiplication application described
earlier in the paper. It’s is a slightly modified version of the one shown in Figure 8.
The speedup of Matrix for a 100061000 matrix for different number of processors
was shown earlier in Figure 14. Although the speedup of Matrix is less than ideal
(3.6 at four processors), the speedup increases linearly with the number of
processors.
The speedup of Matrix as a function of the matrix size is shown in Figure 17. The

program creates one thread to compute each row of the product matrix. The speedup
is shown for various matrix sizes, and hence, varying number of threads and
granularity of each thread. For example, for a 100061000 matrix, 1,000 threads are
created, each of which performs a million additions and multiplications. The
speedup of for the largest matrix size is 3.6 at four processors.

5.3. The Mergesort benchmark

The Mergesort benchmark implements a two-way mergesort algorithm. It divides
the input into two ‘‘units’’, recursively sorts each unit, and finally merges the two
units into a single-sorted unit. When the size of a unit drops below a user-defined
threshold, the sorting method provided by the Java class library5 is invoked to sort
the unit. In the zJava parallelized program, a thread is used to sort a unit whose size
drops below the threshold. Hence, the unit size essentially determines the number of
threads that will be created to perform the sort, as well as the granularity of each
thread.

Figure 16. The effect of the number of threads on the performance of the run-time system.

110 CHAN AND ABDELRAHMAN

The benchmark is used to sort 2M (221) randomly generated integers. The speedup
of the benchmark with a unit size of 32,768 (215) integers was shown earlier in Figure
14. The speedup is low, but it is close to what is attainable from the divide-and-
conquer parallelism that mergesort offers [18]. That is, the main source of speedup
degradation in this benchmark is lack of parallelism.
The effect of the unit size, and hence the number of threads and their granularity,

on the speedup of the benchmark is shown in Figure 18. For small unit sizes, there
are more units, and hence, more threads. This leads to more finer-grained
parallelism, but also to increased thread creation and synchronization overhead.
Conversely, for large unit sizes, there are less units, and hence, less threads. This
leads to limited coarser-grained parallelism, but less synchronization overhead. Since
we experimented with only four processors, there is little benefit to increasing the
number of threads at the expense of higher overhead. Thus, the performance of the
benchmark improves as the unit size in increased, as shown in Figure 18.

5.4. The TSP benchmark

The TSP benchmark program uses a branch-and-bound algorithm to compute an
optimal tour for a travelling salesman problem. Our implementation of the TSP

benchmark is similar to the one in Huynh [15]; essentially the three top-most levels of
the search tree are flattened into a 3D array, and individual threads are created to
expand a sub-tree from each element of the array. The speedup of the benchmark
was shown earlier in Figure 14. The cost of the best solution discovered at any time

Figure 17. The speedup of Matrix at four processors as a function of matrix size.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 111

during the search is used to prune the tree. The figure indicates that scaling speedup
is achievable for this benchmark. Indeed, the speedup is close to ideal.
In this benchmark, it is important to note that the total number of tree nodes

expanded by the parallel benchmark is slightly higher than the number of tree nodes
expanded by the sequential benchmark. Thus, we believe that no ‘‘search anomalies’’
exist, and indeed that the speedup of the benchmark stems from parallel execution as
opposed to a reduction in computations.

5.5. The 15-puzzle benchmark

The 15-puzzle benchmark solves the 15-puzzle problem6 using an iterative
deepening A* (IDA*) depth-first search algorithm. The benchmark was written as a
parallel program by Hui et al. [14]. We reverted it back into a sequential program,
which we then automatically parallelized using the zJava system. We report on the
performance of the automatically parallelized program, and also compare it to the
performance of the original parallel program of Hui et al. [14].
The benchmark solves a 15-puzzle problem instance by dynamically building and

examining a search tree. The IDA* algorithm builds a search tree of a given depth,
and searches for a solution to the problem using depth-first search. If a solution is
not found, the depth of the tree is increased, and the search is restarted. The original
parallel program expands the game tree up to a threshold level and then creates a
separate thread to further explore each of the sub-trees rooted at this level.

Figure 18. The speedup of Mergesort on 2M integers as a function of number of the unit size.

112 CHAN AND ABDELRAHMAN

The speedup of the zJava parallelized 15-puzzle benchmark is shown in Figure
19. The figure indicates that although the resulting speedup is less than the ideal
speedup, the speedup of the application increases with increasing the number of
processors. However, as the figure also indicates, the speedup of the zJava
parallelized program is close to that of the original explicitly parallelized program.
That is, the zJava system automatically exploited parallelism as well as the manually
parallelized program.
Similar to the TSP benchmark, the number of tree nodes expanded in parallel

execution of 15-puzzle is higher than the number of tree nodes expanded in the
sequential execution. Thus, the improvement in performance with increasing
numbers of processors stems from the benefit of parallelism as opposed to a
reduction in computation caused by search anomalies.

6. Related work

The notion of access paths has been widely described in the literature [13, 17]. Several
pointer and alias analyzes [7, 17] use access paths to identify memory locations and
alias pairs at compile time. For example, Deutsch [7] devises a version of symbolic
access paths that can concisely capture object access information, and uses it for
inter-procedural may-alias analysis. We have based our symbolic access path
notation on earlier notations, but with the additional objectives of making our
notation simpler to evaluate at run time and more flexible to represent array regions.

Figure 19. The speedup of the 15-puzzle application.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 113

Furthermore, our work is a novel application of access paths in that we use them at
run time to compute data dependences among concurrent threads.
The zJava system exploits parallelism at the method level, rather than the loop

level, traditionally exploited by parallelizing compilers. There has been a number of
systems that exploit parallelism at a non-loop level, commonly referred to as task
level parallelism. Abdelrahman and Huynh [1, 15] implement a system for
automatically parallelizing array-based C programs at the method level. Our system
builds on theirs, but extends their work to address automatic parallelization of
pointer-based programs that employ dynamic data structures.
Rinard and Lam [16] describe the Jade system, which allows parallelization of C

programs at various granularities. Programmers of Jade must manually annotate
programs to specify parallelism and synchronization. In contrast, we extract and
represent shared data access from the program and automatically exploit
parallelism. Nonetheless, our run-time system bears some similarity to that of
Jade, which maintains object queues in serial execution order.
Gross et al. [10] design and implement a compiler based on High Performance

Fortran (HPF) called Fx. It extends HPF to allow programmers to specify task
parallelism. However, it requires programmers to supply directives that define input/
output parameters of each task, and the mapping of tasks onto processors. In
contrast, we automatically extract and exploit parallelism.
Rugina and Rinard [20] employ compile-time-only analysis to automatically

exploit parallelism in array-based programs that use divide-and-conquer. In
contrast, we can exploit parallelism in non-array-based programs, albeit at higher
overhead at run time.
Leiserson et al. [8, 19] design and implement is the Cilk System, which supports

multithreaded extensions to C. The system allows programrs to focus on exposing
parallelism and exploiting locality, leaving scheduling, load balancing, and
communication protocols to the runtime system. The multithreaded extensions in
Cilk allow programrs to specify functions that are to execute concurrently and to
synchronize these functions. In contrast, our system automatically exploits
parallelism in Java programs through the use of data access summaries. Nonetheless,
the Cilk run-time system employs more elaborate mechanisms for scheduling and
load balancing, some of which could be incorporated in our system.
There has been recent interest in the design of multithreaded processor

architectures, which concurrently execute multiple threads belonging to one or
more programs, possibly providing hardware support for synchronizing the threads
[21]. These architectures require compiler support to identify threads within a
program, and may lead to complex processor implementations when thread
synchronization is enforced in hardware. The zJava system relies on software to
synchronize threads, allowing the system to run on processors with or without
multithreading capabilities. Nonetheless, multithreaded processors complement our
system by providing hardware support that can significantly reduce the overhead of
thread synchronization in the system.
The zJava system relies on a number of compiler analysis to extract symbolic

access paths. The most significant of them is escape analysis. Choi et al. [6]
implements escape analysis for the Java programming language, which determines if

114 CHAN AND ABDELRAHMAN

the lifetimes of objects exceeds those of their declaring scopes. We rely on a similar
analysis to determine objects shared among threads.

7. Concluding remarks and future work

We presented and evaluated a novel approach for the automatic parallelization of
programs that use pointer-based data structures, written in Java. The approach is
novel in that it combines compile time analysis with run time support to extract
parallelism among methods in a sequential Java program; an asynchronous thread of
execution is created for each method invocation in the program. To ensure correct
program execution, methods are analyzed at compile time to determine the data they
access, parameterized by their context. A description of these data accesses is
transmitted to a run-time system during program execution. The run-time system
utilizes this description to determine dependences among threads and enforce
sequential execution semantics. In this paper, we described the design and
implementation of the run-time component of the system. We also presented the
results of its experimental evaluation using a number of application benchmarks that
we believe are representative of larger Java programs.
Experimental results indicate that although the system incurs run time overhead,

close to ideal speedup is obtained for a number of benchmarks. Indeed, the speedup
of all the benchmarks is scaling, i.e., it increases with increasing number of
processors. Hence, the benefits of parallelism outweigh the penalty of run time
overhead. This indicates that our approach is viable for the automatic parallelization
of target programs.
A number of future research directions exist. The system currently does not handle

native methods and adding such support will allow more applications to benefit from
the system. The system also implements basic policies for managing parallelism and
for scheduling. These basic policies may be replaced with more elaborate one,
allowing the system to further improve performance, or allowing users more control
over resources. For example, the execution time of methods may be profiled at run-
time to determine if a method possesses sufficient granularity to warrant its
execution by an independent thread. A method that is of small granularity gets
executed by the calling thread instead of by an independent thread. Similarly, the
knowledge of data accessed by a method and its associated thread may be exploited
by the scheduler to improve data locality. Knowing the data accessed by threads that
most recently executed on each processor, the scheduler can assign a thread that is
ready to execute to the processor with the largest degree of data overlap.

Acknowledgments

This work has been supported by research grants from NSERC and CITO. The
authors are grateful to the anonymous reviewers for their useful and constructive
comments.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 115

Notes

1. At present, there is no support for native methods.

2. Non-native threads, or the so-called ‘‘green threads’’ in Java, are scheduled by the JVM at the user

level, and cannot actually make use of multiple processors.

3. Each benchmark is executed multiple times and the average execution time is used to compute the

speedup.

4. Specifically, each of the m threads calls Math.sine n times on the value of a shared Double object.

5. java.util.Arrays.sort () implements a tuned quicksort that offers n6 logðnÞ performance on

most data sets [5].

6. The 15-puzzle is a game in which 15 tiles numbered 1 to 15 are placed in random order within a 4 � 4

grid, leaving one tile space empty. The player is required to arrange the tiles in ascending order of their

numbers by repeatedly sliding tiles, one at a time, into the empty space.

References

1. T. Abdelrahman and S. Huynh. Exploiting task-level parallelism using ptask. In Proceedings of

Parallel and Distributed Processing Techniques and Applications, pp. 252–263, 1996.

2. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek,

B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming with Polaris. IEEE Computer,

29(12):78–82, 1996.

3. D. Callahan and B. Smith. A future-based parallel language for a general-purpose highly-parallel

computer. In Proceedings of Languages and Compilers for Parallel Computing, pp. 95–113, 1990.

4. B. Chan. Run-time support for the automatic parallelization of Java programs. Master’s thesis,

University of Toronto, 2002.

5. P. Chan, R. Lee, and D. Kramer. The Java Class Libraries, 2nd edn. Vol. 1, Supplement for Java 2

Platform, Addison Wesley, Reading, MA, 1999.

6. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for Java. In Proceedings

of the Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 1–19,

1999.

7. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Proceedings of the

Conference on Programming Language Design and Implementation, pp. 230–241, 1994.

8. M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 multithreaded language. In

Proceedings of the Conference on Programming Language Design and Implementation, pp. 212–223,

1998.

9. R. Ghiya and L. Hendren. Putting pointer analysis to work. In Proceedings of the Symposium on

Principles of Programming Languages, pp. 121–133, 1998.

10. T. Gross, D. O’Hallaron, and J. Subhlok. Task parallelism in a High Performance Fortran

framework. IEEE Parallel and Distributed Technology: Systems and Applications, 2(3):16–26, 1994.

11. M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M. Lam. Maximizing

multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12):84–89, 1996.

12. M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of Workshop on

Program Analysis For Software Tools and Engineering, pp. 54–61, 2001.

13. J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. The Geneva Convention on the treatment

of object aliasing. OOPS Messenger, 3(2):11–16, 1992.

14. W. Hui, S. MacDonald, J. Schaeffer, and D. Szafron. Visualizing object and method granularity for

program parallelization. In Proceedings of Parallel and Distributed Computing and Systems, pp. 286–

291, 2000.

15. S. Huynh. Exploiting task-level parallelism automatically using pTask. Master’s thesis, Department of

Electrical and Computer Engineering, University of Toronto, 1996.

16. M. Lam and M. Rinard. Coarse-grain parallel programming in Jade. In Proceedings of the Symposium

on Principles and Practice of Parallel Programming, pp. 94–105, 1991.

116 CHAN AND ABDELRAHMAN

17. J. Larus and P. Hilfinger. Detecting conflicts between structure accesses. In Proceedings of the

Conference on Programming Language Design and Implementation, pp. 21–34, ACM, 1988.

18. T. Lewis and H. El-Rewini. Introduction to Parallel Computing, Prentice Hall, Englewood Cliffs, NJ,

1992.

19. K. H. Randall. Cilk: Efficient multithreaded computing. Ph.D. Thesis, MIT, Department of Electrical

Engineering and Computer Science, 1998.

20. R. Rugina and M. Rinard. Automatic parallelization of divide and conquer algorithms. In

Proceedings of the Symposium on Principles and Practice of Parallel Programming, pp. 72–83, 1999.

21. G. Sohi and A. Roth. Speculative multithreaded processors. IEEE Computer, 34(4):66–73, 2001.

RUN-TIME SUPPORT FOR AUTOMATIC PARALLELIZATION OF JAVA 117

