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Abstract: jLab environment provides a Matlab/Scilab like scripting language that is executed by
an interpreter, implemented in the Java language. This language supports all the basic program-
ming constructs and an extensive set of built in mathematical routines that cover all the basic
numerical analysis tasks. Moreover, the toolboxes of jLab can be easily implemented in Java
and the corresponding classes can be dynamically integrated to the system. The efficiency of the
Java compiled code can be directly utilised for any computationally intensive operations. Since
jLab is coded in pure Java, the build from source process is much cleaner, faster, platform indepen-
dent and less error prone than the similar C/Cþþ/Fortran-based open source environments (e.g.
Scilab and Octave). Neuro-Fuzzy algorithms can require enormous computation resources and at
the same time an expressive programming environment. The potentiality of jLab is demonstrated
by describing the implementation of a Support Vector Machine toolkit and by comparing its
performance with a C/Cþþ and a Matlab version and across different computing platforms
(i.e. Linux, Sun/Solaris and Windows XP).

1 Introduction

Recently, with the growing speed and potentiality of com-
puters, the popularity of integrated scientific programming
environments has significantly risen. These environments,
in general, demand much more time and space resources
from the traditional compiled programming languages
(e.g. Cþþ and Fortran). However, they greatly facilitate
the task of creating quickly reliable scientific software,
even from scientists with little programming expertise.

Two categories of general scientific software can be
identified: ‘computer algebra systems’ that perform exten-
sively symbolic mathematical evaluations (e.g. Maple [1],
Mathematica [2]) and ‘matrix computation’ systems that
are oriented towards numerical computations and are well
suited for engineering applications (e.g. the Matlab [3]
that dominates at the commercial market and the open
source ‘clones’ Scilab [4] and Octave [5]). An excellent
recent comparative review of three well-established com-
mercial products can be found in [6, 7].

These systems are usually implemented in C/Cþþ/
Fortran and they are available either in platform specific
binary formats or also in platform specific build from
source configurations (e.g. the open source Scilab and
Octave systems). To the contrary, the Java programming
language, in which the presented jLab environment is
implemented, allows one to have platform independence.
We have tested jLab on Linux, Solaris and Windows XP
and it runs in the same way on all these different environ-
ments, without any change of the code.

The Java language offers an excellent framework for the
construction of flexible scientific software with concepts as:

† Reflection framework: This allows the interpreter to
flexibly interrogate the dynamically loaded extension
toolboxes that contain Java classes, implementing special-
ised functionality (e.g. ODE solvers and neural network
models) [8].
† Parsing flexibility: The Java programming language
allows one to detect flexibly the type of the next scanned
token. The instance of operator allows to check dynamically
the token type and to take the corresponding actions
[e.g. with statements like: if (nextToken instanceof
VariableToken). . .]
† Well-designed portable and powerful graphical environ-
ment. This allows the implementation of high-quality scien-
tific graphics that are platform independent.
† Object-orientation that allows the modular and robust
design that exploits the reusability of the code whenever
possible.
† Robust exception handling. In a complex, flexible pro-
gramming environment, a lot of errors can occur. jLab
catches a lot of exceptions and in most cases it recovers
gracefully without even distorting the flow of user compu-
tation, whenever this is possible.
† Reliable, simple and uniform installation on any plat-
form (e.g. Unix/Linux and Windows) that supports a
recent Java Runtime Environment (JRE).
† User friendly graphical configuration of the system’s
environment variables and the exploitation of the powerful
abilities of Java’s AWT/Swing for displaying both the
program output and the program state.
† Support of concurrent and parallel computation with the
multithreaded nature of the language and the extended
support of distributed computation technologies [9].

Contrary to some other Fortran and C-based open source
numerical computing environments such as Scilab and
Octave, the compilation of the jLab’s source is extremely
fast, simple and platform independent. It compiles in only
a few seconds, whereas the Scilab or Octave sources take
several minutes. Moreover, at the later environments, a lot
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of machine-specific details can perplex the building from
source process.

2 Architecture of the system

The system at the top level consists of the following main
components (Fig. 1):

1. The java Execution engine ( jExec), is the part that trans-
lates dynamically the jLab programming language and
executes the user’s commands. It is actually a flexible
interpreter coded in Java that consists of the following
modules:

† The Lexical Analyser. It tokenises the input in order to
permit the parsing phase to operate on a token stream
instead of plain text.
† The Parser. The parser first checks the syntax of all the
jLab’s programming constructs, then executes each
expression by building an expression tree and evaluates
the nodes of the tree by a top-down recursive traversal
(Fig. 1).

2. The Java toolboxes. These toolboxes consist of Java
class libraries that need to adhere only to a small set of
conventions in order to be directly utilised from jLab. We
will demonstrate the construction of a Java class library in
Section 6. The Java programmer that implements these tool-
boxes also has access to the wide set of numerical libraries
and application-specialised toolboxes (e.g. fuzzy systems,
neural networks). The popularity of the Java language
makes it easy to utilise excellent libraries for specific
domains, for example, the JOONE library for neural net-
works [10], the WEKA data mining system [11] and the
fuzzy-expert system of Bigus [12].
3. The jLab toolboxes use the jLab interpreted language to
implement program logic with text code files called J-Files.
We selected it to follow the syntax of the Scilab language
[4]. The similarity of the J-File syntax with Scilab facilitates
the task of incorporating the repository of Scilab’s numeri-
cal software. However, currently jLab supports a subset of
Scilab syntax and, thus in many cases, it is not possible to
execute Scilab files without modifications. We decided to
base the syntax on Scilab for the following reasons: (a).
Scilab is also an open source effort and can be a productive
exchange of ideas between the developers/researchers of
both systems and (b) jLab can accelerate significantly exist-
ent Scilab code by replacing the compute intensive parts
with Java classes. Although the same can be accomplished
within Scilab by linking external code, in jLab it is much
more easier and modular.

The jLab is a programming environment that integrates
the dynamic loading and execution of Java classes with
the execution of J-Files (both J-Script files and J-Function
files).

Also, we should note that the user interface resembles a
Matlab type user interaction via a command prompt on
which the user can type and edit commands. Also, the
Java’s Swing framework [13] is utilised extensively to
provide elegant dialog boxes, trees for graphical display
of hierarchically organised information and so on. We
proceed by describing the jLab architecture that permits
implementations of algorithms with both Java and scripting
components.

3 Function handling

This section elaborates on the important subject of function
handling. The jLab environment allows one to integrate
both functions implemented as methods of Java classes
and J-Script-based functions implemented as J-Files. From
the former functions, the basic ones are implemented as a
built-in class library, whereas specialised Java class
libraries can extend the potential of the system at particular
application domains. Also, the basic functions are handled
internally by the system. The general function architecture
is demonstrated by Figs. 2 and 3. We proceed by scrutinis-
ing the main components.

3.1 J-files, J-functions and extension J-classes

In jLab, a specific Java class, that is, the ‘FunctionManager’
class, is used to implement the functionality of function
handling and to represent any functions used in an
expression. The details of the ‘FunctionManager’ class are
described in Section 3.3. A function can be implemented
either as a compiled Java class file or as a jLab J-File. We
will refer to the former functions as ‘compiled Java func-
tions’ (abbreviated extension J-Classes). The J-Files are
interpreted and they resemble the syntax of Scilab’s .sce
files. They implement either functions and are refered as
J-Functions or they are simply batches of jLab code, the
J-Scripts.

The J-Files can be easily programmed since the jLab
language is untyped and their syntax is kept simple,
Scilab-like and to a large extent Scilab compatible. They
can be directly executed in the jLab environment by
placing them in directories accessible by the
jLabScriptPath jLab’s environment variable that has a
similar role for J-File loading that the Java’s virtual

Fig. 1 Main components of the jLab

Fig. 2 Types of functions supported by jLab

Fig. 3 Basic types of internal functions
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machine classpath has for class loading. The J-Scripts serve
as ‘batch’ files for jLab’s commands.

The J-Functions can return multiple return parameters
in a syntax [rv1, rv2, . . .] ¼ some-J-Function
( arg1 , arg2 , . . . ), where rvi denotes the return values and
argi are the arguments of the function.

An example of a J-Function that returns multiple
values is:

% computes many values
function [xAdd,xSub,zMult] = computeMulti
(a,b)

xAdd = a + 100 * b;
xSub = a - 100 * b;
zMult = xAdd * Sub;

Their main disadvantage is their speed of execution –
they are usually slower than the equivalent Matlab or
Scilab functions. However, this drawback can be bypassed
when the programmer implements the equivalent function-
ality with a Java class file, that is, a J-Class, that can also be
dynamically executed by the system. In this case, the code is
very fast, since it is a compiled Java code, and can compete
even with the corresponding Cþþ or Fortran library func-
tions. Although some Java libraries perform better than
native code libraries, we should expect a delay by a constant
factor of about two to three, because of the virtual machine
overhead.

We refer to the dynamically connected J-Classes, which
aim to implement various toolboxes and are implemented
with Java classes, as extension J-Classes. The extension
J-Classes offer the potential to easily extend the functional-
ity of the system at several application domains with Java
code.

The interfacing with J-Functions is encapsulated with the
ExternalFunction class. Each compiled extension J-Class
operates on a list of objects of the Operand abstract class
type. As we will see, this design allows for maximum
flexibility in parameter passing.

3.2 Internal functions

In addition to the forementioned extension J-Classes there
are several other important classes that also represent Java
class code, although this type of code is integrated with
the system. These are represented by the InternalFunction
class that is the base class for all the internal function
types. Some subclasses of InternalFunction class that
further specialise the corresponding properties and beha-
viour of the function are (Fig. 3):

† ComplexFunction: A class representing a jLab Complex
function. jLab has extensive provisions for complex
arithmetic.
† MatrixFunction: A class implementing the mathematical
functions for matrices.
† StandardFunction: A class implementing the standard
mathematical functions (e.g. abs( ), exp( ), log( ), ln( )).
† TrigonometricFunction: A class implementing trigono-
metric functions. (e.g. sin( ), cos( ), tan( )).

It is important to emphasise the basic distinction between
Internal and External functions: Internal functions are
‘hardwired’ to the system, whereas the External can be
dynamically extended by the user. We should note, at this
point, that the External classes are loaded by a special
class loader (i.e. the ExternalFunctionClassLoader).

3.3 Function manager

The functionManager class is an essential component with
respect to the dynamic class execution. It is implemented
by means of a Java class. It uses a method evaluate( ) to
evaluate each function. The evaluation code first checks if
the function name is overloaded by a variable name. If a
variable overloads the function, then a variable is created
and the parameters of the function are treated as the limits
of the variable. The variable with these limits in turn is eval-
uated and the corresponding result is returned as the result
of an attempt to evaluate the function.
Otherwise, that is, when the function name is not over-

loaded by a variable name, it calls the function manager
(implemented with the class FunctionManager) in order to
find the function. The FunctionManager tracks dynamically
the extension J-Classes. The potentiality of the Java
language for dynamic class loading and execution allows
jLab to incorporate easily with its ‘kernel’ any number of
Java classes, without any recompilation of the system. All
that is required is to place the compiled class files in direc-
tories visible from the jLabClassPath variable.
The evaluation of an extension function is very fast since

it is compiled Java code. However, a user with missing or
limited Java experience is not expected to be able to
implement extension classes. These users can use the
jLab’s scripting language and implement J-Files (J-
Functions, J-Scripts). A function is referred as User
Function if it is implemented as a J-File.
The evaluation task of each function, whether

ExternalFunction (i.e. Java code) or UserFunction (i.e.
J-File), starts by first evaluating the operands of the func-
tion. Then the corresponding J-script or the Java function
is evaluated by calling first the clone( ), so the original
functions stay untouched.
Although the evaluation code depends on the function

type, each evaluate( ) function adheres to the same signature
in order to permit flexible evaluation of expression trees,
comprised of functions of various types (e.g. both Internal
and External functions). The evaluation is performed
according to some priority rules explained below.
In order to evaluate an InternalFunction, the system first

checks whether the function by itself is an expression. In
the affirmative case, all the child-expression are evaluated
recursively. Having evaluated all the child-expressions, the
root node, which represents the InternalFunction object
obtains its value. This value corresponds to its return value,
which is returned. When the InternalFunction is not an
expression it represents a numeric value, which is returned
as the function’s return value.
The FunctionManager maintains the set of functions for

the forementioned categories of Internal functions (e.g. trig-
onometric, standard and matrix) and manages the dynami-
cally expanded set of User functions (both extension Java
Classes and J-Files). The Java class files that implement
external extension J-Classes are loaded by a specific class
loader, the JClassLoader. Another type of loader, the
J-File loader, loads the J-Files (i.e. the UserFunctions).
The FunctionManager starts by constructing a number of
internal functions. A function is processed by first checking
whether it is an Internal Function (i.e. a built-in Java piece
of code). In the case where the search outcome is negative,
the extension J-Classes becomes the target. Finally, the
UserFunctions are scrutinised. This order of function
evaluation is illustrated by Fig. 4. Also, Fig. 5 illustrates
the stages of expression parsing. We should stress the
point that even the J-Files are processed into Java
UserFunction classes and then are handled uniformly.
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The configuration of jLab is simple: as we have already
mentioned, two environment variables are used to set the
search path for J-Files (i.e. executable scripts) and Java
classes (i.e. executable bytecodes), respectively. The first
one is the already mentioned jLabScriptPath variable and
the other the jLabClassPath variable. Both are settable
and adjustable from within the graphical interface. These
parameters set up the environment for the code loaders
that are elaborated in the following section.

4 Code loaders

The custom code loaders are essential to the flexibility and
extensibility of the system. Contrary to similar systems, as
Scilab [4] and Matlab [3], jLab can be easily extended
with specialised Java toolboxes that run as fast as the Java
runtime (i.e. the Java Virtual Machine implementation)
permits. In order to achieve this, jLab owns two types of
code loaders implemented with different classes. The first
one is the Java class loader (abbreviated jClassLoader)
that resembles the functionality of flexible java-class
loaders [13], whereas the second, the J-File loader, accom-
plishes the elaborate handling of J-Files (either J-Functions
or J-Scripts).
The class loaders keep all the loaded classes in a global

hashtable (implemented with the Hashtable standard JDK
class). The hashtable allows for fast lookup at any loaded
class. Thus, although the time to locate a new class is
linear in the number of extension classes, the subsequent
calls to the same class cost only O(1) time. The J-File name-
space is handled similarly.
The jClassLoader maintains a root directory for the avail-

able jLab extension Java class files (i.e. the extension
J-Classes). The string baseClassDir maintains the
path of this ‘root’ at the local file system and is a con-
figurable parameter (e.g. for Unix/Linux filesystems can
be /javaApps/jLab) that can also be supplied as a
command line argument at the jLab’s execution. The
jClassLoader can locate and execute any Java class
file located under this ‘root’. With this design, we can
obtain modular tree-based organisation of the jLab’s
classes, extensibility and exploitation of the excellent file-
handling facilities of the current operating systems.

The baseClassDir parameter is very significant and is
expected as a command line argument. It is, in essence,
the root directory where the classes of the jLab system are
installed at the local filesystem. At the baseClassDir, there
can exist two other important but optional configuration
files: the jLab.unix.properties and the
jLab.win.properties. Whenever these files exist,
jLab initiates automatically the jLabScriptPath parameter.
Depending on the operating platform (Unix/Linux or
Windows), the corresponding file is used. These property
files are utilised by the JFileLoader class that has the
task of locating and retrieving the code implemented in
the jLab’s interpreted language.

The jClassLoader attempts first to locate a class in the
formerly mentioned hashtable. In the case where the
class is not in this hash table, a search process follows.
It uses a simple and effective algorithm to locate the
dynamically loaded Java class files: it expects them at
the subdirectory ./jExec/Functions in the jLab directory
tree, for example, at the previous example it will be: /
home/user5/javaApps/jLab/jExec/Functions. Whenever
the search at the basedir ./jExec/Functions fails, the
system tries to locate the class in all the directories
associated with the jLab’s jLabUserClasses
environment variable. This order of class searching
allows the user to extend the existing class names with
his/her own classes or j-Files and to keep his/her
classes separately from those supplied within the jLab
system.

The jFileLoader is a class that can load and execute
j-Files (both the j-Scripts and the j-Functions) of the jLab
language. We remind that the j-Function files
implement jLab functions, whereas the j-Scripts simply
organise a batch of commands, that is, they are just a
couple of commands that are typed in a text file. The
jFileLoader, in turn, calls the FunctionParser to parse the
text of the j-File and to return a UserFunction class to
jExec ready for computation.

The ReflectionFunctionLoader is a class that
calls a function from an external class using reflection.
The reflection system allows the Java programmers to
look and handle the fields of objects that were not known
at the compile time [13]. The Java’s reflection mechanism
allows one to add new classes to the jLab system at the
runtime. With this mechanism, the system can dynamically
inquire about the capabilities of the classes that were added.
The Java runtime system maintains runtime type identifi-
cation on all objects, which keeps track of the class to
which each object belongs. This information is used by
the virtual machine to select the proper methods for
execution.

Since it is quite easy to incorporate Java code into
the jLab environment, at the extension j-Class
framework, the scripting code fits usually only for the
implementation of the high-level application logic, prefer-
ably the number crunching numerical routines should be
coded in Java.

5 Parser design

This section elaborates on the important issue of parsing.
The first subsection deals with the issue of function
parsing, that is, how jLab deals with the various types of
functions. The next subsection analyses the expression
parsing, which includes the handling of the programming
constructs of the language (e.g. if-then, for-loop,
while-loop).

Fig. 4 Order of function evaluation by the FunctionManager

Fig. 5 Stages for the expression parsing
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5.1 Function parsing

As was already emphasized, jLab is an environment that can
be efficiently utilised with mixed mode programming – the
high-level structure of the program should be coded as a
j-Script and the number crunching routines in Java. The
Java-based extension code is implemented as extension
J-classes with the ExternalFunction class and are
important, since they are the basic means for the efficient
extension of jLab’s functionality. Every Java programmer
can extend jLab easily by following a few simple rules
for the interfacing of the new functions. The interface for
passing parameters to an external function (class
ExternalFunction) is quite flexible allowing the
implementations of arbitrary functions.

Each user specified external function extends the
ExternalFunction class. It returns a generic structure
of type OperandToken and accepts parameters in an array of
Token classes. Numeric parameters can be easily passed
with a NumberToken structure. The Java runtime object
type checking operator instanceof is valuable for discover-
ing the types of parameters at runtime. Also, the
StringToken is the class that represents strings. Up on evalu-
ation, it returns the token itself. It is very suitable for
passing alphanumeric information in jLab routines.

The FunctionParser class parses user functions. We
recall that user functions are implemented as J-Files. The
latter either contain functions (i.e. the J-Functions) or they
are simple script files (i.e. the J-Scripts).

The UserFunction class is the class that handles the
user edited J-File functions. This class implements a
method that takes the jLab code of the function as a string
and returns the UserFunction created. The J-File code of
the function is represented with an OperandToken
class. A standard Java ArrayList class maintains the
values of the input parameters of the function. Similarly,
the names of the return values are kept in a return variables
ArrayList.

A flag indicates whether the UserFunction class rep-
resents a J-script or a J-Function. For J-Functions, the
number of parameters that the function defines within its
text body should match the number of parameters at the
calling sequence.

The J-Scripts can be evaluated directly from their text code.
However, jLab has harder work in order to execute
J-Functions. For J-Functions, a local context of their local
variables is first created. At the next processing step, the
formal parameters of the function are initialised with the
values of the actual parameters. After passing of the parameter
has been performed, the execution of the function code can be
accomplished. The function code must be cloned so that the
original code remains untouched. The function evaluation
code assigns the corresponding values to the return variable.
When multiple return variables exist, they are collected
within a matrix and this matrix is returned.

5.2 Expression parsing

The Interpreter (jExec) starts by separating the expression
into tokens and then it constructs an expression tree.
These actions are performed with the aid of the parser.
This expression tree is subsequently evaluated. The flexible
exception handling capabilities of Java are utilised in order
to store information about a possible error on the expression
evaluation as a special variable.

The Expression class implements a tree where
each node has a variable number of child-expressions.
Each node keeps information for the operator that it

implements. Also each expression keeps track of the
index of the child expression being executed. The operator
held within the node is used in order to evaluate the
expression accordingly. If this operator is an assignment,
then we evaluate the right side and we assign the evaluation
outcome to the left side variable.
The tokeniser, as is well known is one of the first phase of

compiler processing [14]. Although tools, like the lex (or
flex) and yacc (or bison) are valuable, we implemented
manually a lexical analyser and a parser, in order to have
maximum speed and flexibility. Moreover, these tools fit
better for code generators and not for the interpretation of
the code that the jLab performs. Finally, they are most
suited for C code generation.
The class that represents a number used in an expression is

the NumberToken class. This class holds a 2D array of
complex numbers in a 3D array of real values, since each
complex number is represented by a 2X1 array to hold the cor-
responding real and imaginary value. A wide variety of oper-
ations is supported on NumberTokens. These operations add,
subtract, multiply, raise to a power, scalar multiply, scalar
divide, perform trigonometric functions (e.g. sin, cos, tan,
etc.), exponentiations and logarithms.
Tokens are also used to represent complex jLab’s pro-

gramming language constructs as the while-do,
if-then-else, for-loop. For example, the syntax
of the for-loop construct is

for (forInitialization; forRelation;
forUpdate)

forCode

Let us consider some concerns involving the implemen-
tation of the for-loop. The ForOperatorToken consists
from four other tokens: the forInitialisation represents
the initialisation of the construct, and similarly the
forRelation, the forUpdate and the forCode represent the
condition test, the updating of the contents of the variables
across successive iterations and the code block, which the
for-construct executes repetitively.
Subsequently, the evaluation code of the

ForOperatorToken evaluates first the forInitialization token
for the initialisations to take effect and then implements the
logic of the for-loop by repeatedly evaluating the forCode
as long as the forRelation is true, updating also the incre-
ment/decrement (i.e. evaluation of the forIncrement token).
Another important token type is the FunctionToken that

is used to represent any functions used in an expression.
The FunctionToken class implements all the required func-
tionality for executing the function. Specifically, it first
checks if the function is overloaded by a variable name. If
so, the system creates a variable and sets the parameters
of the function as the limits of the variable. Next, it evalu-
ates the variable with the limits and returns the results. If the
function name is not overloaded by a variable, the system
calls the FunctionManager in order to find the function. If
the FunctionManager detects that the function is a
UserFunction it proceeds by evaluating it, by first evaluat-
ing its operands and then the function code.
The evaluation of operators resembles the evaluation of

functions. Each operator is evaluated by the function evalu-
ate that takes an array of Tokens as parameters and returns
an OperandToken.
Since jLab is untyped, an effective mechanism for hand-

ling dynamically the current set of variables and the objects
to which they refer is required. jLab utilises the built-in
Hashtable Java’s data structure in order to perform fast
lookups. The dynamic class inspection facilities of Java
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allow to test easily the type of data that is associated with a
variable (with the instanceof operator).
The system implements local variables by using the

concept of nesting. In the case of a J-File that does not
have its own parameters it is executed at the global
context. The contexts are implemented with the well-known
pop() and push() stack operators [14].
Having presented some concepts related to the jLab

implementation, we proceed by presenting an application
to the development of Support Vector Machine (SVM)
Learning software.

6 Application for support vector learning

This section demonstrates the potentiality of the jLab for the
implementation of complex computational tasks by using its
flexibility to directly incorporate the available Java numeri-
cal software. In particular, we will deal within the field of
Computational Intelligence, with the SVMs, and we will
explore the machinery of the LibSVM Java library [15].
Initially, we briefly present the principles of the SVM
model. Subsequently, we present the jLab class interface
and the jLab code. Finally, we elaborate on the compu-
tational performance issue and we perform some compara-
tive tests.

6.1 SVM principles

The SVMs are a relatively new machine learning model that
is based on the Statistical Learning Theory of Vapnik [16].
Numerical algorithms for the efficient solution of the quad-
ratic programming problem involved at the SVMs training
have been developed recently [17–20]. Although the soph-
isticated numerical algorithms have realised the practical
application to large data sets, the involved computation is
still heavy for scripting languages as Matlab/Scilab, and
therefore the compiled languages (e.g. Cþþ and Java) are
still necessary for acceptable performance.
We illustrate how easy it is to interface the powerful

SVM software with the jLab and to utilise it at application
domains. First, we outline the basic SVM theory.

6.1.1 Linear separability of data and linear SVMs:
Suppose we are given a set of examples (x1, y1), . . . ,
(xl, yl), where xi [ R

N and yi [ f+1g are the input patterns
and their class labels, respectively. Initially, we assume that
the two classes of the classification problem are linearly
separable. In this case, we can find an optimal weight
vector w0 such that k(w0)

2
k is minimum (in order to

maximise the margin D ¼ 2/k(w0)k of separation [21,
22]) and yi . (w0

. xiþ b0) � 1, i ¼ 1, . . . , l.
The support vectors are those training examples xi that

satisfy the equality, that is, yi . (w0
. xiþ b0) ¼ 1. They

define two hyperplanes. One hyperplane goes through the
support vectors of one class and the other through the
support vectors of the other class. The distance between
the two hyperplanes is maximised when the norm of the
weight vector k(w0)

2
k is minimum. This minimisation can

proceed by maximising the following function with respect
to the variables ai (Lagrange multipliers) [16, 23, 24]

W (a) ¼
Xl

i¼1

ai �
1

2

Xl

i¼1

�
Xl

j¼1

ai � aj � yi � yj � kxi, xjl

(1)

subject to the constraints: 0 � ai and
Pl

i¼1 ai � yi ¼ 0. If
ai . 0 then xi corresponds to a support vector. The classifi-
cation of an unknown vector x is obtained by computing

F(x) ¼ sgn {w0 � xþ b0}, wherew0 ¼
Xl

i¼1

ai � yi � xi (2)

and the sum accounts to only Ns � l non-zero support vectors
(i.e. training set vectors xi, whose ai are non-zero). Clearly,
after the training, the classification can be accomplished effi-
ciently by taking the dot product of the optimum weight
vector w0 with the input vector x.

6.1.2 Nonlinear separability of data and nonLinear
SVMs: The case in which the data is not linearly separable,
it is handled by introducing slack variables (j1, j2, . . . , jl)
with ji � 0 such that, yi . (w . xiþ b0) � 12 ji, i ¼ 1, . . . ,
l. The introduction of the variables ji, allows the misclassi-
fied points, which have their corresponding ji . 1. Thus,Pl

i¼1 ji is an upper bound on the number of training
errors. The corresponding generalisation of the concept of
optimal separating hyperplane is obtained by the solution
of the following optimisation problem

minimise
1

2
w � wþ C �

Xl

i¼1

ji (3)

subject to

yi � (w � xi þ b0) � 1� ji and ji � 0, i ¼ 1, . . . , l (4)

The control of the learning capacity is achieved by the
minimisation of the first part of (3) whereas the purpose
of the second term is to punish for misclassification
errors. The parameter C is a kind of regularisation par-
ameter that controls the tradeoff between learning capacity
and training set errors. Clearly, a large C corresponds to
assigning a higher penalty to errors.

Finally, the case of nonlinear SVMs should be con-
sidered. The input data in this case are mapped into a high-
dimensional feature space through some nonlinear mapping
F chosen a priori [20–22]. The optimal separating hyper-
plane is then constructed in this space. Further details on
the mathematical method can be found in the references –
an excellent reference is [24].

6.2 jLab SVM class interface

On account of space limitations, we will not present the
whole SVM class interface, but instead we will limit our-
selves to the SVM training routine. This routine demon-
strates the general method of interfacing Java classes in
jLab as extension J-Classes. Each extension J-Class is avail-
able as a jLab function and its functionality can be directly
utilised from within jLab’s scripting machinery.

For the particular example, the svmTrain class provides
to the jLab the function

double [] [] svmTrain( double [] []
trainData, int [] trainLabels, String
svmModelFile, String svmType);

This jLab function triggers the functionality of the evalu-
ate( ) method of the Java class with the same name.

At the first stage of processing the Interpreter localises
the class file svmTrain at the jLab’s class path (unless the
class was already cached either because it is already used
or by the class preload mechanism). Then the interpreter
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utilises the parameters of the jLab’s method svmTrain in
order to prepare the call to evaluate( ).
Subsequently, the interpreter exploits the Java’s reflec-

tion mechanism [13] in order to call the evaluation
method. The corresponding Java interface to the LibSVM
package [25] is very simple and is shown in Fig. 6.

6.3 jLab scripting SVM code

The part of the jLab code that performs the SVM training
and evaluation is Fig. 7.

6.4 jLab performance

The execution speed of an algorithm implemented in jLab
depend heavily on the proportion of processing performed
in Java related to that implemented as a J-Script. Clearly,
the number crunching code should be coded in Java and
only the control logic should be coded as a J-Script, in
order to obtain rapid and flexible experimentation. We
have performed experiments with a SVM-Matlab toolbox
downloaded from http://asi.insa-rouen.fr/arakotom/
toolbox/index.html, that implements in pure Matlab
various current kernel and SVM algorithms described also
in [26, 27]. The jLab based on the LibSVM Java implemen-
tation [25] is on an average about ten times faster than the
pure Matlab version. However, the LS-SVM Matlab
toolbox of [28] incorporates MEX code compiled in Cþþ

and is of comparable speed to our Java-based LibSVM
implementation. We should note that the ‘pure’ Cþþ

implementation of the LibSVM algorithms is only two to
three times faster than the Java version. This fact surprised
us initially, and it can be explained by the significant
advance at the design and implementation of the Java
virtual machine environment. We have tested both the
Java and the Cþþ LibSVM implementations on a
Pentium-4 PC at 2.6 GHz clock speed, using the Fedora
Core 5 Linux (based on 2.6.15 Linux kernel) and the Sun
Solaris 10 operating system, running at the same PC. At
both platforms, we have used the recent version of the
JRE (i.e. JRE ‘1.5.0_07’), supplied by Sun Microsystems
and the GNU Cþþ compiler. We have also tested the
jLab on the Windows XP platform, and the important
point that we have derived is that the execution speed is
similar to the Linux and Solaris-based experiments. The
only significant factor that affects the execution speed isFig. 6 Java interface to the LibSVM package

Fig. 7 jLab code for SVM training
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the JRE version – we have observed notable improvement
in execution speed by using the recent improvement
versions of the Sun Microsystems JRE. In particular, the
average training time for the data of the classic UCI
Sonar dataset, on a Pentium-4 1.8 GHz PC, capable of mul-
tibooting all the three tested operating systems are: (a)
Windows XP: 0.36 s for the main training accomplished
by the Java class file, and 39 s for J-Script preparation of
data for training, (b) Linux (Fedora Core 5, with 2.6.13
kernel: 0.41 s for Java class and 31 s for J-Script prep-
aration, respectively, and (c) Sun/Solaris 10: 0.35 s for
Java class and 32 s for the J-Script. All the evaluated plat-
forms have used the Sun Microsystems Java Vitual
Machine and JDK, version 1.5. Also, the GNU supplied
JRE (gcj, gjava) succeeds in compiling most of the jLab
system (although there are problems in compiling all the
integrated system), but the resulting Java code does not
run as efficiently as it does with the Sun’s Java Virtual
Machine. The memory requirements and overhead cost of
the script interpreter are very small when no class preloaded
is performed. In this case, only the accessed classes are
loaded in the memory. However, the class preload operation
loads all the extension classes beforehand in the memory
and therefore consumes size proportional to the number of
extension classes. Table 1 presents some comparative aver-
aged performance results. The averaging was performed
across 30 trials. The results clearly illustrate the advantage
of the Java compiled code over the scripting jLab, which
was used only for data preprocessing.
The Java code of jLab is open source and can be

downloaded from https://jlab.dev.java.net/.

7 Conclusions

The paper has presented a powerful scripting language that
is executed by an interpreter implemented in the Java
language. This language supports all the basic programming
constructs and an extensive set of built-in mathematical rou-
tines that cover all the basic numerical analysis tasks. These
toolboxes can be easily implemented in Java and the corre-
sponding classes can be dynamically integrated to the
system.
The jLab is based on a mixed mode programming

paradigm:

† Java compiled code for the computationally demanding
operations and
† Scripting code for fast implementation of the program’s
structure.

This design permits one to obtain both the speed efficiency
and flexibility, when at the same time allows the utilisation
of the vast amounts of scientific software that is

implemented in the Java language. The implementation of
jLab in pure Java allows a much cleaner, faster, platform
independent and less error prone build from source
process, than similar C/Cþþ/Fortran-based open source
environments (e.g. Scilab and Octave). Specifically, the
clean and build-all process takes only �5–8 s at the
Netbeans 5.5 IDE. Similar is the required build time at
the Eclipse development platform. We can contrast this
with several (about 15–20) minutes required to run the con-
figure script and the making process on a Linux Fedora Core
5 installation on a 3.2 GHz Pentium-4.

We have demonstrated the potentiality of jLab with the
implementation of a SVM toolkit. Also, we have compared
its performance with a C/Cþþ and a Matlab version and
across different computing platforms (i.e. Linux, Sun/
Solaris and Windows XP). Neuro-Fuzzy algorithms can
require enormous computation resources and at the same
time an expressive programming environment.

Future work will proceed with the porting of the JOONE
library for neural networks [10] and the WEKA data
mining system that can easily provide an excessive set of
routines for data preprocessing and visualisation [11].
Furthermore, we work on improving the parser in order to
allow more flexible contructs, and improve the efficiency
of the parsing phase, in order to be able to compete with
C/Cþþ parser implementations (e.g. Scilab and Octave).
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