
Fundamenta Informaticae 82 (2008) 391–463 391

IOS Press

A Deductive Proof System for Multithreaded Java with Exceptions∗

Erika Ábrahám†

Albert-Ludwigs-University Freiburg, Germany
eab@informatik.uni-freiburg.de
e.abraham@fz-juelich.de

Frank S. de Boer
CWI, Amsterdam, The Netherlands
F.S.de.Boer@cwi.nl

Willem-Paul de Roever
Christian-Albrechts-University, Kiel, Germany
wpr@informatik.uni-kiel.de

Martin Steffen
University of Oslo, Norway
msteffen@ifi.uio.no

Abstract. Besides the features of a class-based object-oriented language,Java integrates concur-
rency via its thread-classes, allowing for a multithreadedflow of control. Besides that, the language
offers a flexible exception mechanism for handling errors orexceptional program conditions.

To reason about safety-properties ofJava-programs and extending previous work on the proof the-
ory for monitor synchronization, we introduce in this paperanassertional proof methodfor JavaMT

(“Multi-Threaded Java”), a small concurrent sublanguage ofJava, covering concurrency and espe-
cially exception handling.We show soundness and relative completeness of the proof method.

1. Introduction

Since theJava language is increasingly used also in safety-critical applications, the development of
verification techniques forJavaprograms becomes more and more important.Javahas several interesting
and challenging features likes object-orientation, inheritance, and exception handling. Furthermore,Java
integrates concurrency via itsThread-class, allowing for a multithreaded flow of control.

To reason aboutsafetyproperties of multithreadedJava programs, this work introduces a tool-
supportedassertional proof methodfor a concurrent sublanguage ofJava. The language includes dy-
namic object creation, method invocation, object references with aliasing,concurrency, Java’s monitor
discipline, andexception handling, but excludesinheritanceand subtyping. The concurrency model

∗Part of this work has been financially supported by the EU-project IST-33826Credo: Modeling and analysis of evolutionary
structures for distributed services.and the NWO/DFG project Mobi-J (RO 1122/9-{1,2,4}).
†Address for correspondence: Albert-Ludwigs-University Freiburg, Fahnenbergplatz 79085 Freiburg, Germany

392 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

includes shared-variable concurrency via instance variables, coordination via reentrant synchronization
monitors, synchronous message passing, and dynamic threadcreation.

To support a clean interface between internal and external object behavior, we exclude qualified ref-
erences to instance variables. I.e., the values of instancevariables of an object can be accessed and
modified only within the object. As a consequence, shared-variable concurrency is caused by simultane-
ous execution within a single object, only, but not across object boundaries.

In order to capture program behavior in a modular way, the assertional logic and the proof system
are formulated at two levels, a local and a global one. The local assertion language describes the internal
object behavior. The global behavior, including the communication topology of objects, is expressed in
the global language. As in the Object Constraint Language (OCL) [57], properties of object-structures
are described in terms of a navigation or dereferencing operator.

The assertional proof system is formulated in terms ofproof outlines[43], i.e., of programs aug-
mented by auxiliary variables and annotated with Hoare-style assertions [22, 23]. The satisfaction of the
program properties specified by the assertions is guaranteed by the verification conditions of the proof
system. Theinitial correctnessconditions cover satisfaction of the properties in the initial program con-
figuration. The execution of a single method body in isolation is captured by standardlocal correctness
conditions, using the local assertion language. Interference between concurrent method executions is
covered by theinterference freedom test[43, 32], formulated also in the local language. It has especially
to accommodate for reentrant code and the specific synchronization mechanism. Possibly affecting more
than one instance, communication and object creation is treated in thecooperation test, using the global
language. The communication can take place within a single object or between different objects. As
these cases cannot be distinguished syntactically, our cooperation test combines elements from similar
rules in [12] and in [32] for CSP.

Our proof method ismodular in the sense that it allows for separate interference freedom and coop-
eration tests. This modularity, which in practice simplifies correctness proofs considerably, is obtained
by disallowing the assignment of the result of communication and object creation to instance variables.
Clearly, such assignments can be avoided by additional assignments to fresh local variables and thus at
the expense of new interleaving points. This restriction could be released, without loosing the mentioned
modularity, but it would increase the complexity of the proof system. Computer-support is given by the
tool Verger (VERification condition GEneratoR), taking a proof outline as input and generating the ver-
ification conditions as output. We use the interactive theorem prover PVS [44] to verify the conditions,
for which we only need to encode the semantics of the assertion language. The proof system here deals
with partial correctnessproperties only, i.e., we do not address termination properties.

To transparently describe the proof system, we present it incrementally in four stages: We start with
a proof method for asequentialsublanguage ofJava, allowing for dynamic object creation and method
invocation. This first stage shows how to handle activities of a singlethreadof execution. In the second
stage we additionally allow dynamic thread creation, leading to multithreadedexecution. The corre-
sponding proof system extends the one for the sequential case with conditions handling dynamic thread
creation and the new interleaving aspects. We integrateJava’s monitor synchronizationmechanism in
the third stage. Finally, we includeJava’s exception handlingin the last stage. The proof system is sound
and complete.

This incremental development shows how the proof system canbe extended stepwise to deal with
additional features of the programming language. Further extensions by, for example, the concepts of
inheritance and subtyping are topics for future work.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 393

In this paper we concentrate on the theoretical background.For application examples demonstrating
how to use the proof system, see [1, 3].

1.1. Related work

This work extends earlier results. In [6] we develop a proof system for a concurrent sublanguage of
Java, but without reentrant monitors. Reentrant synchronization was incorporated in [8]; the work [2]
integrates alsoJava’s monitor methodswait, notify, andnotifyAll. An incremental description of the
proof system, starting with a sequential language and stepwise adding additional language features, but
excluding exception handling, is given in [7]. In [7] we alsointroduce proof conditions for deadlock
freedom. The work is summarized ińAbrahám’s PhD thesis [1] and the theoretical aspects in [5]. We
formalize the semantics of our programming language in a compositional manner in [4]. This work
extends the above ones by including exception handling.

The semantical foundations ofJavahave been thoroughly studied ever since the language gained
widespread popularity (see e.g. [9, 54, 21]). The research concerningJava’s proof theory mainly con-
centrated on various aspects ofsequentialsub-languages. See [31] for a recent and extensive survey
over different approaches towards the specification and verification of object-oriented programs (and
concentrating on sequential languages). To the best of our knowledge, our work defines the first sound
and complete assertional proof method for a multithreaded sublanguage ofJava including its monitor
discipline and exception handling.

De Boer [17] presents a sound and complete proof system in a weakest precondition formulation
for a parallel object-based language, i.e., without inheritance and subtyping, and also without reentrant
method calls. Later work [47, 19, 18] and especially the PhD thesis of Pierik [46] includes more features,
especially catering for a Hoare logic for inheritance and subtyping.

The aim of the work in the LOOPproject (Logic of Object-Oriented Programming) [33] is to specify
and verify properties of classes in object-oriented languages. The project research concentrates on a se-
quential subpart ofJava; the main focus of application isJavaCard. A compiler [15] translates programs
and their specifications intoPVS [28] andIsabelle/HOL[14]. The translation is based on the embedding
of a denotational semantics of the sequentialJavasubset into Higher Order Logic (HOL). Soundness
of the representation is shown in [24]. LOOP specifications formalized inJML are represented in HOL
by a set of proof rules [30]. Jacobs presents also a coalgebraic view of exceptions in [27]. Modeling
inheritance in higher order logic is the topic of [25]. The LOOP tool and methodology has been applied
to several case studies; see e.g. [53, 52, 16, 26, 29].

Instead of the denotational semantics, our work is based on an operational semantics. Though re-
search within the LOOP project deals with many of the complexities ofJava, they don’t handle concur-
rency, and don’t investigate completeness.

The project Bali [13] is concerned with the formalization ofvarious aspects ofJavain the theorem
prover Isabelle/HOL [45]. Nipkow and von Oheimb [36, 41] prove type soundness of their Javalight
subset, a large sequential sublanguage ofJava. They formalize its abstract syntax, type system, and well-
formedness conditions. Instead of the denotational semantics in works of the LOOPproject, they develop
an operational semantics. Based on this formalization, they express and prove type soundness within
the theorem proverIsabelle/HOL. To complement the operational semantics ofJavalight , von Oheimb
presents an axiomatic semantics [38, 39], and proves soundness and completeness of the latter with
respect to the operational semantics. WithµJava, Nipkow et al. [37] offer anIsabelle/HOLembedding

394 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

of Java’s imperative core with classes. They present a static and a dynamic semantics of the language
both at theJavalevel and theJVM level.

Based on [37], von Oheimb [40] presents a Hoare-style calculus for aJavaCardsubset and proves
soundness and completeness inIsabelle/HOL. Nipkow [35] selects some of the technically difficult lan-
guage features and deals with their Hoare logic in isolation. The combination of [40] and [35] in one
language (NanoJava) is formulated in [42].

In contrast to our approach, the Bali project aims to cover only sequential subsets ofJava. Further-
more, they use a semantic representation of assertions; program execution is specified by state transfor-
mations. Our proof system uses a syntactic representation,and substitution operators instead of state
transformations.

Similarly to our proof system, also Poetzsch-Heffter and M¨uller use a syntactical representation of
assertions [48, 49, 50, 51]. They develop a Hoare-style programming logic for a sequential kernel ofJava,
featuring interfaces, subtyping, and inheritance. Translating the operational and the axiomatic semantics
into the HOL theorem prover allows a computer-assisted soundness proof. Neither this group deals with
concurrent sublanguages ofJava.

1.2. Overview

The work is organized as follows: Section 2 describes syntaxand semantics of a sequential sublanguage
of Java. After introducing the assertional logic, we present a proof system for the sequential case. Sec-
tion 3 extends the results to a concurrent sublanguage. The language introduced in Section 4 includes
Java’s monitor synchronization mechanism. Section 5 covers also exception handling. The verification
conditions in the above sections are formulated as standardHoare-triples. Section 6 defines the formal
semantics of Hoare-triples, given by means of a weakest precondition calculus, and reformulates the ver-
ification conditions. Soundness and completeness are discussed in Section 7. Section 8 contains some
concluding remarks.

2. The sequential language

In this section we introduce a sequential sublanguageJavaseq of Java. We define its syntax in Section 2.1,
and its semantics in Section 2.2. After defining the assertion language in Section 2.3, we introduce a
proof system for verifying safety properties of the language in Section 2.4.

Programs, as inJava, are given by a collection of classes containing instance variable and method
declarations.Instancesof the classes, i.e.,objects,are dynamically created, and communicate viamethod
invocation,i.e., synchronous message passing.

We ignore inJavaseq the issues ofconcurrency, inheritance, and consequently subtyping, overriding,
and late-binding. For simplicity, we neither allow methodoverloading, i.e., we require that each method
name is assigned a unique list of formal parameter types and areturn type. In short, being concerned with
the verification of the run-time behavior, we assume a simplemonomorphictype discipline forJavaseq .

2.1. Syntax

Javaseq is a strongly typed language; besides class typesc, it supports booleansBool and integersInt as
primitive types, and pairst × t and listslist t as composite types. The type of methods without return

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 395

exp ::= x | u | this | null | f(exp, . . ., exp)

expret ::= ε | exp

stm ::= x := exp | u := exp | u := newc

| u := exp.m(exp, . . ., exp) | exp.m(exp, . . ., exp)

| ε | stm; stm | if exp then stm else stm fi | while exp do stm od . . .

meth ::= m(u, . . ., u){ stm; return expret}

methrun ::= run(){ stm; return }

class ::= class c{meth. . .meth}

classmain ::= c{meth. . .meth meth run}

prog ::= 〈class . . .class classmain〉

Table 1. Javaseq abstract syntax

value isVoid. SinceJavaseq is strongly typed, all program constructs of the abstract syntax are silently
assumed to be well-typed. In other words, we work with a type-annotated abstract syntax where we omit
the explicit mentioning of types when this causes no confusion.

For each type, the corresponding value domain is equipped with a standard set of operators with
typical elementf. Each operatorf has a unique typet1 × · · · × tn → t and a fixed interpretation
f , where constants are operators of zero arity. Apart from thestandard repertoire of arithmetical and
boolean operations, the set of operators also contains operations on tuples and sequences like projection,
concatenation, etc.

We notationally distinguish betweeninstance variablesx ∈ IVar and local (temporary) variables
u ∈ TVar . Instance variables hold the state of an object and exist throughout the object’s lifetime. Local
variables are stack-allocated; they play the role of formalparameters and variables of method definitions
and only exist during the execution of the method to which they belong. We useVar = IVar ∪̇ TVar

for the set of program variables with typical elementy, where∪̇ is the disjoint union operator.
The abstract syntax is summarized in Table 1. It slightly differs fromJavasyntax. Though we use

the abstract syntax for the theoretical part of this work, our tool supportsJavasyntax.

Besides using instance and local variables,expressionsexp ∈ Exp are built from the self-reference
this, the empty referencenull, and from subexpressions using the given operators. We usee as typical
element for expressions. To support a clean interface between internal and external object behavior,
Javaseq does not allow qualified references to instance variables. Note that all expressions of the language
are side-effect free, i.e., their evaluation does not modify the program state. Only the execution of
statements may have such an effect.

As statementsstm ∈ Stm , we allow assignments, object creation, method invocation, and standard
control constructs like sequential composition, conditional statements, and iteration. We writeε for the
empty statement.

A methoddefinitionm(u1, . . . , un){stm ; return eret} specifies the method’s namem, a list of formal
parametersu1, . . . , un, and a method body of the formstm ; return eret , i.e., we require that method
bodies are terminated by a single return statement, giving back the control and possibly a return value.
The setMethc contains the methods of classc. We denote the body of methodm of classc by bodym,c.

396 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Sometimes we explicitly mention the types of formal parameters and of the return value inJava-style
t m(t1 u1, . . . , tn un){bodym,c}.

A classis defined by its namec and its methods, whose names are assumed to be distinct. Aprogram,
finally, is a collection of class definitions having different class names, whereclassmain defines by itsrun-
method the entry point of the program execution. We call the body of therun-method of the main class
themain statementof the program.1 Therun-method cannot be called.

The setIVar c of instance variables of a classc is given implicitly by the instance variables occurring
in the class; the set of local variables of method declarations is given similarly. In the examples we
explicitly define variables inJava-style.

Besides the mentioned simplifications on the type system, weimpose for technical reasons the fol-
lowing restrictions: We require that method invocation statements contain only local variables, i.e., that
none of the expressionse0, . . . , en in a method invocatione0.m(e1, . . . , en) contains instance variables.
Furthermore, formal parameters must not occur on the left-hand side of assignments. These restric-
tions imply that during the execution of a method the values of the actual and formal parameters are
not changed. Finally, the result of object creation and method invocation may not be stored in instance
variables. This restriction allows for a proof system with separated verification conditions for interfer-
ence freedom and cooperation. It should be clear that it is possible to transform a program to adhere
to this restrictions at the expense of additional local variables and thus new interleaving points. The
above restrictions could be released, without loosing the mentioned modularity, but it would increase the
complexity of the proof system.

2.2. Semantics

In this section, we define theoperational semanticsof Javaseq . After introducing the semantic domains,
we describe states and configurations. The operational semantics is presented by transitions between
program configurations.

2.2.1. States and configurations

Let Val t be the disjoint domains of the various typest. For class namesc, the disjunct setsValc with
typical elementsα, β, . . . denote infinite sets ofobject identifiers.The value ofnull of typec is nullc /∈
Val c. [This is the semantic analogue to monomorphism.]In general we will just writenull , whenc is
clear from the context. We defineVal cnull asVal c ∪̇ {null c}, and correspondingly for compound types.
The set of all possible non-null values

⋃

t Val t is written asVal , andValnull denotes
⋃

t Val tnull . Let
Init : Var → Valnull be a function assigning an initial value to each variabley ∈ Var , i.e.,null , false ,
and0 for class, boolean, and integer types, respectively, and analogously for compound types, where
sequences are initially empty. We definethis /∈ Var , such that the self-reference is not in the domain of
Init .2

1In Java, the entry point of a program is given by the staticmain-method of the main class. Relating the abstract syntax to that
of Java, we assume that the main class is aThread-class whosemain-method just creates an instance of the main class and
starts its thread. The reason to make this restriction is, thatJava’s main-method is static, but our proof system does not support
static methods and variables.
2In Java, this is a “final” instance variable, which for instance implies, it cannot be assigned to.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 397

The configuration of a program consists of the set of existingobjects and the values of their instance
variables, and the configuration of the executing thread. Before formalizing the global configurations of
a program, we define local states and local configurations. Inthe sequel we identify the occurrence of a
statement in a program with the statement itself.

A local stateτ ∈ Σloc of a method execution holds the values of the method’s local variables and
is modeled as a partial function of typeTVar ⇀ Valnull . We refer to local states of methodm of
classc by τm,c. The initial local stateτ init

m,c assigns to each local variableu from its domain the value
Init(u). A local configuration(α, τ, stm) of a method of an objectα 6= null specifies, in addition
to its local stateτ , its point of execution represented by the statementstm. A thread configuration
ξ = (α0, τ0, stm0)(α1, τ1, stm1) . . . (αn, τn, stmn) is a stack of local configurations, representing the
chain of method invocations of the given thread. We writeξ ◦ (α, τ, stm) for pushing a new local
configuration onto the stack.

Objects are characterized by theirinstance statesσinst ∈ Σinst of type IVar ∪̇ {this} ⇀ Valnull ;
we require thatthis is in the domaindom(σinst) of σinst . We writeσc

inst to denote states of instances
of classc. The semantics will maintainσc

inst(this) ∈ Valc as invariant. The initial instance stateσc,init
inst

assigns a value fromVal c to this, and to each of its remaining instance variablesx the valueInit(x).
A global stateσ ∈ Σ of type (

⋃

c Val c) ⇀ Σinst stores for each currentlyexistingobject, i.e., an
object belonging to the domain ofσ, its instance state. The set of existing objects of typec in a state
σ is given byVal c(σ), andVal cnull (σ) = Val c(σ) ∪̇ {nullc}. For the remaining types,Val t(σ) and
Val tnull (σ) are defined correspondingly. We refer to the set

⋃

t Val t(σ) by Val (σ); Valnull (σ) denotes
⋃

t Val tnull (σ). The instance state of an objectα ∈ Val (σ) is given byσ(α) with the invariant property
σ(α)(this) = α. We require that, given a global state, no instance variablein any of the existing objects
refers to a non-existing object, i.e.,σ(α)(x) ∈ Valnull (σ) for all classesc, objectsα ∈ Valc(σ), and
instance variablesx ∈ IVar c. This will be an invariant of the operational semantics of the next section.

A global configuration〈T, σ〉 describes the currently existing objects by the global state σ, where
the setT contains the configuration of the executing thread. For the concurrent languages of the later
sections,T will be the set of configurations of all currently executing threads. Analogously to the re-
striction on global states, we require that local configurations (α, τ, stm) in 〈T, σ〉 refer only to existing
object identities, i.e.,α ∈ Val (σ) andτ(u) ∈ Valnull (σ) for all variablesu from the domain ofτ ; again
this will be an invariant of the operational semantics. In the following, we write(α, τ, stm) ∈ T if there
exists a local configuration(α, τ, stm) within one of the execution stacks ofT .

The semantic function[[]] ,
E

: (Σinst × Σloc) → (Exp ⇀ Valnull) evaluates in the context of anin-
stance localstate(σinst , τ) expressions containing variables fromdom(σinst) ∪ dom(τ): Instance vari-
ablesx and local variablesu are evaluated toσinst(x) andτ(u), respectively;this evaluates toσinst(this),
andnull has thenull-reference as value, where compound expressions are evaluated by homomorphic
lifting (see Table 2).

We denote byτ [u 7→ v] the local state which assigns the valuev to u and agrees withτ on the values
of all other variables;σinst [x 7→ v] is defined analogously, whereσ[α.x 7→ v] results fromσ by assigning
v to the instance variablex of objectα. We use these operators analogously for vectors of variables. We
useτ [~y 7→~v] also for arbitrary variable sequences, where instance variables are untouched;σinst [~y 7→~v]
andσ[α.~y 7→~v] are analogous. Finally for global states,σ[α 7→σinst] equalsσ except onα; note that
in caseα /∈ Val (σ), the operation extends the set of existing objects byα, which has its instance state
initialized toσinst .

398 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

[[x]]
σinst ,τ

E = σinst (x)

[[u]]
σinst ,τ

E = τ(u)

[[this]]
σinst ,τ

E = σinst (this)

[[null]]
σinst ,τ

E = null

[[f(e1, . . . , en)]]
σinst ,τ

E = f([[e1]]
σinst ,τ

E , . . . , [[en]]
σinst ,τ

E)

Table 2. Semantics of program expressions

2.2.2. Operational semantics

The operational semantics ofJavaseq is given inductively by the rules of Table 3 as transitions between
global configurations. The rules are formulated such a way that we can re-use them also for the con-
current languages of the later sections. Note that for the sequential language, the setsT in the rules are
empty, since there is only one single thread in global configurations. The remaining sequential constructs
—sequential composition, conditional statement, and iteration— are standard and elided.

Before having a closer look at the semantical rules for the transition relation−→, let us start by defin-
ing the starting point of a program. The initial configuration 〈T0, σ0〉 of a program satisfiesdom(σ0) =
{α}, σ0(α) = σc,init

inst [this 7→α], and T0 = {(α, τ init
run,c, body run,c)}, wherec is the main class, and

α ∈ Valc.
We call a configuration〈T, σ〉 of a programreachableiff there is a computation〈T0, σ0〉−→

∗〈T, σ〉
such that〈T0, σ0〉 is the initial configuration of the program and−→∗ the reflexive transitive closure of
−→. A local configuration(α, τ, stm) ∈ T is enabledin 〈T, σ〉, if it can be executed, i.e., if there is a
computation step〈T, σ〉 → 〈T ′, σ′〉 executingstm in the local stateτ and objectα.

Assignments to instance or local variables update the corresponding state component, i.e., either the
instance state or the local state (rules ASSinst and ASSloc). Object creation byu := newc, as shown
in rule NEW, creates a new object of typec with a fresh identity stored in the local variableu, and
initializes the instance variables of the new object. Invoking a method extends the call chain by a new
local configuration (rule CALL). After initializing the local state and passing the parameters, the thread
begins to execute the method body. When returning from a method call (rule RETURN), the callee
evaluates its return expression and passes it to the caller which subsequently updates its local state. The
method body terminates its execution and the caller can continue. We have similar rules not shown in
the table for the invocation of methods without return value. The executing thread ends its lifespan by
returning from therun-method of the initial object (rule RETURNrun).

2.3. The assertion language

In this section we introduceassertionsto specify program properties. The assertion logic consists of a
local and aglobal sublanguage.Local assertions describe instance local states, and are used to annotate
methods in terms of their local variables and of the instancevariables of the class to which they belong.
Global assertions describe the global state, i.e., a whole system of objects and their communication
structure.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 399

ASSinst

〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x 7→[[e]]
σ(α),τ
E]〉

ASSloc
〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→[[e]]

σ(α),τ
E], stm)}, σ〉

β ∈ Valc\Val (σ) σinst = σc,init
inst [this 7→β] σ′ = σ[β 7→σinst]

NEW
〈T ∪̇ {ξ ◦ (α, τ, u:=newc; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→ β], stm)}, σ′〉

m(~u){ body } ∈ Methcβ = [[e0]]
σ(α),τ
E ∈ Valc(σ) τ ′ = τ init

m,c [~u 7→[[~e]]
σ(α),τ
E]

CALL
〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret]]
σ(β),τ ′

E]
RETURN

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

RETURNrun

〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ε)}, σ〉

Table 3. Javaseq operational semantics

To be able to argue about communication histories, represented as lists of objects, we add the type
Object as the supertype of all classes into the assertion language.Note that we allow this type solely
in the assertion language, but not in the programming language, thus preserving the assumption of
monomorphism.

2.3.1. Syntax

In the language of assertions, we introduce a countably infinite setLVar of well-typedlogical variables
with typical elementz, where we assume that instance variables, local variables,andthis are not inLVar .
We useLVar t for the set of logical variables of typet. Logical variables are used for quantification in
both the local and the global language. Besides that, they are used as free variables to represent local
variables in the global assertion language: To express a local property on the global level, each local
variable in a given local assertion will be replaced by a fresh logical variable.

Table 4 defines the syntax of the assertion language. For readability, we use the standard syntax of
first order logic in the theoretical part; theVerger tool supports an adaptation ofJML.

Local expressionsexpl ∈ LExp are expressions of the programming language possibly containing
logical variables. The set of local expressions of typet is denoted byLExpt. In abuse of notation, we
usee, e′ . . . not only for program expressions of Table 1, but also for typical elements of local expres-
sions. Local assertionsass l ∈ LAss , with typical elementsp, p′, q, . . ., are standard logical formulas
over boolean local expressions. We allow three forms of quantification over logical variables: Unre-
stricted quantification∃z. p is solely allowed for domains without object references, i.e.,z is required to
be of typeInt, Bool, or compound types built from them. For reference typesc, this form of quantifica-

400 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

expl ::= z | x | u | this | null | f(expl, . . . , expl) e ∈ LExp

ass l ::= expl | ¬ass l | ass l ∧ ass l

| ∃z. ass l | ∃z ∈ expl. ass l | ∃z v expl. ass l p ∈ LAss

expg ::= z | null | f(expg, . . . , expg) | expg.x E ∈ GExp

assg ::= expg | ¬assg | assg ∧ assg | ∃z. assg P ∈ GAss

Table 4. Syntax of assertions

tion is not allowed, as for those types the existence of a value dynamically depends on theglobal state,
something one cannot speak about on the local level, or more formally: Disallowing unrestricted quan-
tification for object types ensures that the value of a local assertion indeed only depends on the values of
the instance and local variables, but not on the global state. Nevertheless, one can assert the existence of
objects on the local level satisfying a predicate, providedone is explicit about the set of objects to range
over. Thus, the restricted quantifications∃z ∈ e. p and∃z v e. p assert the existence of an element,
respectively, the existence of a subsequence of a given sequencee, for which a propertyp holds.

Global expressionsexpg ∈ GExp , with typical elementsE,E′, . . ., are constructed from logical
variables,null, operator expressions, and qualified referencesE.x to instance variablesx of objectsE.
We writeGExpt for the set of global expressions of typet. Global assertionsassg ∈ GAss, with typical
elementsP,Q . . ., are logical formulas over boolean global expressions. Unlike the local language, the
meaning of the global one is defined in the context of a global state. Thus unrestricted quantification
is allowed for all types and is interpreted to range over the set of existingvalues, i.e., the set of values
Valnull (σ) in a global configuration〈T, σ〉.

We sometimes write quantification overt-typed values in the form∀(z : t). p to make the domain of
the quantification explicit; we use the same notation also inthe global language.

2.3.2. Semantics

Next, we define the interpretation of the assertion language. The semantics is fairly standard, except that
we have to cater for dynamic object creation when interpreting quantification.

Logical variables are interpreted relative to a logical environmentω ∈ Ω, a partial function of type
LVar ⇀ Valnull , assigning values to logical variables. We denote byω[~z 7→~v] the logical environment
that assigns the values~v to the variables~z, and agrees withω on all other variables. Similarly to local and
instance state updates, the occurrence of instance and local variables in~z is without effect. For a logical
environmentω and a global stateσ we say thatω refers only to values existing inσ, if ω(z) ∈ Valnull (σ)
for all z ∈ dom(ω). This property matches with the definition of quantificationwhich ranges only over
existing values andnull , and with the fact that in reachable configurations local variables may refer only
to existing values or tonull .

The semantic function[[]] , ,
L

of type (Ω × Σinst × Σloc) → (LExp ∪ LAss ⇀ Valnull) evaluates
local expressions and assertions in the context of a logicalenvironmentω and an instance local state
(σinst , τ) (see Table 5). The evaluation function is defined for expressions and assertions that contain
only variables fromdom(ω) ∪ dom(σinst) ∪ dom(τ). The instance local state provides the context for
giving meaning to programming language expressions as defined by the semantic function[[]] ,

E
; the

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 401

[[z]]
ω,σinst ,τ

L = ω(z)

[[x]]
ω,σinst ,τ

L = σinst (x)

[[u]]
ω,σinst ,τ

L = τ(u)

[[this]]
ω,σinst ,τ

L = σinst (this)

[[null]]
ω,σinst ,τ

L = null

[[f(e1, . . . , en)]]
ω,σinst ,τ

L = f([[e1]]
ω,σinst ,τ

L , . . . , [[en]]
ω,σinst ,τ

L)

([[¬p]]
ω,σinst ,τ

L =true) iff ([[p]]
ω,σinst ,τ

L =false)

([[p1 ∧ p2]]
ω,σinst ,τ

L =true) iff ([[p1]]
ω,σinst ,τ

L =true and[[p2]]
ω,σinst ,τ

L =true)

([[∃z. p]]
ω,σinst ,τ

L =true) iff ([[p]]
ω[z 7→ v],σinst ,τ

L =true for somev ∈ Valnull)

([[∃z∈e. p]]
ω,σinst ,τ

L =true) iff ([[z∈e∧p]]
ω[z 7→ v],σinst ,τ

L =true for somev∈Valnull)

([[∃zve. p]]
ω,σinst ,τ

L =true) iff ([[zve∧p]]
ω[z 7→ v],σinst ,τ

L =true for somev∈Valnull)

Table 5. Local evaluation

logical environment evaluates logical variables. An unrestricted quantification∃z. p with z ∈ LVar t is
evaluated to true in the logical environmentω and instance local state(σinst , τ) if and only if there exists
a valuev ∈ Val t such thatp holds in the logical environmentω[z 7→ v] and instance local state(σinst , τ),
where for the typet of z only Int, Bool, or compound types built from them are allowed. The evaluation
of a restricted quantification∃z ∈ e. p with z ∈ LVar t ande ∈ LExp list t is defined analogously, where
the existence of an element in the sequence is required. An assertion∃z v e. p with z ∈ LVar list t and
e ∈ LExp list t states the existence of a subsequence ofe for whichp holds. In the following we also write
ω, σinst , τ |=L p for [[p]]

ω,σinst ,τ

L
= true. By |=L p we express thatω, σinst , τ |=L p holds for arbitrary

logical environments, instance states, and local states.
Sinceglobal assertions do not contain local variables and non-qualifiedreferences to instance vari-

ables, the global assertional semantics does not refer to instance local states but to global states. The
semantic function[[]] ,

G
of type(Ω × Σ) ⇀ (GExp ∪GAss ⇀ Valnull), shown in Table 6, gives mean-

ing to global expressions and assertions in the context of a global stateσ and a logical environmentω.
To be well-defined,ω is required to refer only to values existing inσ, and the expression respectively
assertion may only contain free variables3 from the domain ofω. Logical variables,null, and operator
expressions are evaluated analogously to local assertions. The value of a global expressionE.x is given
by the value of the instance variablex of the object referred to by the expressionE. The evaluation of an
expressionE.x is defined only ifE refers to an object existing inσ. Note that whenE andE′ refer to the
same object, that is,E andE′ arealiases, thenE.x andE′.x denote the same variable. The semantics
of negation and conjunction is standard. A quantification∃z. P with z ∈ LVar t evaluates to true in the
context ofω andσ if and only if P evaluates to true in the context ofω[z 7→ v] andσ, for some value
v ∈ Val tnull (σ). Note that quantification over objects ranges over the set ofexistingobjects andnull ,
only.

For a global stateσ and a logical environmentω referring only to values existing inσ we write
ω, σ |=G P whenP is true in the context ofω andσ. We write |=G P if P holds for arbitrary global
statesσ and logical environmentsω referring only to values existing inσ.

3In global expressionsE.x we treatx as a bound variable.

402 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

[[z]]ω,σ
G = ω(z)

[[null]]ω,σ
G = null

[[f(E1, . . . , En)]]ω,σ
G = f([[E1]]

ω,σ
G , . . . , [[En]]ω,σ

G)

[[E.x]]ω,σ
G = σ([[E]]ω,σ

G)(x)

([[¬P]]ω,σ
G = true) iff ([[P]]ω,σ

G = false)

([[P1 ∧ P2]]
ω,σ
G = true) iff ([[P1]]

ω,σ
G = true and[[P2]]

ω,σ
G = true)

([[∃z. P]]ω,σ
G = true) iff ([[P]]

ω[z 7→ v],σ
G = true for somev ∈ Valnull (σ))

Table 6. Global evaluation

To express a local propertyp in the global assertion language, we define the substitutionp[z/this] by
simultaneously replacing inp all occurrences of the self-referencethis by the logical variablez, which
is assumed not to occur inp, and transforming all occurrences of instance variablesx into qualified
referencesz.x. For notational convenience we view the local variables occurring in the global assertion
p[z/this] as logical variables. Formally, these local variables are replaced by fresh logical variables. We
write P (z) for p[z/this], and similarly for expressions. For unrestricted quantifications(∃z′. p)[z/this]
the substitution applies to the assertionp. Local restricted quantifications are transformed into global
unrestricted ones where the relations∈ andv are expressed at the global level as operators. The main
cases of the substitution are defined as follows:

this[z/this] = z

x[z/this] = z.x

u[z/this] = u

(∃z′. p)[z/this] = ∃z′. p[z/this]

(∃z′ ∈ e. p)[z/this] = ∃z′. (z′ ∈ e[z/this] ∧ p[z/this])

(∃z′ v e. p)[z/this] = ∃z′. (z′ v e[z/this] ∧ p[z/this]) ,

wherez is fresh.
This substitution will be used to combine properties of instance local states on the global level. The

substitution preserves the meaning of local assertions, provided the meaning of the local variables is
matchingly represented by the logical environment:

Lemma 2.1. (Lifting substitution)
Let σ be a global state,ω and τ a logical environment and local state, both referring only to values
existing inσ. Let furthermorep be a local assertion containing local variables~u. If τ(~u) = ω(~u) andz
a fresh logical variable, then

ω, σ |=G p[z/this] iff ω, σ(ω(z)), τ |=L p .

2.4. The proof system

The proof system has to accommodate for dynamic object creation, aliasing, method invocation, and
recursion. The following section defines how to augment and annotate programs resulting in proof
outlines, before Section 2.4.2 describes the proof method.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 403

For technical convenience, we formulate verification conditions as standard Hoare-triples. The state-
ments of these Hoare-triples may also contain assignments involving qualified references as given by the
global assertion language. For the formal semantics and forre-formulated verification conditions using
substitutions see [1].

2.4.1. Proof outlines

For a complete proof system it is necessary that the transition semantics ofJavaseq can be encoded in
the assertion language. As the assertion language reasons about the local and global states, we have to
augmentthe program with freshauxiliary variablesto represent information about the control points
and stack structures within the local and global states. Invariant program properties are specified by the
annotation. An augmented and annotated program is called aproof outlineor anasserted program.

Note that augmentation is not optional but necessary for relative completeness when reasoning about
computations. For example, without auxiliary variables, in general it would not be possible to describe
the input-output behaviour of a method by an assertion, since the input-output relation relates pairs of
states, while assertions are evaluated in a single state. Toexpress such dependencies, one can introduce
new auxiliary variables to store the input (i.e., parameter) values, and state the property by an assertion
evaluated in the output state. Other proof methods may handle augmentation differently: JML for ex-
ample introduces for this special case of input-output relation of methods a special auxiliary variable
“\return” for the return value.

Augmentation An augmentation extends a program by atomically executed multiple assignments~y :=
~e to distinct auxiliary variables, which we callobservations. Furthermore, the observations have, in
general, to be “attached” to statements they observe in an atomic manner. For object creation this is
syntactically represented by the augmentationu := newc 〈~y := ~e〉new which attaches the observation to
the object creation statement. Observations~y1 := ~e1 of a method call and observations~y4 := ~e4 of the
corresponding reception of a return value are denoted byu := e0.m(~e) 〈~y1 := ~e1〉

!call 〈~y4 := ~e4〉
?ret .

The augmentation〈~y2 := ~e2〉
?call stm; return eret〈~y3 := ~e3〉

!ret of method bodies specifies~y2 := ~e2 as
the observation of the reception of the method call and~y3 := ~e3 as the observation attached to the return
statement. Assignments can be observed using~y := ~e 〈~y′ := ~e ′〉ass. A stand-alone observation not
attached to any statement is written as〈~y := ~e〉 . It can be inserted at any point in the program.

Note that we could also use the same syntax for all kinds of observations. However, such a no-
tation would be disadvantageous for partial augmentations, i.e., for the specification of augmentations
where not all statements are observed. For example, using the notation introduced above, the augmen-
tatione0.m(~e) 〈stm〉 uniquely specifiesstm as an alone-standing observation following an unobserved
method call; using the same augmentation syntax〈stm〉 for all kinds of observations, we would have
to write e0.m(~e) 〈〉 〈〉 〈stm〉 to specify the same setting. The same remark can be made also for the
annotation syntax, introduced below.

The augmentation does not influence the control flow of the program but enforces a particular
scheduling policy. An assignment statement and its observation are executed simultaneously. Object
creation and its observation are executed in a single computation step, in this order. For method call,
communication, sender, and receiver observations are executed in a single computation step, in this or-
der. Points between a statement and its observation are nocontrol points, since they are executed in a
single computation step; we call themauxiliary points.

404 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

As stated above, in the case of method calls the caller and thecallee both may make observa-
tions. Consequently, in case of self-calls, when caller andcallee execute in the same object, we would
have to show interference freedom under assignment-pairs,which would increase the complexity of
the proof system. To overcome this complication, we requirethat the caller observation in a self-
communication may not change the values of instance variables. Formally, in each observation of a
method invocation statemente0.m(~e), assignments to instance variables must have the formx := if e0 =
this then x else e fi.

In the following we call assignment statements with their observations, unobserved assignments,
alone-standing observations, or observations of communication or object creation general as multiple
assignments, since they are executed simultaneously.

For completeness, it is necessary to be able toidentify objects and instances of method executions,
i.e., local configurations. We identify a local configuration by the object in which it executes together
with the value of its built-in auxiliary local variableconf storing a unique object-internal identifier. Its
uniqueness is assured by the auxiliary instance variablecounter, incremented for each new local con-
figuration in that object. The callee receives the “return address” as auxiliary formal parametercaller

of typeObject × Int, storing the identities of the caller object and the callinglocal configuration. The
run-method of the initial object is executed with the parametercaller having the value(null , 0).

Syntactically, each method declarationm(~u){stm ; return eret} gets extended by the built-in augmen-
tation tom(~u, caller){〈conf, counter := counter, counter + 1〉?call stm ; return eret}. Correspondingly
for method callsu := e0.m(~e), the actual parameter lists get extended tou := e0.m(~e, (this, conf)).
The values of the built-in auxiliary variables must not be changed by the user-defined augmentation but
may be used in the augmentation and annotation.

Annotation To specify invariant properties of the system, the augmented programs areannotatedby
attaching local assertions to each control and auxiliary point. We use the triple notation{p} stm {q} and
write pre(stm) andpost(stm) to refer to the pre- and the post-condition of a statement. For assertions
at auxiliary points we use the following notation: The annotation

{p0} u := newc {p1}
new 〈~y := ~e〉new {p2}

of an object creation statement specifiesp0 andp2 as pre- and postconditions, wherep1 at the auxiliary
point should hold directly after object creation but beforeits observation. The annotation

{p0}u := e0.m(~e) {p1}
!call 〈~y1 := ~e1〉

!call {p2}
wait {p3}

?ret 〈~y4 := ~e4〉
?ret {p4}

assignsp0 andp4 as pre- and postconditions to the method invocation;p1 is assumed to hold directly
after method call, but prior to its observation;p2 describes the control point of the caller after method
call and before return; finally,p3 specifies the state directly after return but before its observation. The
annotation of method bodiesstm; return eret is as follows:

{p0}
?call 〈~y2 := ~e2〉

?call {p1} stm ; {p2} return eret {p3}
!ret 〈~y3 := ~e3〉

!ret {p4}

The callee postcondition of the method call isp1; the callee pre- and postconditions of return arep2 and
p4. The assertionsp0 respectivelyp3 specify the states of the callee between method call respectively
return and its observation.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 405

Besides pre- and postconditions, for each classc, the annotation defines a local assertionIc called
class invariant, specifying invariant properties of instances ofc in terms of its instance variables.4 We
require that for each method of a class, the class invariant is the precondition of the method body.

Finally, a global assertionGI called theglobal invariantspecifies properties of communication be-
tween objects. As such, it should be invariant under object-internal computation. For that reason, we
require that for all qualified referencesE.x in GI with E of typec, all assignments tox in classc occur
in the observations of communication or object creation. Werequire furthermore that in the annotation
no free logical variables occur.

2.4.2. Verification conditions

The proof system formalizes a number ofverification conditionswhich inductively ensure that for each
reachable configuration the local assertions attached to the current control points in the thread config-
uration as well as the global and the class invariants hold. The conditions are grouped, as usual, into
initial conditions, and for the inductive step into local correctness and tests for interference freedom and
cooperation.

Before specifying the verification conditions, we first listsome notation. LetInit be a syntactical
operator with interpretationInit (see page 396). GivenIVar c as the set of instance variables of class
c without the self-reference, andz a logical variable of typec, let InitState(z) be the global assertion
z 6= null ∧

∧

x∈IVarc
z.x = Init(x), expressing that the object denoted byz is in its initial instance state.

Finally, arguing about two different local configurations makes it necessary to distinguish between
their local variables, since they may have the same names; insuch cases we will rename the local vari-
ables in one of the local states. We use primed assertionsp′ to denote the given assertionp with every
local variableu replaced by a fresh oneu′, and correspondingly for expressions.

Initial correctness A proof outline isinitially correct, if the precondition of the main statement, the
class invariant of the initial object, and the global invariant are satisfied initially, i.e., in the initial global
configuration after the execution of the callee observationat the beginning of the main statement. Fur-
thermore, the precondition of the observation should be satisfied prior to its execution.

Definition 2.1. (Initial correctness)
Let the body of therun-method of the main classc be{p2}

?call 〈~y2 := ~e2〉
?call {p3} stm ; return with local

variables~v without the formal parameters,z ∈ LVarc, andz′ ∈ LVarObject. A proof outline isinitially
correct, if

|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} ~v, caller := Init(~v), (null, 0) {P2(z)} (1)

|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (2)

~v, caller := Init(~v), (null, 0); z.~y2 := ~E2(z)

{GI ∧ P3(z) ∧ Ic(z)}

4The notion of class invariant commonly used for sequential object-oriented languages differs from our notion: In a sequential
setting, it would be sufficient that the class invariant holds initially and is preserved by whole method calls, but not necessarily
in between.

406 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

The assertionInitState(z)∧ ∀z′. z′ = null∨ z = z′ states that the initial global state defines exactly one
existing objectz being in its initial instance state. Initialization of the local configuration is represented
by the assignment~v, caller := Init(~v), (null, 0). The observation~y2 := ~e2 at the beginning of therun-
method of the initial objectz is represented by the assignmentz.~y2 := ~E2(z).

Local correctness A proof outline islocally correct, if the properties of method instances as specified
by the annotation are invariant under their own execution, i.e., if the usual verification conditions [11]
for standard sequential constructs hold. For example, the precondition of an assignment must imply
its postcondition after its execution. The following condition should hold for all multiple assignments
being an assignment statement with its observation, an unobserved assignment, or an alone-standing
observation:

Definition 2.2. (Local correctness: Assignment)
A proof outline islocally correct, if for all multiple assignments{p1} ~y := ~e {p2} in classc, which is
not the observation of object creation or communication,

|=L {p1} ~y := ~e {p2} . (3)

The conditions for loops and conditional statements are similar. Note that we have no local verification
conditions for observations of communication and object creation. The postconditions of such state-
ments expressassumptionsabout the communicated values. These assumptions will be verified in the
cooperation test.

The interference freedom test Invariance of local assertions under computation steps in which they
are not involved is assured by the proof obligations of theinterference freedom test.Its definition covers
also invariance of the class invariants. SinceJavaseq does not support qualified references to instance
variables, we only have to deal with invariance under execution within thesameobject. Affecting only
local variables, communication and object creation do not change the instance states of the executing
objects. Thus we only have to cover invariance of assertionsat control points over assignments, including
observations of communication and object creation. To distinguish local variables of the different local
configurations, we rename those of the assertion.

Let q be an assertion at a control point and~y := ~e a multiple assignment in the same classc. In
which cases doesq have to be invariant under the execution of the assignment? Since the language is
sequential, i.e.,q and~y := ~e belong to thesamethread, the only assertions endangered are those at
control points waiting for return earlier in the current execution stack. Invariance of a local configuration
under its own execution, however, need not be considered andis excluded by requiringconf 6= conf ′.
Interference with thematchingreturn statement in a self-communication need also not be considered,
because communicating partners execute simultaneously. Let caller obj be the first andcaller conf the
second component ofcaller. We definewaits for ret(q, ~y := ~e) by

• conf ′ 6= conf, for assertions{q}wait attached to control points waiting for return, if~y := ~e is not
the observation of return;

• conf ′ 6= conf ∧ (this 6= caller obj∨ conf ′ 6= caller conf), for assertions{q}wait , if ~y := ~e observes
return;

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 407

• false, otherwise.

The interference freedom test can now be formulated as follows:

Definition 2.3. (Interference freedom)
A proof outline isinterference free,if for all classesc and multiple assignments~y := ~e with precondi-

tion p in c,

|=L {p ∧ Ic} ~y := ~e {Ic} . (4)

Furthermore, for all assertionsq at control points inc,

|=L {p ∧ q′ ∧ waits for ret(q, ~y := ~e)} ~y := ~e {q′} . (5)

Note that if we would allow qualified references in program expressions, we would have to show
interference freedom of all assertions under all assignments in programs, not only for those occurring in
the same class. For a program withn classes where each class containsk assignments andl assertions at
control points, the number of interference freedom conditions is inO(c ·k · l), instead ofO((c ·k) · (c · l))
with qualified references.

The cooperation test Whereas the interference freedom test assures invariance of assertions under
steps in which they are not involved, thecooperation testdeals with inductivity for communicating
partners, assuring that the global invariant and the preconditions of the involved statements imply their
postconditions after the joint step. Additionally, the preconditions of the corresponding observations
must hold immediately after communication.

The global invariant refers to auxiliary instance variables which are allowed to be changed by ob-
servations of communication, only. Consequently, the global invariant is automatically invariant under
the execution of non-communicating statements. For communication and object creation, however, the
invariance must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. The semantics of method call and returning
from a method is as follows: After communication, i.e., after creating and initializing the callee local
configuration and passing on the actual parameters, first thecaller, and then the callee execute their corre-
sponding observations, all in a single computation step. Correspondingly for return, after communicating
the result value, first the callee and then the caller observation gets executed. Since different objects may
be involved, the cooperation test is formulated in the global assertion language. Local properties are ex-
pressed in the global language using the lifting substitution. As already mentioned, we use the shortcuts
P (z) for p[z/this], Q′(z′) for q′[z′/this], and similarly for expressions. To avoid name clashes between
local variables of the partners, we rename those of the callee.

Let z andz′ be logical variables representing the caller, respectively the callee object in a method
call. We assume the global invariant and the preconditions of the communicating statements to hold
prior to communication. For method invocation, the precondition of the callee is its class invariant. That
the two statements indeed represent communicating partners is captured in the assertioncomm, which
depends on the type of communication: For method invocatione0.m(~e), the assertionE0(z) = z′ states,
thatz′ is indeed the callee object. Remember that method invocation hands over the return address, and
that the values of formal parameters remain unchanged. Furthermore, actual parameters may not contain

408 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

instance variables, i.e., their interpretation does not change during method execution. Therefore, the
formal and actual parameters can be used at returning from a method to identify partners being in caller-
callee relationship, using the built-in auxiliary variables. Thus for the return case,comm additionally
states~u′ = ~E(z), where~u and~e are the formal and the actual parameters. Returning from therun-
method terminates the executing thread, which does not havecommunication effects.

As in the previous conditions, state changes are represented by assignments. For the example of
method invocation, communication is represented by the assignment~u′ := ~E(z), where initialization
of the remaining local variables~v is covered by~v′ := Init(~v). The assignmentsz.~y1 := ~E1(z) and
z′.~y′2 := ~E′

2(z
′) stand for the caller and callee observations~y1 := ~e1 and~y2 := ~e2, executed in the

objectsz andz′, respectively. Note that we rename all local variables of the callee to avoid name clashes.

Definition 2.4. (Cooperation test: Communication)
A proof outline satisfies thecooperation test for communication, if

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm

{P2(z) ∧ Q′
2(z

′)} (6)

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm ; fobs1 ; fobs2

{GI ∧ P3(z) ∧ Q′
3(z

′)} (7)

holds for distinct fresh logical variablesz ∈ LVarc andz′ ∈ LVarc′ , in the following cases:

1. CALL : For all statements{p1}uret := e0.m(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait (or such without

receiving a value) in classc with e0 of type c′, where methodm of c′ has body{q2}
?call 〈~y2 :=

~e2〉
?call {q3} stm ; return eret , formal parameters~u, and local variables~v except the formal parame-

ters. The callee class invariant isq1 = Ic′ . The assertioncomm is given byE0(z) = z′. Further-
more,fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z), andfobs2 is z′.~y′2 := ~E′

2(z
′).

2. RETURN: For alluret := e0.m(~e) 〈stm〉!call {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret{p3} (or such without

receiving a value) occurring inc with e0 of type c′, such that methodm of c′ has the return
statement{q1} return eret {q2}

!ret 〈~y3 := ~e3〉
!ret {q3} , and formal parameter list~u, the above

equations must hold withcomm given byE0(z) = z′ ∧ ~u′ = ~E(z), and wherefcomm is uret :=
E′

ret (z
′), fobs1 is z′.~y′3 := ~E′

3(z
′), andfobs2 is z.~y4 := ~E4(z).

3. RETURNrun : For{q1} return {q2}
!ret 〈~y3 := ~e3〉

!ret {q3} occurring in therun-method of the main
class,p1 = p2 = p3 = true, comm = true, and furthermorefcomm andfobs2 are the empty
statement, andfobs1 is z′.~y′3 := ~E′

3(z
′).

Besides method calls and returns, the cooperation test needs to handle object creation, taking care of
the preservation of the global invariant, the postcondition of thenew statement and its observation, and
the new object’s class invariant. We can assume that the precondition of the object creation statement
and the global invariant hold in the configuration prior to instantiation. The extension of the global state
with a freshly created object is formulated in astrongest postconditionstyle, i.e., it is required to hold
immediatelyafter the instantiation. We use existential quantification to refer to the old value:z′ of type

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 409

LVar list Object represents the existing objects prior to the extension. Moreover, that the created object’s
identity stored inu is fresh and that the new instance is properly initialized isexpressed by the global
assertionFresh(z′, u) defined asInitState(u)∧u 6∈ z′∧∀v. v ∈ z′∨v = u (see page 405 for the definition
of InitState). To express that an assertion refers to the set of existing objectsprior to the extension of
the global state, we need torestrict any existential quantification in the assertion to range over objects
from z′, only. So letP be a global assertion andz′ ∈ LVar list Object a logical variable not occurring inP .
ThenP ↓ z′ is the global assertionP with all quantifications∃z. P ′ replaced by∃z. obj(z) ⊆ z′ ∧ P ′,
whereobj (v) denotes the set of objects occurring in the valuev. The following lemma formulates the
basic property of the projection operator:

Lemma 2.2. Assume a global stateσ, an extensionσ′ = σ[α 7→ σc,init
inst] for someα ∈ Valc, α /∈ Val (σ),

and a logical environmentω referring only to values existing inσ. Let v be the sequence consisting of
all elements of

⋃

c Val cnull (σ). Then for all global assertionsP and logical variablesz′ ∈ LVar listObject

not occurring inP ,
ω, σ |=G P iff ω[z′ 7→ v], σ′ |=G P ↓ z′.

Thus a predicate(∃u. P) ↓ z′, evaluated immediately after the instantiation, expresses thatP holds prior
to the creation of the new object. This leads to the followingdefinition of the cooperation test for object
creation:

Definition 2.5. (Cooperation test: Instantiation)
A proof outline satisfies thecooperation test for object creation, if for all classesc′ and statements
{p1}u := newc {p2}

new〈~y := ~e〉new{p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

→ P2(z) ∧ Ic(u) (8)

|=G {z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

}

z.~y := ~E(z)

{GI ∧ P3(z)} (9)

with z ∈ LVarc′ andz′ ∈ LVar listObject fresh.

3. The concurrent language

In this section we extend the languageJavaseq to aconcurrentlanguageJavaconc by allowing dynamic
thread creation. Again, we define syntax and semantics of the language, before formalizing the proof
system for the concurrent language.

3.1. Syntax

Expressions and statements can be constructed as inJavaseq . The abstract syntax of the remaining con-
structs is summarized in Table 7.

As we focus on concurrency aspects, all classes areThread classes in the sense ofJava: Each class
contains a pre-definedstart-method that can be invoked only once for each object, resulting in a new

410 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

meth ::= m(u, . . ., u){ stm; return expret}

meth run ::= run(){ stm; return }

class ::= class c{meth. . .meth methrun methstart}

classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 7. Javaconc abstract syntax

β = [[e]]
σ(α),τ
E ∈ Valc(σ) ¬started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

CALL start

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ init
run,c, body run,c)}, σ〉

β = [[e]]
σ(α),τ
E ∈ Val (σ) started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

CALL
skip
start

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 8. Javaconc operational semantics

thread of execution. The new thread starts to execute the user-definedrun-method of the given object
while the initiating thread continues its own execution. The run-methods cannot be invoked directly. The
parameterlessstart-method without return value is not implemented syntactically; see the next section
for its semantics. Note, that the syntax does not allow qualified references to instance variables. As a
consequence, shared-variable concurrency is caused by simultaneous execution within a single object,
only, but not across object boundaries.

3.2. Semantics

The operational semantics ofJavaconc extends the semantics ofJavaseq by dynamic thread creation.
The additional rules are shown in Table 8. The invocation of astart-method brings a new thread into
being (rule CALL start). Only the first invocation of thestart-method has this effect (rule CALL

skip
start).

5

This is captured by the predicatestarted(T, β) which holds iff there exists a stack(α0, τ0, stm0) . . .
(αn, τn, stmn) ∈ T such thatβ = α0. A thread ends its lifespan by returning from arun-method (rule
RETURNrun of Table 3).6

3.3. The proof system

In contrast to the sequential language, the proof system additionally has to accommodate for dynamic
thread creation and shared-variable concurrency. Before describing the proof method, we show how to
extend the built-in augmentation of the sequential language.

5In Javaan exception is thrown if the thread is already started but not yet terminated.
6The worked-off local configuration(α, τ, ε) is kept in the global configuration to ensure that the thread of α cannot be started
twice.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 411

3.3.1. Proof outlines

To get a complete proof system, for the concurrent language we additionally have to be able to identify
threads. We identify a thread by the object in which it has begun its execution. We use the typeThread
thus as abbreviation for the typeObject. This identification is unique, since an object’s thread canbe
started only once. During a method call, the callee thread receives its own identity as an auxiliary formal
parameterthread. Additionally, we extend the auxiliary formal parametercaller by the caller thread
identity, i.e., letcaller be of typeObject × Int × Thread, storing the identities of the caller object, the
calling local configuration, and the caller thread. Note that the thread identities of caller and callee are the
same in all cases but the invocation of astart-method. Therun-method of the initial object is executed
with the parameters(thread, caller) having the values(α0, (null , 0,null)), whereα0 is the initial object.
The boolean instance variablestarted, finally, remembers whether the object’sstart-method has already
been invoked.

Syntactically, each formal parameter list~u in the original program gets extended to(~u, thread, caller).
Correspondingly for the caller, each actual parameter list~e in statements invoking a method different
from start gets extended to(~e, thread, (this, conf, thread)). The invocation of the parameterlessstart-
method of an objecte0 gets the actual parameter list(e0, (this, conf, thread)). Finally, the callee obser-
vation at the beginning of therun-method executesstarted := true. The variablesconf andcounter are
updated as in the previous section.

Remember that the caller observation of self-calls may not modify the instance state, as required in
Section 2.4.1. Invoking thestart-method by a self-call is specific in that, when the thread is already
started, the caller is the only active entity. In this case, it has to be the caller that updates the instance
state; the corresponding observation has the formx := if e0 = this ∧ ¬started then x else e fi.

Since a thread calling a start method does not wait for returnbut continues execution, the augmenta-
tion and annotation of such method invocations have the form{p1} e0.start(~e) {p2}

!call 〈stm〉!call {p3} .

3.3.2. Verification conditions

Initial correctness changes only, in that the formal parameters thread andcaller get the initial valuesz
and(null , 0,null). Local correctness is not influenced by the new issue of concurrency. Note that local
correctness applies now to all concurrently executing threads.

The interference freedom test Interference of asingle thread under its own execution remains the
same as for the sequential language. However, we additionally have to deal with invariance of properties
of a thread under the execution of adifferentthread. Note that assertions at auxiliary points do not haveto
be shown invariant. Again, to distinguish local variables of the different local configurations, we rename
those of the assertion which we show to be invariant.

An assertionq at a control point has to be invariant under an assignment~y := ~e in the same class
only if the local configuration described by the assertion isnot active in the computation step executing
the assignment. Ifq and~y := ~e belong to thesamethread, i.e.,thread = thread′, then we have the same
antecedent as for the sequential language. If the assertionand the assignment belong todifferentthreads,
interference freedom must be shown in any case except for theself-invocation of thestart-method: The
precondition of such a method invocation cannot interfere with the corresponding observation of the
callee. To describe this setting, we defineself start(q, ~y := ~e) by caller = (this, conf ′, thread′) iff q is

412 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

the precondition of a method invocatione0.start(~e) and the assignment is the callee observation at the
beginning of therun-method, and byfalse otherwise.

Definition 3.1. (Interference freedom)
A proof outline isinterference free,if the conditions of Definition 2.3 hold withwaits for ret(q, ~y := ~e)

replaced by
interleavable(q, ~y := ~e)

def
= thread = thread′ → waits for ret(q, ~y := ~e) ∧

thread 6= thread′ → ¬self start(q, ~y := ~e) .

The cooperation test The cooperation test for object creation is not influenced byadding concurrency,
but we have to extend the cooperation test for communicationby defining additional conditions for
thread creation. Invoking thestart-method of an object whose thread is already started does nothave
communication effects. The same holds for returning from arun-method, which is already included
in the conditions for the sequential language as for the termination of the only thread. Note that this
condition applies now to all threads.

Definition 3.2. (Cooperation test: Communication)
A proof outline satisfies thecooperation test for communication, if the conditions of Definition 2.4

hold for the statements listed there withm 6= start, and additionally in the following cases:

1. CALL start : For all statements{p1} e0.start(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3} in classc with e0 of
typec′, comm is given byE0(z) = z′∧¬z′.started, where{q2}

?call 〈~y2 := ~e2〉
?call {q3} stm; return

is the body of therun-method ofc′ having formal parameters~u, and local variables~v except
the formal parameters. The callee class invariant isq1 = Ic′ . Furthermore,fcomm is ~u′, ~v′ :=
~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z), andfobs2 is z′.~y′2 := ~E′

2(z
′).

2. CALL
skip
start : For the above statements, the equations must additionallyhold with the assertioncomm

given byE0(z) = z′ ∧ z′.started, q2 = q3 = true, q1 andfobs1 as above, andfcomm andfobs2 are
the empty statement.

4. Reentrant monitors

In this section we extend the concurrent language withmonitor synchronization. Again, we define syntax
and semantics of the languageJavasynch , before formalizing the proof system.

As a mechanism of concurrency control, methods can be declared assynchronized.Each object has a
lock which can be owned by at most one thread. Synchronized methods of an object can be invoked only
by a thread which owns the lock of that object. If the thread does not own the lock, it has to wait until
the lock gets free. A thread owning the lock of an object can recursively invoke several synchronized
methods of that object, which corresponds to the notion of reentrant monitors.

Besides mutual exclusion, using the lock-mechanism for synchronized methods, objects offer the
methodswait, notify, and notifyAll as means to facilitate efficient thread coordination at the object
boundary. A thread owning the lock of an object can block itself and free the lock by invokingwait

on the given object. The blocked thread can be reactivated byanother thread owning the lock via the
object’snotify method; the reactivated thread must re-apply for the lock before it may continue its ex-
ecution. The methodnotifyAll, finally, generalizesnotify in that it notifies all threads blocked on the
object.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 413

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm; return expret}

methrun ::= nsync run(){ stm; return }

methwait ::= nsync wait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }

methnotifyAll ::= nsync notifyAll(){ !signal all; return }

methpredef ::= methstart methwait methnotify methnotifyAll

class ::= class c{meth. . .meth meth run methpredef }

classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 9. Javasynch abstract syntax

4.1. Syntax

Expressions and statements can be constructed as in the previous languages. The abstract syntax of the
remaining constructs is summarized in Table 9.

Methods get decorated by a modifiermodif distinguishing betweennon-synchronizedandsynchro-
nizedmethods.7 In the sequel we also refer to statements in the body of a synchronized method as being
synchronized. Furthermore, we consider the additional predefined methodswait, notify, andnotifyAll,
whose definitions use the auxiliary statements!signal, !signal all, ?signal, andreturngetlock .8

4.2. Semantics

The operational semantics extends the semantics ofJavaconc by the rules of Table 10, where the CALL

rule is replaced. For synchronized method calls, the lock ofthe callee object has to be free or owned by
the executing thread, as expressed by the predicateowns , defined below.

The remaining rules handle the semantics of the monitor methodswait, notify, andnotifyAll. In all
three cases the caller must own the lock of the callee object (rule CALL monitor). A thread can block itself
on an object whose lock it owns by invoking the object’swait-method, thereby relinquishing the lock and
placing itself into the object’s wait set. Formally, the wait setwait(T, α) of an object is given as the set
of all stacks inT with a top element of the form(α, τ, ?signal; stm). After having put itself on ice, the
thread awaits notification by another thread which invokes thenotify-method of the object. The!signal

statement in thenotify-method thus reactivates a non-deterministically chosen single thread waiting for
notification on the given object (rule SIGNAL). Analogously to the wait set, the notified setnotified(T, α)
of α is the set of all stacks inT with top element of the form(α, τ, returngetlock), i.e., threads which have
been notified and are trying to get hold of the lock again. According to rule RETURNwait , the receiver
can continue after notification in executingreturngetlock only if the lock is free. Note that the notifier
does not hand over the lock to the one being notified but continues to own it. This behavior is known
assignal-and-continuemonitor discipline [10]. If no threads are waiting on the object, the!signal of the

7Javadoes not have the “non-synchronized” modifier: methods are non-synchronized by default.
8Java’s Thread class additionally support methods for suspending, resuming, and stopping a thread, but they are deprecated
and thus not considered here.

414 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

m /∈ {start, run, wait, notify, notifyAll} modif m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Valc(σ) τ ′ = τ init

m,c [~u 7→[[~e]]
σ(α),τ
E] (modif =sync) → ¬owns(T, β)

CALL
〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E ∈ Valc(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)

CALL monitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ init
m,c , bodym,c)}, σ〉

¬owns(T, β)
RETURNwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ ′, returngetlock)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

SIGNAL

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm ′)}, σ〉

wait(T, α) = ∅
SIGNAL skip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SIGNAL ALL

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 10. Javasynch Operational semantics

notifier is without effect (rule SIGNAL skip). ThenotifyAll-method generalizes notify in that all waiting
threads are notified via the!signal all-broadcast (rule SIGNAL ALL). The effect of this statement is given
by definingsignal(T, α) as(T \ wait(T, α))∪{ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize theowns predicate: A threadξ owns the lock
of β iff ξ executes some synchronized method ofβ, but not itswait-method. Formally,owns(T, β) is
true iff there exists a threadξ ∈ T and a(β, τ, stm) ∈ ξ with stm synchronized andξ /∈ wait(T, β) ∪
notified(T, β). The definition is used analogously for single threads. An invariant of the semantics is
that at most one thread can own the lock of an object at a time.

4.3. The proof system

The proof system has additionally to accommodate for synchronization, reentrant monitors, and thread
coordination. First we define how to extend the augmentationof Javaconc , before we describe the proof
method.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 415

4.3.1. Proof outlines

To capture mutual exclusion and the monitor discipline, theinstance variablelock of typeThread × Int

stores the identity of the thread who owns the lock, if any, together with the number of synchronized
calls in its call chain. The initial lock valuefree = (null , 0) indicates that the lock is free. The instance
variableswait andnotified of type list(Thread × Int) are the analogues of thewait - andnotified -sets
of the semantics and store the threads waiting at the monitor, respectively those having been notified.
Besides the thread identity, the number of synchronized calls is stored. In other words, these variables
remember the old lock-value prior to suspension which is restored when the thread becomes active again.
All auxiliary variables are initialized as usual. For values thread of type Thread and wait of type
list(Thread × Int), we will also writethread ∈ wait instead of(thread , n) ∈ wait for somen. If the
order of the elements of a sequence is not relevant, we apply also set theoretical operations to them.

Syntactically, besides the augmentation of the previous section, the callee observation at the be-
ginning and at the end of each synchronized method body executes lock := inc(lock) and lock :=
dec(lock), respectively. The semantics of incrementing the lock[[inc(lock)]]

σinst ,τ

E
is (τ(thread), n+1) for

σinst(lock) = (α, n). Decrementingdec(lock) is inverse:[[dec(lock)]]
σinst ,τ

E
with σinst(lock) = (α, n) is

(α, n − 1) if n > 1, andfree otherwise.
Instead of the auxiliary statements of the semantics, notification is represented in the proof sys-

tem by auxiliary assignments operating on thewait andnotified variables. That means, the auxiliary
?signal, !signal, and !signal all statements get replaced by auxiliary assignments9 Entering thewait-
method gets the observationwait, lock := wait ∪ {lock}, free; returning from thewait-method observes
lock, notified := get(notified, thread), notified\{get(notified, thread)}. For a threadα ∈ ValThread and
a list notified ∈ Val list(Thread×Int), get(notified , α) retrieves the value(α, n) from the list. The seman-
tics assures uniqueness of the association. The!signal statement of thenotify-method is represented by
the auxiliary assignmentwait, notified := notify(wait, notified), where the valuenotify(wait ,notified)
is the pair of the given sets with one element, chosen nondeterministically, moved from the wait into the
notified set; if the wait set is empty, it is the identity function. Finally, the!signal all statement of the
notifyAll-method is represented by the auxiliary assignmentnotified,wait := notified ∪ wait, ∅.

4.3.2. Verification conditions

Initial and local correctness agree with those forJavaconc . In case of notification, local correctness
covers also invariance for the notifying thread, as the effect of notification is captured by an auxiliary
assignment.

The interference freedom test Synchronized methods of a single object can be executed concurrently
only if one of the corresponding local configurations is waiting for return: If the executing threads are
different, then one of the threads is in the wait or notified set of the object; otherwise, both executing
local configurations are in the same call chain. Thus we assume that either not both the assignment and
the assertion occur in a synchronized method, or the assertion is at a control point waiting for return.10

9In Java, the implementation of the monitor methods are syntactically not included in class definitions. Their augmentation and
annotation can be specified by special comments.
10This condition is not necessary for a minimal proof system, but reduces the number of verification conditions.

416 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Definition 4.1. (Interference freedom)
A proof outline isinterference free,if Definition 3.1 holds in all cases, such that either not bothp and

q occur in a synchronized method, orq is at a control point waiting for return.

For notification, we require also invariance of the assertions for the notified thread. We do so, as notifi-
cation is described by an auxiliary assignment executed by the notifier. That means, both the waiting and
the notified status of the suspended thread are represented by a single control point in thewait-method.
The two statuses can be distinguished by the values of thewait andnotified variables. The invariance of
the precondition of the return statement in thewait-method under the assignment in thenotify-method
represents the notification process, whereas invariance ofthat assertion over assignments changing the
lock represents the synchronization mechanism. Information about the lock value will be imported from
the cooperation test as this information depends on the global behavior.

The cooperation test We extend the cooperation test forJavaconc with synchronization and the invo-
cation of the monitor methods. In the previous languages, the assertioncomm expressed, that the given
statements indeed represent communicating partners. In the current language with monitor synchroniza-
tion, communication is not always enabled. Thus the assertioncomm has additionally to capture enabled-
ness of the communication: In case of a synchronized method invocation, the lock of the callee object
has to be free or owned by the caller. This is expressed byz′.lock = free ∨ thread(z′.lock) = thread,
wherethread is the caller thread,z′ is the callee object, and wherethread(z′.lock) is the first component
of the lock value, i.e., the thread owning the lock ofz′. For the invocation of the monitor methods we
require that the executing thread is holding the lock. Returning from thewait-method assumes that the
thread has been notified and that the callee’s lock is free. Note that the global invariant is not affected by
the object-internal monitor signaling mechanism, which isrepresented by auxiliary assignments.

Definition 4.2. (Cooperation test: Communication)
A proof outline satisfies thecooperation test for communication, if the conditions of Definition 3.2 hold

for the statements listed there with the exception of the CALL -case, and additionally in the following
cases:

1. CALL : For all statements{p1}uret := e0.m(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait (or such without

receiving a value) in classc with e0 of typec′, where methodm /∈ {start,wait, notify, notifyAll}
of c′ is synchronized with body{q2}

?call 〈~y2 := ~e2〉
?call {q3} stm ; return eret , formal parameters

~u, and local variables~v except the formal parameters. The callee class invariant isq1 = Ic′ .
The assertioncomm is given byE0(z) = z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread).
Furthermore,fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is given byz.~y1 := ~E1(z), andfobs2 is
z′.~y′2 := ~E′

2(z
′). If m is not synchronized,z′.lock = free ∨ thread(z′.lock) = thread in comm is

dropped.

2. CALL monitor : Form ∈ {wait, notify, notifyAll}, comm is E0(z) = z′∧ thread(z′.lock) = thread.

3. RETURNwait : For {q1} returngetlock {q2}
!ret 〈~y3 := ~e3〉

!ret {q3} in a wait-method, comm is
E0(z) = z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 417

5. Exception handling

In this section we extend the previous language withexception handling. Again, we define syntax and
semantics of the languageJavaexc , before formalizing the proof system.

Note that concurrency and exception handling are quite orthogonal features. From the proof-theoretic
point of view, the only relation between them is that exception handling occurs in a concurrent setting,
i.e., interleaved. However, this kind of interleaving doesnot have to be distinguished from interleaving
in other statements, that is mirrored in the absence of a special interference freedom test for exception
handling.

Of course, from the programming side, a thread can cause another thread to throw an exception, or
it can communicate with other threads during exception handling, but in the proof theory these are no
special exception-handling cases, but are covered by the previous rules.

5.1. Syntax

We introduce additional statements for exception throwingand handling, as shown in Table 9. The
abstract syntax of the remaining constructs is as for the previous language.

stm ::= x := e | u := e | u := newc

| u := e.m(e, . . ., e) | e.m(e, . . ., e)

| throw e | try stm catch (c u) stm . . . catch (c u) stm finally stm yrt

| ε | stm; stm | if e then stm else stm fi | while e do stm od . . .

Table 11. Javaexc abstract syntax

5.2. Semantics

Exceptions allow a special form of error handling: If something unexpected or unallowed happens, the
executing thread may throw an exception, which is an object of an arbitrary11 type. The empty reference
cannot be thrown.12 If an exception has been thrown by a thread, then the normal flow of control gets
interrupted, and control tries to find the “nearest” exception handler handling exceptions of the given
type, as explained below.

The operational semantics extends the semantics ofJavasynch by the rules of the Tables 12 and
13, covering exception handling. In the semantics we use thetype Object, as already introduced for
augmentation and annotation, being the supertype of all classes. Note that no objects of typeObject can
be created, thus preserving monomorphism.

Throwing and catching exceptions are syntactically represented bythrow statements and by try-
catch-finally blocks. During the execution of a try-catch-finally block try stm0 catch (c1 u1) stm1 . . .;
catch (cn un) stmn finally stmn+1 yrt, the corresponding local configuration contains an “open” try-
construct like e.g.stm ′

0; catch (c1 u1) stm1 . . .; catch (cn un) stmn finally stmn+1 yrt (rule TRY). We

11In Javaonly objects extendingThrowable may be thrown.
12In Java, aNullPointerException is thrown in this case.

418 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

τ ′ = τ [exc 7→ τ(exc) ◦ null]
TRY

〈T ∪̇ {ξ ◦ (α, τ, try stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′, stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm ′)}, σ〉

0 ≤ n
FINALLY

〈T ∪̇ {ξ ◦ (α, τ, catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stmn+1 yrt; stm)}, σ〉

τ(exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→β0 ◦ . . . ◦ βk][top 7→βk+1]

if τ ′(top) = null then stm ′ = stm else stm′ = throw top; stm fi
YRT

〈T ∪̇ {ξ ◦ (α, τ, yrt; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′, stm ′)}, σ〉

Table 12. Javaexc Operational semantics (1)

call such blocks also statements, even if they are no statements in a strong syntactical sense.13 State-
ments in which no such open try blocks occur are calledtry-closed.

The semantics uses the local variableexc of typeslistObject with initial valueε, to store thrown but
not yet caught exceptions. In nested try-catch-finally statements, each try-catch-finally statement has its
own element in the sequenceexc which is used to remember if there is an exception throw in that block
which is not yet caught; a null-reference means the absence of such an exception. The additional variable
top of typeObject is used to store the value of an exception which should be rethrown.

Entering a try-catch-finally block appends a null-reference to the value ofexc, expressing that there
is no thrown but not yet caught exception in that block (rule TRY).

The execution of a try-catch-finally block consists of the execution of the try statement until an
exception is thrown or the try statement terminates. If an exception is thrown, and if there is a corre-
sponding catch-clause handling exceptions of the given type, then this catch-clause (rule THROW1) and
the finally clause (rule FINALLY with n = 0) get executed. Otherwise, if no exceptions have been thrown
(rules FINALLY) or if there is no corresponding catch clause (rule THROW2), then the finally clause gets
executed. Also throwing an exception in a catch-clause (rule THROW2 with n = 0) causes the control to
move to the finally block. Throwing an exception in the finally-clause overwrites exceptions thrown in
the try- or catch-clauses (rule THROW3).

Exiting a try-catch-finally block removes the last element of exc and stores it in the variabletop (rule
YRT). If the value oftop is different from the null reference, i.e., if there was a thrown but not caught
exception in the block, then the exception gets rethrown.

Throwing an exception outside try-catch-finally blocks causes the control to return to the caller, and
to rethrow the exception there (rule THROW4). Forrun-methods, throwing such an exception terminates
the executing thread (rule THROW5).

13Note that for examplecatch (c2 u2) stm2 is not a statement.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 419

stm is try-closed stm ′ = catch (c1 u1) stm1 . . .; catch (cn un) stmn finally stmn+1 yrt

1 ≤ i ≤ n [[e]]
σ(α),τ
E ∈ Valci ∀1 ≤ j < i. [[e]]

σ(α),τ
E /∈ Valcj

τ ′ = τ [ui 7→[[e]]
σ(α),τ
E]

THROW1

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm; stm ′; stm ′′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′, stmi; finally stmn+1 yrt; stm′′)}, σ〉

stm is try-closed stm ′ = catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt

[[e]]
σ(α),τ
E 6= null 0 ≤ n ∀1 ≤ i ≤ n. [[e]]

σ(α),τ
E /∈ Valci

τ(exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→β0 ◦ . . . ◦ βk ◦ [[e]]
σ(α),τ
E]

THROW2

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm; stm′; stm′′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′, stmn+1 yrt; stm ′′)}, σ〉

stm is try-closed

[[e]]
σ(α),τ
E 6= null τ(exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→β0 ◦ . . . ◦ βk ◦ [[e]]

σ(α),τ
E]

THROW3

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm yrt; stm′)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′, yrt; stm ′)}, σ〉

stm ′ is try-closed [[e]]
σ(β),τ ′

E 6= null τ ′′ = τ [top 7→[[e]]
σ(β),τ ′

E]
THROW4

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, throw e; stm′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′′, throw top; stm)}, σ〉

stm is try-closed [[e]]
σ(α),τ
E 6= null

THROW5
〈T ∪̇ {(α, τ, throw e; stm; return)}, σ〉 −→ 〈T ∪̇ {(α, τ, return)}, σ〉

Table 13. Javaexc Operational semantics (2)

If, due to a thrown exception, control returns to the caller,and if the callee local configuration is the
only one in the stack which executes a synchronized method ofthe callee object, then its termination
gives the lock free like normal termination. This happens after evaluating the corresponding finally
clause within the method, if any. Note that returning from a method due to exception handling does not
hand over the return value as specified in the return statement.

5.3. The proof system

The proof system has to accommodate additionally for exception handling. First we define how to extend
the augmentation ofJavasynch , before we describe the proof method.

5.3.1. Proof outlines

We extend the local and the global assertion language with assertions of the formhastype(e, c) and
hastype(E, c), respectively, which state that the value ofe respectivelyE is of typec; we need this con-

420 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

struct to be able to express which type of expression has beenthrown. Remember that the programming
language is monomorph, and thus the association is unique.

Augmentation and annotation of the previous section get extended as follows: Exception throwing
gets augmented and annotated in the form

{p0} throw u {p1}
throw 〈~y := ~e〉throw{p2} .

Exception throwing and its observation are executed in a single computation step, in this order. The
assertionp0 is the precondition of thethrow statement. Note that the control point annotated by the
postconditionp2 is not reachable. The assertionp1 describes the auxiliary point directly after exception
throwing and before its observation~y := ~e.

Furthermore, we extend the augmentation and annotation of method call statements, in order to
logically capture the control flow if control returns to the caller due to an exception, which gets rethrown:

{p0} u := e0.m(~e) {p1}
!call 〈~y1 := ~e1〉

!call

{p2}
wait {p3}

?ret 〈~y4 := ~e4〉
?ret

{p4}
exc {p5}

rethrow 〈~ythr := ~ethr〉
rethrow

{p6} .

Again, after control returns but before the corresponding observation the assertionp3 should hold. If
control returns due to an exception, the assertionp4 should hold after the observation. In this case the
exception has to be rethrown;p5 describes the state directly after rethrowing the exception in top prior to
its observation~ythr := ~ethr. Note that this observation does not have a postcondition, because the control
point after the observation is not reachable. Note furthermore that onlyp0, p2, p4, andp6 annotate a
control points. If control returns due to normal method termination, the assertionp6 should hold after
the observation~y4 := ~e4.

The augmentation and annotation of try-catch-finally statements is as shown in Definition 5.1. The
assertionp is the precondition of the try-catch-finally block. The assertion ptry should hold after entering
the try-block and before the corresponding observation~ytry := ~etry, where the assertionp0 describes
the control point after observation, andp′0 is the postcondition of the whole try-block. The pre- and
postconditions of the first and of the last catch blocks arep1 andp′1 respectivelypn andp′n. The finally
block has the pre- and postconditionspfin andp′fin. After exiting the finally block,pyrt should hold prior
to the observation~yyrt := ~eyrt of exiting. If there is an exception to be rethrown, the assertion pexc is
required to hold after the observation ofyrt, pthr should hold after rethrowing and prior to its observation
~ythr := ~ethr. Again, this observation does not have a postcondition, because the control point after
the observation is not reachable. Note thatptry, pyrt, andpthr annotate auxiliary points. If there is no
exception to be rethrown, the assertionp′ should hold after exiting the finally-block and executing the
corresponding observation.

Remember that the local variableexc of type list Object with initial valueε stores the thrown but not
yet caught exceptions in nested try-catch-finally blocks. The variabletop stores the value of an exception
to be rethrown. We use the assertionthrown as a shortcut fortail(exc) 6= null, where the functiontail(v)
gives the last element of the sequencev. We use also the functionhead(v) which returns the sequence
v without its last element14. Note that the variablesexc andtop arelocal. In the concurrent setting, all
threads have their own exception mechanism, which are independent of each other.
14These functions are applied to non-empty sequences only.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 421

The augmentation for the built-in auxiliary variablelock gets extended to capture the case when a
thread terminates the execution of a synchronized method due to a thrown exception: We additionally ob-
serve eachthrow statement outside try-catch-finally blocks in a synchronized method by the assignment
lock := dec(lock).

Since the global invariant should describe object-external behavior, we required that instance vari-
ables occurring in the global invariant may be changed by observations of communication or object
creation only. Since the execution ofthrow statements outside try-catch-finally blocks cause the control
to move to the caller, i.e., its effect is also object-external, the observations of suchthrow statements may
also change the values of instance variables referred to in the global invariant.

5.3.2. Verification conditions

Initial correctness and interference freedom agree with those forJavasynch . Note that exception throwing
and handling do not modify instance states. Invariance under their observations, which are multiple
assignments, is already included in the interference freedom test conditions of the previous section.

Local correctness Additionally to the local correctness conditions of the previous section, we intro-
duce new conditions to cover the control flow of exception handling.

Entering a try block pushes an empty reference on the exception stack (rule TRY); thus the precon-
dition of a try-catch-finally statement should imply the precondition of the try block after entering the
block and executing the observation of thetry keyword as stated in Condition (11). Furthermore, the
precondition of the observation should hold directly afterentering the block, prior to the observation, as
formalized in Condition (10).

If no exceptions has been thrown in a try or in a catch block, then after termination of the block
execution continues in the finally block (rule FINALLY); the postcondition of each try and catch block
should imply the precondition of the finally block, as required by Condition (12).

Exiting the finally block (rule YRT) is covered by the Conditions (13)-(15). Condition (13) assures
that pyrt holds after exiting the finally block but before its observation. Remember that in case of a
thrown but not yet caught exception the exception is stored in the variabletop, and becomes rethrown
after the block; in this case the assertionpexc is required to hold after the observation ofyrt and prior to
rethrowing, as stated in Condition (15). If no exceptions must be rethrown, Condition (14) assures that
the assertionp′ is satisfied after the termination of the try-catch-finally block.

If an exception has been thrown in a try block (rules THROW1 and THROW2), then the precondition of
thethrow statement must imply the precondition of the correspondingcatch block, if any, after throwing
and its observation, and the precondition of the finally block otherwise; these cases are covered by the
Conditions (17) and (19). Satisfaction of the preconditions of the corresponding observations is covered
by the Conditions (16) and (18). The conditions for exception throwing in a catch block, in a finally
block, or outside try-catch-finally blocks in run methods are modifications of the above conditions.

Remember that if an exception is thrown but not yet caught, the execution will not continue after the
try-catch-finally block, but move to the next outer try-catch-finally block or to the caller configuration.
The latter (rule THROW4) is covered by the conditions of the cooperation test for exception handling.

422 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Definition 5.1. (Local correctness: Exception handling)
A proof outline islocally correctunder exception handling, if for all statementsstm of the form

{p} try {ptry}
try 〈~ytry := ~etry〉

try {p0} stmtry; {p′0}

catch(c1 u1) {p1} stm1; {p′1}

· · ·

catch(cn un) {pn} stmn; {p′n}

finally {pfin} stmfin {p′fin}

yrt {pyrt}
yrt 〈~yyrt := ~eyrt〉

yrt

{pexc}
exc {pthr}

rethrow 〈~ythr := ~ethr〉
rethrow

{p′} ,

and for all0 ≤ i ≤ n,

|=L {p} exc := exc ◦ null {ptry} , (10)

|=L {p} exc := exc ◦ null; ~ytry := ~etry {p0} , (11)

|=L p′i → pfin , (12)

|=L {p′fin} exc, top := head(exc), tail(exc) {pyrt} , (13)

|=L {pfin′ ∧ tail(exc) = null} exc, top := head(exc), tail(exc); ~yyrt := ~eyrt {p
′} , (14)

|=L {p′fin ∧ tail(exc) 6= null} exc, top := head(exc), tail(exc); ~yyrt := ~eyrt {pexc} , (15)

and for all statements{q0} throw e {q1}
throw 〈~y := ~e〉throw in stmtry which do not occur in an inner

try-catch-finally block insidestmtry, and for all1 ≤ i ≤ n,

|=L {q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)} ui := e {q1} (16)

|=L {q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)} ui := e; ~y := ~e {pi} (17)

|=L {q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)} exc := head(exc) ◦ e {q1} (18)

|=L {q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)} exc := head(exc) ◦ e; ~y := ~e {pfin} . (19)

For statements{q0} throw e {q1}
throw 〈~y := ~e〉throw in catch blocks, (18) and (19) are required to hold

without the antecedent∀1 ≤ j ≤ n.¬ hastype(e, cj). For throw statements in finally blocks, (18) and
(19) should hold without the above antecedent and withpfin replaced byp′fin. The above conditions (16)-
(19) should hold also for statements of the form{q0}

exc{q1}
rethrow〈~y := ~e〉rethrow , where the expression

e in the conditions is replaced bytop. Finally, for statements of the form{q0} throw e {q1}
throw 〈~y :=

~e〉throw outside try-catch-finally blocks in arun-method with bodystm ′; return, (18) and (19) should
hold without the above antecedent, withpfin replaced bypre(return), and without the update ofexc. The
above conditions must hold also for all statements{q0} {q1}

rethrow〈~y := ~e〉rethrow , where the expression
e in the conditions is replaced bytop.

The cooperation test To cover exception handling, we extend the cooperation testconditions for
Javasynch with additional conditions, collected in thecooperation test for exception handling. The co-
operation test for exception handling covers exception throwing if it is not in the scope of any try-catch-
finally block, i.e., if it causes the control to return to the caller configuration.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 423

Assume a method call and a throw statement outside any try-catch-finally block in the invoked
method:

caller: uret := e0.m(~e) . . . {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret {p3}

exc . . .

callee: . . . {q1} throw e {q2}
throw 〈~y3 := ~e3〉

throw . . .

We assume that the global invariant, the preconditionq1 of the throw statement, and the assertionp1 of
the caller at the control point waiting for return hold priorto exception throwing. Exception throwing
communicates the identity of the thrown exception. Directly after exception throwing, the preconditions
p2 andq2 of the corresponding observations must hold, as required byCondition (20) of the coopera-
tion test below. After the throw statement, its observation, and the observation of the caller have been
executed, the global invariant and the postconditionp3 of the caller observation is required to hold, as
formalized in Condition (21). Note that the control point after the callee observation is not reachable,
thus the assertion at this point is not required to hold.

Let the fresh logical variablesz andz′ denote the caller respectively the callee object. Since these
objects are in general different, the cooperation test is formulated in the global language. Local assertions
are expressed in the global language using the lifting substitution. For example, the assertionp1 of the
caller is expressed on the global level byP1(z) = p1[z/this]. To distinguish local variables of caller
and callee, we rename those of the callee; the result we denote by primed variables, expressions, and
assertions. For example, to reason aboutq1 in the cooperation test we rename all local variables inq1

resulting inq′1, whereQ′
1(z

′) = q′1[z
′/this] is q′1 expressed in the global language.

That the identity of the thrown exception is stored in the local variabletop of the caller is represented
by the assignmenttop := E′(z′). The callee and the caller observations are represented by the assign-
mentsz′.~y′3 := ~E′

3(z
′) andz.~y4 := ~E4(z), respectively. Note that if the invoked method is synchronized,

than the observationz′.~y′3 := ~E′
3(z

′) decrements the value of the lock ofz′ by the built-in augmentation.
We use the assertioncomm to express that the local configurations described byp1 andq1 are indeed

communication partners: ByE0(z) = z′ we require that the value ofz′ is indeed the callee object of
the invocatione0.m(~e). Remember that method call statements must not contain instance variables, and
that formal parameters must not be assigned to. That means, the values ofe0, and the values of the
formal and actual parameters do not change during method evaluation. The assertion~u′ = ~E(z) states
that the values of the formal and of the actual parameters agree, which implies that the primed built-in
auxiliary formal parametercaller′ of the callee stores(z, conf, thread) identifying the caller. I.e., the
assertionE0(z) = z′ ∧ ~u′ = ~E(z) assures that the local configurations are in caller-callee relationship.
Furthermore,E′(z′) 6= null expresses that the exception to be thrown is not the null reference, i.e., that
exception throwing is enabled.

Definition 5.2. (Cooperation test: Exception handling)
A proof outline satisfies thecooperation test for exception handling, if for all statementsuret :=

e0.m(~e) 〈stm〉!call {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret{p3}

exc (or such without receiving a value) occurring
in classc with m 6= start ande0 of typec′, and for all{q1} throw e {q2}

throw 〈~y3 := ~e3〉
throw in m(~u) of

c′ which are not inside any try-catch-finally statement,

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm} top := E′(z′) {P2(z) ∧ Q′
2(z

′)} and (20)

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm} top := E′(z′); z′.~y′3 := ~E′
3(z

′); z.~y4 := ~E4(z) (21)

{GI ∧ P3(z)}

424 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

must hold with distinct fresh logical variablesz ∈ LVarc andz′ ∈ LVarc′, and withcomm given by
E0(z) = z′ ∧ ~u′ = ~E(z) ∧ E′(z′) 6= null ∧ z 6= null ∧ z′ 6= null.

Furthermore, the same conditions must hold also for statements of the form{q1}
exc{q2}

rethrow〈~y3 :=
~e3〉

rethrow under the same requirements, wheree in the conditions is replaced bytop.

6. Weakest precondition calculus

The verification conditions of the previous sections were formulated as standard Hoare-triples. In this
section we define their formal semantics, given by means of a weakest precondition calculus. To do
so, first we introduce substitutions in Section 6.1, before re-formulating the verification conditions for
Javaexc in Section 6.2 to logical implications, using the substitutions.

6.1. Substitution operations

The verification conditions defined in the next section involve three substitution operations: the local, the
global, and the lifting substitution. The lifting substitution is already defined in Section 2.3. The local
substitution will be used to express the effect of assignments in local assertions. The global substitution
is used similarly for global assertions.

The local substitutionp[~e/~y] is the standard capture-avoiding substitution, replacingin the local
assertionp all occurrences of the given distinct variables~y by the local expressions~e. We apply the
substitution also to local expressions. The following lemma expresses the standard property of the above
substitution, relating it to state-update. The relation between substitution and update formulated in the
lemma asserts thatp[~e/~y] is theweakest preconditionof p wrt. to the assignment~y := ~e. The lemma is
formulated for assertions, but the same property holds for expressions.

Lemma 6.1. (Local substitution)
For arbitrary logical environmentsω and instance local states(σinst , τ) we have

ω, σinst , τ |=L p[~e/~y] iff ω, σinst [~y 7→[[~e]]
ω,σinst ,τ

L
], τ [~y 7→[[~e]]

ω,σinst ,τ

L
] |=L p .

The effect of assignments is expressed on the global level bythe global substitutionP [~E/z.~x],
which replaces in the global assertionP the instance variables~x of the object referred to byz by the
global expressions~E. To accommodate properly for the effect of assignments, though, we must not only
syntactically replace the occurrencesz.xi of the instance variables, but also all theiraliasesE′.xi, when
z and the result of the substitution applied toE′ refer to the same object. As the aliasing condition cannot
be checked syntactically, we define the main case of the substitution by a conditional expression [?]:

(E′.xi)[~E/z.~x] = (if E′[~E/z.~x] = z then Ei else (E′[~E/z.~x]).xi fi) .

The substitution is extended to global assertions homomorphically. We will also use the substitution
P [~E/z.~y] for arbitrary variable sequences~y possibly containing logical variables, whose semantics is
defined by the simultaneous substitutions[~Ex/z.~x] and [~Eu/~u], where~x and~u are the sequences of
the instance and logical variables15 of ~y, and ~Ex and ~Eu the corresponding subsequences of~E and

15Local variables are viewed as logical ones in the global assertion language.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 425

[~Eu/~u] is the usual capture-avoiding substitution like in the local substitution; if only logical variables
are substituted, we simply writeP [~E/~u]. That the substitution accurately catches the semantical update,
and thus represents the weakest precondition relation, is expressed by the following lemma:

Lemma 6.2. (Global substitution)
For arbitrary global statesσ and logical environmentsω referring only to values existing inσ we have

ω, σ |=G P [~E/z.~y] iff ω′, σ′ |=G P ,

whereω′ = ω[~y 7→[[~E]]ω,σ
G

] andσ′ = σ[[[z]]ω,σ
G

.~y 7→[[~E]]ω,σ
G

].

6.2. Verification conditions

In the local verification conditions, the effect of an assignment~y := ~e is expressed by substituting~e for ~y
in the assertions. In the global conditions of the cooperation test, the effect of communication, changing
local states only, is expressed by simultaneously substituting the variables, which will store the result,
by the communicated values. I.e., for the case of method call, the formal parameters get replaced by the
actual ones expressed in the global language. The effect of the caller observation〈~y := ~e〉!call to a global
assertionP is expressed by the substitutionP [~E(z)/z.~y], wherez represents the caller. The effect of
the callee-observation is handled similarly. Note the order: first communication takes place, followed by
the sender, and then the receiver observation. To describe the common effect, we first have to substitute
for the receiver, then for the sender observation, and finally for communication. For method call, we
additionally have to substitute for the initialization of the local variables.

For readability, in the following definitions we will use thenotationp ◦ f with f = [~e/~y] for the
substitutionp[~e/~y]; we use a similar notation for global assertions. Note that the substitution binds
stronger than logical operators.

Definition 6.1. (Initial correctness)
A proof outline isinitially correct, if

|=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) → (22)

P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ Ic(z)) ◦ fobs ◦ finit ,

wherec is the main class,{p2}
?call 〈~y2 := ~e2〉

?call {p3} stm ; return is the body and~v the local variables
of therun-method ofc, z ∈ LVarc , andz′ ∈ LVarObject. Furthermore,

finit = [z, (null, 0, null)/thread, caller][Init(~v)/~v] , and

fobs = [~E2(z)/z.~y2] .

Definition 6.2. (Local correctness: Assignment)
A proof outline islocally correct, if for all multiple assignments{p1} ~y := ~e {p2} in classc, being an
unobserved assignment, an alone-standing observation, oran observed assignment,

|=L p1 → p2 ◦ fass , (23)

with fass = [~e/~y].

426 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Definition 6.3. (Local correctness: Exception handling)
A proof outline islocally correctunder exception handling, if for all statementsstm of the form

{p} try {ptry}
try 〈~ytry := ~etry〉

try {p0} stmtry; {p′0}

catch(c1 u1) {p1} stm1; {p′1}

· · ·

catch(cn un) {pn} stmn; {p′n}

finally {pfin} stmfin {p′fin}

yrt {pyrt}
yrt 〈~yyrt := ~eyrt〉

yrt

{pexc}
exc {pthr}

rethrow 〈~ythrow := ~ethrow〉
rethrow

{p′} ,

and for all0 ≤ i ≤ n,

|=L p → ptry[exc ◦ null/exc] ∧ p0[~etry/~ytry][exc ◦ null/exc] , (24)

|=L p′i → pfin , (25)

|=L p′fin → pyrt[head(exc), tail(exc)/exc, top] , (26)

|=L (p′fin ∧ tail(exc) = null) → p′[~eyrt/~yyrt][head(exc), tail(exc)/exc, top] , (27)

|=L (p′fin ∧ tail(exc) 6= null) → pexc[~eyrt/~yyrt][head(exc), tail(exc)/exc, top] , (28)

and for all statements{q0} throw e {q1}
throw 〈~y := ~e〉throw in stmtry which does not occur in an inner

try-catch-finally block insidestmtry, and for all1 ≤ i ≤ n,

|=L (q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)) → (29)

q1[e/ui] ∧ pi[~e/~y][e/ui] ,

|=L (q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)) → (30)

q1[head(exc) ◦ e/exc] ∧ pfin[~e/~y][head(exc) ◦ e/exc] .

For statements{q0} throw e {q1}
throw 〈~y := ~e〉throw in catch blocks, (30) is required to hold without

the antecedent∀1 ≤ j ≤ n.¬ hastype(e, cj). For throw statements in finally blocks, (30) should hold
without the above antecedent and withpfin replaced byp′fin. The above conditions (29) and (30) should
hold also for statements of the form{q0} {q1}

rethrow〈~y := ~e〉rethrow , where the expressione in the condi-
tions is replaced bytop. Finally, for statements of the form{q0} throw e {q1}

throw 〈~y := ~e〉throw outside
try-catch-finally blocks in arun-method with bodystm ′; return, Condition (30) should hold without the
above antecedent, without the update ofexc, and with the assertionpfin replaced bypre(return). For
statements{q0} {q1}

rethrow〈~y := ~e〉rethrow the same conditions must hold where we additionally replace
e by top.

Definition 6.4. (Interference freedom)
A proof outline isinterference free,if for all classesc, and for all multiple assignments~y := ~e with

preconditionp in c,

|=L p ∧ Ic → Ic ◦ fass , (31)

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 427

with fass = [~e/~y]. Furthermore, for all assertionsq at control points inc, such that either not bothp and
q occur in a synchronized method, orq is at a control point waiting for return,

|=L p ∧ q′ ∧ interleavable(q, ~y := ~e) → q′ ◦ fass . (32)

Definition 6.5. (Cooperation test: Communication)
A proof outline satisfies thecooperation test for communication, if

|=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z 6=null ∧ z′ 6=null →

(P2(z) ∧ Q′
2(z

′)) ◦ fcomm ∧

(GI ∧ P3(z) ∧ Q′
3(z

′)) ◦ fobs2 ◦ fobs1 ◦ fcomm (33)

holds for distinct fresh logical variablesz ∈ LVarc andz′ ∈ LVarc′ , in the following cases:

1 (a) CALL : For all calls{p1}uret := e0.m(~e){p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait (or such without receiv-

ing a value) in classc with e0 of type c′, where methodm /∈ {start,wait, notify, notifyAll} of
c′ is synchronized with body{q2}

?call 〈~y2 := ~e2〉
?call {q3} stm ; return eret , formal parameters~u,

and local variables~v except the formal parameters. The callee class invariant isq1 = Ic′ . The
assertioncomm is given byE0(z) = z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Further-
more,fcomm = [~E(z), Init(~v)/~u′, ~v′], fobs1 = [~E1(z)/z.~y1], fobs2 = [~E′

2(z
′)/z′.~y′2]. If m is not

synchronized,z′.lock = free ∨ thread(z′.lock) = thread in comm is dropped.

(b) CALL monitor : Form ∈ {wait, notify, notifyAll}, comm is given byE0(z) = z′∧thread(z′.lock) =
thread.

(c) CALL start : Form = start, comm is E0(z) = z′ ∧ ¬z′.started, where
{q2}

?call 〈~y2 := ~e2〉
?call {q3} stm; return is the body of therun-method ofc′.

(d) CALL
skip
start : For m = start, additionally, (33) must hold withcomm given by E0(z) = z′ ∧

z′.started, q2 = q3 = true, andfcomm andfobs2 are the identity functions.

2 (a) RETURN: For all method call statements
uret := e0.m(~e) 〈~y1 := ~e1〉

!call {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret{p3} (or such without receiv-

ing a value) occurring inc with e0 of type c′, such that methodm(~u) of c′ has the return state-
ment{q1} return eret {q2}

!ret 〈~y3 := ~e3〉
!ret {q3} , Equation (33) must hold withcomm given by

E0(z) = z′ ∧ ~u′ = ~E(z), and wherefcomm = [E′
ret(z

′)/uret], fobs1 = [~E′
3(z

′)/z′.~y′3], and
fobs2 = [~E4(z)/z.~y4][null/top].

(b) RETURNwait : For{q1} returngetlock {q2}
!ret 〈~y3 := ~e3〉

!ret {q3} in await-method,comm isE0(z) =

z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.

(c) RETURNrun : For {q1} return {q2}
!ret 〈~y3 := ~e3〉

!ret {q3} occurring in arun-method,p1 = p2 =
p3 = true, comm = true, and furthermorefcomm andfobs2 the identity function.

Definition 6.6. (Cooperation test: Instantiation)
A proof outline satisfies thecooperation test for object creation, if for all classesc′ and statements
{p1}u := newc {p2}

new〈~y := ~e〉new{p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

→

P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z)) ◦ fobs , (34)

with z ∈ LVarc′ andz′ ∈ LVar listObject fresh , and wherefobs = [~E(z)/z.~y].

428 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Definition 6.7. (Cooperation test: Exception handling)
A proof outline satisfies thecooperation test for exception handling, if for all statementsuret :=

e0.m(~e) 〈stm〉!call {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret{p3} (or such without receiving a value) occurring in

classc with m 6= start ande0 of typec′, and for all{q1} throw e {q2}
throw 〈~y3 := ~e3〉

throw in m(~u) of c′

which is not in the try-block of any try-catch-finally statement,

|=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm

→ (P2(z) ∧ Q′
2(z

′)) ◦ fthrow ∧ (GI ∧ P3(z)) ◦ fobs2 ◦ fobs1 ◦ fthrow

must hold with distinct fresh logical variablesz ∈ LVarc andz′ ∈ LVarc′, and withcomm given by
E0(z) = z′ ∧ ~u′ = ~E(z) ∧ E′(z′) 6= null ∧ z 6= null ∧ z′ 6= null. Furthermore,fthrow is [E′(z′)/top],
fobs1 is [~E′

3(z
′)/z′.~y′3], andfobs2 is [~E4(z)/z.~y4]. Rethrowing outside try-catch-finally blocks in run

methods is similar.

7. Soundness and completeness

This section explains the corner points of soundness and completeness of the proof method. For the
formal proofs see [1, 3].

Given a program together with its annotation, the proof system stipulates a number of induction
conditions for the various types of assertions and program constructs.Soundnessof the proof system
means that for a proof outline satisfying the verification conditions, all configurations reachable in the
operational semantics satisfy the given assertions.Completenessconversely means that if a program does
satisfy an annotation, this fact is provable. For convenience, let us introduce the following notations:
Given a programprog , we will write ϕprog or just ϕ for its annotation, and writeprog |= ϕ, if prog

satisfies all requirements stated in the assertions, andprog ′ ` ϕ′, if prog ′ with annotationϕ′ satisfies the
verification conditions of the proof system:

Definition 7.1. Given a programprog with annotationϕ, thenprog |= ϕ iff for all reachable configura-
tions〈T, σ〉 of prog , for all (α, τ, stm) ∈ T , and for all logical environmentsω referring only to values
existing inσ:

1. ω, σ(α), τ |=L pre(stm), and

2. ω, σ |=G GI .

Furthermore, for all classesc, objectsβ ∈ Val c(σ), and local statesτ ′:

3. ω, σ(β), τ ′ |=L Ic .

For proof outlines, we writeprog ′ ` ϕ′ iff prog ′ with annotationϕ′ satisfies the verification conditions
of the proof system.

In the following sections we discuss the basic ideas of the soundness and completeness proofs.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 429

7.1. Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their assertions for an an-
notated program that has been verified using the proof conditions. The following theorem states the
soundness of the proof method.

Theorem 7.1. (Soundness)
Let prog ′ be a proof outline with annotationϕprog ′ .

If prog ′ ` ϕprog ′ then prog ′ |= ϕprog ′ .

The soundness proof is basically an induction on the length of computation, simultaneously on all
three parts from Definition 7.1. For the inductive step, we assume that the verification conditions are
satisfied and assume a reachable configuration satisfying the annotation. We make case distinction on
the kind of the next computation step: If the computation step executes an assignment, then we use
the local correctness conditions for inductivity of the executing local configuration’s properties, and the
interference freedom test for all other local configurations and the class invariants. For communication,
invariance for the executing partners and the global invariant is shown using the cooperation test for
communication. Exception handling and communication itself does not affect the global state; invariance
of the remaining properties under the corresponding observations is shown again with the help of the
interference freedom test. Finally for object creation, invariance for the global invariant, the creator local
configuration, the created object’s class invariant is assured by the conditions of the cooperation test for
object creation; all other properties are shown to be invariant using the interference freedom test.

7.2. Completeness

Next we conversely show that if a program satisfies the requirements asserted in its proof outline, then
this is indeed provable, i.e., then there exists a proof outline which can be shown to hold and which
implies the given one:

∀prog . prog |= ϕprog ⇒ ∃prog ′. prog ′ ` ϕprog ′ ∧ |= ϕprog ′ → ϕprog .

Given a program satisfying an annotationprog |= ϕprog , the consequent can be uniformly shown, i.e.,
independently of the given assertional partϕprog , by instantiatingϕprog ′ to the strongest annotation still
provable, thereby discharging the last clause|= ϕprog ′ → ϕprog . Since the strongest annotation still
satisfied by the program corresponds to reachability, the key to completeness is to

1. augment each program with enough information (see Definition 7.2 below), to be able to

2. express reachability in the annotation, i.e., annotate the program such that a configuration satisfies
its local and global assertions exactly if reachable (see Definition 7.3 below), and finally

3. to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation from Section 5.3 as starting point, where
the programs are augmented with the specific auxiliary variables. To facilitate reasoning, we introduce
an additional auxiliary local variableloc, which stores the current control point of the execution of alocal

430 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

configuration. Given a function which assigns to all controlpoints unique location labels, we extend each
assignment with the updateloc := l, wherel is the label of the control point after the given occurrence
of the assignment. Also unobserved statements are extendedwith the update. We writel ≡ stm if l
represents the control point in front ofstm .

The standard way for completeness augmentation is to add information into the states about the
way how it has been reached, i.e., thehistory of the computation leading to the configuration. This
information is recorded using history variables.

The assertional language is split into a local and a global level, and likewise the proof system is
tailored to separate local proof obligations from global ones to obtain a modular proof system. The
history will be recorded in instance variables, and thus each instance can keep track only of its own
past. To mirror the split into a local and a global level in theproof system, the history per instance is
recorded separately forinternal andexternalbehavior. The sequence of internal state changes local to
that instance is recorded in thelocal history and the external behavior in thecommunicationhistory.

The local history keeps track of the state updates. We store in the local history the updated local and
instance states of the executing local configuration and theobject in which the execution takes place.
Note that the local history stores also the values of the built-in auxiliary variables, and thus the identities
of the executing thread and the executing local configuration.

The communication history keeps information about the kindof communication, the communi-
cated values, and the identity of the communication partners involved. For the kind of communica-
tion, we distinguish as cases object creation, ingoing and outgoing method calls, and likewise ingoing
and outgoing communication for the return value. We use the set

⋃

c∈C {newc} ∪
⋃

m∈M {!m, ?m} ∪
{!return, ?return, ! throw, ? throw} of constants for this purpose, whereC andM are the sets of all class
and method names, respectively. Notification does not update the communication history, since it is
object-internal computation. For the same reason, we don’trecord self-communication inhcomm . Note
in passing that the information stored in the communicationhistory matches exactly the information
needed to decorate the transitions in order to obtain a compositional variant of the operational semantics
of Section 4.2. See [4] for such a compositional semantics.

Definition 7.2. (Augmentation with histories)
Every class is further extended by two auxiliary instance variableshinst andhcomm , both initialized to
the empty sequence. They are updated as follows:

1. Each multiple assignment~y := ~e in each classc that is not the observation of a method call or of
the reception of a return value is extended with

hinst := hinst ◦ ((~x,~v)[~e/~y]) ,

where~x are the instance variables of classc containing alsohcomm but withouthinst , and~v are the
local variables. Observations~y := ~e of uret := e0.m(~e ′) and of the corresponding reception of
the return value get extended with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((~x,~v)[~e/~y]) fi ,

instead, ifm 6= start. For e0.start(~e
′); 〈~y := ~e〉!call we use the same update with the condition

e0 = this replaced bye0 = this ∧ ¬started.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 431

2. Every observation of communication, object creation, orof a throw statement outside try-catch-
finally blocks in a method different fromrun gets extended by

hcomm := if (partner = this) then hcomm else hcomm ◦ (sender, receiver, values) fi ,

where the expressionspartner, sender, receiver, andvalues depend on the kind of communication
as follows:

communication partner sender receiver values

u := newc null this null newc u, thread

uret := e0.m(~e) e0 this e0 !m(~e)

receive return e0 e0 this if top = null then

? return uret , thread

else ? throw top, thread fi

receive callm(~u) caller obj caller obj this ?m(~u)

return eret caller obj this caller obj ! return eret , thread

throw e caller obj this caller obj ! throw e, thread

with caller obj given by the first component of the variablecaller.

In the update of the history variablehinst , the expression(~x, ~u)[~e/~y] identifies the active thread and
local configuration by the local variablesthread andconf, and specifies its instance local state after the
execution of the assignment. Note that especially the values of the auxiliary variables introduced in
the augmentation are recorded in the local history. In the following we will also write(σinst , τ) when
referring to elements ofhinst . Note furthermore that the communication history records also the identities
of the communicating threads invalues.

Next we introduce the annotation for the augmented program.

Definition 7.3. (Reachability annotation)
We define the following annotation for the augmented program:

1. ω, σ |=G GI iff there exists a reachable〈T, σ′〉 such thatVal (σ) = Val (σ′), and for allα ∈
Val (σ), σ(α)(hcomm) = σ′(α)(hcomm).

2. For each classc, let ω, σinst , τ |=L Ic iff there is a reachable〈T, σ〉 such thatσ(α) = σinst , where
α = σinst (this). For each classc and methodm of c, the pre- and postconditions ofm are given
by Ic.

3. For assertions at control points,ω, σinst , τ |=L pre(stm) iff there is a reachable〈T, σ〉 with
σ(α) = σinst for α = σinst(this), and(α, τ, stm ; stm ′) ∈ T .

4. For preconditionsp of observations observing a statementstm which is not an assignment, let
ω, σinst , τ |=L p iff there is a reachable〈T, σ〉 with σ(α) = σinst for α = σinst(this), and with
(α, τ ′, stm ; stm ′) ∈ T enabled to execute resulting in the local stateτ directly after the execution
of the statement but before its observation.

432 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

For the reception of a method call, instead of the existence of the enabled(α, τ ′, stm ; stm ′) ∈ T ,
we require that a call of the method ofα is enabled in〈T, σ〉 with resulting callee local stateτ
directly after communication16.

It can be shown that these assertions are expressible in the assertion language [56]. The augmented
program together with the above annotation build a proof outline that we denote byprog ′.

What remains to be shown for completeness is that the proof outline prog ′ indeed satisfies the verifi-
cation conditions of the proof system. Initial and local correctness are straightforward.

Completeness for the interference freedom test and the cooperation test are more complex, since,
unlike initial and local correctness, the verification conditions in these cases mention more than one
local configuration in their respective antecedents. Now, the reachability assertions ofprog ′ guarantee
that, when satisfied by an instance local state, thereexistsa reachable global configuration responsible for
the satisfaction. So a crucial step in the completeness proof for interference freedom and the cooperation
test is to show that individual reachability of two local configurations implies that they are reachable
in a commoncomputation. This is also the key property for the history variables: they record enough
information such that they allow to uniquely determine the way a configuration has been reached; in
the case of instance history, uniqueness of course, only as far as the chosen instance is concerned. This
property is stated formally in the following local merging lemma.

Lemma 7.1. (Local merging lemma)
Assume two reachable global configurations〈T1, σ1〉 and〈T2, σ2〉 of prog ′ and(α, τ, stm) ∈ T1 with
α ∈ Val (σ1) ∩ Val (σ2). Thenσ1(α)(hinst) = σ2(α)(hinst) implies(α, τ, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different instances, we need an
analogous property for the communication histories. Arguing on the global level, the cooperation test
can assume that two control points are individually reachable but agreeing on the communication histo-
ries of the objects. This information must be enough to ensure common reachability. Such a common
computation can be constructed, since the internal computations of different objects are independent
from each other, i.e., in a global computation, the local behavior of an object is interchangeable, as long
as the external behavior does not change. This leads to the following lemma:

Lemma 7.2. (Global merging lemma)
Assume two reachable global configurations〈T1, σ1〉 and〈T2, σ2〉 of prog ′ andα ∈ Val (σ1) ∩ Val (σ2)
with the propertyσ1(α)(hcomm) = σ2(α)(hcomm). Then there exists a reachable configuration〈T, σ〉
with Val (σ) = Val (σ2), σ(α) = σ1(α), andσ(β) = σ2(β) for all β ∈ Val (σ2)\{α}.

Note that together with the local merging lemma this impliesthat all local configurations in〈T1, σ1〉
executing inα and all local configurations in〈T2, σ2〉 executing inβ 6= α are contained in the commonly
reached configuration〈T, σ〉.

This brings us to the completeness result:

Theorem 7.2. (Completeness)
For a programprog , the proof outlineprog ′ satisfies the verification conditions of the proof system from
Section 5.3.
16For the precondition of the observationstm at the beginning of therun-method of the main class,〈T, σ〉 can also be the initial
configuration before the execution of the observationstm.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 433

8. Conclusion

In this work we presented a tool-supported assertional proof method for aJavasublanguage including
multithreading and exception handling. We introduced the language and the proof system incrementally
in four steps: We started with asequentialJavasublanguage and its proof system. In the next step we
included dynamic thread creation, resulting in amultithreadedsublanguage. Finally we extended the
language and the proof system to covermonitor synchronizationandexception handling. The resulting
proof system is sound and complete.

Tool support is given by the proof condition generatorVerger. The tool takes an augmented and
annotatedJavaprogram, a so-called proof outline, as input and generates the verification conditions,
which assure invariance of the annotation. We use the theorem proverPVS to verify the conditions.

Future work There are a lot of challenging and interesting research topics in the field, which need fur-
ther analysis. The incremental development illustrated how to extend the language and the proof system
to deal with additional language features. As to future work, we plan to extend the programming lan-
guage by further constructs, like inheritance and subtyping. We are also interested on the development
of a compositional proof system. Currently, the proof system is not compositional in that it contains
no explicit composition rules for combining proofs of “sub-systems” into a proof of a composed sys-
tem. However, the assertions used in the proof system followthe structure of the language already —we
called it modular— in that it is presented at three differentlevels of the language: at the global level, at
the level of the classes, and finally at the local level insidesingle methods. Related to this separation of
concerns, the proof obligation are cleanly split into localproof obligations, those dealing with interfer-
ence within objects, and the cooperation tests at the globallevel. Indeed, adding appropriate auxiliary
variables or observations, when developing the modular proof system, corresponds basically in develop-
ing a compositionalsemanticsof the behavior of the language. Furthermore, the proof of soundness and
especially completeness of the modular proof system shows that semantics encoded in the augmentation,
in particular, in the history variables, indeed is compositional (even if not necessarily fully abstract. See
e.g., [55] for a fully abstract trace semantics for class-based object-oriented programs). We see this as a
benefit of undertaking the effort to provide a sound and complete modular proof system: it paves the way
towards a truly compositional proof system, i.e., one that not just embodies a compositional semantics in
the augmentations, but additionally has compositionalproof rules.

Though the proof method is tool-supported, the annotation and augmentation must be given by the
user. This task can be very complex, making the application difficult in practice. To increase practical
relevance, an additional tool support for annotation generation would be of great benefit.

References

[1] Ábrahám, E.:An Assertional Proof System for Multithreaded Java — Theoryand Tool Support, Ph.D. Thesis,
University of Leiden, 2004, Defended 20.1.2005.

[2] Ábrahám, E., de Boer, F. S., de Roever, W.-P., Steffen, M.: Inductive Proof-Outlines for Monitors in Java, in:
Najm et al. [34], 155–169, A longer version appeared as technical report TR-ST-03-1, April 2003.

[3] Ábrahám, E., de Boer, F. S., de Roever, W.-P., Steffen, M.:Inductive Proof Outlines for Multithreaded
Java with Exceptions, Technical Report 0313, Institut für Informatik und Praktische Mathematik, Christian-
Albrechts-Universität zu Kiel, December 2003.

434 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

[4] Ábrahám, E., de Boer, F. S., de Roever, W.-P., Steffen, M.: ACompositional Operational Semantics for
JavaMT , International Symposium on Verification (Theory and Practice), July 2003(N. Derschowitz, Ed.),
2772, Springer-Verlag, 2004, A preliminary version appeared as Technical Report TR-ST-02-2, May 2002.

[5] Ábrahám, E., de Boer, F. S., de Roever, W.-P., Steffen, M.: An Assertion-Based Proof System for Multi-
threaded Java,Theoretical Computer Science, 331, 2005.

[6] Ábrahám-Mumm, E., de Boer, F. S.: Proof-Outlines for Threads in Java,Proceedings of CONCUR 2000
(C. Palamidessi, Ed.), 1877, Springer-Verlag, August 2000.

[7] Ábrahám-Mumm, E., de Boer, F. S., de Roever, W.-P., Steffen, M.: A Tool-Supported Proof System for
Monitors in Java, in: Bonsangue et al. [20], 1–32.

[8] Ábrahám-Mumm, E., de Boer, F. S., de Roever, W.-P., Steffen, M.: Verification for Java’s Reentrant Multi-
threading Concept,Proceedings of FoSSaCS 2002(M. Nielsen, U. H. Engberg, Eds.), 2303, Springer-Verlag,
April 2002, A longer version, including the proofs for soundness and completeness, appeared as Technical
Report TR-ST-02-1, March 2002.

[9] Alves-Foss, J., Ed.:Formal Syntax and Semantics of Java, vol. 1523 ofLecture Notes in Computer Science
State-of-the-Art-Survey, Springer-Verlag, 1999.

[10] Andrews, G. R.:Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-Wesley,
2000.

[11] Apt, K. R.: Ten Years of Hoare’s Logic: A Survey – Part I,ACM Transactions on Programming Languages
and Systems, 3(4), October 1981, 431–483.

[12] Apt, K. R., Francez, N., de Roever, W.-P.: A Proof Systemfor Communicating Sequential Processes,ACM
Transactions on Programming Languages and Systems, 2, 1980, 359–385.

[13] The Project Bali,http://isabelle.in.tum.de/Bali/, 2003.

[14] van den Berg, J., Huisman, M., Jacobs, B., Poll, E.: A Type-Theoretic Memory Model for Verification
of Sequential Java Programs,Recent Trends in Algebraic Development Techniques(D. Bert, C. Choppy,
P. Mosses, Eds.), 1827, Springer-Verlag, 2000, An earlier version appeared as Computer Science Institute,
University of Nijmegen, Technical Report CSI-R9926, 1999.

[15] van den Berg, J., Jacobs, B.: The Loop Compiler for Java and JML,Tools and Algorithms for the Construction
and Analysis of Systems(TACAS ’02)(T. Margaria, W. Yi, Eds.), 2031, Springer-Verlag, 2002.

[16] van den Berg, J., Jacobs, B., Poll, E.: Formal Specification and Verification of JavaCard’s Application Identi-
fier Class,Java on Smart Cards: Programming and Security. Revised Papers, Java Card 2000, International
Workshop, Cannes, France(I. Attali, T. Jensen, Eds.), 2001.

[17] de Boer, F. S.: A WP-Calculus for OO,Proceedings of FoSSaCS ’99(W. Thomas, Ed.), 1578, Springer-
Verlag, 1999.

[18] de Boer, F. S., Pierik, C.: Computer-Aided Specification and Verification of Annotated Object-Oriented
Programs,Proceedings of the Fifth International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2002)(B. Jacobs, A. Rensink, Eds.), 209, Kluwer, 2002.

[19] de Boer, F. S., Pierik, C.:Towards an Environment for the Verification of Annotated Object-Oriented Pro-
grams, Technical report UU-CS-2003-002, Institute of Information and Computing Sciences, University of
Utrecht, January 2003.

[20] Bonsangue, M. M., de Boer, F. S., de Roever, W.-P., Graf,S., Eds.:Proceedings of the First International
Symposium on Formal Methods for Components and Objects (FMCO 2002), Leiden, vol. 2852 ofLecture
Notes in Computer Science, Springer-Verlag, 2003.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 435

[21] Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An Event-Based Structural Operational Semantics of
Multi-Threaded Java, in: Alves-Foss [9], 157–200.

[22] Floyd, R. W.: Assigning Meanings to Programs,Proc. Symposia in Applied Mathematics: Mathematical
Apsecs of Computer Science(J. T. Schwartz, Ed.), 1967.

[23] Hoare, C. A. R.: An Axiomatic Basis for Computer Programming, Communications of the ACM, 12(10),
1969, 576–580.

[24] Huisman, M.: Java Program Verification in Higher-Order Logic with PVS andIsabelle, Ph.D. Thesis,
University of Nijmegen, 2001.

[25] Huisman, M., Jacobs, B.: Inheritance in Higher Order Logic: Modeling and Reasoning,Theorem Proving in
Higher Order Logics (TPHOL 2000)(M. Aagaard, J. Harrison, Eds.), 1869, An earlier version appeared as
Technical Report CSI-R0004 Computing Science Institute, University of Nijmegen., 2000.

[26] Huisman, M., Jacobs, B., van den Berg, J.: A Case Study inClass Library Verification: Java’s Vector Class,
Software Tools for Technology Transfer, 3(3), 2001, 332–352.

[27] Jacobs, B.: A Formalisation of Java’s Exception Mechanism, Proceedings of ESOP 2001(D. Sands, Ed.),
2028, Springer-Verlag, 2001.

[28] Jacobs, B., van den Berg, J., Huisman, M., van Barkum, M., Hensel, U., Tews, H.: Reasoning about Classes in
Java (Preliminary Report),Object Oriented Programming: Systems, Languages, and Applications (OOPSLA)
’98 (Vancouver, Canada), ACM, 1998, InSIGPLAN Notices30(10).

[29] Jacobs, B., Kiniry, J., Warnier, M.: Java Program Verification Challenges, in: Bonsangue et al. [20], 202–219.

[30] Jacobs, B., Poll, E.: A Logic for the Java Modelling Language JML,Fundamental Approaches to Software
Engineering(H. Hussmann, Ed.), 2029, Springer-Verlag, 2001.

[31] Leavens, G. T., Leino, K. R. M., Müller, P.: Specification and Verification Challenges for Sequential Object-
Oriented Programs,Formal Aspects of Computing, 2007, To appear.

[32] Levin, G., Gries, D.: A Proof Technique for Communicating Sequential Processes,Acta Informatica, 15(3),
1981, 281–302.

[33] The LOOP project: Formal methods for object-oriented systems,http://www.cs.kun.nl/∼bart/LOOP/,
2001.

[34] Najm, E., Nestmann, U., Stevens, P., Eds.:Proceedings of the 6th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’03), Paris, vol. 2884 ofLecture Notes in
Computer Science, Springer-Verlag, November 2003.

[35] Nipkow, T.: Hoare Logics in Isabelle/HOL, Proof and System-Reliability(H. Schwichtenberg,
R. Steinbrüggen, Eds.), Kluwer, 2002.

[36] Nipkow, T., von Oheimb, D.: Java-light is Type-Safe — Definitely, Proceedings of POPL ’98, ACM, 1998.

[37] Nipkow, T., von Oheimb, D., Pusch, C.:µJava: Embedding a Programming Language in a Theorem
Prover, Foundations of Secure Computation. Proc. Int. Summer School Marktoberdorf 1999(F. L. Bauer,
R. Steinbrüggen, Eds.), IOS Press, 2000.

[38] von Oheimb, D.: Axiomatic Semantics for Javalight , in: Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications European Conference on Object-Oriented Program-
ming (OOPSLA) (ECOOP), 2000.

[39] von Oheimb, D.:Axiomatic Sematics for Javalight in Isabelle/HOL, Technical Report CSE 00-008, Oregon
Graduate Institute, 2000.

436 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

[40] von Oheimb, D.: Hoare Logic for Java in Isabelle/HOL,Concurrency and Computation: Practice and
Experience, 13(13), 2001, 1173–1214.

[41] von Oheimb, D., Nipkow, T.: Machine-Checking the Java Specification: Proving Type-Safety, in: Alves-Foss
[9].

[42] von Oheimb, D., Nipkow, T.: Hoare Logic for NanoJava: Auxiliary Variables, Side Effects and Virtual
Methods revisited,Proceedings of Formal Methods Europe: Formal Methods – Getting IT Right (FME’02)
(L.-H. Eriksson, P. A. Lindsay, Eds.), 2391, Springer-Verlag, 2002.

[43] Owicki, S., Gries, D.: An Axiomatic Proof Technique forParallel Programs,Acta Informatica, 6(4), 1976,
319–340.

[44] Owre, S., Rushby, J. M., Shankar, N.: PVS: A Prototype Verification System,Automated Deduction (CADE-
11) (D. Kapur, Ed.), 607, Springer-Verlag, 1992.

[45] Paulson, L. C.:The Isabelle Reference Manual, Technical Report 283, University of Cambridge, Computer
Laboratory, 1993.

[46] Pierik, C.: Validation Techniques for Object-Oriented Proof Outlines, Ph.D. Thesis, Universiteit Utrecht,
May 2006.

[47] Pierik, C., de Boer, F. S.: A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts, in:
Najm et al. [34], 64–78, An extended version appeared as University of Utrecht Technical Report UU-CS-
2003-010.

[48] Poetzsch-Heffter, A.: A Logic for the Verification of Object-Oriented Programs,Proceedings of Program-
ming Languages and Fundamentals of Programming(R. Berghammer, F. Simon, Eds.), Institut für Informatik
und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, November 1997, Bericht Nr. 9717.

[49] Poetzsch-Heffter, A.:Specification and Verification of Object-Oriented Programs, Technische Universität
München, January 1997, Habilitationsschrift.

[50] Poetzsch-Heffter, A., Müller, P.: Logical Foundations for Typed Object-Oriented Languages,Proceedings
of PROCOMET ’98(D. Gries, W.-P. de Roever, Eds.), International Federation for Information Processing
(IFIP), Chapman & Hall, 1998.

[51] Poetzsch-Heffter, A., Müller, P.: A Programming Logic for Sequential Java,Programming Languages and
Systems(S. Swierstra, Ed.), 1576, Springer, 1999.

[52] Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML,Fourth Smart Card Re-
search and Advanced Application Conference (CARDIS’2000)(J. Domingo-Ferrer, D. Chan, A. Watson,
Eds.), Kluwer Acad. Publ., 2000.

[53] Poll, E., van den Berg, J., Jacobs, B.: Formal specification of the Java Card API in JML: the APDU class,
Computer Networks, 36(4), 2001, 407–421.

[54] Stärk, R., Schmid, J., Börger, E.:Java and the Java Virtual Machine: Definition, Verification,Validation,
Springer-Verlag, 2001.

[55] Steffen, M.: Object-Connectivity and Observability for Class-Based, Object-Oriented Languages, Habili-
tation thesis, Technische Faktultät der Christian-Albrechts-Universität zu Kiel, 2006, Submitted 4th. July,
accepted 7. February 2007.

[56] Tucker, J. V., Zucker, J. I.:Program Correctness over Abstract Data Types, with Error-State Semantics, vol. 6
of CWI Monograph Series, North-Holland, 1988.

[57] Warmer, J. B., Kleppe, A. G.:The Object Constraint Language: Precise Modeling With UML, Object
Technology Series, Addison-Wesley, 1999.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 437

A. Proofs of properties of substitutions and projection

Proof of Lemma 2.1 on page 402:By induction on the structure of local expressions and assertions.
The base cases for local expressions are listed below, wherethe ones for instance and local variables are
covered by the respective provisos of the lemma.

[[x[z/this]]]ω,σ
G

= [[z.x]]ω,σ
G

= σ([[z]]ω,σ
G

)(x) = σ(ω(z))(x) = [[x]]
ω,σ(ω(z)),τ
L

[[u[z/this]]]ω,σ
G

= [[u]]ω,σ
G

= ω(u) = τ(u) = [[u]]
ω,σ(ω(z)),τ
L

[[this[z/this]]]ω,σ
G

= [[z]]ω,σ
G

= [−2pt]ω(z) = [[this]]
ω,σ(ω(z)),τ
L

[[null[z/this]]]ω,σ
G

= null = [[null]]
ω,σ(ω(z)),τ
L

[[z′[z/this]]]ω,σ
G

= [[z′]]ω,σ
G

= ω(z′) = [[z′]]
ω,σ(ω(z)),τ
L

.

Compound expressions are treated by straightforward induction:

[[f(e1, . . . , en)[z/this]]]ω,σ
G

= f ([[e1[z/this]]]ω,σ
G

, . . . , [[en[z/this]]]ω,σ
G

) semantics of assertions

= f ([[e1]]
ω,σ(ω(z)),τ
L

, . . . , [[en]]
ω,σ(ω(z)),τ
L

) by induction

= [[f(e1, . . . , en)]]
ω,σ(ω(z)),τ
L

semantics of assertions.

For local assertions, negation and conjunction are straightforward. Unrestricted quantification∃z′. p in
the local assertion language is only allowed for variables of type t ∈ {Int,Bool} and for types composed
from them, for whichVal tnull (σ) = Val t. We get

[[(∃z′. p)[z/this]]]ω,σ
G

= true

⇐⇒ [[∃z′. p[z/this]]]ω,σ
G

= true def. substitution

⇐⇒ [[p[z/this]]]
ω[z′ 7→ v],σ
G

= true for somev ∈ Val t assertion semantics

⇐⇒ [[p]]
ω[z′ 7→ v],σ(ω(z)),τ
L

= true for somev ∈ Val t by induction

⇐⇒ [[∃z′. p]]
ω,σ(ω(z)),τ
L

= true assertion semantics.

For restricted quantification over elements of a sequence let z′ ∈ LVar t . Then

[[(∃z′ ∈ e. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. z′ ∈ e[z/this] ∧ p[z/this]]]ω,σ
G = true by definition

⇐⇒ [[z′ ∈ e[z/this] ∧ p[z/this]]]ω
′,σ

G = true semantics

for somev ∈ Val tnull (σ) andω′ = ω[z′ 7→ v]

⇐⇒
(

[[z′]]ω
′,σ

G ∈ [[e[z/this]]]ω
′,σ

G ∧ [[p[z/this]]]ω
′,σ

G

)

= true semantics

for somev ∈ Val tnull (σ) andω′ = ω[z′ 7→ v]

⇐⇒
(

[[z′]]
ω′,σ(ω(z)),τ
L ∈ [[e]]

ω′,σ(ω(z)),τ
L ∧ [[p]]

ω′,σ(ω(z)),τ
L

)

= true by induction

for somev ∈ Val tnull (σ) andω′ = ω[z′ 7→ v]

⇐⇒ [[(z′ ∈ e) ∧ p]]
ω′,σ(ω(z)),τ
L = true semantics

for somev ∈ Val tnull (σ) andω′ = ω[z′ 7→ v]

⇐⇒ [[∃z′ ∈ e. p]]
ω,σ(ω(z)),τ
L = true semantics.

438 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

The last equation uses the assumption that the local stateτ and the instance stateσ(ω(z)) assign values
from Valnull (σ) to all variables, i.e.,e does not refer to values of non-existing objects (see Lemma A.1).

Consequently,v ∈ Val tnull together with[[z′ ∈ e]]
ω[z′ 7→ v],σ(ω(z)),τ
L

= true impliesv ∈ Val tnull (σ). The
case for restricted quantification over subsequences is analogous.

Proof of Lemma 6.1 on page 424:We proceed by straightforward induction on the structure oflocal
assertions. Let́σinst = σ̀inst [~y 7→[[~e]]

ω,σ̀inst ,τ̀

L
] and τ́ = τ̀ [~y 7→[[~e]]

ω,σ̀inst ,τ̀

L
]. In the case for local variables

u = yi we get

[[u[~e/~y]]]
ω,σ̀inst ,τ̀

L
= [[ei]]

ω,σ̀inst ,τ̀

L

= τ́(u)

= [[u]]
ω,σ́inst ,τ́

L
.

For instance variablesx = yi similarly:

[[x[~e/~y]]]
ω,σ̀inst ,τ̀

L
= [[ei]]

ω,σ̀inst ,τ̀

L

= σ́inst(x)

= [[x]]
ω,σ́inst ,τ́

L
.

The remaining cases are straightforward.

Proof of Lemma 6.2 on page 425:Let ώ = ὼ[~y 7→[[~E]]ὼ,σ̀
G

] andσ́ = σ̀[[[z]]ὼ,σ̀
G

.~y 7→[[~E]]ὼ,σ̀
G

]. We proceed
by induction on the structure of global expressions and assertions. The base cases fornull andz′ are
straightforward. For the induction cases, we start with thecrucial one for qualified reference to instance
variables. For expressionsE′.x[~E/z.~y] with x not in~y the property holds by induction. So assume that
x is in ~y:

[[(E′.yi)[~E/z.~y]]]ὼ,σ̀
G

= [[if E′[~E/z.~y] = z then Ei else (E′[~E/z.~y]).yi fi]]ὼ,σ̀
G

.

This conditional assertion evaluates to[[Ei]]
ὼ,σ̀
G

if [[E′[~E/z.~y]]]ὼ,σ̀
G

= [[z]]ὼ,σ̀
G

and to[[(E′[~E/z.~y]).yi]]
ὼ,σ̀
G

otherwise. So in the first case we get

[[(E′.yi)[~E/z.~y]]]ὼ,σ̀
G

= [[Ei]]
ὼ,σ̀
G

= σ́([[z]]ὼ,σ̀
G

)(yi) by def. ofσ́

= σ́([[E′[~E/z.~y]]]ὼ,σ̀
G

)(yi) by the case assumption

= σ́([[E′]]ώ,σ́
G

)(yi) by induction

= [[E′.yi]]
ώ,σ́
G

by def. of[[]]G .

If otherwise[[E′[~E/z.~y]]]ὼ,σ̀
G

6= [[z]]ὼ,σ̀
G

, then

[[(E′.yi)[~E/z.~y]]]ὼ,σ̀
G

= [[(E′[~E/z.~y]).yi]]
ὼ,σ̀
G

= σ̀([[E′[~E/z.~y]]]ὼ,σ̀
G

)(yi) by def. of[[]]G
= σ́([[E′[~E/z.~y]]]ὼ,σ̀

G
)(yi) case assumption+def.́σ

= σ́([[E′]]ώ,σ́
G

)(yi) by induction

= [[E′.yi]]
ώ,σ́
G

by def. of[[]]G .

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 439

For operator expressions we get:

[[(f(E1, . . . , En))[~E/z.~y]]]ὼ,σ̀
G

= [[f(E1[~E/z.~y], . . . , En[~E/z.~y])]]ὼ,σ̀
G

def. substitution

= f([[E1[~E/z.~y]]]ὼ,σ̀
G

, . . . , [[En[~E/z.~y]]]ὼ,σ̀
G

) def. [[]]G
= f([[E1]]

ώ,σ́
G

, . . . , [[En]]ώ,σ́
G

) by induction

= [[f(E1, . . . , En)]]ώ,σ́
G

def. [[]]G .

For global assertions, the cases of negation and conjunction are straightforward. For quantification,

[[(∃z′. P)[~E/z.~y]]]ὼ,σ̀
G

= true

⇐⇒ [[∃z′. P [~E/z.~y]]]ὼ,σ̀
G

= true def. substitution

⇐⇒ [[P [~E/z.~y]]]
ὼ[z′ 7→ v],σ̀
G

= true for somev∈Valnull (σ̀) def. [[]]G
⇐⇒ [[P]]

ώ[z′ 7→ v],σ́
G

= true for somev ∈ Valnull (σ̀) by induction

⇐⇒ [[∃z′. P]]ώ,σ́
G

= true , Val (σ̀)=Val (σ́)

wherez′ is not in~y (otherwise the substitution renamesz′).

Lemma A.1. Let σ be a global state andω a logical environment referring only to values existing inσ.
Then[[E]]ω,σ

G
∈ Valnull (σ) for all global expressionsE ∈ GExp that can be evaluated in the context of

ω andσ.

Proof of Lemma A.1: By structural induction on the global assertion. The case for logical variables
z ∈ LVar t is immediate by the assumption aboutω, the ones fornull and operator expressions are trivial,
respectively follows by induction. For qualified references E.x with E ∈ GExpc andx an instance
variable of typet in classc, if E.x can be evaluated in the context ofω andσ, then [[E]]ω,σ

G
6= null .

Hence by induction[[E]]ω,σ
G

∈ Valnull (σ), more specifically[[E]]ω,σ
G

∈ Val (σ). Therefore by definition
of global statesσ([[E]]ω,σ

G
)(x) ∈ Valnull (σ).

Proof of Lemma 2.2 on page 409:We prove the lemma by structural induction on global assertions.
Assume a global statèσ, and letσ́ = σ̀[α 7→σc,init

inst] be an extension of̀σ with a new objectα ∈ Val c,
α /∈ Val (σ̀). Assume furthermore a logical environmentω referring only to values existing iǹσ, and
let v be the sequence consisting of all elements of

⋃

c Val cnull (σ̀). Let finally P be a global assertion,
z′ ∈ LVar list Object a logical variable not occurring inP , andώ = ὼ[z′ 7→ v]. Sincez′ is fresh inP , we
have for all logical variablesz in P that [[z]]ὼ,σ̀

G
= ὼ(z) = ώ(z) = [[z]]ώ,σ́

G
= [[z ↓ z′]]ώ,σ́

G
. For qualified

references to instance variables, the argument is as follows:

[[E.x]]ὼ,σ̀
G

= σ̀([[E]]ὼ,σ̀
G

)(x) semantics

= σ́([[E]]ὼ,σ̀
G

)(x) [[E]]ὼ,σ̀
G

6=α by Lemma A.1 andα/∈Val (σ̀)

= σ́([[E ↓ z′]]ώ,σ́
G

)(x) by induction

= [[(E ↓ z′).x]]ώ,σ́
G

semantics

= [[(E.x) ↓ z′]]ώ,σ́
G

def. ↓ z′ .

440 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

The interesting case is the one for quantification. Forz ∈ LVar t :

ὼ, σ̀ |=G ∃z. P

⇐⇒ ὼ[z 7→u], σ̀ |=G P for someu ∈ Val tnull (σ̀) semantics

⇐⇒ ώ[z 7→u], σ́ |=G P ↓ z′ for someu ∈ Val tnull (σ̀) induction

⇐⇒ ώ[z 7→u], σ́ |=G obj(z) ⊆ z′∧P ↓ z′ obj (u) ⊆ v

for someu ∈ Val tnull (σ̀)

⇐⇒ ώ, σ́ |=G ∃z. obj(z) ⊆ z′ ∧ P ↓ z′ semantics

⇐⇒ ώ, σ́ |=G (∃z. P) ↓ z′.

The remaining cases are straightforward.

B. Soundness proof

This section contains the inductive proof of soundness of the proof method. We start with some ancillary
lemmas about basic invariant properties of proof outlines,for instance properties of the built-in auxiliary
variables added in the transformation. Afterwards, we showsoundness of the proof system.

B.1. Invariant properties

Lemma B.1. Let prog ′ be a proof outline for a programprog . Then〈T, σ〉 is a reachable configuration
of prog iff there exists a reachable configuration〈T ′, σ′〉 of prog ′ with 〈T ′ ↓ prog , σ′ ↓ prog〉 = 〈T, σ〉.

Proof of the transformation Lemma B.1: We proceed for both directions by straightforward induc-
tion on the length of reduction. The only interesting property of the transformation is the representation
of notification by a single auxiliary assignment of the notifier. For this case we use Lemma B.3 showing
soundness of the representation of the wait and notified setsby the auxiliary instance variableswait and
notified.

Lemma B.2. (Identification)
Let 〈T, σ〉 be a reachable configuration of a proof outline. Then

1. for all stacksξ andξ′ in T and for all local configurations(α, τ, stm) ∈ ξ and(α′, τ ′, stm ′) ∈ ξ′

we haveτ(thread) = τ ′(thread) iff ξ = ξ′, and

2. for each stack(α0, τ0, stm0) . . . (αn, τn, stmn) in T and indices0 ≤ i, j ≤ n,

(a) τi(thread) = α0;

(b) i < j andαi = αj impliesτi(conf) < τj(conf) < σ(αi)(counter),

(c) 0 < j impliesτj(caller) = (αj−1, τj−1(conf), τj−1(thread)), and

(d) proj(τ0(caller), 3) 6= τ0(thread),

whereproj (v, i) is theith component of the tuplev.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 441

Proof of Lemma B.2 on the facing page:All parts by straightforward induction on the steps of proof
outlines.

Lemma B.3. (Lock, Wait, Notify)
Let 〈T, σ〉 be a reachable configuration of a proof outline for the original programprog , α ∈ Val (σ)
an object identity, and letξ = (α0, τ0, stm0) ◦ ξ′ ∈ T . Let furthermoren be the number synchronized
method executions ofξ in α, i.e.,n = |{(α, τ, stm) ∈ ξ | stm synchr.}|. Then

1. (a) ¬owns(T ↓ prog , α) iff σ(α)(lock) = free

(b) owns(ξ ↓ prog , α) iff σ(α)(lock) = (α0, n)

2. (a) ξ ∈ wait(T ↓ prog , α) iff (α0, n) ∈ σ(α)(wait)

(b) ξ ∈ notified(T ↓ prog , α) iff (α0, n) ∈ σ(α)(notified)

(c) proj (σ(α)(wait)[i], 1) = proj (σ(α)(wait)[j], 1) implies i = j

(d) proj (σ(α)(notified)[i], 1) = proj (σ(α)(notified)[j], 1) impliesi = j

(e) if (α0,m) ∈ σ(α)(wait) or (α0,m) ∈ σ(α)(notified) thenm = n

(f) σ(α)(wait) ∩ σ(α)(notified) = ∅,

wheres[i] is theith element of the sequences.

Proof of Lemma B.3: The cases 2a and 2b are satisfied by the definition of the projection operator.
Inductivity for the cases 2c and 2d are easy to show using Lemma B.2 and the cases 2a and 2b of this
lemma. If the order of the elements is unimportant, in the following we also use set notation for the
values of thewait andnotified variables. Correctness of the projection operation uses the results of this
lemma and is formulated in Lemma B.1. For the other cases we proceed by induction on the length of
the run〈T0, σ0〉−→

∗〈T́ , σ́〉 of the proof outlineprog ′.
In the base case of an initial configuration〈T0, σ0〉 (see page 398), the setT0 contains exactly one

thread(α, τ, stm), executing the non-synchronized main-statement of the program, i.e.,¬owns(T0 ↓
prog , α), and initially the lock of the only objectα is set tofree. Furthermore, the instance variables
wait andnotified of the initial object are set to∅, and thewait andnotified sets of the semantics are also
empty.

For the inductive step, assume〈T0, σ0〉−→
∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉. We distinguish on the kind of the

last computation step.

Case:CALL start , CALL
skip
start , RETURNrun , TRY, FINALLY , YRT, THROW1,

THROW2, THROW3, THROW5

In these cases none of the concerned variables or predicatesare touched, and the property follows directly
by induction.

Case:ASSinst , ASSloc
Note that this case handles assignments, but not the observations of communication, object creation,
and exception handling. Remember furthermore that the signaling mechanism is implemented in proof
outlines by auxiliary assignments, and thus this case covers also the rules SIGNAL , SIGNAL skip , and
SIGNAL ALL .

442 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

If the assignment is not in anotify- or in anotifyAll-method representing notification, then the case
is analogous to the above one.

Assume first that the assignment in the last computation steprepresents notification in anotify-
method of the proof outline. If the wait setσ̀(α)(wait) is empty, then no notification takes place; the
property follows directly by induction. Thus assume that the wait set is not empty. I.e., a threadξ1 ∈ T̀
notifies another threadξ2 = (α2, τ, stm) ◦ ξ′2 ∈ T̀ in thewait set ofα. Remember that notification is
represented by a single assignment of the notifier, and thus the stack of the notified threadξ2 does not
change. However, according to the projection definition, asthe notifier changes the value ofwait of α,
the projectionξ2 ↓ prog represents a thread being in the wait set in〈T̀ , σ̀〉 and being in the notified set in
〈T́ , σ́〉.

The only relevant effect of the step is moving(α2, n) ∈ σ̀(α)(wait) from the wait set into the notified
set ofα, wheren is by induction the number of synchronized invocations ofξ2 in α. Thus the properties
1a, 1b and 2e are automatically invariant. Induction implies also uniqueness of the representation of the
wait and notified sets, i.e.,α2 is contained neither iǹσ(α)(notified) nor in σ́(α)(wait). Thus moving the
thread ofα2 from the wait into the notified set does not violate uniqueness of the representation.

The case for the assignment in thenotifyAll-method is analogous, with the difference that all threads
in the wait set get notified byξ1. The notifier sets the value of the auxiliary instance variable notified

of α to σ̀(α)(notified) ∪̇ σ̀(α)(wait), whereas the correspondingwait variable gets the value∅. By
induction we havèσ(α)(notified)∩ σ̀(α)(wait) = ∅, and thus the required properties are invariant under
notification.

Case:NEW

Assume that the last step creates a new object, and executes the corresponding observation. Letα ∈
dom(σ́). Thenα either references the newly created object, orα ∈ dom(σ̀). In the first caseα /∈
dom(σ̀), and by the definition of global configurations (see page 397)there is no local configuration
(α, τ, stm) ∈ T̀ , and the wait and notified set ofα in T̀ are empty. Since the last step doesn’t add any
local configurations tòT , we haveα 6= β for all (β, τ, stm) ∈ T́ and thus¬owns(T́ ↓ prog , α). Since
the lock of the new object is initialized tofree, andwait andnotified of α get the value∅, the required
property holds for the new object. In the second case, ifα ∈ dom(σ̀), the property follows directly by
induction.

Case:CALL

Let α ∈ dom(σ́). Then alsoα ∈ dom(σ̀). If α is not the callee object, then the property holds directly
by induction. Ifα is the callee object, the only new local configuration(α, τ, stm) in T́ represents the
execution of the invoked method.

If the invoked method is non-synchronized, then the property follows by induction (invocations of
monitor methods are covered by the CALL monitor case below). In the case of a synchronized method,
let ξ ∈ T̀ be the executing thread. The antecedent¬owns(T̀\{ξ} ↓ prog , α) implies by induction
that, if there is no local configuration in the thread’s stackexecuting a synchronized method ofα then
σ̀(α)(lock) = free , andσ̀(α)(lock) = (α0, n) otherwise, where(α0, τ0, stm0) is the deepest configura-
tion in the thread’s stack andn the number of synchronized method invocations in the stackξ. If in the
state prior to the method invocatioǹσ(α)(lock) = free , then(α, τ, stm) is the only local configuration in
T́ representing the execution of a synchronized method ofα by a thread not in the wait or notified sets of
α. Furthermore, the callee observation setsσ́(α)(lock) = (α0, 1), and thus the required property holds.
In the second case, using the fact that the callee configuration is on top of its stack, the callee observation

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 443

changes̀σ(α)(lock) = (α0, n) to σ́(α)(lock) = (α0, n + 1), and we get the property by Lemma B.2 and
by induction.

Case:CALL monitor

Similarly to the case CALL , for α ∈ dom(σ́) alsoα ∈ dom(σ̀), and ifα is not the callee object, then the
property holds by induction. In the case of the non-synchronizednotify- andnotifyAll-methods, none of
the concerned variables or predicates are touched, and thusthe property holds by induction again. So let
ξ ∈ T̀ be the executing thread invoking the non-synchronizedwait-method ofα.

The antecedentowns(ξ ↓ prog , α) implies by inductioǹσ(α)(lock) = (α0, n), where(α0, τ0, stm0)
is the deepest configuration in the stackξ andn is the number of its synchronized method invocations
in α. Furthermore, sinceξ does not yet execute await-method prior to the call, fromξ /∈ wait(T̀ ↓
prog , α) ∪ notified(T̀ ↓ prog , α) we conclude by induction thatα0 is contained neither inwait nor in
notified of α in σ̀.

The execution places the thread intoα’s wait set and, since at most one thread can own a lock
at a time, it gives the lock ofα free, i.e., we have¬owns(T́ ↓ prog , α). The corresponding callee
observation extends̀σ(α)(wait) with (α0, n), and sets the lock-value ofα to free. Thus the case follows
by induction.

Case:RETURN

Assumeα ∈ dom(σ́) = dom(σ̀). If α is not the callee object, or if the invoked method is non-
synchronized, then the property holds directly by induction. Note that returning from thewait-method is
covered by the RETURNwait case below. So letξ ∈ T̀ be the thread ofα0 returning from a synchronized
method ofα; we denote the thread after execution byξ′ ∈ T́ .

Sinceξ is neither in the wait nor in the notified set ofα, we get by definitionowns(ξ ↓ prog , α)
prior to execution. If the given method is the only synchronized method ofα executed byξ, then in the
successor configuration¬owns(ξ′ ↓ prog , α), and from the invariant property that at most one thread
can own a lock at a time we imply¬owns(T́ ↓ prog , α). Otherwise, ifξ has reentrant synchronized
method invocations inα, then the thread doesn’t give the lock free upon return, i.e., in the successor state
we still haveowns(ξ′ ↓ prog , α).

Using owns(ξ ↓ prog , α), we get by inductioǹσ(α)(lock) = (α0, n), wheren is the number of
invocations of synchronized methods ofα by ξ. The auxiliary variablelock of α is set by the callee
augmentation tofree , if n = 1, and to(α0, n − 1), otherwise. Since the auxiliary variableswait and
notified are not touched, the property follows by induction.

Case:RETURNwait

Assume that the threadξ ∈ T̀ of an objectα0 is returning from thewait-method ofα ∈ dom(σ́) =
dom(σ̀); we denote the thread after execution byξ′ ∈ T́ .

The semantics assures¬owns(T̀ ↓ prog , α) and by definitionξ ∈ notified(T̀ ↓ prog , α). We get
by inductionσ̀(α)(lock) = free and(α0, n) ∈ σ̀(α)(notified), wheren is the number of invocations of
synchronized methods ofα by ξ. After returning, the thread gets removed from thenotified -set ofα and
gathers the lock ofα, i.e.,ξ′ /∈ notified(T́ ↓ prog , α) andowns(ξ′ ↓ prog , α).

The augmentation of thewait-method removes(α0, n) from σ̀(α)(notified); from the uniqueness of
the representation followsα0 6= β for all (β,m) ∈ σ́(α)(notified). Furthermore, the observation sets the
lock of α to (α0, n), by which we get the required property.

Case:THROW4

This case is analogous to the case RETURN. Remember that the observations ofthrow statements outside

444 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

try-catch-finally blocks in synchronized methods decrement the lock value.

Lemma B.4. (Started)
For all reachable configurations〈T, σ〉 of a proof outline for a programprog , and all objectsα ∈ Val (σ),
we havestarted(T ↓ prog , α) iff σ(α)(started).

Proof of Lemma B.4: Straightforward by the definition of augmentation.

B.2. Proof of the soundness theorem

Proof of the soundness Theorem 7.1 on page 429:We prove the theorem by induction on the length
of the computation, simultaneously for all parts of Definition 7.1.

For the initial case assumedom(σ0) = {α}, σ0(α) = σinit
inst [this 7→α], τ0 = τ init [thread 7→α],

and let{p2}
?call 〈~y2 := ~e2〉

?call {p3} stm be the main statement. Then the initial configuration〈T ′
0, σ

′
0〉

of the proof outline satisfies the following:σ′
0 = σ0[α.~y2 7→[[~e2]]

σ0(α),τ0
E

], and for the stack we have

T ′
0 = {(α, τ ′

0, stm)} with τ ′
0 = τ0[~y2 7→[[~e2]]

σ0(α),τ0
E

].
Let ω be a logical environment referring only to values existing in σ0. As in σ0 there exists exactly

one objectα being in its initial instance state, we have

ω[z 7→α], σ0 |=G InitState(z) ∧ ∀z′. z′=null ∨ z=z′ ,

wherez is of the type of the main class, andz′ is a logical variable of typeObject. Using the initial
correctness condition we get

ω[z 7→α], σ0 |=G (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit

with I the class invariant ofα, ~v the local variables of therun-method of the main class, and

finit = [this, (null, 0, null)/thread, caller][Init(~v)/~v] , and

fobs = [~E2(z)/z.~y2] .

Applying Lemma 6.2, we get for the global invariantω′, σ′
0 |=G GI for ω′ = ω[z 7→α][~v 7→ τ ′

0(~v)].
SinceGI may not contain free logical variables, its value does not depend on the logical environment,
and thereforeω, σ′

0 |=G GI .
Similarly for the local propertyp3, we get with Lemma 6.2 thatω′, σ′

0 |=L P3(z). With Lemma 2.1
we getω′, σ′

0(α), τ ′
0 |=L pre(stm). Sincepre(stm) does not contain free logical variables, we get finally

ω, σ′
0(α), τ ′

0 |=L pre(stm). Part 3 is analogous.

For the inductive step, assume〈T0, σ0〉−→
∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that〈T̀ , σ̀〉 satisfies the con-

ditions of Definition 7.1. Letω be a logical environment referring only to values existing in σ́. We
distinguish on the kind of the computation step〈T̀ , σ̀〉 −→ 〈T́ , σ́〉.

If the computation step is executed by a single local configuration, we use the local correctness
conditions for inductivity of the executing local configuration’s properties, and the interference freedom
test for all other local configurations and the class invariants in 〈T́ , σ́〉. For communication, invariance

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 445

for the executing partners and the global invariant is shownusing the cooperation test for communication.
Communication itself does not affect the global state; invariance of the remaining properties under the
corresponding observations is shown again with the help of the interference freedom test. The case
for throwing exceptions outside try-blocks is similar. Finally for object creation, invariance for the
global invariant, the creator local configuration, the created object’s class invariant is assured by the
conditions of the cooperation test for object creation; allother properties are shown to be invariant using
the interference freedom test.

Case:ASSinst , ASSloc
Note that signaling is represented in proof outlines by auxiliary assignments, thus this case covers also
the rules SIGNAL , SIGNAL ALL , and SIGNAL skip . Note furthermore that this case does not cover obser-
vations of communication, object creation, or exception throwing and handling.

Let the last computation step be the execution of an assignment in the local configuration(α, τ̀1, ~y :=

~e; stm1) ∈ T̀ resulting in(α, τ́1, stm1) ∈ T́ . According to the semantics,́τ1 = τ̀1[~y 7→[[~e]]
σ̀(α),τ̀1
E

] and

σ́ = σ̀[α.~y 7→[[~e]]
σ̀(α),τ̀1
E

].
Since assignments, that does not observe object creation, communication, or exception throwing,

don’t change the values of variables occurring inGI , part (2) is satisfied.
For part (1), assume(β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, stm1) is the executing local con-

figuration, then by inductionω, σ̀(α), τ̀1 |=L pre(~y := ~e). The local correctness condition implies that
ω, σ̀(α), τ̀1 |=L pre(stm1)[~e/~y]. Using the properties of the local substitution formulatedin Lemma 6.1
we getω, σ́(α), τ́1 |=L pre(stm1).

If otherwise(β, τ2, stm2) is not the executing local configuration, then it is contained in T̀ . If α 6= β,
i.e., the execution didn’t take place inβ, then σ̀(β) = σ́(β), and thusω, σ́(β), τ2 |=L pre(stm2) by
induction. Otherwise letτ be τ̀1[~v

′ 7→ τ2(~v)], where~v = dom(τ2) and~v′ fresh. Then Lemma B.2, the
induction assumptions, and the definition ofinterleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm2) ∧ interleavable(pre(stm2), ~y := ~e) ,

and with the interference freedom test we getω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechanism, novariables in~v′ may occur in~y, yields
ω, σ́(α), τ2 |=L pre(stm2).

Part (3) is similar, using the fact that the class invariant may contain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case:CALL

Let (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T̀ be the caller configuration prior to method

invocation, and let(α, τ́1, stm
′
1) ∈ T́ and(β, τ́2, stm2) ∈ T́ be the local configurations of the caller and

the callee after execution. Let furthermore〈~y2 := ~e2〉
?call stm2 be the invoked method’s body and~u its

formal parameters. Directly after communication the callee has the local statěτ2 = τ init [~u 7→[[~e]]
σ̀(α),τ̀1
E

];

after the caller observation, the global state isσ̌ = σ̀[α.~y1 7→[[~e1]]
σ̀(α),τ̀1
E

] and the caller’s local state

is updated tóτ1 = τ̀1[~y1 7→[[~e1]]
σ̀(α),τ̀1
E

]. Finally, the callee observation updates its local state toτ́2 =

τ̌2[~y2 7→[[~e2]]
σ̌(β),τ̌2
E

] and the global state tóσ = σ̌[β.~y2 7→[[~e2]]
σ̌(β),τ̌2
E

]. Let~v1 denotedom(τ̀1) and assume
ὼ = ω[z 7→α][z′ 7→β][~v1 7→ τ̀1(~v1)].

The semantics assuresα 6= null andβ = [[e0]]
σ̀(α),τ̀1
E

6= null , and we get with Lemma 2.1 and the
definition ofὼ thatὼ, σ̀ |=G z 6= null ∧ z′ 6= null ∧ E0(z) = z′.

446 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

If the method is synchronized andξ is the stack of the executing thread iǹT , then according to the
transition rule¬owns(T̀\{ξ} ↓ prog , β). Using Lemma B.3 and Lemma B.2 we getσ̀(β)(lock) =
free ∨ thread (σ̀(β)(lock)) = τ̀1(thread) and thus̀ω, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread.

In the following letp1 = pre(uret := e0.m(~e)), p2 = pre(~y1 := ~e1), p3 = post(~y1 := ~e1), q1 = Iq,
q2 = pre(~y2 := ~e2), andq3 = post (~y2 := ~e2), whereIq is the class invariant of the callee. Then we
have by inductioǹω, σ̀ |=G GI , for the class invariant̀ω, σ̀(β), τ̀1 |=L Iq, and for the precondition of the
call ὼ, σ̀(α), τ̀1 |=L p1. Using the lifting lemma, the cooperation test for communication implies

ὼ, σ̀ |=G (P2(z) ∧ Q′
2(z

′))[~E(z), Init(~v)/~u′, ~v′] ∧

(GI ∧ P3(z) ∧ Q′
3(z

′))[E′
2(z

′)/z′.~y′2][E1(z)/z.~y1][~E(z), Init(~v)/~u′, ~v′] ,

where~v contains the local variables of the callee without the formal parameters~u. Using the lifting
lemma again but in the reverse direction and Lemma 6.2 results ω, σ́ |=G GI , and thus part (2). Note
that in the annotation no free logical variables occur, and thus the values of assertions in a proof outline
do not depend on the logical environment. Furthermore, using the same lemmas we get

ω, σ̀(α), τ̀1 |=L p2 ω, σ̀(β), τ̌2 |=L q2

ω, σ́(α), τ́1 |=L p3 ω, σ́(β), τ́2 |=L q3 .

Thus part (1) is satisfied for the local configurations involved in the last computation step. All other
configurations(γ, τ3, stm3) in T́ are also inT̀ . If γ 6= α andγ 6= β, then σ̀(γ) = σ́(γ), and thus
ω, σ́(γ), τ3 |=L pre(stm3) by induction.

Assume nextγ = α andα 6= β, and letτ be τ̀1[~v
′ 7→ τ3(~v)], where~v = dom(τ3). Then Lemma B.2,

the induction assumptions, and the definition of the assertion interleavable imply with the interference
freedom testω, σ̀(α), τ |=L pre ′(stm3)[~e1/~y1]. The substitution Lemma 6.1 and the fact that, due to the
renaming mechanism, no local variables in~v′ occur in~y1, yield ω, σ̌(α), τ3 |=L pre(stm3). Now, since
β 6= α, the callee observation also does not change the caller’s instance state, and we haveσ̌(α) = σ́(α).
Thus we getω, σ́(α), τ3 |=L pre(stm3).

The caseγ = β andα 6= β is similar. Communication and caller observation do not change the in-
stance state ofβ, i.e.,σ̀(β) = σ̌(β). The interference freedom test resultsω, σ̌(β), τ |=L pre ′(stm3)[~e2/~y2]
with τ = τ̌2[~v

′ 7→ τ3(~v)]. Due to the renaming mechanism, we conclude with the local substitution lemma
thatω, σ́(β), τ́ |=L pre ′(stm3) with τ́(~v′) = τ3(~v), and thusω, σ́(β), τ3 |=L pre(stm3).

For the last caseγ = α = β note that, according to the restrictions on the augmentation, the caller
may not change the instance state. Thus the same arguments asfor γ = β andα 6= β apply. I.e., part (1)
is satisfied.

Part (3) is analogous: The interference freedom test implies ω, σ́(α), τ́1 |=L Ip, whereIp is the class
invariant of the caller. SinceIp may contain instance variables only, its evaluation doesn’t depend on the
local state. Similarly for the callee,ω, σ́(β), τ́2 |=L Iq. The state of other objects is not changed in the
last computation step, and we get the required property.

Case:CALL start , CALL
skip
start

These cases are analogous to the above one, where we additionally needὼ, σ̀ |=G ¬z′.started and
ὼ, σ̀ |=G z′.started, respectively, to be able to apply the cooperation test. Theabove properties result
from the transition antecedents¬started(T̀ , β) andstarted(T̀ , β), respectively, using Lemma B.4 and
ὼ(z′) = β.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 447

Case:CALL monitor

As above, wherèω, σ̀ |=G thread(z′.lock) = thread is implied by the transition antecedentowns(ξ ↓
prog , β) for the executing threadξ, and Lemma B.2.

Case:RETURN

This case is analogous to the CALL case, where we defineq1 as the precondition of the corresponding
return statement instead of the callee class invariant. Therequirement̀ω, σ̀ |=G E0(z) = z′ ∧ ~u′ = ~E(z)
of the cooperation test results from the fact that the valuesof formal parameters may not change during
method execution, and that the method invocation statements may not contain instance variables, so that
the values of the formal parameters and the expressions in the method invocation statement are untouched
during the execution of the invoked method.

For the application of the interference freedom test, to show the validity of theinterleavable pred-
icate, we use the fact that the assertionpre(stm3) neither describes the caller nor the callee, since the
corresponding local configuration is not involved in the execution.

Case:RETURNrun

Similar to the return case.

Case:RETURNwait

In this case the antecedent¬owns(T̀ ↓ prog , β) of the transition rule together with Lemma B.3 imply
ὼ, σ̀ |=G z′.lock = free. Furthermore, the executing thread is in the notified set prior to execution, and
the same lemma yields that the executing thread is registered in σ̀(β)(notified), i.e., ὼ, σ̀ |=G thread′ ∈
z′.notified.

Case:THROW4

This case is similar to the RETURN case, whereq1 is the precondition of the giventhrow statement.

Case:TRY

Let the last computation step be the entering of a try-catch-finally block with observation~y := ~e, ex-
ecuted in the local configuration(α, τ̀1, `stm1) ∈ T̀ , resulting in(α, τ́1, ´stm1) ∈ T́ . According to the
semantics, directly after entering the block but before thecorresponding observation we haveτ̌1 =

τ̀1[exc 7→[[exc]]
σ̀(α),τ̀1
E

◦ null] andσ̌ = σ̀. After executing the observation we getτ́1 = τ̌1[~y 7→[[~e]]
σ̀(α),τ̌1
E

]

andσ́ = σ̀[α.~y 7→[[~e]]
σ̀(α),τ̌1
E

].
Since observations oftry keywords must not change the values of variables occurring in GI , part (2)

is satisfied.
For part (1), assume(β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, ´stm1) is the executing local

configuration, then by inductionω, σ̀(α), τ̀1 |=L pre(`stm1). The local correctness condition implies
ω, σ̀(α), τ̀1 |=L pre(´stm1)[~e/~y][exc ◦ null/exc]. Using the properties of the local substitution formu-
lated in Lemma 6.1 we getω, σ́(α), τ́1 |=L pre(´stm1).

If otherwise(β, τ2, stm2) is not the executing local configuration, then it is contained in T̀ . If α 6=
β, i.e., the execution didn’t take place inβ, then σ̀(β) = σ́(β), and thusω, σ́(β), τ2 |=L pre(stm2)
by induction. Otherwise, analogously to the argumentationabove, the local correctness Condition 10
implies ω, σ̀(α), τ̀1 |=L pre(~y := ~e)[exc ◦ null/exc]. Using the properties of the local substitution
formulated in Lemma 6.1 we getω, σ̀(α), τ̌1 |=L pre(~y := ~e).

Let τ be τ̌1[~v
′ 7→ τ2(~v)], where~v = dom(τ2) and~v′ fresh. Then Lemma B.2, the induction assump-

tions, and the definition ofinterleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm2) ∧ interleavable(pre(stm2), ~y := ~e) ,

448 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

and with the interference freedom test we getω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechanism, novariables in~v′ may occur in~y, yields
ω, σ́(α), τ2 |=L pre(stm2).

Part (3) is similar, using the fact that the class invariant may contain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case:FINALLY , YRT

These cases are analogous to the above one, where for FINALLY we haveτ̌1 = τ̀1, and for YRT

τ̌1 = τ̀1[exc, top 7→[[head(exc)]]
σ̀(α),τ̀1
E

, [[tail(exc)]]
σ̀(α),τ̀1
E

]; the substitution[exc ◦ null/exc] is replaced
accordingly.

Case:THROW1

Let (α, τ̀ , `stm) ∈ T̀ with `stm = throw e; 〈~y := ~e〉throw stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn

finally stmn+1 yrt; stmn+2 be the executing local configuration prior to the computation step, resulting
in (α, τ́ , ´stm) ∈ T́ with ´stm = stmi; finally stmn+1 yrt; stmn+2 after execution. According to the se-

mantics,[[e]]
σ̀(α),τ̀
E

∈ Valci for some1 ≤ i ≤ n, implying [[e 6=null ∧ hastype(e, ci)]]
σ̀(α),τ̀
E

. Furthermore,

from ∀1 ≤ j < i. [[e]]
σ(α),τ̀
E

/∈ Val cj we conclude[[∀1 ≤ j < i.¬ hastype(e, cj)]]
σ̀(α),τ̀
E

.

Directly after exception throwing we havěτ = τ̀ [ui 7→[[e]]
σ̀(α),τ̀
E

] and σ̌ = σ̀. The observation

modifies the states resulting ińτ = τ̌ [~y 7→[[~e]]
σ̀(α),τ̌
E

] andσ́ = σ̀[α.~y 7→[[~e]]
σ̀(α),τ̌
E

].
Since observations of exception throwing inside try-catch-finally blocks must not change the values

of variables occurring inGI , part (2) is satisfied.
For part (1), assume(β, τ ′, stm ′) ∈ T́ . If (β, τ ′, stm ′) = (α, τ́ , ´stm) is the executing local con-

figuration, then by inductionω, σ̀(α), τ̀ |=L pre(`stm). The local correctness Condition 17 implies
ω, σ̀(α), τ̀ |=L pre(´stm)[~e/~y][e/ui]. Using the properties of the local substitution formulatedin Lemma 6.1
we getω, σ́(α), τ́ |=L pre(´stm).

If otherwise(β, τ ′, stm ′) is not the executing local configuration, then it is contained in T̀ . If α 6=
β, i.e., the execution didn’t take place inβ, then σ̀(β) = σ́(β), and thusω, σ́(β), τ ′ |=L pre(stm ′)
by induction. Otherwise, the induction assumptions, the local correctness Condition 16, and the local
substitution Lemma 6.1 implyω, σ̀(α), τ̌1 |=L pre(~y := ~e).

Let τ be τ̌ [~v′ 7→ τ ′(~v)], where~v = dom(τ ′) and~v′ fresh. Then Lemma B.2, the induction assump-
tions, and the definition ofinterleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm ′) ∧ interleavable(pre(stm ′), ~y := ~e) ,

and with the interference freedom test we getω, σ̀(α), τ |=L pre ′(stm ′)[~e/~y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechanism, novariables in~v′ may occur in~y, yields
ω, σ́(α), τ ′ |=L pre(stm ′).

Part (3) is similar, using the fact that the class invariant may contain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case:THROW2, THROW3, THROW5

These cases are similar to the above one. None of these statements may change the values of variables
occurring in the global invariant, and thus part (2) is satisfied.

The induction assumptions and the semantics assures that the antecedents of the corresponding local
conditions hold in the configuration prior to execution. Satisfaction of the local conditions and the local

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 449

substitution lemma imply that the precondition of the statement of the executing local configuration hold
after the computation step.

For the other local configurations, local correctness assures additionally, that the precondition of the
attached observation hold directly before its execution. Again, we use induction assumption, satisfaction
of the interference freedom conditions, and the local substitution lemma to show that the given assertion
attached to the control point of the non-executing local configuration hold after observation.

Case:NEW

Let (α, τ̀1, u := new; 〈~y := ~e〉newstm1) ∈ T̀ be the local configuration of the executing thread
prior to object creation, and(α, τ́1, stm1) ∈ T́ after it. Object creation updates the global state to
σ̌ = σ̀[β 7→σinit

inst [this 7→β]], whereβ /∈ dom(σ̀); the executing thread’s local state gets updated to

τ̌1 = τ̀1[u 7→ β]. After observation we havéτ1 = τ̌1[~y 7→[[~e]]
σ̌(α),τ̌1
E

] and for the global statéσ =

σ̌[α.~y 7→[[~e]]
σ̌(α),τ̌1
E

].
In the following let p1 = pre(u := new), p2 = pre(~y := ~e), andp3 = post (~y := ~e). By

induction ω, σ̀ |=G GI and ω, σ̀(α), τ̀1 |=L p1. Using the lifting lemma we get̀ω, σ̀ |=G GI ∧
P1(z) for ὼ = ω[z 7→α][~v1 7→ τ̀1(~v1)] and~v1 the variables from the domain of̀τ1. Lemma 2.2 yields
ὼ[z′ 7→ dom(σ̀)][u 7→ β], σ̌ |=G (GI ∧ (∃u. P1(z))) ↓ z′. Note thatGI may not contain free logical
variables, and thus its evaluation does not depend on the logical environment. The newly created object
with a fresh identity is in its initial instance state, implying ὼ[z′ 7→ dom(σ̀)][u 7→ β], σ̌ |=G Fresh(z′, u).
Thus the cooperation test for object creation implies

ὼ[u 7→ β], σ̌ |=G P2(z) ∧ Inew(u) ∧ (GI ∧ P3(z))[~E(z)/z.~y] ,

whereInew is the class invariant of the new object. Using the lifting lemma again but in the reverse
direction and Lemma 6.2 resultsω, σ́ |=G GI , and thus part (2). Note that in the annotation no free
logical variables occur, and thus the values of assertions do not depend on the logical environment.

Furthermore, using the substitution lemmas we get

ω, σ̌(α), τ̌1 |=L p2 , ω, σ́(α), τ́1 |=L p3 , and ω, σ́(β), τ |=L Inew

for all τ . For the class invariant of the executing thread, the interference freedom test impliesω, σ́(α), τ́1 |=L

I, whereI is the class invariant ofα. SinceI may contain instance variables only, its evaluation doesn’t
depend on the local state, and the required property holds. The state of other objects not involved in the
last step is not changed in the last computation step, and part (3) is satisfied.

Furthermore, part (1) is satisfied for the local configuration involved in the last computation step. All
other configurations(γ, τ2, stm2) in T́ are also inT̀ andγ 6= β. If γ 6= α, thenσ̀(γ) = σ́(γ), and thus
ω, σ́(γ), τ2 |=L pre(stm2) by induction.

Assume nowγ = α, and letτ be τ̌1[~v
′ 7→ τ2(~v)], where~v = dom(τ2). Then, sincèσ(α) = σ̌(α),

Lemma B.2, the induction assumptions, and the definition ofinterleavable imply using the interference
freedom test thatω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. The substitution Lemma 6.1 and the fact that, due
to the renaming mechanism, no local variables in~v′ occur in~y, yieldsω, σ́(α), τ2 |=L pre(stm2). I.e.,
part (1) is satisfied.

Corollary B.1. If prog ′ ` ϕprog ′ and|= ϕprog ′ → ϕprog , thenprog |= ϕprog .

Proof of the soundness Corollary B.1:The proof is straightforward using the soundness Lem-
ma 7.1.

450 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

C. Completeness proof

The following lemma states that the variableloc indeed stores the current control point of a thread:

Lemma C.1. Let 〈T, σ〉 be a reachable configuration ofprog ′ and(α, τ, stm) ∈ T . Thenτ(loc) ≡ stm .

Proof of Lemma C.1: Straightforward by the definition of augmentation.

Proof of the local merging Lemma 7.1 on page 432:Assume two computations〈T0, σ0〉−→
∗ 〈T́1, σ́1〉

and 〈T0, σ0〉−→
∗〈T́2, σ́2〉 of prog ′, and let (α, τ, stm) ∈ T́1 with α ∈ dom(σ́1) ∩ dom(σ́2) and

σ́1(α)(hinst) = σ́2(α)(hinst). We prove(α, τ, stm) ∈ T́2 by induction over the sum of the length of
the computations.

In the initial case both́T1 and T́2 contain the same single initial local configuration, and thus the
property holds.

For the inductive case, let〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be the last steps of
the computations. The augmentation definition implies thateach computation step appends at most
one element to the instance history ofα. If σ̀1(α)(hinst) = σ́1(α)(hinst), then, by the definition of
the augmentation,〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 did not execute inα, i.e., (α, τ, stm) ∈ T̀1, and the prop-
erty follows by induction. The case for̀σ2(α)(hinst) = σ́2(α)(hinst) is analogous. Thus assume in
the following σ́1(α)(hinst) = σ̀1(α)(hinst) ◦ (σ1

inst , τ1) andσ́2(α)(hinst) = σ̀2(α)(hinst) ◦ (σ2
inst , τ2).

From σ́1(α)(hinst) = σ́2(α)(hinst) we conclude that̀σ1(α)(hinst) = σ̀2(α)(hinst) and (σ1
inst , τ1) =

(σ2
inst , τ2).

Since σ́1(α)(hinst) 6= σ̀1(α)(hinst), the computation step〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 executed some
statements inα. If there is only one local configuration inα that was involved in the step, then the
augmentation definition and the local substitution lemma imply that its resulting local configuration in
T́1 is given by(α, τ1, stm1) with stm1 ≡ τ1(loc). From (σ1

inst , τ1) = (σ2
inst , τ2) we conclude that

the same local configuration executed in〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉. Thus, either(α, τ, stm) ∈ T́1 is the
executing configuration(α, τ1, stm1) and then it is also ińT2, or not, and then it is iǹT1, by induction in
T̀2, and since it wasn’t involved in the execution〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, also inT́2.

If otherwise there are two local configurations inα involved in〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉, then(σ1
inst , τ1)

specifies the callee’s instance local state. However, due tothe built-in auxiliary variables, the identity
of the caller local configuration is also stored inτ1, in the formal parametercaller of the callee. The
caller configuration is iǹT1, and by induction inT̀2. Furthermore, since there are no two local configu-
rations with the same identity in a reachable configuration,both steps execute in the same instance local
configuration.

Thus, either(α, τ, stm) ∈ T́1 is one of the executing configurations and then it is also inT́2, or not,
and then it is inT̀1, by induction inT̀2, and since it wasn’t involved in the execution, also inT́2.

Proof of the global merging Lemma 7.2 on page 432:Assume two reachable configurations〈T́1, σ́1〉
and〈T́2, σ́2〉 and letα ∈ dom(σ́1) ∩ dom(σ́2) satisfyingσ́1(α)(hcomm) = σ́2(α)(hcomm). We show
that there exists a reachable〈T́ , σ́〉 with dom(σ́) = dom(σ́2), σ́(α) = σ́1(α), andσ́(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}. We proceed by induction on the sum of the lengths of the computations.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 451

In the base case we are given〈T́1, σ́1〉 = 〈T́2, σ́2〉 and the property trivially holds.

For the inductive step, let〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be the last steps of the
computations.

If α /∈ dom(σ̀1) orα /∈ dom(σ̀2), thenα was created in one of the last steps, and thusσ́1(α)(hcomm) =
σ́2(α)(hcomm) = ε. That means, no methods ofα were involved yet, i.e.,α is in its initial instance state
σ́1(α) = σ́2(α) = σinit

inst [this 7→α]; in this case〈T́2, σ́2〉 already satisfies the requirements. Assume in
the followingα ∈ dom(σ̀1) ∩ dom(σ̀2). We distinguish whether the last computation steps update the
communication history ofα or not.

Case:σ̀1(α)(hcomm) = σ́1(α)(hcomm)
In this case〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 doesn’t execute any non-self communication or object creation in α.
By induction there is a computation〈T0, σ0〉−→

∗〈T̀ , σ̀〉 leading to a configuration such thatσ̀(α) =
σ̀1(α) andσ̀(β) = σ́2(β) for all β ∈ dom(σ́2)\{α}.

In case〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute inα at all, i.e.,σ̀1(α) = σ́1(α), then〈T̀ , σ̀〉 already
satisfies the requirements.

Otherwise, the local configurations iǹT1 which execute inα and which are involved in the com-
putation step〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 are by the local merging Lemma 7.1 also inT̀ . Furthermore, from
σ̀1(α)(hcomm) = σ́1(α)(hcomm) we conclude that they don’t execute any non-self communication or ob-
ject creation, and thus their enabledness and effect depends only on the instance state ofα. That means,
the same computation as in〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed in〈T̀ , σ̀〉, leading to a reachable
global configuration satisfying the requirements.

Case: σ̀2(α)(hcomm) = σ́2(α)(hcomm)
In this case〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute any non-self communication or object creation
involving α. By induction, there is a reachable〈T̀ , σ̀〉 with σ̀(α) = σ́1(α) and σ̀(β) = σ̀2(β) for all
β ∈ dom(σ̀2)\{α}.

If 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 performs a step withinα, then, according to the case assumption, it executes
exclusively withinα. This means,̀σ2(β) = σ́2(β) for all β ∈ dom(σ́2)\{α}, and〈T̀ , σ̀〉 already satisfies
the required properties.

If otherwise〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute inα, then all local configurations iǹT2, ex-
ecuting in an object different fromα, are also inT̀ ; this follows from σ̀2(β) = σ̀(β) for all β ∈
dom(σ̀2)\{α}, and with the help of the local merging Lemma 7.1 applied to〈T̀ , σ̀〉 and〈T̀2, σ̀2〉. The
enabledness of local configurations, whose execution does not involveα, are independent of the instance
state ofα; furthermore, the effect of their execution neither influences the instance state ofα nor depends
on it. Thus in〈T̀ , σ̀〉 we can execute the same computation steps as in〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, leading to
a reachable configuration with the required properties.

Case: σ̀1(α)(hcomm) 6= σ́1(α)(hcomm) andσ̀2(α)(hcomm) 6= σ́2(α)(hcomm)
In this case finally both〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute some object creation
or non-self communication inα, including exception throwing between different objects.We show that
in this caseσ́1(α)(hcomm) = σ́2(α)(hcomm) implies alsoσ̀1(α)(hcomm) = σ̀2(α)(hcomm), and thus
by induction there is a computation leading to a configuration 〈T̀ , σ̀〉 such thatdom(σ̀) = dom(σ̀2),
σ̀(α) = σ̀1(α), andσ̀(β) = σ̀2(β) for all other objectsβ ∈ dom(σ̀2)\{α}.

Furthermore, combining those local configurations involved in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 which execute
within α with those in〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 which execute outsideα, we can define a computation
〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that́σ(α) = σ́1(α) andσ́(β) = σ́2(β) for all other objectsβ ∈ dom(σ́2)\{α}.

452 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

The case assumptions imply, that the last elements of the communication historieśσ1(α)(hcomm)
andσ́2(α)(hcomm) were appended in the last computation steps;σ́1(α)(hcomm) = σ́2(α)(hcomm) imply
that the last elements are equal.

According to the augmentation, each computation step extends the communication history ofα with
at most one element. Thus we getσ̀1(α)(hcomm) = σ̀2(α)(hcomm), and by induction there is a reachable
〈T̀ , σ̀〉 with dom(σ̀) = dom(σ̀2), σ̀(α) = σ̀1(α), andσ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

Note that the last elements of the communication historiesσ́1(α)(hcomm) andσ́2(α)(hcomm) record
the kind of execution, and so we know that both steps execute the same kind of communication inα.
Furthermore, the last elements record also the identity of the local configuration executing inα, the
communication partner ofα, and the communicated values, which are consequently also equal.

We distinguish on the kind of the computation step〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉:

Subcase:NEW

In this caséσ1(α)(hcomm) = σ̀1(α)(hcomm)◦(α,null , (newcγ, threadα)), wherethreadα is the identity
of the creator thread as specified by its local variablethread, andγ is the newly created object.

From the preliminary observations we conclude that〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 creates the same new
objectγ being in the same initial state; furthermore, it leaves the states of all objects fromdom(σ̀2)\{α}
untouched.

As σ̀(α) = σ̀1(α), the local merging Lemma 7.1 implies that the local configuration of the creator
in T̀1 is also contained iǹT . Thus, sinceγ /∈ dom(σ̀2) = dom(σ̀), the same computation step as in
〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed also in〈T̀ , σ̀〉, leading to a reachable configuration〈T́ , σ́〉 with
ValObject(σ́) = ValObject(σ̀) ∪̇ {γ} = ValObject(σ̀2) ∪̇ {γ} = ValObject(σ́2), σ́(α) = σ́1(α), and
σ́(β) = σ̀(β) = σ̀2(β) = σ́2(β) for all β ∈ dom(σ̀2)\{α}. Finally, for the newly created object we
haveσ́(γ) = σ́2(γ) = σinit

inst [this 7→ γ], and thuśσ(β) = σ́2(β) for all β ∈ dom(σ́2)\{α}.

Subcase:CALL

Assume first thatα is the caller object andβ 6= α the callee. According to the preliminary observations,
also〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 executes the invocation of the same method ofβ, whereα is the caller and
β the callee. Furthermore, by the local merging lemma, the caller local configuration from̀T1 is also in
T̀ , and its execution is also enabled in〈T̀ , σ̀〉. The last property holds also for synchronized and monitor
methods, since the invocation of the same method ofβ by the same thread is enabled in〈T̀2, σ̀2〉, and
σ̀2(β) = σ̀(β).

Thus the caller local configuration from̀T1 can execute the method invocation in〈T̀ , σ̀〉, leading to
a reachable configuration〈T́ , σ́〉 with σ́(α) = σ́1(α). Furthermore,〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 and〈T̀2, σ̀2〉 −→
〈T́2, σ́2〉 execute the same callee observation in the same instance state σ̀2(β) = σ̀(β) and the same
initial local state after the communication of the same actual parameter values, and thusσ́(β) = σ́2(β).
The states of other objects are not touched, and thus〈T́ , σ́〉 satisfies the required properties.

Similarly, if the callee object isα, then the same caller local configuration as in〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉
can execute in〈T̀ , σ̀〉 leading to a reachable configuration satisfying the requirements.

Subcase:RETURN, THROW4

These cases are analogous to the above case for CALL . The computation〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 is con-
structed from the execution of the local configuration inα which executes in〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉,
together with the execution of the communication partner ofα which executes in〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉.

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 453

Lemma C.2. (Initial correctness)
The proof outlineprog ′ satisfies the initial conditions of Definition 6.1.

Proof of Lemma C.2: Let {p2}
?call 〈~y2 := ~e2〉

?call {p3} stm ; return be the main statement with local
variables~v, and letI be the class invariant of the main class. We have to show for arbitrary σ ∈ Σ and
ω ∈ Ω referring only to values existing inσ, that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) →

P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit ,

wherez is of the type of the main class,z′ of typeObject, and wherefinit = [z, (null, 0, null)/thread, caller][Init(~v)/~v]
andfobs = [~E2(z)/z.~y2]. We observe that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z′ = z)

implies thatσ is the initial global state prior to the execution of the callee observation at the beginning of
the main statement, i.e., defining exactly one existing object ω(z) = α being in its initial instance state
σ(α) = σinit

inst [this 7→α]. We start transforming the right-hand side using the substitution Lemmas 6.2
and 2.1:

[[P2(z)[z, (null, 0, null)/thread, caller][Init(~v)/~v]]]ω,σ
G

= [[P2(z)[z, (null, 0, null)/thread, caller]]]
ω[~v 7→ Init(~v)],σ
G

= [[P2(z)]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[p2]]
ω,σ(α),τ
L

with τ defined byτ init [thread 7→α][caller 7→(null , 0,null)]. The above value istrue, since therun-
method of the main class is initially invoked in the given context.

For the global invariant we get similarly

[[GI [~E2(z)/z.~y2][z, (null, 0, null)/thread, caller][Init(~v)/~v]]]ω,σ
G

= [[GI [~E2(z)/z.~y2]]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[GI]]ω
′,σ′

G

= [[GI]]ω,σ′

G

for some logical environmentω′ and σ′ given by σ[α.~y2 7→[[~e2]]
σ(α),τ
E

]. In the last step we used the
restriction that the global invariant may not contain free logical variables. The step before made use
of the following equation for~E2(z), which we get using Lemma 2.1 and with the fact that~e2 does not
contain logical variables:

[[~E2(z)]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[~e2[z/this]]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[~e2]]
ω[~v 7→ Init(~v)][thread 7→α],σ(α),τ
G

= [[~e2]]
ω′,σ(α),τ
G

.

454 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Since〈T ′, σ′〉 with T ′ = {(α, τ ′, stm)} andτ ′ = τ [~y2 7→[[~e2]]
σ(α),τ
E

] is an initial global configuration of
prog ′ after the observation at the beginning of the main statement, it is reachable, and the initial condition
for the global invariant is satisfied. The cases forp3 andI are similar to that ofGI , where we additionally

use the lifting substitution Lemma 2.1 to show that[[P3(z)]]ω
′,σ′

G
= [[p3]]

ω′,σ′(α),τ ′

L
.

Lemma C.3. (Local correctness: Assignment)
The proof outlineprog ′ satisfies the conditions of local correctness from Definition 6.2.

Proof of Lemma C.3: Let c be a class ofprog ′ with class invariantI, ω ∈ Ω, σinst ∈ Σinst , and
τ ∈ Σloc with σinst(this) = α. Assume a multiple assignment{p1} ~y := ~e{p2} in c which is not the
observation of communication or object creation. We have toshow that

ω, σinst , τ |=L p1 → p2[~e/~y] .

From ω, σinst , τ |=L p1 it follows by the definition of the annotation that there is a reachable〈T̀ , σ̀〉
with σ̀(α) = σinst and(α, τ, ~y := ~e; stm) ∈ T̀ . Executing the local configuration in〈T̀ , σ̀〉 leads to a
reachable global configuration〈T́ , σ́〉 with σ́(α) = σinst [~y 7→[[~e]]

σinst ,τ

E
] and(α, τ [~y 7→[[~e]]

σinst ,τ

E
], stm) ∈

T́ . Thus by the definition of the annotation forprog ′ we have

ω, σinst [~y 7→[[~e]]
σinst ,τ

E
], τ [~y 7→[[~e]]

σinst ,τ

E
] |=L p2 ,

and further with the substitution Lemma 6.1ω, σinst , τ |=L p2[~e/~y], as required.

Lemma C.4. (Local correctness: Exception handling)
The proof outlineprog ′ satisfies the conditions of local correctness from Definition 6.3.

Proof of Lemma C.4: Let stm be a statement of the formtry 〈〉try ~ytry :=~etrystm0; catch (c1 u1) stm1 ...;
catch (cn un) stmn finally 〈~yfin := ~efin〉

fin stmn+1 yrt 〈~yyrt := ~eyrt〉
yrt in a classc. We show that for all

ὼ, σ̀inst , andτ̀ ,

ὼ, σ̀inst , τ̀ |=L pre(stm) → pre(~ytry := ~etry)[exc ◦ null/exc] ∧

pre(stm0)[~etry/~ytry][exc ◦ null/exc] .

From ὼ, σ̀inst , τ̀ |=L pre(stm) it follows by the definition of the annotation that there is a reachable
〈T̀ , σ̀〉 with σ̀(α) = σ̀inst and(α, τ̀ , stm ; stm ′) ∈ T̀ . Executing the exception throwing in the above lo-

cal configuration in〈T̀ , σ̀〉 updates the local state tǒτ = τ̀ [exc 7→[[exc]]
σ̀inst ,τ̀

E
◦ null]. The corresponding

observation completes the computation step and leads to a reachable global configuration〈T́ , σ́〉with σ́ =

σ̀[α.σ̀inst [~ytry 7→[[~etry]]
σ̀inst ,τ̌

E
] 7→], τ́ = τ̀ [~ytry 7→[[~etry]]

σ̀inst ,τ̌

E
], and (α, τ́ , stm0; catch (c1 u1) stm1 . . . ;

catch (cn un) stmn finally 〈~yfin := ~efin〉
fin stmn+1 yrt) ∈ T́ .

Thus by the definition of the annotation forprog ′ we have

ὼ, σ́inst , τ́ |=L pre(stm0) ,

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 455

and further with the substitution Lemma 6.1

ὼ, σ̀inst , τ̀ |=L pre(stm0)[~efin/~yfin][exc ◦ null/exc] .

Note that the annotation may not contain free logical variables.
The case for the precondition of the observation is similar:By definition we havèω, σ̀inst , τ̌ |=L

pre(~ytry := ~etry), and thus̀ω, σ̀inst , τ̀ |=L pre(~ytry := ~etry)[exc ◦ null/exc] , as required.
The other cases are similar. The antecedents of the conditions assure reachability and enabledness;

we use the local substitution lemma to show the required properties.

Lemma C.5. (Interference freedom)
The proof outlineprog ′ satisfies the conditions for interference freedom from Definition 6.4.

Proof of Lemma C.5: Assume an arbitrary assignment~y := ~e with preconditionp in classc with class
invariantI, and an arbitrary assertionq at a control point in the same class. We show the verification
condition from Equation (32) on page 427

ω, σinst , τ |=L p ∧ q′ ∧ interleavable(q, ~y := ~e) → q′[~e/~y] ,

for some logical environmentω together with some instance and local statesσinst andτ , whereq′ denotes
q with all local variablesu replaced by some fresh local variablesu′.

Let α = σinst(this), and assume first that~y := ~e is not the observation of communication, object
creation, or exception throwing or handling. The first clause ω, σinst , τ |=L p implies that there exists a
computation reaching〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and a configuration(α, τ, ~y := ~e; stm ′

p) ∈ T̀p.
From ω, σinst , τ |=L q′ we get by renaming back the local variables thatω, σinst , τ

′ |=L q for
τ ′(u) = τ(u′) for all local variablesu in q. Let q be the precondition of the statementstmq. Note thatq
is an assertion at a control point. Applying the annotation definition we conclude that there is a reachable
〈T̀q, σ̀q〉 with σ̀q(α) = σinst = σ̀p(α) and (α, τ ′, stmq; stm

′
q) ∈ T̀q. The local merging Lemma 7.1

implies that(α, τ ′, stmq; stm
′
q) ∈ T̀p.

Let 〈T́p, σ́p〉 result from〈T̀p, σ̀p〉 by executing the enabled local configuration(α, τ, ~y := ~e; stm ′
p).

We haveσ́p(α) = σinst [~y 7→[[~e]]
σinst ,τ

E
]. From the assumptionω, σinst , τ |=L interleavable(q, ~y := ~e) we

get that(α, τ ′, stmq; stm
′
q) is not the executing configuration, and thus(α, τ ′, stmq; stm

′
q) ∈ T́p.

According to the annotation definitionω, σinst [~y 7→[[~e]]
σinst ,τ

E
], τ ′ |=L q, and after renaming the local

variables ofq alsoω, σinst [~y 7→[[~e]]
σinst ,τ

E
], τ |=L q′. Due to renaming, no local variables ofq′ occur in~y,

implying

ω, σinst [~y 7→[[~e]]
σinst ,τ

E
], τ [~y 7→[[~e]]

σinst ,τ

E
] |=L q′ .

Finally, by the substitution Lemma 6.1 we getω, σinst , τ |=L q′[~e/~y].
If the assignment observes object creation, communication, or exception throwing or handling, the

proof is similar. For object creation,ω, σinst , τ |=L p implies that there exists a computation reaching
〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and an enabled configuration(α, τp, stmp; stm

′
p) ∈ T̀p, wherestmp is

of the formu := new; 〈~y := ~e〉new. The local stateτp is τ [u 7→ v] for some valuev, such that the
local configuration is enabled to createτ(u). Directly after creation, the creator local configuration has

456 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

the local stateτ and executes its observation resulting in the local stateτ [~y 7→[[~e]]
σinst ,τ

E
] and instance

stateσinst [~y 7→[[~e]]
σinst ,τ

E
]. Note thatσinst is not influenced by the object creation itself. Again, the

interleavable predicate assures that(α, τ ′, stmq; stm
′
q) is not the executing configuration, and we get

ω, σinst , τ |=L q′[~e/~y] as above.
The other cases for observations of communication, object creation, or exception throwing and han-

dling are analogous. In the case of caller observation in a self-communication, the restrictions on the
augmentation imply that~y := ~e does not change the values of instance variables, and the requirement
follows directly from the assumptions. Ifp is the precondition of a callee observation at the beginning
of a method body, then the annotation assure that the invocation of the method is enabled in〈T̀p, σ̀p〉
such thatτ is the local state of the callee directly after communication but before observation. Note
that for self-communication, the caller part does not change the instance state. Thus the only update
of the instance state ofα is given by the effect of~y := ~e. Again, theinterleavable predicate assures
that (α, τ ′, stmq; stm

′
q) is neither the caller nor the callee, and thus(α, τ ′, stmq; stm

′
q) ∈ T́p. We get

ω, σinst , τ |=L q′[~e/~y] as above.

Validity of the verification condition 31 for the class invariant is similar, where we additionally use
the fact that the class invariant refers to instance variables only.

Lemma C.6. (Cooperation test: Communication)
The proof outlineprog ′ satisfies the verification conditions of the cooperation test for communication

of Definition 6.5.

Proof of Lemma C.6: We distinguish on the kind of communication starting with the verification con-
dition for synchronized method invocation.

Case:CALL

Let {p1}uret := e0.m(~e); {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait be a statement in a classc of prog ′ with e0 of

typec′, where methodm /∈ {start,wait, notify, notifyAll} of c′ is synchronized with body{q2}
?call 〈~y2 :=

~e2〉
?call {q3} stm , formal parameters~u, local variables without the formal parameters given by~v, and let

q1 = Ic′ be the callee class invariant. Assume

ὼ, σ̀ |=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null

for distinct and freshz ∈ LVarc and z′ ∈ LVarc′ , and wherecomm is E0(z) = z′ ∧ (z′.lock =
free ∨ thread(z′.lock) = thread). Note that for completeness we don’t need the information stored in
the caller class invariant. By definition of the global invariant, the assumptioǹω, σ̀ |=G GI implies that
there exists a reachable〈T, σ〉 with

dom(σ̀) = dom(σ) andσ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .

Assumingὼ(z) = α as caller identity,̀ω, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1 by the substitution
Lemma 2.1, for some local statèτ1 with τ̀1(u) = ὼ(u) for all local variablesu occurring inp1. By the
annotation definition there exists a reachable configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T1 .

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 457

Recall thatσ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially for the callerσ(α)(hcomm) =
σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global merging Lemma 7.2 applied to〈T1, σ1〉 and〈T, σ〉 we
get that there is a reachable〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) andσ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

Furthermore,(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T1, σ1(α) = σ′(α), and the local merging

Lemma 7.1 implies that

(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. In case of a self-call, i.e., forα = β, we directly get that〈T ′′, σ′′〉 =
〈T ′, σ′〉 is a reachable configuration such thatσ′′(α) = σ̀(α), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all
γ ∈ dom(σ̀), and(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

!call stm1) ∈ T ′′.
Otherwise, the assumptioǹω, σ̀ |=G Ic′(z

′) implies ὼ, σ̀(β), τ2 |=L Ic′ for some local stateτ2. Note
that the class invariant contains instance variables, only. By definition of the class invariant, there is a
reachable global configuration〈T2, σ2〉 such that

σ2(β) = σ̀(β) .

We need to fall back upon the two merging lemmas once more to obtain a common reachable config-
uration: Analogously to the caller part, the global mergingLemma 7.2 applied to〈T2, σ2〉 and〈T ′, σ′〉
yields that there is a reachable configuration〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′) and

σ′′(β) = σ2(β) andσ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .

Now, (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T ′, σ′′(α) = σ′(α), and the local merging

Lemma 7.1 implies that the local configuration(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) is in T ′′.

Thus〈T ′′, σ′′〉 is a reachable configuration withσ′′(α) = σ̀(α), σ′′(β) = σ̀(β), σ′′(γ)(hcomm) =
σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

!call stm1) ∈ T ′′.
With the antecedent̀ω, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread of the cooperation test

we getσ̀(β)(lock) = free ∨ thread (σ̀(β)(lock)) = τ̀1(thread). With σ̀(β) = σ′′(β) and Lemma B.3
we get¬owns(T ′′\{ξ}, β), whereξ is the stack with(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

!call stm1) on
top. Furthermore,̀ω, σ̀ |=G comm implies ὼ, σ̀ |=G E0(z) = z′, and by the lifting substitution lemma

[[e0]]
σ̀(α),τ̀ ´σinst 1

E
= [[e0]]

σ′′(α),τ̀1
E

= ω(z′) = β. This means, the invocation of methodm of β is enabled in
the local configuration(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

!call stm1) in 〈T ′′, σ′′〉.
The definition of the augmentation, andσ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̀1 |=L p2 ,

which by the substitution Lemma 2.1 and with the definition ofτ̀1 yields ὼ, σ̀ |=G P2(z). Due to the
renaming mechanism we get

ὼ, σ̀ |=G P2(z) ◦ fcomm

for fcomm = [~E(z), Init(~v)/~u′, ~v′]. For the precondition of the method body, the annotation definition
implies

ὼ, σ̀(β), τ̌2 |=L q2

458 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

with τ̌2 = τ init [~u 7→[[~e]]
σ̀(α),τ̀1
E

]. For the actual parameters we obtain by the substitution Lemma 2.1

[[~E(z)]]ὼ,σ̀
G

= [[~e]]
ὼ,σ̀(α),τ̀1
L

= [[~e]]
σ̀(α),τ̀1
E

, and further with the same lemma

ὼ, σ̀ |=G Q′
2(z

′)[~E(z), Init(~v)/~u′, ~v′]

as required by the cooperation test.
Directly after communication we have a global configurationwith still the same global stateσ′′. The

caller observation evolves its own local state toτ́1 = τ̀1[~y1 7→[[~e1]]
σ′′(α),τ̀1
E

], and the global state tǒσ =

σ′′[α.~y1 7→[[~e1]]
σ′′(α),τ̀1
E

]. Finally, the callee observation changes the global state to σ́ = σ̌[β.~y2 7→[[~e2]]
σ̌(β),τ̌2
E

],

where its own local state is updated toτ́2 = τ̌2[~y2 7→[[~e2]]
σ̌(β),τ̌2
E

]. According to the annotation definition
we get

ὼ, σ́(α), τ́1 |=L p3, ὼ, σ́(β), τ́2 |=L q3, and ὼ, σ́ |=G GI .

Let ώ = ὼ[~v′ 7→ Init(~v)][~u′ 7→[[~e]]
σ̀(α),τ̀1
E

][~y1 7→[[~e1]]
σ̀(α),τ̀1
E

][~y′2 7→[[~e ′2]]
σ̌(β),τ̌2
E

]. The lifting lemma implies
ώ, σ́ |=G GI ∧ P3(z) ∧ Q′

3(z
′); with the global substitution lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z) ∧ Q′
3(z

′))[~E′
2(z

′)/z′.~y′2][~E1(z)/z.~y1][~E(z), Init(~v)/~u′, ~v′] ,

and thus the cooperation test is satisfied for the invocationof synchronous methods.
The case for non-synchronized methods is analogous, where the antecedentz′.lock = free∨thread(z′.lock) =

thread is dropped.

Case:CALL monitor

This case is similar to the above one of CALL , where for the invocation of a methodm ∈ {wait, notify, notifyAll},
the assertioncomm is given byE0(z) = z′ ∧ thread(z′.lock) = thread, implying owns(ξ, β) for the
caller threadξ and the callee objectβ.

Case:CALL start

Enabledness of starting the thread of an objectβ requires¬started(T ′′, β). Due to the definition of
comm, we have additionallỳω, σ′′ |=G ¬z′.started, which implies¬σ′′(β)(started). We get enabledness
by Lemma B.4.

Case:CALL
skip
start

The enabledness argument is similar for CALL
skip
start , where we usèω, σ′′ |=G z′.started to imply the

enabledness predicatestarted(T ′′, β).

Case:RETURN

For return, the construction of〈T ′′, σ′′〉 is similar, where we get instead of the enabledness of the caller
that the callee configuration(β, τ̀2, return eret ; 〈~y3 := ~e3〉!ret) is in 〈T ′′, σ′′〉, and thus enabled to exe-
cute.

Case:RETURNwait

In this case we additionally have to show¬owns(T ′′, β), which we get from thecomm assertion imply-
ing ὼ, σ̀ |=G z′.lock = free and using Lemma B.3.

Case:RETURNrun

Since therun-method cannot be invoked directly, we conclude that the executing local configuration is
the only one in its stack, i.e., the transition rule RETURNrun of the semantics can be applied in〈T ′′, σ′′〉
to terminate the callee(β, τ̀2, return; 〈~y3 := ~e3〉

!ret).

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 459

Lemma C.7. (Cooperation test: Instantiation)
The proof outlineprog ′ satisfies the verification conditions of the cooperation test for object creation of
Definition 6.6.

Proof of Lemma C.7: Let {p1}u := newc; {p2}new〈~y := ~e〉new{p3} be a statement in classc′ of prog ′,
and assume

ω̌, σ̌ |=G z 6= null ∧ z 6= u ∧ ∃z′. Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

with z ∈ LVarc′ andz′ ∈ LVar list Object fresh. Note that we don’t need the class invariant of the creator
for completeness. We show that

ω̌, σ̌ |=G P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z))[~E(z)/z.~y] .

Let ω̌(z) = α andω̌(u) = β. According to the semantics of assertions we have that

ω, σ̌ |=G Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

for some logical environmentω that assigns toz′ a sequence of objects fromVal
Object
null (σ̌) =

⋃

c Valcnull (σ̌),
and agrees on the values of all other variables withω̌. The assertionFresh(z′, u) is defined by

InitState(u) ∧ u 6∈ z′ ∧ ∀v. v ∈ z′ ∨ v = u ,

whereInitState(u) expands tou 6= null ∧
∧

x∈IVarc
u.x = Init(x). Thus,ω, σ̌ |=G Fresh(z′, u) implies

that β ∈ Val c(σ̌) with σ̌(β) = σinit
inst [this 7→β], and additionallyVal

Object
null (σ̌) = ω(z′) ∪̇ {β}. Let σ̀

be the global state with domainValObject(σ̀) = ValObject(σ̌)\{β} and such that̀σ(γ) = σ̌(γ) for all
objectsγ ∈ ValObject(σ̀). Thenσ̌ = σ̀[β 7→σinit

inst [this 7→β]], and from

ω, σ̌ |=G (GI ∧ ∃u. P1(z)) ↓ z′

we get with Lemma 2.2
ω, σ̀ |=G GI ∧ ∃u. P1(z) .

By definition of the annotation,ω, σ̀ |=G GI implies that there is a reachable configuration〈T̀1, σ̀1〉 such
that

dom(σ̀1) = dom(σ̀) andσ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀) .

The precondition of the object creation statement

ω, σ̀ |=G ∃u. P1(z)

implies
ω[u 7→ v], σ̀ |=G P1(z)

for somev ∈ Val
Object
null (σ̀). Applying the lifting Lemma 2.1 we get that

ω, σ̀(α), τ̀ |=L p1

460 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

for a local statèτ with τ̀(u) = v and τ̀(v) = ω(v) for all other local variablesv. By definition of the
annotation, there is a reachable global configuration〈T̀2, σ̀2〉 such that

σ̀2(α) = σ̀(α) and(α, τ̀ , u := newc; 〈~y := ~e〉newstm) ∈ T̀2 .

Recall thatσ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀); especially we havèσ1(α)(hcomm) =
σ̀(α)(hcomm) = σ̀2(α)(hcomm). Using the global merging Lemma 7.2 applied to the reachableglobal
configurations〈T̀2, σ̀2〉 and〈T̀1, σ̀1〉 we get that there is a reachable configuration〈T̀3, σ̀3〉 with

dom(σ̀3)=dom(σ̀1), σ̀3(α)=σ̀2(α), andσ̀3(γ)=σ̀1(γ) for all γ∈dom(σ̀1)\{α}.

Furthermore,(α, τ̀ , u := newc; 〈~y := ~e〉newstm) ∈ T̀2, σ̀2(α) = σ̀3(α), and the local merging
Lemma 7.1 implies that(α, τ̀ , u := newc; 〈~y := ~e〉newstm) ∈ T̀3.

So we know that〈T̀3, σ̀3〉 is a reachable configuration containing the local configuration (α, τ̀ , u :=
newc; 〈~y := ~e〉newstm) ∈ T̀3. With ValObject(σ̀) = ValObject(σ̌)\{β}, dom(σ̀1) = dom(σ̀), and
dom(σ̀3)=dom(σ̀1) we get thatβ /∈ dom(σ̀3), i.e., the local configuration is enabled to create the fresh
objectβ = ω(u). With σ̀3(α) = σ̀2(α) = σ̌(α) we get

ω, σ̌(α), τ̌ |=L p2 ,

whereτ̌ = τ̀ [u 7→β]; with the lifting Lemma 2.1 together with the definition ofτ̀ this meansω, σ̌ |=G

P2(z), as required in the cooperation test.
Executing the instantiation in the local configuration(α, τ̀ , u := newc; 〈~y := ~e〉newstm) in 〈T̀3, σ̀3〉,

creating a new objectβ /∈ dom(σ̀3), results in〈Ť3, σ̌3〉 with σ̌3 = σ̀3[β 7→σinit
inst [this 7→β]]; executing

the creator observation leads to a reachable〈T́3, σ́3〉 with σ́3 = σ̌3[α.~y 7→[[~e]]
σ̌3(α),τ̌
E

] and(α, τ́ , stm) in

T́3 with τ́ = τ̌ [~y 7→[[~e]]
σ̌3(α),τ̌
E

].
As 〈T́3, σ́3〉 is reachable with́σ3(β) = σinit

inst [this 7→β] = σ̌(β) we know

ω̌, σ̌(β), τ́ |=L Ic .

As Ic may not contain local variables, applying the lifting Lemma2.1 again withω(u) = β yields the
required conditioňω, σ̌ |=G Ic(u) for the class invariant. It remains to show that

ω̌, σ̌ |=G (GI ∧ P3(z))[~E(z)/z.~y] .

Applying the substitution Lemma 6.2 and the fact thatGI does not contain free logical variables yields

[[GI [~E(z)/z.~y]]]ω̌,σ̌
G

= [[GI]]ω̌,σ́
G

with σ́ = σ̌[α.~y 7→[[~E(z)]]ω̌,σ̌
G

]. Thus we have to show the existence of a reachable configuration with a
global state defining the same object domain and communication history values aśσ. The configuration
〈T́3, σ́3〉 satisfies the above requirements, since, first, it is reachable with

ValObject(σ́3) = ValObject(σ̀3) ∪̇ {β} = ValObject(σ̀1) ∪̇ {β}

= ValObject(σ̀) ∪̇ {β} = ValObject(σ̌) = ValObject(σ́) .

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 461

Furthermore,́σ3(α) = σ̌3(α)[~y 7→[[~e]]
σ̌3(α),τ̌
E

], and withσ̌3(α) = σ̀3(α) = σ̀2(α) = σ̌(α) and

[[~E(z)]]ω̌,σ̌
G

= [[~e[z/this]]]ω̌,σ̌
G

= [[~e]]
σ̌(α),τ̌
E

= [[~e]]
σ̌3(α),τ̌
E

,

we getσ́3(α) = σ́(α). For the new object,́σ3(β) = σ̌3(β) = σinit
inst [this 7→β] = σ̌(β) = σ́(β). Finally,

for all other objectsγ different from bothα andβ from the domain of́σ we haveσ́3(γ)(hcomm) =
σ̀3(γ)(hcomm) = σ̀1(γ)(hcomm) = σ́(γ)(hcomm).

Similarly for the postconditionp3 of the observation,

[[P3(z)[~E(z)/z.~y]]]ω̌,σ̌
G

= [[P3(z)]]ώ,σ́
G

= [[p3[z/this]]]ώ,σ́
G

= [[p3]]
ώ,σ́(α),τ́
L

= [[p3]]
ώ,σ́3(α),τ́
L

.

Thus we have to show the existence of a reachable configuration with a global state defining the same
instance state forα asσ́3 and containing the local configuration(α, τ́ , stm). The configuration〈T́3, σ́3〉
satisfies the above requirements.

Lemma C.8. (Cooperation test: Exception handling)
The proof outlineprog ′ satisfies the verification conditions of the cooperation test for exception han-

dling of Definition 6.7.

Proof of Lemma C.8: The proof is analogous to the proof for the cooperation test for communication.
Let uret := e0.m(~e) 〈stm〉!call {p1}

wait {p2}
?ret 〈~y4 := ~e4〉

?ret{p3} be a statement in a classc with
m 6= start ande0 of typec′, and let{q1} throw e {q2}

throw 〈~y3 := ~e3〉
throw be a statement inm(~u) of c′

which is not in the try-block of any try-catch-finally statement. We have to show that

ὼ, σ̀ |=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm

→ (P2(z) ∧ Q′
2(z

′)) ◦ fthrow ∧ (GI ∧ P3(z)) ◦ fobs2 ◦ fobs1 ◦ fthrow

holds for arbitraryὼ andσ̀, with distinct fresh logical variablesz ∈ LVarc andz′ ∈ LVarc′ , and with
comm given byE0(z) = z′ ∧ ~u′ = ~E(z) ∧ E′(z′) 6= null ∧ z 6= null ∧ z′ 6= null. Furthermore,fthrow is
[E′(z′)/top], fobs1 is [~E′

3(z
′)/z′.~y′3], andfobs2 is [~E4(z)/z.~y4].

So assume that the antecedent holds. Fromὼ, σ̀ |=G GI we get that there exists a reachable〈T, σ〉
with

dom(σ̀) = dom(σ) andσ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .

Assumingὼ(z) = α as caller identity,̀ω, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1 by the substitution
Lemma 2.1, for some local statèτ1 with τ̀1(u) = ὼ(u) for all local variablesu occurring inp1. By the
annotation definition there exists a reachable configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and(α, τ̀1, receive uret ; 〈~y4 := ~e4〉
?ret stm1) ∈ T1 .

Recall thatσ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially for the callerσ(α)(hcomm) =
σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global merging Lemma 7.2 applied to〈T1, σ1〉 and〈T, σ〉 we
get that there is a reachable〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) andσ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

462 E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions

Furthermore,(α, τ̀1, receive uret ; 〈~y4 := ~e4〉
?ret stm1) ∈ T1, σ1(α) = σ′(α), and the local merging

Lemma 7.1 implies that
(α, τ̀1, receive uret ; 〈~y4 := ~e4〉

?ret stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. The assumptionὼ, σ̀ |=G Q′
1(z

′) implies ὼ, σ̀(β), τ̀2 |=L q1 with
τ̀2(v) = ὼ(v′) for all local variablesv in q1. By definition ofq1 there is a reachable global configuration
〈T2, σ2〉 such that

σ2(β) = σ̀(β) and(β, τ̀2, throw e; 〈~y3 := ~e3〉
throw stm2) ∈ T2 .

In case of a self-call, i.e., forα = β, we directly get that〈T ′′, σ′′〉 = 〈T ′, σ′〉 is a reachable con-
figuration such thatσ′′(α) = σ̀(α) = σ̀(β), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀),
and(α, τ̀1, receive uret ; 〈~y4 := ~e4〉

?ret stm1) ∈ T ′′. With the local merging lemma we get additionally
(β, τ̀2, throw e; 〈~y3 := ~e3〉

throw stm2) ∈ T ′′.
Otherwise, for a non-self-call, we need to fall back upon thetwo merging lemmas once more to obtain

a common reachable configuration: Analogously to the callerpart, the global merging Lemma 7.2 applied
to 〈T2, σ2〉 and〈T ′, σ′〉 yields that there is a reachable configuration〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′)
and

σ′′(β) = σ2(β) andσ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .

Now, (α, τ̀1, receive uret ; 〈~y4 := ~e4〉
?ret stm1) ∈ T ′, σ′′(α) = σ′(α), and the local merging Lemma 7.1

implies that the local configuration(α, τ̀1, receive uret ; 〈~y4 := ~e4〉
?ret stm1) is in T ′′. Similarly,

(β, τ̀2, throw e; 〈~y3 := ~e3〉
throw stm2) ∈ T2, σ′′(β) = σ2(β), and the local merging Lemma 7.1 im-

plies(β, τ̀2, throw e; 〈~y3 := ~e3〉
throw stm2) ∈ T ′′.

Thus〈T ′′, σ′′〉 is a reachable configuration withσ′′(α) = σ̀(α), σ′′(β) = σ̀(β), σ′′(γ)(hcomm) =
σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), (α, τ̀1, receive uret ; 〈~y4 := ~e4〉

?ret stm1) ∈ T ′′ and(β, τ̀2, throw e;
〈~y3 := ~e3〉

throw stm2) ∈ T ′′.
With the antecedent̀ω, σ̀ |=G comm of the cooperation test we getὼ, σ̀ |=G E0(z) = z′∧~u′ = ~E(z)∧

E′(z′) 6= null ∧ z 6= null ∧ z′ 6= null, and by the lifting substitution lemma[[e0]]
σ̀(α),τ̀1
E

= [[e0]]
σ′′(α),τ̀1
E

=

ὼ(z′) = β. Furthermore, using the same lemma gives[[~u]]
ὼ,σ′′(β),τ̀2
E

= [[~e]]
ὼ,σ′′(α),τ̀1
E

and [[e]]
σ′′(β),τ̀2
E

6=
null . I.e., the values of the formal and actual parameters agree,and thus the augmentation definition and
Lemma B.2 assures that the local configurations are in caller-callee relationship. Additionally, the value
of the exception to be thrown is not the empty reference, and thus the exception throwing is enabled.

The definition of the augmentation, andσ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̌1 |=L p2 ,

with τ̌1 = τ̀1[top 7→[[e]]
σ′′(β),τ̀2
E

], which by the substitution Lemma 2.1 and with the definition of τ̀1

implies thatὼ[top 7→[[e]]
σ′′(β),τ̀2
E

], σ̀ |=G P2(z), i.e.,

ὼ, σ̀ |=G P2(z) ◦ fcomm .

Since the local state of the callee is not modified during exception throwing, the annotation definition
impliesὼ, σ̀(β), τ̀2 |=L q2, i.e.,ὼ, σ̀ |=G Q′

2(z
′). Due to the renaming mechanism we get

ὼ, σ̀ |=G Q′
2(z

′) ◦ fcomm .

E. Ábrahám et al. / A Deductive Proof System for MultithreadedJava with Exceptions 463

Directly after communication we have a global configurationwith still the same global stateσ′′. The

callee observation evolves the global state toσ̌ = σ′′[β.~y3 7→[[~e3]]
σ′′(β),τ̀2
E

]. Finally, the caller observation

changes the global state tóσ = σ̌[α.~y4 7→[[~e4]]
σ̌(α),τ̌1
E

], where its own local state is updated toτ́1 =

τ̌1[~y4 7→[[~e4]]
σ̌(α),τ̌1
E

]. According to the annotation definition we get

ὼ, σ́(α), τ́1 |=L p3 and ὼ, σ́ |=G GI .

Let ώ = ὼ[top 7→[[e]]
σ̀(α),τ̀2
E

][~y′3 7→[[~e3]]
σ̀(β),τ̀2
E

][~y4 7→[[~e4]]
σ̌(α),τ̌1
E

]. The lifting lemma impliesώ, σ́ |=G

GI ∧ P3(z); with the global substitution lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z))[~E4(z)/z.~y4][~E
′
3/z

′.~y′3][E
′(z′)/top] ,

and thus the cooperation test for exception handling is satisfied for this case. The case for rethrowing is
analogous.

Proof of Theorem 7.2 on page 432: Straightforward using the Lemmas C.2, C.3, C.4, C.5, C.6, and
C.8, and C.7.

