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The spin-component-scaling second-order Møller–Plesset theory proposed by Grimme, the scaled
opposite-spin variant of Head-Gordon and co-workers, and other variants of the theory to treat the
electron correlation energy are examined. A refinement of scaled opposite-spin theory for strong
chemical interactions is suggested where the scaled correlation contribution is chosen such as to
mimic closely the one obtained by more sophisticated methods of the coupled cluster type. With the
scaling factor chosen to vary in a simple statistical manner with the number of opposite-spin
electron pairs of the system, the parameters have been calibrated from standard coupled cluster type
calculations for a chosen ab initio test data set. The new approach, termed as variable-scaling
opposite spin, aims to be applicable at any regions of the molecule configuration space where
second-order Møller–Plesset perturbation theory converges. It thus benefits of all advantages
inherent to the original theory, which makes it an attractive approach on a computational cost basis.
Because the method in one of its formats fails size-extensivity, the consequences and remedies of
this are analyzed. Illustrations are presented for many molecules utilizing Dunning-type basis sets,
in particular, for a detailed analysis of N3 in its lowest quartet state, which does not belong to the
test set. Extrapolations of the calculated raw energies to the complete one-electron basis set limit are
also reported, giving the most reliable estimates available thus far of the energetics for the N�4S�
+N2 exchange reaction. All spin-component-scaling schemes are known to show difficulties in
dealing with weak interactions of the van der Waals type, which has justified the design of specific
variants of the theory according to the property and regime of interactions. Several variants of the
theory are then examined using a second test set of molecules, and shown to be linked via a
coordinate that evolves gradually between two known extreme regimes. It is further shown that such
a coordinate can be specified via a constrained Feenberg-type scaling approach, a theory whose
merits are also explored. © 2010 American Institute of Physics. �doi:10.1063/1.3465551�

I. INTRODUCTION

Electronic structure calculations play a key role on the
prediction of the structure and reactivity of molecules and
materials. Indeed, no doubt exists that having such calcula-
tions at an accurate, yet affordable, level is ubiquitous and a
challenge to modern computational chemistry since the ben-
efits can be enormous ranging from gas phase chemistry to
biochemistry to materials science. In this regard, density
functional theory1,2 �DFT� has become the popular electronic
structure tool for application to systems with large numbers
of electrons. However, DFT is known to lack an a priori
treatment of the dispersion interactions and suffer from spu-
rious electron self-interaction. In fact, DFT methods are
known to be somewhat suspect for reaction barriers as stan-
dard functionals tend to underestimate activation energies,3

largely as a consequence of the self-interaction error.4,5

Moreover, a surprising shortcoming to correctly predict bond
dissociation energies has been reported,6 in addition to other
difficult to correct errors.7

The simplest molecular orbital electronic structure

method alternative to DFT that can correctly treat dispersion
and hydrogen-bonding interactions is second-order
Möller–Plesset8 �MP2� theory. Being size-consistent,9 it can
accurately treat long-range dispersion interactions, as well as
the dispersion, polarization, and covalency effects associated
with hydrogen bonding.10,11 Moreover, recent progress has
been made that enhances the success of MP2 computations
by reducing further its low cost relative to the other standard
MO algorithms. Regarding the steep cost increase of the
MP2 calculations with molecular size, some well recognized
developments are �a� methods that reduce the prefactor with-
out changing the underlying scaling, such as “resolution-of-
the-identity” methods12,13 or the pseudospectral approach,14

and others;4 �b� methods that attempt to exploit “underlying
locality” in the MP2 problem;15,16 �c� efficient molecular or-
bital localization schemes;12,13 �d� methods that exploit the
locality of electronic structure by ansatz;17–19 �e� combina-
tion of the above methods20,21 such as resolution-of-the-
identity/density fitting ones. Of course, there is still the need
for using large atomic orbital basis sets in order to obtain
good results,22 which can further reduce the upper limit on
system size and originate a diminished performance for
open-shell systems.23,24 Such a situation has been itself sub-a�Electronic mail: varandas@qtvs1.qui.uc.pt.
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stantially ameliorated in recent years by the appearance of
extrapolation methods that can reliably predict the molecular
energy at the complete basis set �CBS� limit. Indeed, it is
now well established that MP2 correlation energies �or any
wave function based correlation energy� can be systemati-
cally extrapolated toward the CBS limit by using the X−3

behavior of the basis set error with respect to the hierarchic
number X of the Dunning25–27 correlation-consistent polar-
ized valence �cc-pVXZ or VXZ� basis sets, which are often
augmented with diffused functions �aug-cc-pVXZ or
AVXZ�; X is commonly referred as the cardinal number. In
fact, a refinement of this approach suggests28,29 separate scal-
ing of the same-spin �abbreviated as SS or T from “triplet” or
numerically by spin 1� and opposite-spin �OS:S:0� correla-
tion energies. Recall that the former actually converges as
X−5 while the latter, numerically far larger, converges as X−3.
It should be added that we have suggested30 a scheme, and
later a generalized variant of it,30,31 whereby such contribu-
tions are uniformly treated. The approach, known as the uni-
form singlet- and triplet-pair extrapolation �USTE� scheme,30

has shown a high reliability being employed later to CBS
extrapolate some of the raw energies reported in the present
work.

The distinct X−n dependence of the two spin cases noted
in the previous paragraph may have inspired Grimme32–34 to
suggest that MP2 energies can be systematically improved
by separate scaling of the OS and SS components of the MP2
correlation energy. This led to the “spin-component scaled”
MP2 theory, or simply SCS-MP2. Grimme’s idea was further
explored by Jung et al.35 who suggested a simplified variant
of SCS-MP2 theory. By noting that the damping of the SS
contribution is large �1/3�, they proposed that results of com-
parable quality can be obtained by scaling just the OS com-
ponent �i.e., ignoring the SS component�. This offers the pos-
sibility of a significantly reduced computational cost for
larger systems as it is possible to formulate SOS-MP2 as a
fourth-order �rather than fifth-order as for MP2� method. It
also offers other desirable practical implications for the effi-
ciency of implementation since many of the algorithmic
complications that arise in fast MP2 methods are associated
with the exchange contribution to the SS correlation. Both
SCS-MP2 and SOS-MP2 theories have shown impressive
accuracy when calculating reaction energies, atomization en-
ergies, dissociation energies, molecular geometries, and bar-
rier heights.6,32,35 Unfortunately, the values of the optimal
scaling parameters in SCS-MP2 and SOS-MP2 theories have
been shown to vary drastically with the property of interest
and the atomic orbital basis set that is employed. For ex-
ample, they are found to vary drastically when stepping from
strong to intermolecular interactions.36–38 This led Head-
Gordon and co-workers to the proposition of a modified-OS
MP2 theory36 in an attempt to correct the long-range domain
of SOS-MP2 theory, and to develop an efficient linear scal-
ing local SOS-MP2 algorithm that were utilized to compute
the intermolecular interaction of fullerene and porphyrin.37

In fact, both such developments have shown the ability to
accurately describe nonbonding intermolecular interactions
by the single-parameter scaling SOS-MP2 formalism. Other
recent analyzes by Distasio and Head-Gordon,38 and Hill and

Plats39 also stressed that the set of optimal parameters for the
above theories vary drastically with the physical property to
be modeled. For some, SCS-MP2 performs best, for others is
SOS-MP2, and sometimes even scaling the same-spin com-
ponent �SSS-MP2� turns out to perform well.

In addition to low computer cost, a method in computa-
tional chemistry should ideally show size-extensivity and
size-consistency, be applicable to both closed- and open-shell
systems, and hopefully show uniform accuracy over the mol-
ecule configuration space. Although such prerequisites will
be further examined below, suffice it to recall here that size-
extensivity requires that the total energy of N infinitely sepa-
rated systems is N times the energy of each system. Although
such a property is known to apply to MP2 �and is retained34

by SCS-MP2 and SOS-MP2�, we will examine later how it
can be preserved in the variable-scaling opposite-spin
second-order Møller–Plesset �VOS-MP2� variant here sug-
gested. Thus, the correct energy behavior of the system �size-
consistency� can be guaranteed when the interaction between
closed-shell molecules is nullified �such as when the inter-
molecular distance increases to its asymptotic value� since
the Hartree–Fock �HF� wave function �also size-extensive�
will then be a good starting point. This is especially impor-
tant for large systems and weakly interacting fragments al-
though, as noted above, SCS-MP2 theory and its variants are
known to perform relatively poorer for such interactions. On
the other hand, for strong interactions involving bond-
breaking/formation, the HF wave function is often far from
dominant and single-reference post-Hartree–Fock methods
known to fail frequently to produce converged results. Thus,
it appears that no strong reason exists to impose strict size-
extensitivity into the method even though a fair amount of
configuration space may be expected to be sampled. Instead,
its predictive value might seem to provide a fairer criterion
for adoption. Despite this, the new theory will be shown to
assume, if desired, a fully size-extensive format.

The aim of this work is twofold. First, an improvement
of SOS-MP2 theory is suggested whereby a parametrization
of scaling that varies with system size is envisaged. Specifi-
cally, a scaling factor is suggested that accounts for the de-
pendence on the number of OS electron pairs in a simple
statistical manner. The calibration is made such as to repro-
duce an ab initio test set of energies calculated with CC type
methods, namely, CCSD�T� including singles and doubles
electronic excitations with a perturbation estimate of con-
nected triples. Alternatively, the quadratic configuration in-
teraction �QCISD�T�� method may be employed, which
gives similar results.10,11 As note above, the new variant of
SOS-MP2 theory will then be referred to by the acronym
VOS-MP2. Second, a theoretical interpretation of the various
spin-component-scaling theories is presented using a gener-
alization of the approach suggested by Feenberg40 and
adopted more recently by Szabados.41

The structure of the paper is as follows. Section II pro-
vides a brief review of MP2 theory and spin-component-
scaling methods. A description of the novel VOS-MP2
theory is then given in Sec. III. Section IV presents the re-
sults obtained for the ATS1 ab initio test data set. A rational-
ization of the existing spin-component-scaling theories using
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a variant of the Feenberg perturbation theory approach fol-
lows in Sec. IV, jointly with illustrative results for another ab
initio test data set �ATS2� which is part of the one employed
in Ref. 41. The major conclusions are gathered in Sec. V.

II. MP2 THEORY AND SPIN-COMPONENT ENERGY
SCALING

Let the zeroth-order Hamiltonian be written as

H�0� = E0�0��0� + 	
K�0

EK�K��K� , �1�

with the perturbation being defined in a common notation by
W=H−H�0�, and EK and �K� denoting the eigenvalues and
eigenfunctions of H�0�. Within standard MP2 theory, the
second-order energy assumes the form

EMP
�2� = − 	

K�0

��0�H�K��2

�K
, �2�

where �K=EK−E0. Thus, provided that the HF problem is
solved, only doubly excited determinants will contribute to
the second-order energy. These can either involve parallel
spin excitations of the type �TK�=b�

+a�
+i�

− j�
−�0� or antiparallel-

spin excitations �TK�=b�
+a�̄

+i�
− j�̄

−�0�, with � and �̄ specifying
orthogonal spin functions, i , j , . . . referring to occupied indi-
ces, and a ,b , . . . to virtual ones. For closed-shell systems, the
excitation energy denominators are independent of the spin
labels, being given by �K=�a+�b−�i−� j, where the �’s stand
for the canonical HF molecular orbital energies. The total
correlation energy can therefore be split into SS �or ���
+��� or triplet� electron-pair contributions and OS ��� or
singlet� contributions. Thus,

EMP
�2� = − 	

TK

��0�H�TK��2

�K
− 	

SK

��0�H�SK��2

�K
, �3�

where, for the MP partitioning, �0� denotes the HF wave
function and �K� refers to excited determinants. In terms of
two-electron integrals, the result is

EMP
�2� = EMP2

T + EMP2
S

= − 	
ijab


 �ij�ab��ij��ab�
�a + �b − �i − � j

+
�ij�ab�2

�a + �b − �i − � j
� , �4�

where the usual notation �ij��ab�= �ij �ab�− �ij �ba� has been
utilized.

At the MP1 �or HF� level, the Fermi correlation between
spin-parallel electron pairs is already considered while the
Coulomb correlation between spin antiparallel pairs is com-
pletely neglected, a biased description that continues at
higher levels of perturbation theory. This leads at second-
order �MP2� to an unbalanced description of dynamic �short-
range� versus static �long-range� electron correlation effects.
The scaling procedure aims therefore, in particular, to reduce
the often overestimated correlation of the SS contribution.
This involves mainly distant electrons, which represent a sig-
nificant part of the static electron correlation. Grimme’s scal-
ing approach assumes then the form

ESCS-MP2 = − pT	
TK

��0�H�TK��2

�K
− pS	

SK

��0�H�SK��2

�K
, �5�

hence leading as noted above to SCS-MP2 theory. Note that
pT and pS denote scaling factors of the modified correlation
energy, which can help to effectively reduce the outliers in
standard MP2 calculations. Clearly, this immediately re-
minds one that any excessive reduction of the SS interactions
may have critical implications when dealing with properties
dominated by subtle long-range interactions. The scaling pa-
rameters used by Grimme are pS=6 /5 for the OS correlation
and pT=1 /3 for SS. For a given �large� basis, Grimme’s
approach showed clear statistical improvements in the qual-
ity of geometries �of diatomics�, and a wide range of relative
energies of reactions, and atomization energies.32–34 Efficient
implementations of orbital-optimized MP2 theory within the
RI and their impact on the SCS-MP2 method have also been
explored.42 In a similar fashion, improvements of coupled
cluster singles and doubles �CCSD� theory by scaling the SS
and OS components of the double excitation correlation en-
ergy were reported by Sherrill and co-workers.43

Grimme’s idea was further explored by Head-Gordon
and co-workers35 who, noting that the damping of the SS
contribution is large �pT=1 /3�, suggested that results of
comparable quality could be obtained by scaling just the OS
component �i.e., ignoring the SS components�. As noted
above, this has desirable practical implications for efficiency
of implementation since many of the algorithmic complica-
tions that arise in fast MP2 methods are associated with the
exchange contribution to the SS correlation. In SOS-MP2
theory, the correlation energy assumes then the form

ESOS-MP2 = − pS	
SK

��0�H�SK��2

�K
, �6�

where pS=1.2 or 1.3 �we utilize the latter as it gives a some-
what smaller root mean squared deviation �rmsd� in the com-
parisons to be presented later�. The magnitude of this scaling
coefficient has been fixed from the observation that the ratio
of S :T correlation is typically 3 or 4 to 1, and thus the OS
scaling factor would requires to be increased by about
1 / �3�3� to mimic the absence of explicit SS correlations.
Note that scaled OS second-order perturbation corrections to
single excitation configuration interaction have also been
suggested to treat quasidegeneracies between excited
states.44–46

A theoretical rationalization of Grimme’s approach was
given by Szabados41 using a generalization of the Feenberg40

scaling approach. By noting that the partitioning of the
Hamiltonian into a zeroth-order term and a perturbation
leaves some arbitrariness in defining the latter, Feenberg sug-
gested to introduce one parameter to scale the zeroth-order
Hamiltonian which could then be chosen by some appropri-
ate criterion. Szabados41 generalized the idea by introducing
two spin-dependent excitation energies in the Hamiltonian.
This assumes now the form
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HSCS-MP
�0� = E0�0��0� + 	

TK

EK
T �TK��TK� + 	

SK

EK
S �SK���SK�

+ 	
K

other

EK�K��K� , �7�

where “other” in the last summation implies singly, triply,
and other excited terms. Thus, Eq. �7� provides a generaliza-
tion of Eq. �1� with the additional relations,

EK
T =

�K

pT
+ E0, �8�

EK
S =

�K

pS
+ E0. �9�

Following Feenberg, Szabados41 determined the optimum
scaling parameters from the condition that the sum of the
scaled second- and third-order energies is stationary with re-
spect to pT and pS. The latter assumes the form

ESCS-MP
�3� = pT

2 	
TKTL

�0�H�TK���TK�H�TL� − �TKTL
���K/pT� + E�0� + E�1��
�TL�H�0�

�K�L

+ pS
2 	

SKSL

�0�H�SK���SK�H�SL� − �SKSL
���K/pS� + E�0� + E�1��
�SL�H�0�

�K�L
+ 2pTpS 	

TKSL

�0�H�TK��TK�H�SL��SL�H�0�
�K�L

,

�10�

with the sum of the second- and third-order energies yielding

ESCS-MP
�2� + ESCS-MP

�3� = pT
2ATT − 2pTEMP

�2�,T + pS
2ASS − 2pSEMP

�2�,S + 2pTpSAST. �11�

In Eq. �11�, EMP2
S and EMP2

S are the second-order contributions in Eq. �4�,

ATT = 	
TKTL

�0�H�TK���TK�H�TL� − �TKTL
�E�0� + E�1��
�TL�H�0�

�K�L
, �12�

AST = 	
TKSL

�0�H�TK��TK�H�SL��SL�H�0�
�K�L

, �13�

with a corresponding expression applying to ASS. Explicitly,
the above terms assume the forms41

ASS = 2	
ijk

	
abc

�ij�ba��jc��ak��bc�ik�
�ij

ab�ik
bc

− 2	
ijk

	
abc

�ij�ab��jc�ka��bc�ki�
�ij

ab�ik
bc

+ 	
ijkl

	
ab

�ij�ab��ij�kl��ab�kl�
�ij

ab�kl
ab

+ 	
ij

	
abcd

�ij�ab��cd�ab��cd�ij�
�ij

ab�ij
cd + 	

ij
	
ab

�ij�ab�2

�ij
ab ,

�14�

ATT = 2	
ijk

	
abc

�ij��ab��ci��ak��cb��jk�
�ij

ab� jk
bc

+ 	
ijkl

	
ab

�ij��ab��ij�kl��ab�kl�
�ij

ab�kl
ab

+ 	
ij

	
abcd

�ij��ab��cd�ab��cd�ij�
�ij

ab�ij
cd

+ 	
ij

	
ab

�ij�ab��ij��ab�
�ij

ab , �15�

AST = 2	
ijk

	
abc

�ij�ab��ci�ka��cb�kj�
�ij

ab� jk
bc , �16�

where �ij
ab is defined as above. Note that in stepping from

MP2 to MP3 no new repartitioning parameters appear. Thus,
the approach differs from Grimme’s47 third-order one where
a further scaling of the MP3 contribution is done. Szabados41

suggested to obtain the optimum scaling parameters pT and
pS by the above condition of stationary, and applied the
method to various systems. Although the results were occa-
sionally poorer than those from the standard MP2 approach,
they have shown in some cases an improvement over the
ones obtained via Grimme’s empirical method.

Consider now the constraint pF= pS= pT. Application of
the above stationarity condition leads then straightforwardly
to the Feenberg40 minimal condition

pF =
EMP

�2�

EMP
�2� − EMP

�3� , �17�

where all terms have the meaning assigned above. The same
result is obtained for the single spin-component case. For
example, if the assumption is made of pT=0, the stationarity
condition yields
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pF
S = −

EMP
�2�,S

ASS
=

EMP
�2�,S

EMP
�2�,S − EMP

�3�,S , �18�

which can easily be shown to correspond to the root of the
third-order perturbation energy. Moreover, from Eqs. �6� and
�17�, the following result is obtained:

ESOS-MP2
F =

�EMP
�2� �2

EMP
�2� − EMP

�3� , �19�

where the superscript F emphasizes that the scaling factor
has been obtained from Feenberg’s single-parameter pertur-
bation analysis. Note the appearance of the square of EMP2

�2� in
Eq. �19�, which is responsible for the energy at second-order
of Feenberg’s perturbation development to obey size-
extensivity only when N identical particles are involved, but
not otherwise.48

III. IMPROVED SOS-MP2 THEORY

In attempting to obtain an improved spin-component-
scaling theory, a few issues should desirably be taken into
consideration. Two are general and appear critical when aim-
ing at a description of covalent interactions: �a� the theory
should reproduce any energies from the ab initio test set that
are known exactly, such as for the prototypical covalent bond
of H2 which has a single OS pair of electrons; �b� it should
rely only on the OS spin component of the MP2 energy such
as to benefit of the important cost-effective advantages
pointed out by Head-Gordon and co-workers. Aiming at a
wider applicability for the theory, it should also be applicable
to contracted/stretched bonds and, hopefully, van der Waals
�vdW� interactions. Although this will not be explicitly at-
tempted at this occasion, some guiding remarks will be
pointed out later. In fact, this can hardly be achieved with
SOS-MP2 theory since T excitations are formally discarded
although they are known to play a critical role in vdW inter-
actions as discussed in detail in several recent
publications38,39,49–52 devoted to this theme.

Consider then H2 in its singlet ground state. Let the en-
ergy be expressed in terms of the reduced bond distance

	 =
R − 
Re


Re
, �20�

where Re is the equilibrium geometry, 
 is the parameter, and
the reduced bond distance satisfies −1�	�
. For a chosen
value of the cardinal number X, the following condition
should be verified:

lim
nS→1

	→	e

pS�	,nS,X� = lim
nS→1

	→	e

EFCI

EMP2
= � �FCI

�MP2
�

H2

, �21�

where nS is the number of OS electron pairs, and the acro-
nym FCI stands for full-configuration interaction. For very
short distances, the H2 molecule will collapse to its united
atom,

lim
nS→1

	→−1

pS�	,nS,X� = lim
nS→1

	→−1

EFCI

EMP2
= � �CCSD

�MP2
�

He
, �22�

with the correlation energies �MP2 and �CCSD �or FCI� in Eq.
�22� referring now to the helium atom in the ground elec-
tronic state.

The dependence of pS is unknown and its form can
hardly be anticipated. For simplicity, the drastic assumption
is made here that it can be split into a shape term that varies
with molecular geometry, GS�	 ,X�, and a size-term S�nS ,X�
that accounts for the number of electrons of the system. The
latter should then vary with the number of OS electron pairs.
It is further argued that the theory should be applicable
whenever the wave function of the system can be reliably
approximated by a single reference. Thus, it is specially de-
signed for regions of configuration space in the vicinity of
the equilibrium geometry, as single-reference methods are
generally bound to fail when chemical bonds are broken or
formed. To summarize,

pS�	,nS,X� = GS�	,X�S�nS,X� �23�

with an attempt being made here to suggest forms from
simple physical arguments. For H2 �this should also hold
qualitatively for other bonds�, the geometry-dependence can
be well approximated by the form

GS�	,X� = g0�X� + g1 tanh�g2	� , �24�

where gi �i=0–2� are parameters. Note that for a given X,
Eq. �24� has enough flexibility to reproduce the value of pS

for the hydrogen molecule at equilibrium �nS=1,	=	e�, and
the corresponding value for atomic helium �nS=1,	=−1�. In
fact, Fig. 1 shows that the calculated FCI energies for He and
H2 are accurately modeled by Eq. �24� for all basis sets; the
fitted parameters are gathered in Table I. Obviously, the
CCSD or QCISD curves coincide in this case with the FCI
one whenever the former methods converge, which occurs
for distances up to 3a0 or so. In turn, the inset of Fig. 1
shows that the curves for distinct values of X are nearly
parallel to each other, thus justifying our ignoring of the
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FIG. 1. Calibration of the OS weight in Eq. �24� by fitting the ratio between
the exact �nonrelativistic� and MP2 correlation energies for the ground elec-
tronic state of the hydrogen molecule.
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X-dependence in the parameters g1 and g2. Besides the ex-
cellent fit to the converged data points, the notable feature
from Fig. 1 is the systematic extrapolation to values of GS

�2 even at large distances where both the MP2 and CCSD
single-reference methods show no longer a proper conver-
gence. This is to be expected since the S and T contributions
to the ground state curve are expected to be equal at the
asymptote. In fact, a three-parameter fit based on Eq. �24�
but fixing g1=2−g0 yields essentially indistinguishable re-
sults. It is further observed that the calculated value of
pS�	e ,X�=1.238 for H2 with X=T differs by about 5% from
the corresponding value for He. In turn, Table I shows that
the values of GS�	e ,X� are identical within a few percent for
the VXZ and AVXZ basis set families, when the cardinal
number varies over the whole series that is commonly uti-
lized. The small difference in the predicted correlation en-
ergy for the single OS pair in the molecule and correspond-
ing united atom can be attributed at least in part to the
different performance of the atomic and molecular basis sets
even if they refer to the same cardinal number and basis set
family. Ignoring such a difference �i.e., by viewing the atom
as the limit of the molecule�, the near parallel behavior of the
various curves in the inset of Fig. 1 suggests that the model
is expected to be universal in the sense of being valid irre-
spective of the basis set that is utilized.

To account for system size, the following expression has
been utilized:

S�n,X� = 1 + ��X��OS, �25�

where �OS= �n−2� / �n−1� is the fraction of OS pairs that can
be formed from n electrons. Assuming maximum OS pairing,
the OS weight assumes then the form

pS�n,	e,X� = GS
H2�	e,X��1 + ��X�

n − 2

n − 1
� , �26�

where the factor ��X� is to be calibrated from the ab initio
test set �ATS1�. As noted above, the dependence of pS on the
cardinal number is mild for H2, and can be neglected to good
accuracy. However, it will be given here for completeness,

p0�X� = a + b exp�− cX� , �27�

where a=1.19875, b=0.79746, and c=0.96445 are param-
eters. No such a fit has been done for ��X� in Eq. �26� as the
data for the test set has only been obtained at the
QCISD�T�/VTZ level of theory. Thus, � will be assumed

here to be X-independent, with its value being specified be-
low. It should be emphasized that the inclusion of any
geometry-dependence in GS should be done cautiously as it
may question the size-extensivity �consistency� of the
method besides making the interface with available elec-
tronic structure codes more difficult, in particular, MOLPRO

�Ref. 53� where the SCS-MP2 theory is implemented. Thus,
it has been fixed at GS

H2�	e ,X�. In fact, both the MP2 and
target CCSD�T� methods are valid over restricted regions of
the molecule configuration space �where the single-reference
approximation is valid�, and hence interest is focused on
such regions. Noting further the above mild-dependence on
X, the shape term will be reduced to a constant GS�	e�, and
identified with the corresponding value for H2. Only � re-
mains therefore to be specified. As noted above, it is chosen
from a fit to ATS1, the ab initio test set adopted by Head-
Gordon and co-workers.35 First, an estimate of � has been
obtained by minimizing the sum of squared relative devia-
tions in a fit of the ratio SS/OS of MP2 energies versus the
number of electrons. This led to the curve with �=0.173 51
in Fig. 2. Note that n has been chosen for simplicity as the
total number of electrons, irrespective of using frozen-core
or all-electron correlated calculations �however, see the next
paragraph�. As expected, the fitted ratio overshoots on aver-
age by �2% the recovered correlation energy with respect to

TABLE I. Coefficients in Eqs. �20� and �24� that model the correlation energy recovered by MP2 relative to FCI
for H2 and He in their ground electronic states.

Parameter X=D T Q 5 6

VXZ
g0 1.655 310 1.585 550 1.559 044 1.546 542 1.540 626
g1 0.406 116 0.415 079 0.416 458 0.416 552 0.417 076
g2 2.432 888 2.269 377 2.208 711 2.183 740 2.167 738

 a 1.996 167 2.071 458 2.091 474 2.099 637 2.106 001
GS�	e ,X� 1.315 022 1.242 904 1.218 119 1.206 781 1.201 175
AVXZ
GS�	e ,X� 1.312 562 1.238 138 1.214 751 1.204 520 1.189 232

aReference geometry Re is 1.40a0.
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QCISD�T�. A value that leads to just one exception �the over-
shooting is of 2% only for BH3� is �=0.1256. This can itself
be prevented by a further reduction to �=0.10. In fact, this
value may have the advantage of working almost as reliably
also in the case of all-electron correlated calculations �solid
line in Fig. 2�. Thus, it is perhaps more general than �
=0.1256, although this �or a nearby� value may still be rec-
ommendable for valence-only calculations by far the ones
for which the theory is most required.

In spite of the above observations, size-extensitivity has
not been guaranteed yet. Consider the dissociation process of
a weakly bound cluster, AxBy→xA+yB, where A and B are
monomers. If the cluster is homonuclear, size-extensitivity
will be warranted since the value of the scaling parameter pS

is equal both for the cluster and monomers. Yet, the correla-
tion energies will be system-specific in the sense that may
vary slightly with cluster size. This can be avoided if pS is
defined instead from the monomers, which should be realis-
tic since no bonds are broken or formed and the monomers
keep essentially unaltered their equilibrium geometries.
However, if A and B are distinct, size-extensivity can only be
kept in a system-specific sense provided that the same scal-
ing is retained for both fragments. All the above subtleties
can, however, be avoided by noting that Eq. �26� can be
advantageously replaced by the form

pS�n,	e,X� = GS
H2�	e,X��1 + ��X�H�n − 2�
 , �28�

where H�n−2� is the Heaviside or unit step function defined
here as follows: 0 for �n−2��0; 1 for �n−2��0. Although
being a discontinuous function, this has no implications
whatsoever. In fact, many analytic approximations exist for
H�n−2�, one being Eq. �28� itself for �n−2��0. Thus, for all
but two-electron systems where pS=1.2429, a scaling factor
of pS=1.3672 is obtained �pS=1.3990, if �=0.1256�. Clearly,
the above substantiates in practice into a small difference
from SOS-MP2 theory which utilizes a single value of pS

irrespectively of n. However, the designation of VOS-MP2 is
justified for two reasons. First, it highlights the n-dependence
of the model. Second, it opens the possibility for further
flexibility if size-extensivity is kept within a system-specific
sense. A comparison of how both approaches perform is
given later. As it will be shown, the differences between the
results of the size-extensive �based on Eq. �28�� and non-
size-extensive �Eq. �26�� formulations are minor. In fact, il-
lustrative cuts along bond-breaking processes have been ana-
lyzed �not reported� for a few extra molecules, and no
exception to the trends here presented has been encountered.

A. Analysis of performance relative to the ab initio
test set

We start by observing that any new improvement of the
VOS-MP2 theory should satisfy a few requirements to be
considered successful. First, as the scaling is free of cost
compared with the calculations needed for obtaining the S
and T components of the energy, one should not require a
very drastic reduction of the error. However, the results
should be perceptively improved by the new approach when
compared with its original form in SOS-MP2. It would also

be desirable that the new theory reproduces as accurately as
possible the energies for which exact or nearly exact results
are available, with H2 being a paradigmatic example among
molecules. Of course, the correlation energies of the test set
are far from exact in most cases and there is no variational
sense in the method that prevents its predicted results of
exceeding the target values. Thus, it should not be surprising
that the predicted correlation energies can be overestimated,
although any large overestimation may signal a warning con-
cerning the performance of the new theory. For practical pur-
poses, it would then be fair enough to get better results than
one often obtains using other schemes from the same family.
This is clearly the case, as shown in Table II, which com-
pares the correlation energy recovered by MP2, SCS-MP2,
SOS-MP2, and VOS-MP2 relative to CCSD�T�. As shown,
the VOS-MP2 method with �=0.10 recovers �97.0�1.4�%
of the CCSD�T� correlation energy, while an even better per-
formance of �99.0�1.2�% is achieved with �=0.1256. Note
that the average is taken here of the unsigned values such as
to give a meaningful result. Such values compare with the
more modest SCS-MP2 and SOS-MP2 results for the same
ab initio test set �ATS1� of �92.8�1.8� and �93.4�2.9�%,
respectively. Resulting from a calibration, it cannot be ex-
cluded that in some cases the predictions may slightly exceed
100% as indeed described later. In fact, this has been ob-
served in a few cases, although one should point out that the
correlation energies available for comparison are accurate
but far from exact. Moreover, the largest error here reported
is small when compared with the one of SOS-MP2 for the H2

system �4.7%�. It is also relevant to stress at this junction that
the enhanced agreement in absolute value between the VOS-
MP2 and accurate correlation energies is desirable but not
essential in practice. In fact, it often suffices that the energies
relative to some chosen reference agree, say relative to the
separated atoms in a dissociative process.

B. Hydrogen fluoride: A prototypical chemical bond

The hydrogen fluoride molecule has been extensively
studied by generations of experimentalists and theoreticians,
resulting in an extensive body of information available for
critical comparisons.54 Although now amenable to rather
high-accuracy type calculations, this ten-electron system will
serve as a prototype of a bound diatomic molecule on which
the schemes here discussed will be tested. Figure 3 compares
the correlation energy calculated at the various MP2 levels of
theory with the results obtained from CCSD�T�/VTZ calcu-
lations. In all cases, the VTZ basis set of Dunning was
employed.55 Both calculations with core correlation and
without it have been performed, although only the former are
discussed here. Since the interest is only to compare the cal-
culated correlation energies, no attempt has been made to
compensate for the basis set superposition error �BSSE�, ei-
ther by using the popular counterpoise56 �CP� technique or
via extrapolation to the CBS limit.28,30,31 For illustration, the
results obtained with �=0.10 �using both Eqs. �26� and �28��,
and 0.1256 are presented. Moreover, the results obtained
with other variants of SCS-MP2 theory which derive from
applications of the Feenberg40,41 theoretical approach are in-
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cluded; these are indicated by carrying the letter “F” as a
subscript, and will be addressed in detail in Sec. IV. The
notable feature is the rather close agreement of the VOS-
MP2 and CCSD�T� curves over the whole range of internu-
clear distances where the latter method is stable. This is es-
pecially true when �=0.1256, although the general trend in a
comparison with the curves calculated using the standard
SCS-MP2 and SOS-MP2 theories is good overall. In fact,
although showing visible differences in absolute value when
compared with VOS-MP2, the curves referring to other spin-
component-scaling variants of MP2 theory behave pretty
much parallel and close to each other �except for the
VOSF-MP2-II case curve that predicts the smallest absolute
value� and hence are not expected to yield drastic differences
for the energetics. It should also be noted that similar trends
�in the sense of the agreement reported above� are obtained
when core correlation effects are neglected.

C. The lowest quartet state of trinitrogen

The potential energy surface for the N3�4A�� system has
been the subject of much theoretical and experimental
work,57–60 mostly due to its interest on the design of space
aircrafts. It is characterized by a metastable minimum which
is replicated in a threefold way due to the permutation sym-
metry of the nuclei. Each minimum is separated from the two

reactive atom-diatom asymptotes by equivalent saddle points
of Cs symmetry, in a total of six equivalent saddle points.
The calculations reported here will be carried out pointwise
at the geometries optimized at the CCSD�T�/AVTZ level of
theory in Ref. 60, with the restricted-Hartree–Fock wave
function being taken as the unperturbed wave function for
the post-Hartree–Fock RMP2 and RCCSD�T� calculations
�the R will be omitted from these acronyms for brevity�.
Since the open shell works only with spin orbitals rather than
singlet and triplet pairs, the �� and ���+��� energies have
been scaled instead. A detailed analysis of the above three
stationary points has first been carried out at the valence-only
level with the VXZ and AVXZ basis sets;55 X=D ,T , . . . ,6.
The results, which are collected in Table I of ESI �Ref. 61�
carrying the designation C6 to indicate the number of core
electrons, show that the VOS-MP2 method with �=0.1256
recovers on average more than 98% of the CCSD�T� corre-
lation energy in a performance similar to what has been
found for ATS1. Only a slightly poorer performance is found
with �=0.10, namely, �97�1.7�%. In both cases, the fluc-
tuations over the potential energy surface appear to be rather
small: rmsd= �1.7%. Note that the average performance of
Eq. �28� is rather close or even slightly enhanced relatively
to Eq. �26�, and hence only detailed results obtained from the
latter are here reported.

TABLE II. The correlation energy recovered by MP2, SCS-MP2, SOS-MP2, and VOS-MP2 relative to CCSD�T� �energies in kcal mol−1�.

Systemb CCSD�T�

MP2 SCS-MP2 SOS-MP2 VOS-MP2a

OS SS %CEc %d %CEc %d %CEc %d %CEc,e %d,e %CEc,f %d,f

1CH2 �169.1 �118.2 �10.2 82.0 �18.0 87.9 �12.1 90.9 �9.1 94.3 �5.7 96.2 �3.8
C2H2 �340.4 �239.4 �36.1 91.5 �8.5 91.5 �8.5 91.4 �8.6 95.5 �4.5 97.5 �2.5
C2H4 �375.4 �264.7 �35.5 89.4 �10.6 90.9 �9.1 91.7 �8.3 95.8 �4.2 97.9 �2.1
C2H6 �414.9 �295.8 �37.1 89.2 �10.8 91.5 �8.5 92.7 �7.3 97.0 �3.0 99.1 �0.9
CH4 �224.9 �162.1 �18.1 88.2 �11.8 91.9 �8.1 93.7 �6.3 97.5 �2.5 99.6 �0.4
CO �379.4 �267.5 �45.6 94.5 �5.5 92.6 �7.4 91.7 �8.3 95.7 �4.3 97.8 �2.2
Cyclopropene �533.7 �374.1 �56.6 91.3 �8.7 91.2 �8.8 91.1 �8.9 95.4 �4.6 97.5 �2.5
F2 �545.6 �391.9 �65.8 95.9 �4.1 94.2 �5.8 93.4 �6.6 97.7 �2.3 99.8 �0.2
H2O �276.1 �198.6 �31.8 95.0 �5.0 94.0 �6.0 93.5 �6.5 97.3 �2.7 99.4 �0.6
H2O2 �525.6 �375.5 �61.9 95.0 �5.0 93.6 �6.4 92.9 �7.1 97.2 �2.8 99.3 �0.7
HCN �371.8 �263.7 �43.1 94.1 �5.9 92.8 �7.2 92.2 �7.8 96.3 �3.7 98.4 �1.6
HF �281.3 �203.0 �34.8 96.9 �3.1 94.8 �5.2 93.8 �6.2 97.7 �2.3 99.7 �0.3
H2 �39.4 �31.7 0.0 80.5 �19.5 96.6 �3.4 104.7 4.7 100.1 0.1 100.1 0.1
N2 �398.5 �284.2 �49.3 96.1 �3.9 93.8 �6.2 92.7 �7.3 96.8 �3.2 98.9 �1.1
N2H2 �475.4 �337.8 �51.4 92.7 �7.3 92.5 �7.5 92.4 �7.6 96.6 �3.4 98.7 �1.3
N2O �672.1 �479.4 �89.6 98.0 �2.0 94.5 �5.5 92.7 �7.3 97.1 �2.9 99.3 �0.7
NH3 �255.8 �183.4 �26.0 92.0 �8.0 92.8 �7.2 93.2 �6.8 97.0 �3.0 99.1 �0.9
O3 �805.5 �579.2 �105.3 98.1 �1.9 95.0 �5.0 93.5 �6.5 97.9 �2.1 100.1 0.1
N2H4 �475.4 �337.8 �51.4 92.7 �7.3 92.5 �7.5 92.4 �7.6 96.6 �3.4 98.8 �1.2
BH3 �137.6 �102.0 �5.7 82.4 �17.6 91.7 �8.3 96.4 �3.6 100.0 0.0 102.1 2.1
�%CE� g 91.9 9.7 92.8 7.4 93.4 7.2 97.0 3.3 99.0 1.6
rmsdh �5.1 �1.8 �2.9 �1.4 �1.2

aThe results for the size-extensive version of VOS-MP2 theory with pS�n .	e ,X�=1.3672 �two bottom entries of columns 11 and 12� are 97.7�1.4 and 2.7%.
With pS�n .	e ,X�=1.3990, the corresponding results �columns 12 and 14� are 99.8�1.3 and 1.3%; see text.
bIn all cases the results refer to valence-only VTZ calculations performed at �or near� the equilibrium geometry.
cPercentage of recovered correlation energy relative to QCISD�T� values.
dPercentage of missing correlation.
eEquation �26�, with �=0.10.
fWith �=0.1256.
gAverage unsigned value.
hDefined as �	i=1

N �%CEi− �%CE��2 /N�1/2.
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Calculations with all electrons correlated �C0� have also
been performed by employing correlation-consistent core-
valence basis sets27,62 �cc-pCVXZ and aug-cc-pCVXZ or
CVXZ and ACVXZ�, thus allowing an estimate of the core
correlation effects. A comparison with the CCSD�T� results
�Table II of ESI �Ref. 61�� shows that the correlation recov-
ered by the VOS-MP2 method with �=0.1256 overshoots
the CCSD�T� value by 3%–4%, although this reduces to
�1% when �=0.10. This should not be surprising as the
ATS1 calibration set does not include core correlation ef-
fects. Besides, the exact energy is unknown in such cases.
Note, however, that any small overestimation should have a
minor impact on the relative energies �cf. results for �
=0.1256 and 0.10�.

The reliability of the single-reference CCSD�T� method
for the title open-shell species has been examined by looking
at some diagnostics. For the �all-electron� CCSD calcula-
tions, the T1-diagnostic63 computed from single-substitution
amplitudes are �0.025 at the saddle point geometry and
�0.022 at the minimum, thus meeting the usual requirement
��0.02� for the single-reference CCSD�T� method �the
chemist’s golden rule� to be trusted. Yet, the T1 diagnostic
cannot by itself be a sign that CCSD�T� is reliable. Since a
doubles diagnostic has been reported only in nuclear struc-
ture theory,64 another �D1 �Ref. 65�� from single-substitution
amplitudes will be utilized. This assumes values of D1

�0.071 and 0.082 which, used in tandem,63,65,66 yield ratios
of T1 /D1�0.345 and 0.267, in the above order. While the
values of D1 slightly exceed 0.025, signaling some inad-
equacy of the CCSD approach, the ratios T1 /D1 less than
1 /�2 point to some inhomogeneity in the molecular elec-
tronic structure, i.e., some problem areas in the molecule and
others where the CC approach performs better.66 The largest
T1 and T2 amplitudes may also provide an additional judg-
ment: In all cases the print threshold value of 0.05 has been
exceeded by only a few amplitudes, typically fewer �1 or 2�
at the saddle point than at the minimum. It is then argued that
CCSD�T� gives a solution as close as one might ambition
with a single-reference method to the FCI limit, particularly
at the saddle point geometry.

Of special relevance for dynamics is the barrier height
�Vb� for exchange of a nitrogen atom. The results �Tables III
and IV of ESI �Ref. 61�� show that the VOS-MP2 values at
valence-only correlated level agree within 1 kcal mol−1 with
the CCSD�T� ones, irrespectively of the value of � and basis
set. Larger differences are, however, observed for the meta-
stability. This attains values at CCSD�T� that are smaller than
at any other level of theory here considered, with SCS-MP2
being generally largest ��7.5 kcal mol−1�. Note that MP2
predicts already a value of 3–4 kcal mol−1 larger than
CCSD�T�. The scenario is not changed drastically when cor-
relating all electrons, although there is a tendency for a slight
increase of the barrier height �Table V of ESI �Ref. 61��. The
best VOS-MP2 �CCSD�T�� raw estimates are now 45.8�46.2�
and 45.9�46.2� kcal mol−1 �with CV6Z and ACV5Z basis�
when �=0.10, with the VOS-MP2 values changing slightly
when �=0.1256 �45.4 and 45.5 kcal mol−1 in the same or-
der�. They can be compared with the value utilized on a
recent parametrization60 of a potential energy surface of the
double-many-body expansion type for N3�4A��, namely,
45.9 kcal mol−1 as predicted by the correlation
scaling70/uniform singlet- and triplet-pair extrapolation30

�CS/USTE �Ref. 71�� method employing AVDZ and AVTZ
basis sets and a single pivotal geometry calculated with
AVQZ. Clearly, there is a remarkable agreement with the
best estimate here reported of �45.6�0.8� kcal mol−1

�which embraces all CBS/SCS-MP2 and CBS/CCSD�T� es-
timates; see later�.

As noted above, the scaled spin-component theories tend
to predict a well depth larger by a few kcal mol−1 than the
CCSD�T� value, irrespectively of the basis set. This should
not come entirely as a surprise. In fact, the standard
MP2/VTZ theory already predicts a barrier height relative to
the minimum of 6.1 kcal mol−1 while the corresponding
CCSD�T� value is 2.3 kcal mol−1, with a similar trend being
observed for other basis sets. The CCSD�T� and MP2 poten-
tial energy surfaces show, therefore, a nonparallelism that
can hardly be accounted for prior to including some
geometry-dependence on the correlation scaling factor.
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for the ground electronic state of hy-
drogen fluoride from the various meth-
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Clearly, the unknown form of such a factor and the high
dimensionality of the configuration space call for simplicity.
A pragmatic approximate way of accounting for such an un-
balance consists of scaling the predicted barrier height for
metastability by the a priori ratio of the CCSD�T� and MP2
results as obtained with the cheapest basis set �VDZ�. Cal-
culations show such a scaling factor to have a value of
1.595 /5.185=0.308. If utilized, the corrected values for the
metastability fall essentially over the CCSD�T� results, with
a most likely value of �3.1�0.2� kcal mol−1. Slightly larger
values are obtained if the VTZ ratio is utilized. Such consid-
erations apply also to the CBS results discussed next.

For enhanced accuracy, the raw energies discussed
above have been extrapolated to the CBS limit. Since the
energy is already split into its HF and correlation parts, each
component just requires to be CBS extrapolated. This has
been done using the energies associated to the highest pair of
cardinal numbers �X1 ,X2� that can be considered. For the
Hartree–Fock energy, the two-point extrapolation formula
recommended by Karton and Martin67 has been utilized. As
expected, the convergence of the HF energy with basis set
size is fast. In turn, the two-point USTE �Ref. 30� scheme

has been employed to CBS extrapolate the correlation en-
ergy. The data is gathered in Table III. As shown, the general
trend observed in the previous paragraph is maintained, with
a recommended best estimate for the barrier height of
�45.6�0.8� kcal mol−1, thus in excellent agreement with the
CS/USTE�T ,Q� value of 45.9 kcal mol−1 reported in Ref.
60. Although use has been made of Eq. �26� �rather than Eq.
�28��, any potential error due to this is expected to be much
smaller than the reported uncertainty, and hence ignorable. It
should be noted that both SCS-MP2 and SOS-MP2 have a
similar performance to VOS-MP2 theory for the quartet state
of trinitrogen. Thus, the above results open the possibility for
a slight increase of the rate constant predicted in Ref. 72, and
so to a further slight improvement on the agreement with the
available experimental data.73–75 Of course, an estimate of
relativistic and nonadiabatic effects will be required for a
better judgment, although this falls outside the scope of the
present work.

D. The helium-neon van der Waals molecule

The spin-component-scaling theories studied here are
now applied to a prototypical vdW interaction that does not

TABLE III. Energies for N�4S�+N2 reaction from various single-reference methods �absolute total energies have been added 163, with geometries as in Ref.
60� at the CBS extrapolation level.

Method �X1 ,X2� a

Reactants Minimum Saddle point

Total Total � b � c Total Vb
d Vb

e Vb
f Vb

g

HF/VXZ �5,6� �0.392 562 �0.259 029 83.8 �0.269 712 77.1 �6.7
HF/AVXZ �5,6� �0.392 650 �0.259 214 83.7 �0.269 906 77.0 �6.7
HF/CVXZ �5,6� �0.392 639 �0.259 155 83.8 �0.269 840 77.1 �6.7
HF/ACVXZ �5,6� �0.392 747 �0.259 266 83.8 �0.269 966 77.1 �6.7
CCSD�T�-C6/VXZ �5,6� �0.951 632 �0.883 732 42.6 �0.878 687 45.8 3.2
CCSD�T�-C6/AVXZ �5,6� �0.951 497 �0.883 643 42.6 �0.878 607 45.7 3.1
MP2-C6/VXZ �5,6� �0.928 394 �0.856 502 45.1 �0.845 296 52.1 7.0
MP2-C6/AVXZ �5,6� �0.928 272 �0.856 337 45.1 �0.845 132 52.2 7.0
SCS-MP2-C6/VXZ �5,6� �0.922 041 �0.873 310 35.4 �0.852 743 46.1 10.7
SCS-MP2-C6/AVXZ �5,6� �0.921 048 �0.864 681 35.4 �0.847 549 46.1 10.7
SOS-MP2-C6/VXZ �5,6� �0.916 381 �0.859 198 35.9 �0.842 986 46.1 10.2
SOS-MP2-C6/AVXZ �5,6� �0.916 368 �0.859 176 35.9 �0.842 963 46.1 10.2
VOS-MP2-C6/VXZ �5,6� �0.940 726 �0.885 501 34.7 34.0 �0.868 756 45.2 44.7 10.5 10.7
VOS-MP2-C6/AVXZ �5,6� �0.940 715 �0.885 488 34.7 34.0 �0.868 742 45.2 44.7 10.5 10.7
CCSD�T�-C0/CVXZ �5,6� �1.129 663 �1.061 702 42.6 �1.056 416 46.0 3.4
CCSD�T�-C0/ACVXZ �Q ,5� �1.130 764 �1.062 706 42.7 �1.057 476 46.0 3.3
MP2-C0/CVXZ �5,6� �1.101 962 �1.030 085 45.1 �1.018 663 52.3 7.2
MP2-C0/ACVXZ �Q ,5� �1.108 197 �1.031 435 48.2 �1.020 095 55.3 7.1
SCS-MP2-C0/CVXZ �5,6� �1.114 085 �1.057 582 35.5 �1.037 899 47.8 10.3
SCS-MP2-C0/ACVXZ �Q ,5� �1.115 428 �1.058 673 35.6 �1.041 523 46.4 10.8
SOS-MP2-C0/CVXZ �5,6� �1.119 005 �1.061 592 36.0 �1.045 323 46.2 10.2
SOS-MP2-C0/ACVXZ �Q ,5� �1.120 214 �1.062 548 36.2 �1.046 373 46.3 10.1
VOS-MP2-C0/CVXZ �5,6� �1.152 840 �1.097 379 34.8 34.2 �1.080 575 45.4 44.9 10.4 10.7
VOS-MP2-C0/ACVXZ �Q ,5� �1.154 050 �1.098 328 35.0 34.4 �1.081 620 45.5 45.0 10.5 10.6

aFrom fit to Hartree–Fock energies for X=X1 and X2 with �Ref. 67� EX
HF=E


HF+B exp�−9�X�; see Table VI of ESI �Ref. 61�. Similarly for correlation energy
but using USTE �Refs. 30, 68, and 69�: E


cor=EX2

cor−A5
°�X2+��−5+ �EX1

cor−EX2

cor+A5
°�Y2

−5−Y1
−5�� / �c�Y2

−5−Y1
−5�+Y2

−3−Y1
−3��Y2

−3+cY2
−5�, where Yi=Xi+� and i

=1,2, and �=−3 /8. A5
° and c are “universal” coefficients: 0.096 066 8 Eh and �1.582 009 for MP2-type methods; A5

° =0.166 069 9 Eh and c=
−1.422 251 2 for CCSD�T�.
bEnergy relative to reactants, in kcal mol−1 with �=0.1.
cEnergy relative to reactants, in kcal mol−1 with �=0.1256.
dEnergy relative to reactants, in kcal mol−1 with �=0.10.
eEnergy relative to reactants, in kcal mol−1 with �=0.1256.
fEnergy relative to minimum, in kcal mol−1 with �=0.10.
gEnergy relative to minimum, in kcal mol−1 with �=0.1256.
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belong to ATS1, namely, HeNe; see Fig. 4. All calculations
have employed the VTZ basis set, with only the valence
electrons correlated. Despite being a rather poor basis set for
such a dimer, no attempt has been made to correct for BSSE
via CP, an issue that will be addressed in Sec. IV for the even
more fragile helium dimer. Two results deserve a comment.
First, both SCS-MP2 and SOS-MP2 theories tend to under-
estimate the well depth, a result that is often interpreted as
positive, since somehow it accounts for the fact that CP tends
to weaken the attraction. In this regard, VOS-MP2 sits in
between such curves, being the results almost indistinguish-
able when the theory utilizes the weights in Eqs. �26� and
�28�. Second, and quite interestingly, SCS-MP2 calculations
with pS= pT=0.95 yield a curve in rather good agreement
with the CCSD�T� interaction potential. It turns out though
that a calculation with pS=0 and pT=1.90 also yields a quite
fair account of the intermolecular interaction, especially at
long-range distances. Note, however, that the unsigned �un-
scaled� MP2 correlation energy at the asymptote is about
165.8 mEh larger than the value obtained with pS=0 and
pT=1.90, which is in turn smaller by 150.9 mEh than the
SCS-MP2 result obtained with pS= pT=0.95. Although im-
proved agreement could possibly be obtained using a some-
what larger value of pT, such an analysis will not be pursued.
The above findings provide supporting evidence for the role
of SS correlation, and will be interpreted theoretically in Sec.
IV using a constrained Feenberg40,41 approach.

IV. FROM SOS TO SSS: RATIONALIZATION VIA
FEENBERG SCALING

The results of Sec. III D suggest that one may evolve
from SOS to scaling of SSS theory via some coordinate that
measures the contribution of S and T excitations. In fact,
similar findings have been gathered elsewhere.38,39 This is
illustrated in Fig. 5 where the solid symbols indicate the set
of spin-component-scaling parameters that have been em-
ployed in SCS-MP2,32 SOS-MP2,32 and SSS-MP238 �these
carry the initials MI in the original paper to stress that they
have been optimized for intermolecular binding energies�
calculations at the VTZ level of theory. Also shown are the
values utilized in the present work, as well as the value re-
ported above for the HeNe system, which is indicated by the
open circle. As seen, such data are well modeled analytically
by the functions

pS��� =
A

2
�1.0 − tanh�gS�� − �0��
 , �29�

pT��� =
B

2
�1.0 + tanh�gT��� , �30�

where A=1.243+��n−2� / �n−1� and B=1.90; a value of �
=0.1 has been utilized in plotting Fig. 3, together with a large
value of n �i.e., A=1.3672�. In turn, � is the chosen indepen-
dent coordinate, whose optimum value will be formally cho-

TABLE IV. Optimum values of coefficients in Eqs. �29� and �30� �with �=0.10�.

System

Variationala Equation �35�b Feenbergc Variationald

� pS pT � pS pT pS pS pT

H2 �0.027 291 1.215 810 �0.027 291 1.215 810 1.215 810 1.213 85

He2 �0.021 411 1.175 393 0.516 642 �0.021 441 1.175 615 0.516 134 1.175 692
0.224 067 0.000 104 1.899 935

NH3 �0.006 945 1.037 768 0.799 521 �0.019 884 1.163 512 0.543 490 1.202 830 1.089 57 0.911 73
0.042 984 0.328 976 1.668 941

H2O �0.005 985 1.026 601 0.820 038 �0.015 538 1.126 381 0.624 241 1.179 969 1.062 17 0.882 99
0.035 404 0.423 691 1.588 355

F2 �0.006 053 1.027 390 0.818 598 �0.012 696 1.099 332 0.680 224 1.161 439 1.049 91 0.856 21
0.030 548 0.491 607 1.525 718

CO �0.006 738 1.035 380 0.803 936 �0.011 935 1.091 718 0.695 573 1.134 318 1.051 41 0.832 79
0.031 162 0.482 745 1.534 140

HF �VDZ� �0.006 053 1.027 396 0.818 587 �0.018 360 1.151 063 0.571 086 1.194 742 1.058 27 0.826 78
0.030 930 0.486 083 1.530 976

HF �VTZ� �0.005 008 1.014 967 0.841 067 �0.012 909 1.101 440 0.675 943 1.183 003 1.058 27 0.826 78
0.030 857 0.487 146 1.529 966

N2 �0.007 318 1.042 035 0.791 595 �0.010 189 1.073 628 0.731 350 1.109 737 1.050 18 0.808 21
0.029 843 0.501 864 1.515 874

aThis work, from the condition of a stationary sum of second plus third-order �correlation� energies, Eq. �11�.
bThis work, from the condition of a vanishing third-order energy. Whenever two entries are reported, they refer to the two roots that are encountered �see text�.
cThis work, from Feenberg’s �Ref. 41� condition in Eq. �17�, for the cc-pVTZ basis set.
dReference 41, by treating pS and pT as independent parameters.
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sen via the Feenberg scaling. Assuming a pure sigmoid form
that reaches the ceiling at the average value of38 pT=1.90,
one predicts the half-weight to be pT=0.95 at the origin ��
=0�, in striking accord with the result obtained for HeNe. In
turn, the data from Table III of Ref. 38 �solid symbols� are
seen to follow the above sigmoid pattern with a range pa-
rameter of gT=23 or so. Since an inverse sigmoid variation
pattern is expected for pS��� as a function of �, gS is fixed
equal to gT and �0 varied until pT��� attains the value of 0.95
at �=0. Such a procedure leads to �0=0.018, with the data
fitted well enough having in mind its coarse statistical
nature.38

Following the traditional approach,40,41 the optimum
value of � �and hence pT and pS� may now be obtained by
imposing stationarity in Eq. �11�,

d�ESCS-MP
�2� ��� + ESCS-MP

�3� ����
d�

= 0, �31�

or equivalently,

dpT���
d�

�2pT���ATT − 2EMP2
T + 2pS���AST�

+
dpS���

d�
�2pS���ASS − 2EMP2

S + 2pT���AST� = 0. �32�

Although the stationary condition usually implies a vanish-
ing third-order perturbation energy, this may not necessarily
be the case now due to the constraints in Eqs. �29� and �30�.
However, a vanishing third-order perturbation energy is war-
ranted provided that a single weight is kept �a single param-
eter is determined from one condition�. For example, if the

TABLE V. Correlation energies calculated at equilibrium geometry.

Systema MP2 SCS-MP2 SOS-MP2 VOS-MP2b MP2-SCSF
c MP2-SCSF-vd MP2-SCSF-Ie MP2-SCSF-IIf CCSD�T�

H2 �0.031 679 �0.038 015 �0.041 183 �0.039 374 �0.038 454 �0.038 516 �0.038 516 �0.039 374
He2 �0.066 294 �0.079 545 �0.086 170 �0.090 625 �0.077 931 �0.077 912 �0.077 930 �0.000 024 �0.078 178
NH3 �0.235 120 �0.237 085 �0.238 067 �0.250 373 �0.246 934 �0.228 765 �0.239 230 �0.146 214 �0.255 305

�0.249 986 �0.252 503 �0.253 762 �0.266 880 �0.262 634 �0.243 347 �0.254 697 �0.154 795 �0.270 428
H2O �0.261 508 �0.258 764 �0.257 393 �0.270 698 �0.266 385 �0.252 262 �0.260 516 �0.183 294 �0.275 068

�0.275 118 �0.272 452 �0.271 119 �0.285 134 �0.280 295 �0.265 444 �0.274 223 �0.192 536 �0.288 641
F2 �0.522 477 �0.513 032 �0.508 309 �0.534 585 �0.523 088 �0.503 215 �0.515 633 �0.388 745 �0.544 060

�0.547 266 �0.537 352 �0.532 395 �0.559 916 �0.547 902 �0.527 085 �0.540 085 �0.407 213 �0.568 472
CO �0.366 530 �0.360 153 �0.356 964 �0.375 416 �0.365 273 �0.353 896 �0.361 521 �0.270 728 �0.386 854

�0.379 860 �0.373 574 �0.370 432 �0.389 580 �0.378 638 �0.366 854 �0.374 854 �0.280 176 �0.400 117
HF �VTZ� �0.271 802 �0.266 030 �0.263 144 �0.276 747 �0.271 579 �0.260 666 �0.267 729 �0.202 755 �0.280 372

�0.284 990 �0.278 945 �0.275 922 �0.290 185 �0.284 758 �0.273 315 �0.280 723 �0.212 585 �0.293 366
N2 �0.373 677 �0.365 401 �0.361 263 �0.379 937 �0.369 252 �0.360 967 �0.366 609 �0.281 329 �0.390 365

�0.399 426 �0.392 059 �0.388 376 �0.408 452 �0.395 109 �0.386 274 �0.392 647 �0.298 953 �0.416 402

aWhere two entries exist, the first refers to valence-only correlated calculations, the other to all-electron calculations.
bUsing Eq. �28�.
cUsing pS and pT values from Ref. 41 �columns 9 and 10 of Table IV�.
dUsing pS and pT values obtained variationally from the constrained Feenberg approach utilized in this work.
eUsing pS and pT values obtained from the first root of Eq. �35�.
fUsing pS and pT values obtained from the second root of Eq. �35�.
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contribution to the total correlation energy due to T excita-
tions can be ignored, the terms involving pT��� in Eq. �32�
disappear, yielding

dpS���
d�

�2pS���ASS − 2EMP2
S � = 0, �33�

whose solution can be approximated by

�S → � gS
−1 tanh−1
1 −

0.001 61EMP2
S

ASS
� . �34�

A corresponding expression is obtained if T excitations are
instead ignorable. For mixed regimes, where both ps and pT

are relevant, the solution must be found by solving Eq. �32�.
This is the approach followed here, with the results so ob-
tained for a second ab initio test set �ATS2� data being given
in columns 2–4 of Table IV, and shown in Fig. 6. Of course,
a more flexible approach is to treat pS and pT as unrelated,
with the stationary condition then leading to two independent
equations from which the two parameters are determined.
This approach has already been utilized,41 and hence will not
be pursued here.

To circumvent the problem raised in the previous para-
graph, one may instead impose the condition of vanishing
the third-order energy in Eq. �10�. This approach has also
been utilized in the present work by solving numerically

ESCS-MP
�3� ��� = 0. �35�

The roots and weights obtained in this way are collected in
columns 5–7 of Table IV, and shown in Fig. 7. In all cases
but H2 �where only a single root exists since pT=0�, two
roots are obtained for all other systems in the ab initio test
set �ATS2� that has been utilized in the present work, and
which is largely coincident with the one adopted by
Szabados.41 Also given for completeness in column 8 of
Table IV are the results obtained from Feenberg’s one-
parameter approach in Eq. �17�. Moreover, columns 9 and 10
gather the results41 obtained by treating pS and pT as unre-
lated.

Before analyzing the results in Table IV, a few techni-
calities are in order. The first is to note that all calculations of
pS and pT here reported have been carried out with the VTZ
basis set �except for HF, where the VDZ basis set has also
been utilized� but correlating all electrons. Second, Eqs.
�4�–�16� have been programed in double precision using the
two-center molecular integrals and orbital energies calcu-
lated with MOLPRO.53 The results have been checked by cal-
culating the MP2 and MP3 energies, and found to agree typi-
cally to ten decimal places with the output from MOLPRO.
Similarly, the agreement observed between the values of pS

and pT obtained by the variational approach utilized in the
present work and by Szabados41 is quite satisfactory. Note
that a single root has been obtained in all cases; Fig. 5. Note
further �see Fig. 6� that the solution of the stationary condi-
tion in Eq. �32� does not correspond to a vanishing third-
order perturbation energy. The correlation energies calcu-
lated using such optimized values are collected in Table V,
where the results from both valence-only and all-electron
calculations are given. We observe that the unsigned corre-
lation energies obtained from the variational procedure uti-
lized in the present work �column 7 of Table V� tend to be
somewhat smaller than those of Szabados41 �column 6�,
which may be attributed �from a variational point of view� to
the fact that pS and pT are free to vary in the case of Ref. 41.
A similar explanation may be given when comparing the
results obtained by choosing the roots that impose a vanish-
ing third-order energy, although the difference is now even
smaller in the case of root I �the one leading to a large pS and
a small pT�. In fact, the values so obtained compare well with
the values reported in Ref. 41. Recall that the variational
procedure yields a vanishing third-order perturbation energy
in the case of independent weights, as does in the case of a
single root. However, given the restriction imposed by Eqs.
�29� and �30�, one is bound to expect somewhat smaller un-
signed correlation energies as indeed observed. Moreover,
due to the opposing nature of the two sigmoids, the set of
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unsigned correlation energies obtained with root II �large pT

and small pS� is rather small which, as discussed above, does
not imply at all poor interaction correlation energies. Root I,
yielding a large singlet weight, should therefore be preferred
when dealing with strong interactions, while root II should
describe better vdW interactions as it favors the triplet
electron-pair excitations. To test this, we have done calcula-
tions on He2 with the VXZ �X=T ,5� basis sets. Although
much larger basis sets and advanced techniques �often ac-
companied by correlation extrapolation to the CBS and FCI
limits� are known to be required for high accuracy76,77 �the
list of references is by no means extensive; see also refer-
ences therein�, the results here reported may serve to illus-
trate the role of BSSE which is instead enhanced.

Two sets of calculations have been done. While all re-
sults are shown in Fig. 1 of the ESI61 �without counterpoise
correction �NCP� on the left-hand-side panels, CP corrected
ones on the right hand side�, only the V5Z/CP ones are illus-
trated in Fig. 8. In both cases, the VOS-MP2 size-extensive
formalism based on Eq. �28� has been employed �the differ-
ences in the interaction energy are negligible with respect to
using Eq. �26� instead�. The notable observation is that the
interaction correlation energies obtained with the second root
�SCSF-MP2-II� yield quite satisfactory interaction energies
for He2 when compared with the corresponding CCSD�T�
results. Moreover, when corrected for BSSE, such results lie
closest to the MP2 and CCSD�T� curves. Additionally, root I
is seen to yield satisfactory results both within NCP and CP
approaches. As expected, the VOS-MP2 and SOS-MP2
curves lie close to each other being the ones that recover less
of the vdW dispersion interaction as a result of having for-
mally ignored the triplet-pair excitations. Yet, both VOS-
MP2 and VOSF-MP2 �this for both roots� theories look quite
promising and successful overall. In fact, it is fair to say that
the Feenberg-type approach here utilized has the merit of
covering the whole range of interactions, from chemically
bound- to vdW-molecules, in a fully consistent way.

A final remark to note that the energy of two He atoms at
the largest calculated distance �1680a0� coincides with the
energy of the dimer to at least eight significant figures, as one
would expect from a size-extensive �consistent� method.

However, as noted above, the energy at second-order of per-
turbation theory may not preserve size-extensivity in Feen-
berg’s approach.41,48 Nevertheless, a workaround can still be
used to exploit the method potentialities: Use it at a single
geometry �say, equilibrium�, with the scaling parameters so
generated being then utilized as input for the SCS-MP2
�SCS-MP2F� method �recall size-extensivity considerations
for VOS-MP2�. This has actually been the procedure utilized
in the present work �Figs. 3, 4, and 8�.

V. CONCLUDING REMARKS

The SOS-MP2 theory suggested by Head-Gordon and
co-workers has been refined hoping to capture an as large as
possible fraction of the correlation energy that is affordable
only by more expensive post-Hartree–Fock methodologies
such as CCSD�T� or QCISD�T�. The corrected MP2 energy
assumes the general form

EVOS-MP2 = 1.2429
1 + 0.1
n − 2

n − 1
�EMP2

S

or, in a more convenient size-extensive format,

EVOS-MP2 = 1.2429�1 + 0.1H�n − 2��EMP2
S ,

where n is the number of electrons, H�n−2� is the Heaviside
step function distribution �equal to 0 for �n−2��0; 1 for
�n−2��0�, and EMP2

OS is the calculated raw OS MP2 energy.
The new formulation, referred to as VOS-MP2, is applicable
to any regions of the molecule configuration space where
MP2 converges �preferably near the equilibrium geometry�,
shows a rather consistent performance in the quality of its
predictions regarding the basis set type and correlation treat-
ment that are employed, and benefits of all advantages inher-
ent to SOS-MP2 theory. Thus, it offers an economical, yet
reliable, approach even when compared with MP2 itself. In
particular, for small systems such as N3 in its lowest quartet
state, the reduction in time relatively to CCSD�T� can exceed
two orders of magnitude when high-hierarchy basis sets are
utilized. Indeed, using various families of Dunning basis
sets, CBS extrapolations of the calculated raw energies have
allowed to present the most reliable estimates available thus
far of the energetics of the N�4S�+N2 reaction. It is then
reasonable to expect that VOS-MP2 theory may also be valu-
able for studying large systems as more sophisticated ap-
proaches will then become prohibitive.

VOS-MP2 as well as other variants of SCS-MP2 theory
is known, however, to have difficulties in dealing with inter-
actions of the vdW type such as the weakly bound rare gas
dimers, where the attraction is dominated by dispersion
forces. To investigate this issue, conventional wisdom has
been followed by examining several variants of SCS-MP2
theory designed for handling separately the two regimes of
interactions: chemical versus vdW species. In this regard, we
have shown that all such variants can be interpreted theoreti-
cally and linked smoothly through a coordinate that mea-
sures the proportion of S and T electron-pair excitations. Fur-
thermore, a procedure has been proposed to specify such a
coordinate via a constrained Feenberg-type approach. Unfor-
tunately, Feenberg’s second-order perturbation energy fails
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FIG. 8. Counterpoise corrected interaction potentials for the helium dimer
as obtained from the methods studied in the present work.
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size-extensivity. In spite of this, the scaling parameters
emerging from such a treatment at a chosen geometry �say
equilibrium� can still provide a good guess for use in the
simpler SCS-MP2F theory. Naturally, although promising,
the results reported here are exploratory and demand further
investigation. In particular, applications to large systems are
most desirable since any possible benefits can surely be re-
garded as most welcome.
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