
J Supercomput (2011) 55: 126–154
DOI 10.1007/s11227-010-0464-5

Design of efficient Java message-passing collectives
on multi-core clusters

Guillermo L. Taboada · Sabela Ramos ·
Juan Touriño · Ramón Doallo

Published online: 21 August 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper presents a scalable and efficient Message-Passing in Java (MPJ)
collective communication library for parallel computing on multi-core architec-
tures. The continuous increase in the number of cores per processor underscores
the need for scalable parallel solutions. Moreover, current system deployments are
usually multi-core clusters, a hybrid shared/distributed memory architecture which
increases the complexity of communication protocols. Here, Java represents an at-
tractive choice for the development of communication middleware for these systems,
as it provides built-in networking and multithreading support. As the gap between
Java and compiled languages performance has been narrowing for the last years, Java
is an emerging option for High Performance Computing (HPC).

Our MPJ collective communication library increases Java HPC applications per-
formance on multi-core clusters: (1) providing multi-core aware collective primitives;
(2) implementing several algorithms (up to six) per collective operation, whereas
publicly available MPJ libraries are usually restricted to one algorithm; (3) analyz-
ing the efficiency of thread-based collective operations; (4) selecting at runtime the
most efficient algorithm depending on the specific multi-core system architecture,
and the number of cores and message length involved in the collective operation;
(5) supporting the automatic performance tuning of the collectives depending on the
system and communication parameters; and (6) allowing its integration in any MPJ
implementation as it is based on MPJ point-to-point primitives. A performance eval-

G.L. Taboada (�) · S. Ramos · J. Touriño · R. Doallo
Computer Architecture Group, Dept. of Electronics and Systems, University of A Coruña, A Coruña,
Spain
e-mail: taboada@udc.es
S. Ramos
e-mail: sramos@udc.es
J. Touriño
e-mail: juan@udc.es
R. Doallo
e-mail: doallo@udc.es

mailto:taboada@udc.es
mailto:sramos@udc.es
mailto:juan@udc.es
mailto:doallo@udc.es


Design of efficient MPJ collectives on multi-core clusters 127

uation on an InfiniBand and Gigabit Ethernet multi-core cluster has shown that the
implemented collectives significantly outperform the original ones, as well as higher
speedups when analyzing the impact of their use on collective communications in-
tensive Java HPC applications. Finally, the presented library has been successfully
integrated in MPJ Express (http://mpj-express.org), and will be distributed with the
next release.

Keywords Message-passing in Java (MPJ) · Multi-core clusters · Scalable
collective communication · High performance computing · Performance evaluation

1 Introduction

Java is the leading programming language both in academia and industry environ-
ments, and it is an alternative for High Performance Computing (HPC) [1] due to its
appealing characteristics: built-in networking and multithreading support, object ori-
entation, automatic memory management, platform independence, portability, secu-
rity, an extensive API and a wide community of developers, and besides it is the main
training language for computer science students. Moreover, performance is no longer
an obstacle. Java, in its early days, was severely criticized for its poor computational
performance, reported to be within a factor of four of the equivalent Fortran code
in [2]. However, currently, thanks to advances in JVMs and Just-In-Time (JIT) com-
pilation, which are able to generate native executable code from the platform inde-
pendent bytecode, Java performance is around a 30% slower on average than natively
compiled languages (e.g., C and Fortran), according to [1] and [3]. This relatively
low overhead trades off for the interesting features of Java. However, although this
performance gap is relatively small, it can be particularly high for communication-
intensive parallel applications when relying on poorly scalable Java communication
libraries, which has hindered Java adoption for HPC. Thus, this paper presents a more
scalable collectives communication library.

Message-passing is the most widely used parallel programming paradigm as it is
highly portable, scalable and usually provides good performance. It is the preferred
choice for parallel programming distributed memory systems such as multi-core clus-
ters, currently the most popular system deployments due to their scalability, flexibility
and interesting cost/performance ratio. Here, Java represents an attractive alternative
to languages traditionally used in HPC, such as C or Fortran together with their MPI
bindings, for the development of applications for these systems as it provides built-
in networking and multithreading support, key features for taking full advantage of
hybrid shared/distributed memory architectures. Thus, Java can use threads in shared
memory (intra-node) and its networking support for distributed memory (inter-node)
communications.

The increasing number of cores per system demands efficient and scalable
message-passing communication middleware. However, up to now Message-Passing
in Java (MPJ) implementations have been focused on providing production-quality
implementations of the full MPJ specification, rather than concentrate on developing
scalable collective communications. MPJ application developers use collective prim-
itives for performing standard data movements (e.g., broadcast, scatter and gather)

http://mpj-express.org


128 G.L. Taboada et al.

and basic computations among several processes (reductions). This greatly simplifies
code development, enhancing programmers productivity together with MPJ program-
mability. Moreover, it relieves developers from communication optimization. Thus,
collective algorithms must provide scalable performance, usually through overlap-
ping communications in order to maximize the number of operations carried out in
parallel. An unscalable algorithm can easily waste the performance provided by an
efficient communication middleware. Unfortunately, current MPJ collective libraries
show poor scalability [4]. This paper presents a scalable and efficient MPJ collectives
library aiming to its integration in MPJ implementations in order to provide higher
performance on multi-core clusters.

Although it could seem that the translation of successful research in MPI collec-
tives optimization into the MPJ arena would suffice, the particularities of the Java
execution environment pose several additional challenges to the usually complex de-
velopment of efficient collective operations. Thus, the new collectives library has to
cope with the latency jitter, the JVM runtime execution behavior, the poor Java high
speed network latency, and the restriction to the use of point-to-point operations in
the collectives implementation.

MPJ collective primitives show an important variation for the minimum, average
and maximum latencies. This variability of their performance results over time is
known as jitter, or latency variation. One of the most important factors for Java com-
munications jitter is the JVM operation, especially the JIT compiler and the JVM
runtime execution. The impact of the jitter in the overall collectives performance is
minimized reducing the synchronization points in their algorithms.

Moreover, the JVM presents several execution modes, such as interpreted byte-
code and several levels of native code generation from the Just-In-Time (JIT) com-
piler. The particular performance of an MPJ collective call significantly depends on
the JVM operation, which tends to further optimize commonly used methods with
high overheads. Thus, it is quite often to find a collective operation with theoretically
higher overhead outperforming a collective call with smaller message payload. This
issue can be addressed reusing communication methods, or exploding recursion in
order to make them eligible for further optimizations of the JIT compiler. Moreover,
continuous changes in the communication protocols and algorithms, quite common
in native MPI bindings, are also avoided for this reason.

Furthermore, the lack of efficient high-speed networks support in Java, due to its
inability to control the underlying specialized hardware, results in lower performance
than MPI, especially for short messages. In fact, MPJ hardly obtains around a 10%
of MPI short message performance, whereas it can achieve up to a 90–95% of MPI
bandwidth. As a consequence of this, most of the techniques used in MPI to speed up
collectives performance, such as message fragmentation and synchronous protocols
(rendezvous protocol), are useless. Nevertheless, new optimization techniques arise,
such as message aggregation and asynchronous operations (eager protocol).

Finally, MPI implementations, looking for performance, can rely on collective op-
erations implemented natively in the communication hardware or in low-level com-
munication libraries, whereas MPJ libraries are restricted to implement collective
algorithms on top of point-to-point Java communication primitives. Although it is
possible to rely on native collective methods through JNI, this option presents sev-



Design of efficient MPJ collectives on multi-core clusters 129

eral additional drawbacks associated with the use of native methods (e.g., lack of
portability, JVM security and instability issues, and significant JNI copy overhead).

The development of efficient collective operations taking into account these char-
acteristics of the Java execution model constitutes the main research effort carried out
in this work.

Furthermore, additional contributions of this paper are focused on: (1) providing
multi-core aware collective primitives, through minimizing inter-node communica-
tions and favoring multithreading-based solutions; (2) selecting at runtime the most
efficient algorithm, based on the number of processes and message size; and (3) sup-
porting an automatic performance tuning process, whose outcome is the generation
of an optimal configuration file with the algorithms that maximize the collectives
performance in a given system.

The structure of this paper is as follows: Sect. 2 presents MPJ background infor-
mation. Section 3 introduces the related work. Section 4 describes the design and im-
plementation of the efficient MPJ collectives library, covering in detail the operation
of the communication algorithms, their multi-core architecture awareness, and the
support for the runtime selection of the collective algorithms that provide the highest
performance in a given multi-core system. Section 5 shows the performance results
of the implemented library on an InfiniBand and Gigabit Ethernet multi-core clus-
ter. The evaluation consists of a micro-benchmarking of collective primitives, with a
special emphasis on analyzing the scalability of the collective operations, as well as
a kernel/application benchmarking in order to analyze the impact of the use of the
library on their overall performance. Section 6 summarizes our concluding remarks
and future work.

2 Message-passing in Java

Message-passing is the most widely used parallel programming paradigm as it is
highly portable, scalable and usually provides good performance. It is the preferred
choice for parallel programming distributed memory systems such as clusters, which
can provide higher computational power than shared memory systems. Regarding the
languages compiled to native code (e.g., C and Fortran), MPI is the standard interface
for message-passing libraries.

With respect to Java, there have been several implementations of Java message-
passing libraries since its introduction [1]. Although initially each project developed
their own MPI-like binding for the Java language, current projects generally adhere
to one of the two main proposed APIs, the mpiJava 1.2 API [5], which supports an
MPI C++-like interface for the MPI 1.1 subset, and the JGF MPJ API [6], which
is the proposal of the Java Grande Forum (JGF) [7] to standardize the MPI-like Java
API. The collective communication primitives are essential part of the different MPJ
APIs, both in terms of number of methods and widespread use.

MPJ libraries can be implemented in two ways: (1) wrapping an underlying na-
tive messaging library like MPI through Java Native Interface (JNI); or (2) using a
“pure” Java (100% Java) approach, based on RMI or sockets. Each solution fits with
specific situations, but presents associated trade-offs. The use of the pure Java ap-
proach ensures portability, but it might not be the most efficient solution, especially



130 G.L. Taboada et al.

in the presence of high-speed communication hardware and when using RMI or Java
Message Service (JMS) as these technologies are oriented to distributed computing
on loose coupled peers and show high start-up latencies. The use of JNI has porta-
bility problems, although usually in exchange for higher performance. With respect
to the MPJ collective library implementation, in a wrapper MPJ library it consists
of a collection of wrapper classes that rely on an underlying MPI collective library
implementation, whereas a pure Java MPJ library requires a whole collectives im-
plementation, usually on top of point-to-point communications. Although the MPJ
proposals do not discuss the handling of collective libraries, it is possible to inte-
grate third-party collective libraries in any MPJ project, especially if the collective
operations are based on MPJ point-to-point operations.

The mpiJava library [8] is a wrapper implementation which provides efficient
communication resorting to an underlying native MPI library, adding a reduced JNI
overhead. However, despite its usually high performance, mpiJava currently only sup-
ports some native MPI implementations, as wrapping a wide number of functions,
especially the collectives, and heterogeneous runtime environments entails an impor-
tant maintaining effort. Additionally, this implementation presents instability prob-
lems, derived from the native code wrapping, and it is not thread-safe, being unable
to take advantage of multi-core systems through multithreading.

As a result of these drawbacks, the mpiJava project maintenance has been su-
perseded by the development of MPJ Express [9], a “pure” Java message-passing
implementation of the mpiJava 1.2 API specification. MPJ Express is thread-safe and
presents a modular design which includes a pluggable architecture of communication
devices that allows to combine the portability of the “pure” Java New I/O package
(Java NIO) communications (niodev device) with the high performance Myrinet sup-
port (through the native Myrinet eXpress—MX—communication library in mxdev
device). Furthermore, this project is the most active in terms of adoption by the HPC
community, presence on academia and production environments, and available doc-
umentation. This project is also stable and publicly available along with their source
code at http://mpj-express.org. However, MPJ Express is currently distributed with a
poorly scalable collective library that is a limiting factor for its definitive adoption in
HPC.

Additional MPJ implementations, such as MPJ/Ibis [10], include their own col-
lective library, although quite often these implementations are incomplete and their
primitives implement poorly scalable algorithms, as they usually do not take advan-
tage of non-blocking communications. The aim of this work is to provide MPJ li-
braries with a portable, efficient and scalable collective library. Moreover, this library
has been integrated within MPJ Express, showing significantly higher scalability for
MPJ collective communications.

3 Related work

As far as we know, this is the first project devoted exclusively to the optimization of
MPJ collective communications, as up to now MPJ library developments have disre-
garded the development of scalable and efficient MPJ collective primitives. Moreover,

http://mpj-express.org


Design of efficient MPJ collectives on multi-core clusters 131

the design and implementation of MPJ collective libraries is usually discussed in the
related literature together with their corresponding MPJ projects, as the collectives
are essential part of their tightly coupled designs. Therefore, few papers consider
MPJ collective communications, although usually without paying enough attention
to their significance and impact on Java HPC performance.

Thus, the most relevant related literature in MPJ collective communications com-
prises the papers that introduce MPJ/Ibis [10], MPJava [11], and Fast MPJ (F-
MPJ) [4] projects. With respect to MPJ/Ibis, its collective library only implements
one algorithm per primitive. Unfortunately, the selected algorithms are poorly scal-
able as they are usually based on blocking point-to-point communications (except
for Alltoall/Alltoallv). Additionally, MPJava implements a subset of the MPJ collec-
tive operations, showing also poor scalability. Their performance results, presented
in [11], highlighted for the first time in the MPJ community the importance of choos-
ing the appropriate collective communication algorithm according to the characteris-
tics of the codes being executed and the hardware configuration employed. Finally,
our own MPJ implementation F-MPJ [4] includes a scalable collective library imple-
mented on top of point-to-point calls to a low-level communication device. Moreover,
F-MPJ collective library implements up to three algorithms per primitive, selected
statically (at compile-time).

With respect to the scalability of current MPJ collective libraries, several perfor-
mance evaluations [4, 9, 12] have pointed out that their results are generally poor due
to the use of algorithms that do not take advantage of multi-core architectures and
non-blocking communications, in order to exploit data locality and overlap commu-
nications, respectively.

The collective library presented in this paper improves current MPJ collective im-
plementations (using different techniques): (1) providing multi-core aware collective
primitives; (2) implementing up to six algorithms per collective operation; (3) se-
lecting the most scalable algorithm at runtime depending on the specific multi-core
system architecture, and the number of cores and message length involved in the col-
lective operation; (4) supporting, through a portable and transparent mechanism, the
automatic performance tuning of the collectives operation depending on the system
and communication parameters; and (5) allowing an easy integration with any MPJ
implementation as it is based on MPJ point-to-point operations.

Most of the contributions of the implemented library have been motivated by the
success of related works in native message-passing libraries, where far more research
has been done. Thus, our library has adapted the research in MPI to MPJ, taking
into account the specificities of Java: (1) high variations (jitter) in the communica-
tion latencies caused by the Java execution environment and not present in MPI. The
impact on MPJ can be minimized reducing the synchronization points in the algo-
rithms implemented; (2) different JVM execution modes, such as interpreted byte-
code and several levels of native code generation from the JIT compiler. This issue
can be addressed reusing communication methods, or exploding recursion, in order to
make them eligible for further optimizations of the JIT compiler. Moreover, continu-
ous changes in the communication protocols and algorithms, quite common in native
MPI implementations, are also avoided for this reason; (3) high start-up latencies, due
to the lack of efficient high-speed networks support. As a consequence of this, most



132 G.L. Taboada et al.

of the techniques used in MPI to speed up collectives performance, such as message
fragmentation and synchronous protocols, are useless. Nevertheless, new optimiza-
tion techniques arise, such as message aggregation and asynchronous protocols; and
(4) the limitation of being based on point-to-point operations, due to the lack of di-
rect support in Java, unlike MPI, of collective operations implemented natively in the
communication hardware or in low-level communication libraries.

With respect to the optimization of MPI collective operations, in [13] Chan et
al. discuss thoroughly the design and high-performance implementation of collective
communications operations on distributed-memory computer architectures. In [14]
and [15], two model-based approaches for selecting the communication strategy that
better adapts to a particular scenario are presented. In [16] it is suggested the use of
a number of different algorithms in order to select the most scalable for a particular
message size and number of processes involved in the communication. As it is highly
desirable that this selection can be made automatically, the efficiency of this process
has been tackled in [17], obtaining less than a 5% performance penalty on average.

Regarding the efficiency of collective communications on multi-core architec-
tures, several research lines have been explored. Thus, the hierarchical approach
has provided significant performance increase for the Alltoall operation [18]. An ex-
tension of this strategy is a two-level intra-node and inter-node hierarchy [19], but
this discrimination of intra-node and inter-node hierarchies scarcely increases per-
formance. In fact, currently most of the overhead is in the inter-node communica-
tion, so the optimization of intra-node MPI collective algorithms does not improve
much the overall collectives performance. However, the intra/inter-node awareness
happens to be the key aspect to be taken into account in collectives performance
optimization. Furthermore, the optimization based on hierarchical virtual topolo-
gies presented in [20] has achieved significant performance gains owing to the use
of cache-aware intra-node communications. Another approach is the maximization
of the use of shared memory and the reduction of network communications on
shared/distributed memory systems. This strategy usually provides significant per-
formance advantages [21]. Finally, the efficient placement of MPI processes in a
multi-core system (runtime process attachment to specific cores) is discussed in [22].

Additional projects involving the optimization of Java collective communications
for HPC are CCJ [23] and the Java Adlib collective library [24]. CCJ is an RMI-based
Java collective communication library for HPC which implements a simple low-level
API. This library is intended to support collective operations in higher-level libraries,
such as MPJ. Thus, MPJ/Ibis includes CCJ collective implementations. However, this
library is poorly scalable, mainly due to the use of RMI, and lacks popular collective
operations such as Alltoall and reduction operations. With respect to Java Adlib col-
lective library, it is a high-level collective communication library primarily focused
on HPJava, a data-parallel Java programming environment for HPC, so its applica-
bility to message-passing communications is quite limited.

4 Scalable MPJ collective communications

The main motivation of this work is to implement a scalable and efficient MPJ collec-
tive communication library, taking advantage of communications overlapping, multi-



Design of efficient MPJ collectives on multi-core clusters 133

Fig. 1 Broadcast bFT

core awareness, and runtime selection of the most appropriate algorithm, which de-
pends on the message size and the number of processes involved in the communica-
tion. As MPJ performance heavily depends on the scalability of collective commu-
nications, the implemented library is of special interest, especially for its integration
in an MPJ implementation whose original collectives library shows poor scalability,
such as MPJ Express. Nevertheless, the collectives library presented in this paper can
be easily integrated in the remaining MPJ implementations as, aiming at portability,
all collective algorithms are implemented using MPJ point-to-point operations (the
different APIs show little variation in point-to-point methods).

4.1 Collective communication algorithms

The collective algorithms implemented in our library can be classified in six types,
namely Flat Tree (FT) or linear, Four-ary Tree (FaT), Minimum-Spanning Tree
(MST), Binomial Tree (BT), Bucket (BKT) or cyclic, and BiDirectional Exchange
(BDE) or recursive doubling. These algorithms are thoroughly described in [13].

The simplest algorithm is the FT (Flat Tree), where all communications are per-
formed sequentially. Figures 1 and 2 show the pseudocode of the FT Broadcast using
either blocking primitives (from now on denoted as bFT) or exploiting non-blocking
communications (from now on nbFT) in order to overlap communications, respec-
tively. As a general rule, valid for all collective algorithms, the use of non-blocking
primitives avoids unnecessary waits and thus increases the scalability of the collective
primitive. However, for the FT Broadcast only the send operation can be overlapped.
The variables used in the pseudocode are also present in the following figures. Thus,
x is the message, root is the root process, me is the rank of each parallel process,
pi the ith process and npes is the number of processes used.

With respect to Gather, the default MPJ Express implementation uses a Flat Tree
with non-blocking receptions and blocking sends, whose pseudocode is shown in
Fig. 3 (Gather nbFT). Nevertheless, this is an inefficient implementation, as the non-
blocking operation cannot overlap any computation/communication. An alternative

Fig. 2 Broadcast nbFT



134 G.L. Taboada et al.

Fig. 3 Gather nbFT

Fig. 4 Gather nb1FT

Fig. 5 Alltoall nbFT

solution, which would provide higher performance, is the call to the non-blocking
primitive inside the loop, overlapping communications. Thus, the root process can
post all the non-blocking reception calls in advance (see Gather nb1FT pseudocode
in Fig. 4). Here the use of non-blocking primitives in the sender side does not increase
the communication performance.

There are four variants of the Flat Tree algorithm for the Alltoall primitive, imple-
menting the four available combinations of the use of blocking/non-blocking point-
to-point communications for the send and receive operations: using both blocking
sends and receives (bFT); using non-blocking sends and blocking receives (nbFT)
(Fig. 5); using both non-blocking sends and receives (nb1FT) (Fig. 6); and using
blocking sends and non-blocking receives (nb2FT) (Fig. 7).

These four variants allow the selection of the algorithm that maximizes the perfor-
mance. Although it might seem that the use of both non-blocking sends and receives
(nb1FT) is the most scalable solution, this option has associated some drawbacks,
such as the contention and congestion that might appear in the underlying commu-
nication layer, thus causing serious performance bottlenecks. Therefore, the library
implements four variants as this algorithm involves an important number of messages
whose performance can vary significantly among different communication systems.
Thus, each of the four alternative implementations is expected to maximize the per-
formance on a particular range of scenarios.

Four-ary Tree (FaT) algorithms configure a tree in which each node has four suc-
cessors at the most. Thus, the communication operation consists of traversing this
“four-ary” tree. Figure 8 presents an example for the Broadcast, where the boxes rep-



Design of efficient MPJ collectives on multi-core clusters 135

Fig. 6 Alltoall nb1FT

Fig. 7 Alltoall nb2FT

Fig. 8 Broadcast Four-ary Tree (FaT)

resent, for each state, two nodes, with two associated processors per node, and two
cores per node. Additionally, the thickness of the arrow symbolizes the communi-
cation cost of a point-to-point communication, i.e., the thicker the arrow the more
communication cost. From now on this representation would be used for the descrip-
tion of the communication operation of the following algorithms.

MST algorithms present a more complex operation. Thus, the total number of
processes involved in the operation is recursively divided into two subsets. After
each division the root process sends its message to a process of the other subset,
which will become the root for its subset. This task is recursively repeated until all
processes have performed their expected operations. As MST algorithms minimize
the communications between distant processes, they significantly improve the collec-
tives performance on multi-core clusters. Figures 9 and 10 show MST operations for
a Broadcast and Gather communication patterns, respectively.

With respect to the BiDirectional Exchange (BDE) or recursive doubling algo-
rithm, it subdivides the process set just like MST, but the new subsets have to be of



136 G.L. Taboada et al.

Fig. 9 Broadcast MST

Fig. 10 Gather MST

the same size. Therefore, BDE requires that the number of processes be a power of
two for its correct work. Regarding the communications between two subsets, each
process selects a counterpart process from the other subset in order to perform the
communication required by the algorithm, as shown in Fig. 11, for an Allgather com-
munication pattern.



Design of efficient MPJ collectives on multi-core clusters 137

Fig. 11 Allgather BDE

The BDE algorithm can also be seen as a particular case of BKT or Bucket al-
gorithm. In BKT all processes are organized like a ring, and they send at each step
data to the process at their right. Thus, data eventually arrives to all nodes. BKT does
not pose restrictions on the number of processes communicating. Figure 12 shows an
example of its operation for the Allgather primitive. Looking for potential optimiza-
tions, our library implements a variant (nbBKT) of this algorithm, posting all receive
requests at BKT start-up. Thus, it is avoided the buffering overhead caused by the
arrival of a message whose reception request has not already been posted. Then, the
communication overlapping is achieved through non-blocking send calls.

The main difference between BDE and BKT for a given scenario consists in
the number of steps involved in the communication, showing linear and logarith-
mic complexities for BKT and BDE, respectively. Moreover, the message recursively
increases for BDE, while it remains constant for BKT. Regarding the suitability of
these algorithms, a shared memory environment would benefit from the parallelism
in BKT communications, whereas the aggregation of small messages into a larger
one in BDE significantly improves performance on high latency networks. Finally,
these algorithms are much more scalable than the Flat Tree ones.



138 G.L. Taboada et al.

Fig. 12 Allgather BKT

Table 1 Algorithms implemented in the MPJ collective library

Primitive MPJ Express New MPJ Collectives Library

Barrier Gather + Bcast nbFTGather + bFaTBcast, Gather + Bcast, BT

Bcast bFaTBcast bFT, nbFT, bFaTBcast, MST

Scatter nbFT nbFT, MST

Scatterv nbFT nbFT, MST

Gather nbFT bFT, nbFT, nb1FT, MST

Gatherv nbFT bFT, nbFT, nb1FT, MST

Allgather nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, Gather + Bcast

Allgatherv nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, Gather + Bcast

Alltoall nbFT bFT, nbFT, nb1FT, nb2FT

Alltoallv nbFT bFT, nbFT, nb1FT, nb2FT

Reduce bFT bFT, nbFT, MST

Allreduce nbFT, BT nbFT, BT, bBDE, nbBDE, Reduce + Bcast

Reduce-Scatter Reduce + Scatterv bBDE, nbBDE, bBKT, nbBKT, Reduce + Scatter

Scan nbFT nbFT, lineal

Table 1 presents a list of the collective algorithms implemented for MPJ Express
and the new collectives library. The implementation variants are correlatively num-
bered (e.g., nb1FT and nb2FT are variants of nbFT, as it was previously explained).
As can be seen, the higher number of algorithms implemented (55 vs. 17) allows a
wider selection, being feasible to take more advantage of the underlying hardware.

4.2 Thread-based collective primitives

Current MPJ libraries usually implement intra-node communications through inter-
process mechanisms such as sockets and System V IPC shared memory. In fact, only
MPJ Express includes a thread-based shared memory communication device, namely
smpdev [25], which takes advantage of Java multithreading, although its scalability
is limited due to costly synchronization overheads. Moreover, the combination of two
or more communication devices (e.g., smpdev and niodev) is not yet supported in
MPJ Express, so smpdev cannot be used in a hybrid shared/distributed memory



Design of efficient MPJ collectives on multi-core clusters 139

architecture, such as a cluster of multi-core nodes. In this kind of architectures the
approach that can take full advantage of the underlying hardware is the simultane-
ous use of the message-passing paradigm together with thread-based solutions. This
hybrid message-passing/multithreading approach requires a thread-safe MPJ imple-
mentation, and MPJ Express is claimed to support the highest level of thread safety,
MPI_THREAD_MULTIPLE. Thus, MPJ Express is usually the preferred choice for
hybrid message-passing and multithreading programming such as threads or Java
OpenMP implementations (e.g., JOMP) [9].

However, this hybrid programming approach, although it can provide good per-
formance, has as main drawback the fact that it requires the use of two programming
paradigms, increasing the complexity of the parallel programming. We believe that
only one programming model should be used, and currently message-passing can
scale further than the shared memory programming model. Thus, message-passing
libraries should support intra-node communications as shared memory transfers, a
feature currently not implemented by any MPJ library. Nevertheless, in order to ex-
plore this possibility, the new collectives library presented in this paper has been
extended in order to support this approach. This thread-based message-passing col-
lectives library will serve as a proof of concept of the performance benefits that can
be obtained following the aforementioned approach.

This library extension has been implemented selecting one thread per node
(rootThread) in order to be in charge of the inter-node message-passing com-
munications. Additionally, this thread will also serve as root thread for the intra-
node execution of the collective operation. Thus, the thread-safety requirement of
the MPJ implementation for our prototype library is limited to the support of the
MPI_THREAD_FUNNELED level, which means that a process may be multi-threaded
but only the thread that initialized MPJ makes MPJ calls. Finally, in order to exploit
the data locality and affinity, each thread defines its storage space in its TLA (Thread
Local Area).

Figure 13 presents the algorithm of the thread-based Broadcast, where x is the
message, rootProcess is the root process, rootThread is the root thread within
each process, myThreadRank is the rank of each thread within each process, and
NUM_THREADS is the number of threads within one process.

The data access synchronization is controlled by ready and done, two Atom-
icInteger objects from the concurrency framework. An AtomicInteger is an
int value (counter) that is updated atomically through several methods, three of them
used in our library: compareAndSet(int expect, int update), which
atomically sets the counter to the given updated value if the current value equals
the expected one; incrementAndGet(), which atomically increments by one the
counter; and get(), which gets the current counter value.

This thread-based algorithm first broadcasts the data among the processes, through
the rootThread invocation in all threads. After this process-level operation, a
thread-level intra-node broadcast is performed. This operation consists in that all the
threads but the rootThread copy in parallel the broadcast message into thread lo-
cal variables. This local copy of the data is needed in order to exploit data locality,
avoiding bottlenecks in shared memory accesses, as well as cache invalidation, quite
common performance penalties in multi-core systems.



140 G.L. Taboada et al.

Fig. 13 Threaded Broadcast of x with NUM_THREADS threads per process

4.3 Portability and automatic selection of algorithms

One of the aims of this work is to provide a portable library that can be easily in-
tegrated in any MPJ implementation. In order to achieve this goal, the communica-
tion algorithms have been implemented in the Intracomm class, which contains the
collectives implementation according to the main MPJ proposals. In order to avoid
dependencies that would break the portability of the developed library, all collective
algorithms are implemented using MPJ point-to-point operations, which show almost
no variation among the different APIs. In fact, initially the library was implemented
in MPJ Express, with mpiJava 1.2 API, and in order to support the JGF MPJ API,
implemented by MPJ/Ibis, the only changes needed were renaming the MPJ package
(e.g., in data types MPI.BYTE → MPJ.BYTE), as well as some methods (e.g., Send
→ send and Recv → recv). Moreover, no assumption has been made about the con-
crete operation of the data transfers, which are MPJ implementation dependent (e.g.,
they can be synchronous or asynchronous).

Additionally, the objective of the easy integration has been fulfilled, as the devel-
oped library has been successfully incorporated into MPJ Express, which has been
selected for the integration due to its popularity, active development, and, especially,
for being distributed with a poorly scalable collective communications library. More-
over, the new collectives library is fully transparent to the user. Finally, the portabil-
ity of the collectives implementation is assessed through its support by F-MPJ and
MPJ/Ibis.

The runtime selection of the collective algorithm that provides the highest perfor-
mance in a given multi-core system, among the several algorithms available, is based
on the message size and the number of processes. The definition of a threshold for
each of these two parameters allows the selection of up to four algorithms per collec-
tive primitive. Moreover, these thresholds can be configured for a particular system
by means of an autotuning process, which obtains an optimal selection of algorithms,
based on the particular performance results on a specific system and taking into ac-
count the particularities of the Java execution model.

This selection is stored in a configuration file (collectives.properties)
that is loaded by a static initializer at MPJ initialization. This configuration file con-
tains information about which algorithm has to be selected depending on the message
length and the number of processes involved in the communication. Finally, the use



Design of efficient MPJ collectives on multi-core clusters 141

of the selected algorithms is fully transparent to the user. Thus, if the collec-
tives.properties file exists, the MPJ implementation will select the appropri-
ate collective algorithm, otherwise the original one will be used.

The autotuning process consists of the execution of our own MPJ collectives
micro-benchmark suite [26], the gathering of their experimental results, and finally
the generation of the configuration file that contains the algorithms that maximize
performance. The performance results have been obtained on a number of processes
power of two, up to the total number of cores of the system, and for message sizes
power of two. The parameter thresholds, which are independently configured for each
collective, are those that maximize, in relative terms, the performance measured by
the micro-benchmark suite. Moreover, this autotuning process is done once per sys-
tem configuration, previous to the run of the applications. A dynamic runtime system
approach would present initially several drawbacks, such as a higher overhead of
the algorithm selection process, and probably the use of a wider range of algorithms
which is something penalized by the JVM JIT compiler, which in turn benefits com-
monly reused methods.

Figure 14 depicts a representative example of the performance results gathered,
and the selected algorithms (labeled Autotuning selection). The autotuning process
for the Allreduce primitive involves the evaluation of all the Allreduce algorithms, as
well as all the combinations of the Broadcast and Reduce algorithms (an Allreduce
algorithm consists of the combination of a Broadcast followed by a Reduce). How-
ever, for clarity purposes, only the most representative algorithms (and their combi-
nations) are shown in the graphs. As can be seen in the graphs, the selected message
size threshold is 32 KB. At this point the select algorithm changes, although some-
times there is no variation in the selected algorithm that depends on the message
size. The combination of MST algorithms have been selected for messages larger
than 32 KB, the combination of bFTReduce and nbFTBroadcast maximizes the short
message performance on 4 processes, whereas the combination of bFTReduce and
MSTBroadcast maximizes the short message performance on 32 processes.

Additionally, based on the performance results, it has been determined the number
of processes threshold, which has been set to 8, the number of nodes of the testbed.
Thus, algorithms that exploit the use of more than one process per node are used
from 8 processes on, whereas algorithms that maximize performance in a scenario of
dedicated network access are used for up to 8 processes.

Table 2 presents the information contained in the optimum configuration file for
the multi-core cluster used in the experimental evaluation presented in this paper
(Sect. 5).

Finally, the overhead of the autotuning process and the communication algorithm
selection is reduced, as the autotuning process does not interfere with the execution
of MPJ applications and the selection of algorithms is done through a light map-
ping method based on the number of processes and message size of a particular data
transfer. This mapping is backed by a Java HashMap with approximately 60 keys
and whose access overhead is around 10 microseconds as it handles the different
algorithms and scenarios represented by integer codes. Moreover, the access to the
HashMap is not synchronized, as the algorithms do not change dynamically.



142 G.L. Taboada et al.

Fig. 14 Performance-based selection of Allreduce algorithms in the autotuning process

5 Performance evaluation

The evaluation presented in this section consists of a micro-benchmarking of collec-
tive primitives (Sect. 5.2), as well as an analysis of the impact on the overall per-
formance of the use of the developed collectives library on three representative MPJ
codes (Sect. 5.3).

5.1 Experimental configuration

The evaluation of the developed library has been carried out in a cluster which con-
sists of 8 nodes, each of them with 8 GB of RAM and 2 Intel Xeon E5520 quad-core
Nehalem processors, that owing to the HyperThreading (HT), when enabled, can run
16 processes per node concurrently. The interconnection networks are InfiniBand
(16 Gbps of maximum theoretical bandwidth), with OFED driver 1.4.2, and Gigabit
Ethernet (1 Gbps). The OS is CentOS 5.2, the C compiler Intel icc 11.1, the JVM
Sun 1.6.0_13, and the message-passing libraries are MPJ Express 0.27 and Open-
MPI 1.3.3. The performance results on this system have been obtained running up



Design of efficient MPJ collectives on multi-core clusters 143

Table 2 Example of configuration file for selection of collective algorithms

Primitive Short message/ Short message/ Long message/ Long message/

small number large number small number large number

of processes of processes of processes of processes

Barrier nbFTGather + nbFTGather + Gather + Gather +
bFatBcast bFatBcast Bcast Bcast

Bcast nbFT MST MST MST

Scatter nbFT nbFT nbFT nbFT

Gather nbFT nbFT MST MST

Allgather Gather + Gather + Gather + Gather +
Bcast Bcast Bcast Bcast

Alltoall nb2FT nb2FT nb2FT nb2FT

Reduce nbFT nbFT MST MST

Allreduce Reduce + Reduce + Reduce + Reduce +
Bcast Bcast Bcast Bcast

Reduce- bFTReduce + bFTReduce + BDE BDE

Scatter nbFTScatterv nbFTScatterv

Scan lineal lineal lineal lineal

to 128 processes, distributing them evenly among the different nodes (e.g., for 128
processes, 16 processes are run per node), except for the thread-based collectives,
which use one process per node, and 16 threads per process (hence 128 threads).

5.2 Micro-benchmarking of MPJ collective primitives

Figure 15 presents the aggregated bandwidth results obtained by four representa-
tive MPJ collective operations, Broadcast, Allgather, Reduce (sum) and Allreduce
(sum), with 128 processes using the thread-based proposed collectives (labeled “New
Threaded”), the proposed collectives (“New Colls”), and the original MPJ Express
collectives (“Original Colls”). Furthermore, the performance results have been mea-
sured using both InfiniBand (with IPoIB, which emulates TCP/IP in order to support
Java over InfiniBand) and Gigabit Ethernet as interconnection networks. In order to
micro-benchmark collective operations, our own MPJ micro-benchmark suite [26],
similarly to Intel MPI Benchmarks, has been used due to the lack of suitable micro-
benchmarks for MPJ evaluation. The aggregated bandwidth metric has been selected
as it takes into account the global amount of data transferred, generally Message size
∗ Number of processes. The transferred data are byte arrays, avoiding serialization
(the process of transforming an object into a byte array for communication) in order
to present the collectives performance without incurring in additional overheads that
would distort the analysis of the results. The original MPJ Express collective prim-
itives use the algorithms listed in Table 1 (column MPJ Express), whereas the new
collective library uses the algorithms that maximize the performance on this multi-
core cluster. Table 3 presents a relevant summary of the configuration file for clarity
purposes.



144 G.L. Taboada et al.

Fig. 15 MPJ collective primitives performance on the Nehalem multi-core cluster



Design of efficient MPJ collectives on multi-core clusters 145

Table 3 Algorithms that maximize performance on the Nehalem multi-core cluster

Primitive Short message/ Short message/ Long message/ Long message/

small number large number small number large number

of processes of processes of processes of processes

Bcast nbFT MST MST MST

Allgather nbFTGather + nbFTGather + MSTGather + MSTGather +
nbFTBcast MSTBcast MSTBcast MSTBcast

Reduce bFT bFT MST MST

Allreduce bFTReduce + bFTReduce + MSTReduce + MSTReduce +
nbFTBcast MSTBcast MSTBcast MSTBcast

The presented results (Fig. 15) show that the new library significantly outper-
forms the original MPJ Express collective library, especially when using the new
thread-based implementations and for long messages and Gigabit Ethernet. The main
reason of this performance improvement is the efficient exploitation of thread-based
shared memory transfers, the use of multi-core aware algorithms, such as MST, which
implement communication patterns that reduce the number of costly network com-
munications while taking advantage of the high bandwidth of intra-node transfers.
Thus, whereas the Four-ary Tree used in MPJ Express Broadcast needs 112 inter-
node (network) transfers for a 128 process operation, the MST Broadcast only re-
quires 7 communications of this type. These numbers of inter-node transfers have
been determined with the default mapping provided by MPJ Express runtime, which
consists of an even distribution of the processes among the cluster nodes, trying to
maintain the adjacency of the process ranks. Although it is possible to define alter-
native mappings that would increase Four-ary Tree broadcast performance, it is quite
likely that they would impact negatively the overall applications and communication
algorithms performance, which usually exploit the default mapping of MPJ Express.

Additionally, the Flat Tree-based algorithms implemented in MPJ Express for
Allgather, Reduce and Allreduce (see Table 1) are an important performance bot-
tleneck when using a blocking version and an important number of processes (e.g.,
128 process Reduce results, both for InfiniBand and Gigabit Ethernet). Moreover,
these micro-benchmarks can exhaust the available memory, swapping memory in
some cases, and therefore showing poor performance (e.g., original Allgather on Gi-
gabit Ethernet with 128 processes, see Fig. 15), and even hanging the JVMs (e.g.,
original Allgather on InfiniBand with 128 processes, so its results cannot be taken).
The reason is that each node, with 8 GB RAM available, is running up to 16 JVMs
and the faster the communications, the higher the memory being consumed. The new
collectives library does not show these issues in our testbed.

With respect to the impact of the interconnection network on the overall results,
there are significant long message performance differences between InfiniBand and
Gigabit Ethernet results, based on the performance achieved by a representative 1 MB
point-to-point transfer on this cluster, 115 MB/s over Gigabit Ethernet and 448 MB/s
over InfiniBand. However, short message performance is quite similar as the lack
of direct InfiniBand support in Java requires the use of the IPoIB TCP emulation,



146 G.L. Taboada et al.

which shows short message performance similar to TCP/IP over Gigabit Ethernet.
Alternatives that would improve MPJ performance on InfiniBand are the support in
MPJ Express of SDP (Sockets Direct Protocol), a high performance sockets imple-
mentation on InfiniBand, or the development of a new communication device for
MPJ Express based on IBV (InfiniBand Verbs), the open-source low-level InfiniBand
communication driver, which would significantly outperform IPoIB and SDP MPJ
Express support.

With respect to the threaded collectives, it is noticeable that they achieve higher
performance gains for data movement primitives, Broadcast and Allgather, than for
reduction operations, as the latter ones involve computation which does not take spe-
cial advantage from a multithreading implementation. Moreover, the benefits of this
implementation are usually higher on InfiniBand than on Gigabit Ethernet, as the
lower the inter-node overhead, the higher the impact of intra-node optimizations.

Moreover, it has been evaluated the performance scalability of the previously se-
lected representative collective primitives. Figures 16 and 17 present the aggregated
bandwidth for Broadcast, Allgather, Reduce (sum) and Allreduce (sum) for represen-
tative medium (32 KB) and long (1 MB) message sizes, respectively. These results
confirm that the developed library presents significantly better scalability than the
MPJ Express original collectives library, especially for the threaded implementation,
for long messages and for the Allgather.

Finally, it is noticeable the significant performance increase for the new library
when using 128 processes (HT enabled) compared to the use of 64 processes (HT
disabled), especially the threaded collectives on InfiniBand, which means that this
library implements scalable algorithms and also is taking advantage of the use of HT
through communications overlapping on this scenario.

As a global conclusion of the micro-benchmarking analysis, it can be said that the
developed library significantly improves MPJ collectives performance due to the im-
plementation of more efficient and scalable algorithms for multi-core architectures.
These algorithms take advantage of the communications hardware and shared mem-
ory transfers (the threaded version). In fact, the new library can achieve significantly
higher performance on a Gigabit Ethernet cluster than the original MPJ Express one
on an InfiniBand cluster. However, most of the benefits of the implemented library
come also from the automatic selection of the algorithm that maximizes the perfor-
mance through the best adaptation of the communication pattern to the underlying
architecture. As the library includes up to six algorithms per collective primitive, this
feature is of special interest in a scenario of increasing complexity in the architecture
of current systems.

5.3 MPJ kernel/application performance analysis

The impact of the use of the developed library on representative MPJ kernels and
applications is analyzed in this subsection. Two codes from the NAS Parallel Bench-
mark Suite (NPB-MPJ) [27] have been evaluated: IS, an Integer Sort kernel, and
FT, an FFT kernel implementation. Moreover, jGadget [28], the MPJ implementa-
tion of the Gadget cosmology simulation application, has also been analyzed. These
MPJ codes have been selected as previous analyses of their performance showed



Design of efficient MPJ collectives on multi-core clusters 147

Fig. 16 MPJ collective primitives 32 KB message scalability (Xeon 5520 Nehalem cluster)



148 G.L. Taboada et al.

Fig. 17 MPJ collective primitives 1 MB message scalability (Xeon 5520 Nehalem cluster)



Design of efficient MPJ collectives on multi-core clusters 149

poor scalability with MPJ Express due to the collective primitives overhead (Alltoall
operations for NPB-MPJ FT, and Allreduce for NPB-MPJ IS and jGadget) [3, 27].
In fact, these are communication-intensive codes, where additional factors, other than
communications performance, are usually negligible (e.g., data locality exploitation),
except the impact of HT on performance.

Furthermore, in order to ease the analysis of the results, the speedups of the MPI
implementations of NPB IS, NPB FT and Gadget are also presented. As MPI collec-
tives are highly optimized, the speedups obtained with them can serve as reference
points for assessing the quality of the new collective library. Thus, the impact on
performance of the new collectives can be compared in terms of a highly optimized
counterpart implementation.

Figure 18 presents the performance of the selected codes in terms of speedup
in order to allow a more straightforward analysis of the results as the sequential
performance of Java and C/Fortran (C for IS and Gadget, and Fortran for FT) on
the testbed differ (Java is around a 30% slower). Thus, it is possible to focus the
analysis on the performance scalability, derived mainly from the collectives scala-
bility, thus discarding the differences in sequential performance which can be due
to the maturity of the code and the compilers/runtime, as well as the use of special-
ized numerical libraries (e.g., an FFT parallel implementation) looking for perfor-
mance.

Although the Nehalem cluster has 64 cores, Hyper-Threading (HT) allows the
simultaneous running of 128 processes. The use of HT improves collectives primi-
tives performance, as already shown in the micro-benchmarking results, since they
benefit from a certain degree of communications overlapping. Nevertheless, only
CPU-bound Java parallel applications with little communications can take advan-
tage of HT. The reason is that, according to our own performance evaluation on
our testbed, HT increases Java performance around a 7% on average, obtaining
the best results with CPU-bound codes. However, the scalability of parallel ap-
plications greatly depends on the communications overhead, so only CPU-bound
Java parallel applications with little communications are likely to benefit from HT.
Therefore, the communication-intensive message-passing codes evaluated in this
subsection are not likely to take advantage of 128 processes, but these results are
useful in order to analyze the performance degradation shown, which turned out
to be mitigated by the use of the new collectives library proposed in this pa-
per.

Figure 18 (first two graphs) shows the NPB IS and FT results for the Class C work-
load. Unfortunately, currently MPJ Express does not support the use of the threaded
new collectives without re-implementing the user codes. However, this support of
threaded intra-node transfers should be transparent to the user, which means that the
MPJ library should support this feature. Thus, the following figures do not present
results obtained with the threaded collectives.

With respect to the measured performance, as IS is a quite communication-
intensive code, with continuous Allreduce and point-to-point communication oper-
ations, its scalability is extremely low. In fact, the speedups are below 10 on Infini-
Band, taking advantage only of the use of up to 32 processes, even MPI. Here the
optimization of the new collective library is limited to the Allreduce operation, show-
ing slightly better performance than the original library on InfiniBand.



150 G.L. Taboada et al.

Fig. 18 MPJ kernel/application performance on the Xeon 5520 Nehalem cluster

With respect to FT, this kernel presents better scalability, with speedups of up to 21
on InfiniBand. Here the new library significantly improves the MPJ Express original
one, especially on Gigabit Ethernet, and achieves similar performance as MPI. The
communication overhead of this kernel is heavily based on the Alltoall primitive,



Design of efficient MPJ collectives on multi-core clusters 151

whose algorithm is a non-blocking Flat Tree both for the original MPJ Express library
and the new one. Nevertheless, the new library includes alternative implementations
of this algorithm that allow the reported performance improvement.

Last graph in Fig. 18 presents jGadget results from running a two million particles
cluster formation simulation. Here the developed collectives library outperforms the
original one on 64 and 128 processes, whereas MPI Gadget shows good scalability
up to 64 processes (it seems that HT penalizes this implementation).

Additionally, the implemented collective library has been evaluated on a scenario,
a supercomputer, which shows significantly higher intra-node and InfiniBand com-
munication bandwidths, in order to assess if the scalability of the codes under evalu-
ation is bounded by the communication collective library or by the underlying com-
munication hardware.

Thus, NPB FT, NPB IS and jGadget have been evaluated on the Finis Terrae su-
percomputer [29], ranked #427 in November 2008 TOP500 list [30] (14 TFlops), an
Itanium2 (IA64) Linux multi-core cluster which consists of 142 HP Integrity rx7640
nodes, each of them with 16 Montvale Itanium2 (IA64) cores at 1.6 GHz and 128 GB
of memory, interconnected by InfiniBand (16 Gbps). The OS is SUSE Linux Enter-
prise Server 10, the JVM is BEA JRockit 5.0 (R27.5), the C compiler is Intel icc
10.1.012, and the MPI is HP MPI 2.2.5.1, with InfiniBand and shared memory com-
munications support. The performance results on this system have been obtained run-
ning up to 256 processes on 64 nodes, following an even distribution of the workload
(each node runs up to 4 processes).

Figure 19 shows the counterpart performance results of the previously evalu-
ated codes, using the same workloads. The use of this system allows these ker-
nels/application to achieve higher performance, approximately doubling the speedups
obtained on the Nehalem cluster. Here the performance results obtained by the new
collectives library are relatively close to those of MPI, helping to bridge the perfor-
mance gap between Java and native languages. The reason for this behavior is that
the Finis Terrae achieves especially high intra-node and inter-node communication
bandwidths. Additionally, the benefits of using the new collective library are lower in
the Finis Terrae than on the Nehalem cluster. However, this confirms what it has been
already observed for the new collective library, the lower the scalability and perfor-
mance provided by the communication hardware, the higher the relative performance
benefits achieved.

6 Conclusions

This paper has presented a scalable and efficient MPJ collective communication li-
brary for parallel computing on multi-core architectures. The increase in the num-
ber of cores per system demands languages with built-in multithreading and net-
working support, such as Java, as well as scalable and efficient communication mid-
dleware that can take advantage of multi-core systems. The new collectives library
efficiently exploits multi-core clusters through intra/inter-node awareness and pro-
viding a thread-based MPJ collectives implementation. Additionally, the developed
library transparently provides Java message-passing applications with several multi-
core aware algorithms per collective primitive that can be selected automatically at



152 G.L. Taboada et al.

Fig. 19 MPJ kernel/application performance on the Finis Terrae

runtime, depending on relevant parameters, in order to increase communications per-
formance.

The performance evaluation of the collective library on an InfiniBand and Giga-
bit Ethernet Nehalem multi-core cluster has shown that the implemented collectives



Design of efficient MPJ collectives on multi-core clusters 153

present significantly higher performance than the original ones, especially the mul-
tithreaded MPJ approach, as well as higher speedups when analyzing the impact of
their use on collective communication intensive Java HPC applications. Additionally,
the scalability of the new collectives library has been evaluated on the Finis Ter-
rae supercomputer, showing speedups close to those of MPI using up to 256 cores.
Moreover, it has been experimentally assessed that the lower the scalability and per-
formance provided by the communication hardware, the higher the relative perfor-
mance benefits achieved by the new collective library. Thus, our collectives library
can contribute significantly to bridge the performance gap between Java and native
languages in HPC.

Acknowledgements This work was funded by the Ministry of Science and Innovation of Spain un-
der Project TIN2010-16735 and an FPU grant AP2009-2112, and by the Xunta de Galicia under Project
PGIDIT06PXIB105228PR, the Consolidation Program of Competitive Research Groups and Galician Net-
work of High Performance Computing. We gratefully thank CESGA (Galicia Supercomputing Center,
Santiago de Compostela, Spain) for providing access to the Finis Terrae supercomputer.

References

1. Taboada GL, Touriño J, Doallo R (2009) Java for high performance computing: assessment of cur-
rent research and practice. In: Proc 7th int conf on principles and practice of programming in Java
(PPPJ’09), Calgary, Canada, pp 30–39

2. Blount B, Chatterjee S (1999) An evaluation of Java for numerical computing. Sci Program 7(2):97–
110

3. Shafi A, Carpenter B, Baker M, Hussain A (2010) A comparative study of Java and C performance in
two large-scale parallel applications. Concurr Comput, Pract Exp 15(21):1882–1906

4. Taboada GL, Touriño J, Doallo R (2010) F-MPJ: scalable Java message-passing communications on
parallel systems. J Supercomput (in press)

5. Carpenter B, Fox G, Ko S-H, Lim S, mpiJava 1.2: API specification. http://www.hpjava.org/reports/
mpiJava-spec/mpiJava-spec/mpiJava-spec.html [Last visited: March 2010]

6. Carpenter B, Getov V, Judd G, Skjellum A, Fox G (2000) MPJ: MPI-like message-passing for Java.
Concurr Comput Pract Exp 12(11):1019–1038

7. Java Grande Forum. http://www.javagrande.org [Last visited: March 2010]
8. Baker M, Carpenter B, Fox G, Ko S, Lim S (1999) mpiJava: an object-oriented Java interface to

MPI. In: Proc 1st int workshop on Java for parallel and distributed computing (IWJPDC’99), LNCS,
vol 1586, San Juan, Puerto Rico, pp 748–762

9. Shafi A, Carpenter B, Baker M (2009) Nested parallelism for multi-core HPC systems using Java.
J Parallel Distrib Comput 69(6):532–545

10. Bornemann M, v. Nieuwpoort RV, Kielmann T (2005) MPJ/Ibis: a flexible and efficient message-
passing platform for Java. In: Proc 12th EuroPVM/MPI (EuroPVM/MPI’05), LNCS, vol 3666, Sor-
rento, Italy, pp 217–224

11. Pugh B, Spacco J (2003) MPJava: High-performance message-passing in Java using Java.nio. In: Proc
16th int workshop on languages and compilers for parallel computing (LCPC’03), LNCS, vol 2958,
College Station, TX, USA, pp 323–339

12. Taboada GL, Touriño J, Doallo R (2010) Performance analysis of message-passing libraries on high-
speed clusters. Int J Comput Syst Sci Eng 25(1):63–78, January

13. Chan E, Heimlich M, Purkayastha A, van de Geijn RA (2007) Collective communication: theory,
practice, and experience. Concurr Comput, Pract Exp 19(13):1749–1783

14. Barchet-Estefanel LA, Mounie G (2004) Fast tuning of intra-cluster collective communications. In:
Proc 11th EuroPVM/MPI (EuroPVM/MPI’04), LNCS, vol 3241, Budapest, Hungary, pp 28–35

15. Pjesivac-Grbovic J, Angskun T, Bosilca G, Fagg GE, Gabriel E, Dongarra JJ (2007) Performance
analysis of MPI collective operations. Cluster Comput 10(2):127–143

16. Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in
MPICH. Int J High Perform Comput Appl 19(1):49–66

http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html
http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html
http://www.javagrande.org


154 G.L. Taboada et al.

17. Pjesivac-Grbovic J, Fagg GE, Angskun T, Bosilca G, Dongarra JJ (2006) MPI collective algorithm se-
lection and quadtree encoding. In: 13th EuroPVM/MPI (EuroPVM/MPI’06), LNCS, vol 4192, Bonn,
Germany, pp 40–48

18. Sanders P, Träff JL (2002) The hierarchical factor algorithm for all-to-all communication. In: Proc 8th
int Euro-Par (Euro-Par’02), LNCS, vol 2400, Paderborn, Germany, pp 799–804

19. Zhu H, Goodell D, Gropp W, Thakur R (2009) Hierarchical collectives in MPICH2. In: Proc 16th
EuroPVM/MPI (EuroPVM/MPI’09), LNCS, vol 5759, Espoo, Finland, pp 325–326

20. Tu B, Fan J, Zhan J, Zhao X (2010) Performance analysis and optimization of MPI collective opera-
tions on multi-core clusters. J Supercomp (in press)

21. Tipparaju V, Nieplocha J, Panda DK (2003) Fast collective operations using shared and remote mem-
ory access protocols on clusters. In: Proc 17th int parallel and distributed processing symposium
(IPDPS’03), Nice, France, pp. 84–93

22. Mercier G, Clet-Ortega J (2009) Towards an efficient process placement policy for MPI applications in
multicore environments. In: Proc 16th EuroPVM/MPI (EuroPVM/MPI’09), LNCS, vol 5759, Espoo,
Finland, pp 104–115

23. Nelisse A, Maassen J, Kielmann T, Bal HE (2003) CCJ: object-based message-passing and collective
communication in Java. Concurr Comput, Pract Exp 15(3–5):341–369

24. Lim S, Carpenter B, Fox G, Lee H (2005) Collective communications for scalable programming. In:
Proc 3rd int symposium on parallel and distributed processing and applications (ISPA’05), LNCS,
vol 3758, Nanjing, China, pp 286–297

25. Shafi A, Manzoor J (2009) Towards efficient shared memory communications in MPJ Express. In:
Proc 11th int workshop on Java and components for parallelism, distribution and concurrency (IW-
JacPDC’09), Rome, Italy, p 111b (8 pages)

26. Taboada GL, Touriño J, Doallo R (2003) Performance analysis of Java message-passing libraries on
fast ethernet, myrinet and SCI clusters. In: Proc 5th IEEE int conf on cluster computing (CLUS-
TER’03), Hong Kong, China, pp 118–126

27. Mallón DA, Taboada GL, Touriño J, Doallo R (2009) NPB-MPJ: NAS parallel benchmarks imple-
mentation for message-passing in Java. In: Proc 17th euromicro int conf on parallel, distributed, and
network-based processing (PDP’09), Weimar, Germany, pp 181–190

28. Baker M, Carpenter B, Shafi A (2006) MPJ Express meets Gadget: towards a Java code for cosmo-
logical simulations. In: 13th EuroPVM/MPI (EuroPVM/MPI’06), Bonn, Germany, pp 358–365

29. Finis Terrae. http://www.top500.org/system/9156 [Last visited: March 2010]
30. TOP500 supercomputing site. http://www.top500.org [Last visited: March 2010]

http://www.top500.org/system/9156
http://www.top500.org


Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


