Fundamenta Informaticae 85 (2008) 533-548 533
I0S Press

Towards Verification of Java Programs in , /er IC'S*

Andrzej Zbrzezny, Bozena Woznd

IMCS, Jan Dtugosz University

Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
a.zbrzezny@ajd.czest.pl

b.wozna@ajd.czest.pl

Abstract. VerICS is atool for the automated verification of timed audédarand protocols written in
both the Intermediate Language and the specification layegiatelle. Recently, the tool has been
extended to work with Timed Automata with Discrete Data aiittl wiulti-agent systems. This paper
presents a prototype Timed Automata with Discrete Data fnafd#ava programs. In addition, we
show how to use the model together with the verification céMedCS to validate the well-known
alternating bit protocol written in Java.

1. Introduction

Given a description of a systeiand a property (specificatiorf) the verification problenconsists in
establishing whethe$ satisfiesP. This can be achieved by using eitltemmogeneousr heterogeneous
verification methods. The former class of methods assunadtth the system and the specification
are given in the same formalism, while the latter allows tysem and the specification to be described
in different formalisms.

Model checkings a verification technique that was originally developedémporal logics. Its main
idea consists in representing a finite state system, oftévedefrom a hardware or software design, as
a labelled transition system (model), representing a fipation by a temporal formula, and checking
automatically whether the formula holds in the model.
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For the last twenty years model checking has became a widebgnised and prominent technique
in hardware [16] and protocol verification [11]. Also, dugithe last two decades surprisingly many
efficient verification tools have appeared. The most advdacel popular are SPIN [12], NUSMV [4],
Uppaal [20], AVISPA [3]. This paper employs \es, a new verification tool developed in the past five
years.

Verics is fully automated and geared toward verification of timeatefent and multi-agent systems
as well as communication and security protocols. It can wentttaded from [1]. The tool is designed
to accept a number of input languages that either are ttadsiato Intermediate Language (IL)[8] or
directly into a formalism called Timed Automata with Disadata (TADD) [14, 24]. The core of the
verification engine of the tool is mainly based on transtaiof the model checking problem into the
SAT problem [9]. Further, Vecs uses state-of-art SAT solvers likeHAFF [17] and RS\T [21], and it
is also equipped with GUI interfaces. The architecture afdgds composed of the following modules:

e Language Translator: it takes a system description in Estelle [13], which is an IS@&ndard
specification language designed for describing commuinitgitrotocols and distributed systems,
and it translates this description into IL that allows fosdgbing a system as a set of processes,
which exchange information by message passing (via boundecbounded channels) or memory
sharing (using global variables).

e Automata Translator: it constructs timed automata (with discrete data) from apriigram.

e BMC Analyser: it verifies ECTLK [15] properties over models for timed autta and TECTL
[19] properties over models for TADD.

e UMC Analyser: it verifies CTLK properties over models for timed automata.

In this paper, we consider the problem of verification of eonent Java programs. We consider
Java because it is now one of dominant languages for writhmgwrrent software. Verifying programs
written in programming languages like Java is differentrfreerifying hardware or protocols; the state
space is often infinite and the relationships between plessiiates are harder to understand because
of asynchronous behaviour and complex underlying senmnfithe languages. Further, the size and
complexity of software force us to treat model checking eaths a debugging technique in software
verification than a fully automated validation process @& foftware. In particular, for what concerns
verification of Java programs, we see model checking as aouiéttlat can be applied to the more crucial
parts of a Java software.

In order to investigate the challenges that Java prograses foo model checking, we have developed
a preliminary Timed Automata with Discrete Data (TADD) mbdé Java that is accurate enough to
detect concurrency errors and yet abstract enough to malelrobecking tractable. The main aim of
the paper is to describe this model, which can be further tsdmlild a verification module of Java
programs in VerICS. In addition, we show how to use our moalgéther with the symbolic verification
core of VerICS to validate the well-known alternating bibfarcol written in Java.

The rest of the paper is organised as follows. The next segiovides a discussion on related
works. In Section 3 we define a TADD model of a subset of Javaallyi we use the model to verify the
alternating bit protocol by means the model checker VerICS.
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2. Related work

Model checking of Java programs has become increasinglyl@oguring the last decade. However, to
the best of our knowledge, there are only two existing motieckers that can verify Java programs.
The first tool is called JavaPathFinder [10, 23, 18] and tlcerse& one is called Bandera [6].

The first release of JavaPathFinder(JPF1) is describe@jnJPF1 translates Java code into Promela
code, which then can be model checked by means of the SPIN atusteker [12]. In this realisation Java
programs may contain: dynamic creation of objects with @& methods, class inheritance, threads,
synchronized statements, theit andnotify methods, exceptions, thread interrupts and most of the
standard programming languages constructs such as assigstatements, conditional statements and
loops. However, the translator misses some features, sughckages, overloading, method overriding,
recursion, strings, floating point numbers, some threadabipas like suspend and resume, and some
control constructs such as the continue statement. Iniadddrrays are not objects as they are in Java,
but are modelled using Promela’s own arrays to obtain efficierification.

The second generation of JavaPathFinder(JPF2) is dedénpg3, 18]. This version of JPF2 com-
bines model checking techniques with techniques for dgaliith large or infinite state spaces. These
techniques include a static analysis for supporting dastider reductions of the set of transitions to
be explored by the model checker, a predicate abstractioabfstracting the state space, and a runtime
analysis such as race condition detection and lock orddysisao pinpoint potentially problematic
code fragments. JPF2 techniques operate on the Java bgteCadrently, the NASA model-checker
Java PathFinder is one of the backend model-checkers sagdmny Bandera.

The Bandera tools [7, 6] are designed to compile a Java protgra finite-state transition system that
can be processed by model-checking tools. This is acconagliby first compiling a Java source code
into Java byte-code. Second, using the Soot Java compalerefvork [22] Java byte-code is translated
to an intermediate language calldichple Jimple is essentially a language of control-flow graphsrerhe

e statements appear in a three-address-code form, and

e various Java constructs such as method invocations antreyrized statements are represented in
terms of their virtual machine counterparts (such as: iavokual, monitorenter and monitorexit).

Third, the Jimple code is translated into a guarded commeamgllage called BIR (Bandera Intermediate
Representation). The BIR model can then be translated @dnput languages of different model
checking tools. In particular there are translations frolR B> Promela (the input language of SPIN)
and the Bogor input language.

There are basically 2 releases of Bandera: 0.x and 1.x. Dheeleases work but it is hard to
experiment with them. Only in this version however there tsaaslation form BIR to Promela. The
1.x releases are focused on direct work with the Bogor mdustking framework only, and they do not
support the translators or tools to work with SMV or SpintReda.

The Bandera tools give a direct support for unbounded dymaneiation of threads and objects, au-
tomatic memory management (garbage collection), virtuethmds and exceptions. It supports virtually
all of the Java language features. However, Bandera doesumently model full Java standard library.
In particular, some of Java library classes were taken ftoenGNU Classpath library, and still native
calls are not modelled.
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3. A TADD model of Java programs

This section describes a prototype Timed Automata with fietecData (TADDs) model of Java pro-
grams. TADDs [24] are standard diagonal timed automata aatgd to include integer variables over
which standard arithmetic and Boolean expressions canfiiede These automata take as an input a
set of initialised integer variables and a set of propaséio/ariables, true at particular states.

We start by describing thalternating bit protocol(ABP), a well-known communication protocol
that is often used as a test case for automated verificatais, @nd then we briefly describe concurrency
model in Java.

3.1. Alternating Bit Protocol

The protocol involves three active components: a send&geiver and a bidirectional communication
channel. Each message contains a control bit only and igreenthe sender to the receiver through an
unreliable communication channel. The protocol works @nftillowing way. The sender starts sending
the bit to the receiver, which is initially silent. The semgliof the bit proceeds until the sender receives
an acknowledgement. After that, the sender flips the cobtt@nd starts all over again. As soon as the
receiver receives the control bit that matches its intecoatrol bit, an acknowledgement is sent to the
sender. Then, the receiver flips his internal control bitaads for another bit.

The communication channel transmits bits both from the eetwdthe receiver, and from the receiver
to the sender. There are four possible situations that cemr.o8its are properly transmitted from the
sender (the receiver) to the receiver (the sender), or ldts@rupted or lost during such a transmission.

Listing 1 shows a Java source code of ABP, which will then beefled as a network of TADDSs that
run in parallel, communicate with each other via sharedatdes and perform transitions with shared
labels synchronously; we assume here a definition of pacalteposition [24] that is an extension of the
standard definition of parallel composition [2] that taket®iaccount integer variables.

3.2. Concurrency in Java

In Java, threads are instances either of the dfassad or subclasses of the classread, that is, there
are two ways of creating threads: implementing an interfagmable or extending the claskhread.
We consider the most common way of creating threads, thddyisising the constructor fofhread
that takes as a parameter any object implementing the aceRfinnable, which essentially means the
object has a methathin (). Once a thread is started by calling étsart () method, the thread executes
the run () method of this object. Although threads may have assignieditigs to control scheduling,
in this paper we assume that all threads have equal priogtie are scheduled arbitrarily.

Consider the ABP system shown in Listing 1. In this example drogram starts, as usual, by execut-
ing the static methodain (). As a result there are created: (1) an instactegnnel of LossyChannel,
(2) instances ofender andReceiver that takechannel as an argument, (3) two instancesTatead
that take as arguments the object of the ckagier andReceiver, respectively. Then, all the threads
are started, which means that thein () methods are executed. The Sender and Receiver threadstput/g
bit to the shared channel.

Recall that every Java object has an implicit lock. When eatirexecutes a synchronized method,
it must acquire the lock of the object on which the method heentinvoked before executing the body
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import java.util.Random;
public class AltBitProtocol {
public static void main(String[] args) {
LossyChannel channel mew LossyChannel ();
(new Thread phew Sender(channel))). start ();
(new Thread hew Receiver(channel))). start ();

}
}

class LossyChannel {
private boolean protocolBit, channelEmpty =true, ackBit
private Random r;
public LossyChannel () {r =new Random();}

public synchronized boolean getAckBit() {notify (); return ackBit;}

public synchronized void putAckBit(boolean ackBit) {
this.ackBit = ackBit;
int ignoreBit = r.nextlnt(2);

= true;

if (ignoreBit > 0) {this.ackBit = !this.ackBit;} notify ();

}

public synchronized boolean get() {

537

while (!channelEmpty) {ry {wait();} catch (InterruptedException e){}}

channelEmpty =true; notify (); return protocolBit;

}

public synchronized void put(boolean protocolBit) {

while (!channelEmpty) {ry {wait();} catch (InterruptedException e){}}

int ignoreBit = r.nextlnt(2);

channelEmpty =false; if (ignoreBit > 0) channelEmpty =true ;
notify ();
}
}
class Senderimplements Runnable {
private LossyChannel channel;
public Sender(LossyChannel channel)tHis.channel = channel;}

public void run() {
boolean protocolBit = false; Random r =new Random();
while (true) {
if (protocolBit !=
else protocolBit = !protocolBit;

channel.getAckBit()) channel.put(prot¢olBit);

try {Thread.sleep(r.nextlnt(1500));}catch (InterruptedException e){}

}
}
}

class Receiver implements Runnable {
private LossyChannel channel;

public Receiver (LossyChannel channel)tHis.channel = channel;}

public void run() {
Random r =new Random();
while (true) {

boolean protocolBit = channel.get(); channel.putAckBit(protold®it);

try {Thread.sleep(r.nextlnt(1500));}catch (InterruptedException e){}

}
}
}

Listing 1. Java source code of the alternating bit protocol
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of the method, releasing the lock when the body of the methacekited. If the lock is unavailable,
the thread will be blocked until the lock is released. In #ddj every object also provides the wait-
and-notify mechanism that allows threads to be in waitirjest This wait-and-notify technique is
a communication mechanism between threads; it allows aeadhto communicate to another thread
when a particular condition has occurred. In our ABP exaropliers ofput () andputAckBit () must
wait either for an ackBit or for a fresh bit in the channelled of get () andgetAckBit () must wait
until the channel is nonempty. That is, the preconditiondioy operation mentioned above is checked,
and, if false, the thread blocks itself on the object by ekaguhewait () method, which releases the
lock. When a method changes the state of the object in sucly thata precondition might now be true,
it executes thaotify() method, which wakes up a thread waiting on the object.

3.3. A TADD model

We model a concurrent multi-threaded Java program with worktof TADDs. Each state of TADD

is an abstraction of the state of the Java program, and eackition represents the execution of code
transforming this abstract state. The modelled subsetvaf dantains: definitions of integer variables,
standard programming language constructs like assignstetieinents, conditional statements and loops,
definitions of classes, objects, methods and threads, symizkd and static methods (blocks), and the
methodsvait (), notify(), sleep() andrandom().

The method of constructing the TADD model of a Java prograthédollowing. State variables are
used to record the current control location of each threatith@ values of key program variables and
any run-time information necessary to implement the caecrsemantics (e.g., whether each thread
is ready, running, or blocked on some object). Each transdtion represents the execution of a Java
instruction (for example an assignment statement) for siimead. There is one TADD for each thread:
one TADD for themain() method anch identical TADDs for eachrun () method of class C (where n
is the number of instances for class C). In this paper we asslinmethod calls have been inlined; this
limits the analysis to programs with statically boundedursion.

To produce an automaton for a thread, we proceed as followst, for all the variablesrar of
type int or Boolean of the considered thread class that are defined in the bodyeaihtthodrun (),
we introduce corresponding local integer variallagseadName_var. Next, we modekun() methods
according to the following scheme:

Tr(if(B){S1}else{S2})

@ @ thy%\:false

| Tr(S1) | | Tr(S2) | | Tr(S1) | | Tr(SZ)|
variable:=expr; + +
= ou D
(a) (b)

Figure 1. An automata model of: (a) an assignment stater(i®rd;conditional statement.

¢ Ifthere is an assignment statement of the fetmiable = expr;, then we produce an automaton
as it is shown in Figure 1la.
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e If there is a conditional statement of the forirf (condition B){statement S1;} else
{statement S2;}, then we first build automata fa§1 and S2, written 7'+(S1) and T (52).
Next, we produce an automaton that is a sum of autoffiat&'1) and7'r(.S2) such that the initial
locationsin1 andin2 become one initial locatioin, and the final locationsut1 andout2 become
one final locatiorvout (see Figure 1b).

@

Tr(while(B){S1}) statement S1; statement S2;

CRiTee
cRie

(@)= [reen} =Gy [rea -~
(b)

(@)

Figure 2. An automata model of: (a) a loop statement; (b) atamation of two statements.

e If there is a loop statement of the forwhile (condition B){statement S1;}, then we first
build an automaton fof1, written 7'r(S1), and next we produce an automaton as it is shown in
Figure 2(a).

e If there are two consecutive statemestatement S1; statement S2;, then we first build au-
tomata forS1 and S2, written 7r(S1) and7r(S2). Next, we produce an automaton which is
the concatenation dfr(S1) and7'r(S2), that is, the new automaton has as an initial location the
initial location of 'r(S1) (i.e., in1), as a final location the final location®f (52) (i.e., out2), and
as a “contact” location a new location (out1-in2), which merger of the final location &fr(S1)
(i.e., outl) and the initial location afr(S2) (i.e., in2) (see Figure 2(b)).

e A model of synchronized methods is shown in Figure 3(c). Thg synchronization is realised is
the following. Letl be a number of objects on which synchronized methods ar&exvd-irst, we
introducel binary semaphores ardépecial variableswty, . .., nwt;. The value of variablewt;
is equal to the numebr of threads waiting on the lock of thedjumbet. In particular, initially
all the variables are set to zero. Then, we build an autonthtirhas two special locationg(and
out), and two special transitions that are labelled with syaohred actionsn; andout;, respec-
tively, wherej denotes the number of a thread which has invoked the synzbbmethod under
considerationjn denotes acquiring a lock of the object on which the methodbess invoked
and the entrance to the method, and denotes releasing the lock and exit from the method. The
labelsin; andout; will have the following general forme_thread N ame_thread Number with
x € {in,out} (for examplein_sender_1, out_sender_1 - see the resulting automata for ABP).

¢ A model of the methoarait () is as shown in Figure 3(a), that is, we have an automaton of fou
locations with(m — 1) + 2 transitions {» is the number of threads). The first transition is labelled
by actionwait; which denotes the fact that thread numbegoes to awaiting stateand opens
the semaphore. In this state the thread is waiting to be @dtifiy any other thread. Here this is
represented by the actiom®tify ;). ., notify_i ), Notifyci 4ys-- - notifyum ;) these
are synchronized actions between threads. Once that &etjpens, the thread gets into thady
state. A thread in this state is ready for execution, but is not beingently executed. Once a
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Tr(wait())

wait ;
@ Tr(notify()) Tr(synchronized method)
notifya.y, - - -»Notify-14),
notify(is1,), - - - » MO Ym,j)
nwt; =0 nwty > 0 Model of
none; noti fyj.r the body of

the synchronize(

nwt; := nwt; — 1 mothad

active;

(a) wait() (b) notify() (c) a synchronized method

Figure 3. An automata model of methaaait(), notify() and a synchronized method for thread

thread in the ready state gets access to the CPU, it getsrtexhve the running state. This is done
by invoking a synchronized actiatctive;, which will close the semaphore.

e A model of the methodiotify () that wakes up an arbitrary chosen thread from all the threads
waiting on the object’s lock is as shown in Figure 3(b). Namele have an automaton of two
locations withm transitions labelled by.otify(; ), for k € {1,...,5 — 1,5 +1,...,m}, and
nonej, respectively. The synchronized actiontify; ) represents the fact that thread number
j notifies the thread numbér, which thereby is moved to theady state This action can be
performed only if the value of the variablewt; is grater thard, wherei is the number of the
object on which the synchronized method under consideradimvoked. Further, with this action
an instructionswwt; := nwt; —1 is associated, which means that the number of the waitiegts
has been decreased by one. If there are no waiting threadsothfy () method has no effect;
this is realised by the local actiorone;, which is enabled only if the value of the variables; is
equal to zero.

e A model of the methodsleep() consists in introducing a new clock with the general name
x_number_threadName_thread Number (precisely, one clock for all instances of the method
sleep() in a thread) and producing an automaton that censighree locations and two transi-
tions (see Figure 4(b)). The first transition must be lallelg the reset operation of the form
x_number_threadName_threadNumber := 0; the second transition must be labelled by:
(1) an action with general namdeep Number_thread N ame_thread Number (for example,
sleepl_sender_1); (2) the reset operation of the formnumber_thread N ame_thread Number
:= 0; and (3) a guard of the formd < z_number_threadName_thread Number < wvalue,
wherevalueis a parameter of the methateep()(for example0 < z1_sender_1 < 1500).

¢ A model of the methodandom()is simulated by an automaton that has two locations «and
transitions f is a value of the parameter of the method random()) decowgitécthe instructions
of the formx := 4, wherez is an integer variable ande {0,...,n — 1}.

e Values that are returned by methods of a non-void type aredtion integer variables with the
general nameéhreadN ame_thread Number_method Name.
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e Passing parameters of the tyipeandbooleanto a function is realised in the following two steps.
First, we introduce as many new integer variables as theitmander consideration has para-
meters; the general name of the new variablesdss N ame_method N ame_parameter N ame.
Second, we introduce a set of assignment instructions dfotine: className_method N ame
_parameter Name := value, wherevalue is the value of a parameter with the name ameter
Name. This instruction is attached to a transition labelled wilte actionin_threadName_
thread Number, if the function under consideration is a synchronized fiamc Otherwise, this
instruction is attached to a transition labelled with thécacin_className_method N ame.

)

x_number_threadName_threadNumber:=0

sleep—number_threadName_threadNumber
x_number_threadName_threadNumber:=0

O<=x_number_threadName_threadNumber<=value

(a) (b)
Figure 4. Automata for: (a) semaphore (b) metktap()

out_reciver_1

in_reciver 1
in_sender
active 2

nwt_1 :=nWt_1+l

s:=0

out_sender_1
& 514

o nwt_1>0
* none_1 notify_(1,2)
s_protocolBit:=0) : nwt_1=0 nwt_l:=nwt_l-1
s_ignoreBit=0 s_ignoreBit=1
channel_channelEmpty:=1
S_protocolBit=s_getackBit

9 _ignoreBit:=1

in_sender_1

s_ignoreBit:=0

nwt_1:=nwt_1-1 _
notify_(1,2) none_1
nwt_1>0

s_protocolBit:=1-s_protocolBit

notify_(2,1) n | ch E 0
s_getackBit:=channel|_ackBit channel_channelEmpty:=

(4

out_sender_1

channel_protocolBit:=s_put

channel_channelE?npty:O
charninel_channelEmpty=1

in_sender_1 Bi
it!= i s_put:=s_protocolBit
s _protocolBit! s_getackBlt@ p p

S

LEGEND: s = x1_sender_1 ; sleep_1 =sleep_1_sender_1; s_ignorePacket=sender_1_ignorePacket
s_protocolBlt—sender protocolBit ; s_put= sender_l_put; s_getackBit=sender_1_getackBit

Figure 5. An automaton for Sender

Given the above it is easy to infer the network of timed autamaith discrete data that model
Alternating Bit Protocol; this is shown in Figures 4(a), ®ah
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sleep_1_receiver_1 (<=r<=1500

@ r:=0 1:=0
out_receiver_ 1
in_receiver_1

channel channelEmpty 1 nwt_1:=nwt_1-1
S1 wait_ nwt_1=0 nwt_1>0
channel_channelEmpty=0 none_?2 notify_(2,1)
channel_channelEmpty:= 1 ctive_2 notify_(1,2)

r_ignoreBit=1
channel_ackBit:=1-channel_ackBit

/\

Ufy 2,1) r_ignoreBit=0

nwt_ 1>0
nwt_l:=nwt_1-1

none_ 2
nwt_1 0

/\
@I@

r_get:=channel_protocolBit r_ignoreBit:=0 r_ignoreBit:=1

out_receiver_1 channel_ackBit:=r_putackBit
~_protocolBit:= _ge}/\in_receiver_;/\(_putackBit =r_protocolBi
(s7) s ) s1o

LEGEND: r_get=receiver_1_get ; r_protocolBit=receiver_1_protocolBit
r_putackBit=receiver_1_putackBit; r_ignoreBit=receiver_1_ignoreBit
r=x1_receiver_1 ;

Figure 6. An automaton for Receiver

4. Experimental results

In this section we show how to use our model together with dfigation core of VerICS (in fact
the BMC module) to validate the Alternating Bit Protocol tigh in Java; the tested code is shown
in Listing 1 in Section 3. All the experiments have been penfed on a computer equipped with the
processor Intel Celeron M 1.30GHz, 768 MB RAM and the opragasiystem Linux 2.6.24.

Since the BMC module is designed to look for errors, we hawduced in our Java code the
following errors: in the classkossyChannelve have set the variabldhannelEmptyo false (i.e., we have
put channelEmpty=]) and we have exchanged the condition of the while loop inriethodget()to the
following one: while (!channelEmpty){...}.

These two small changes cause the protocol to stop workiadynienmediately, which means that
a deadlock has occurred, because the both threads aregafaititwo locks to be freed and the circum-
stances in the program are such that the locks are never. flieefind the cause of this behaviour, we
have checked the modified Java code of Alternating Bit Pabtfar the existence of deadlocks. The
simplest way to find deadlocks is to verify whether the geteeraetwork of TADDs admits finite runs
only. To this end, it is enough to check whether the ECTL fdemEiF'true [5] is true in the model
of the considered network for any possible length of a runounexample, it is possible to verify that
there is no run of length longer than 24. The generated vétslesws the reason for such a situation: the
protocol gets into a state where both threads wait for a natitin from another thread, but none of them
can invoke the methodotify(). Table 1 reports this witness; experimental results arerteg in Table 2.
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Length | locations values of variables Sender's clock | Receiver's clock
0 <0,0,0> | <0,0,0,0,0,1,0,0,1,0,0,0 > 0 o057 0 o357
1 <0,0,0> | <0,0,0,0,0,1,0,0,1,0,0,0 > 571 13381 571 12387
2 <0,1,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 571 1281 571 43381
3 <0,1,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 881 18 881 118
4 <0,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1 > 881 155 881 143
5 <0,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1 > 1289 13857 1289 12557
6 <1,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1> 1289 13857 1289 12557
7 <1,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1> | 2175 1329 2175 13529
8 <2,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1 > | 2175 14820 2175 14820
9 <2,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1 > 2478 12309 2478 12399
10 <3,3,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 2478 12509 2478 13509
11 <3,3,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 3089 £o22 3089 2022
12 <4,3,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > | 3089 £52 3089 2022
13 <4,3,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > | 4349 205 4349 226
14 <5,3,0> | <0,0,0,0,0,1,0,0,1,0,0,0 > | 4349 20 4349 216
15 <5,3,0> | <0,0,0,0,0,1,0,0,1,0,0,0> | 5674 2% 5674 1204
16 <51,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 5674 £ 5674 120
17 <5,1,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > | 6049 222, 6049 223
18 <5,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1> | 6049 252, 6049 2223,
19 <5,2,0> | <0,0,0,0,0,1,0,0,1,0,0,1> | 6952 2225 6952 2225
20 <6,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1> | 6952 3225 6952 3225
21 <6,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1 > 8194 12536 8194 13846
22 <7,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1 > | 8194 12525 8194 12846
23 <7,2,1> | <0,0,0,0,0,1,0,0,1,0,0,1 > | 8738 {22 8738 {2,
24 <8,2,0> | <0,0,0,0,0,1,0,0,1,0,0,2> | 8738 {2 8738 o

Table 1: The witness
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k variables | clauses BMC sec | BMC MB RSAT sec | RSAT MB SAT
0 416 619 0.0 3.0 0.0 1.3 YES
2 3482 9088 0.1 3.3 0.0 2.0 YES
4 6686 18018 0.3 3.7 0.0 2.6 YES
6 10039 27361 0.4 4.1 0.1 3.4 YES
8 13359 36608 0.6 45 0.1 4.2 YES
10 16745 46033 0.7 4.9 0.1 4.9 YES
12 20484 56446 0.9 5.3 0.2 5.8 YES
14 24049 66361 1.0 5.8 0.3 6.5 YES
16 27680 76454 1.2 6.2 0.5 7.3 YES
18 31377 86725 1.4 6.6 1.6 8.3 YES
20 35140 97174 1.6 7.1 0.9 9.1 YES
22 39491 109281 1.8 7.6 2.2 10.3 YES
24 43433 120220 2.0 8.0 1.7 11.1 YES
26 47441 131337 2.1 8.5 0.4 11.8 NO
In total: 14.1 8.5 8.1 11.8

Table 2: Property Efrue.

In Table 1 the first column shows the length of the witness stimnd column shows locations of
Sender, Receiver and Semaphore, respectively, the thindhaosshows values of integer variables with
the meaning: zO: channel_channelEmpty, z1: channel_gotRd, z2: r_get, z3: r_protocolBit, z4:
r_put_ackBit, z5: channel_ackBit, z6: r_ignoreBit, z7pmtocolBit, z8: s _getackBit, z9: s_put, z10:
s_ignoreBit, z11: nwt_1 and the last two columns show theesbf clocks for Sender and Receiver,
respectively.

For the second experiment, we have introduced in our Java anly one error by modifying the
methodget() as illustrated above. This small change causes the progitbar to stop working, or to
perform some infinite loop.

The reason for the deadlock is the following: the protocal mach a state where both threads wait
for a notification from another thread, but none of them caoke the methoaotify(). We can show
formally that such a situation indeed exists by checkinghahility of a state in our TADD model which
contains "wait” locations (i.e., locations to which autdm#or Sender and Receiver can get in, if actions
wait_landwait_2are performed). We have done such a reachability test, arthweefound a witness
of length 46 which shows that both Sender and Receiver cdnrhove to a waiting state, and there is
no way for them to move to a ready state; for this witness sbleTa experimental results are presented
in Table 4.

The reason the modified Java program may go into an infinite éam be found by examining the
witnesses for the reachability property mentioned aboke:Sender can continuously send messages,
but he never gets an acknowledgement.

Length | locations values of variables Sender’s clock | Receiver’s clock
0 <0,0,0 > <1,0,0,0,0,1,0,0,1,0,0,0 > 0 3355053 0 55550155

31095471 31095471
1 <0,0,0> | <1,0,0,0,0,1,0,0,1,0,0,0> | 638 21095471 638 21095471
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<1,0,0 >

<1,0,0,0,0,1,0,0,1,0,0,0 >

638 31095471

638 31095471

2 33554432 33554432

3 <1,0,0 > <1,0,0,0,0,1,0,0,1,0,0,0 > 1421 25288023 1421 25288023
4 <2,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 14271 25288043 1421 25288043
5 <2,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 2712 11254896 2712 11254896
6 <3,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 2712 11254896 2712 11254896
7 <3,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 2825 9790000 2825 9790440
8 <4,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 2825 15799200 2825 15799200
9 <4,0,1> <1,0,0,0,0,1,0,0,1,0,0,0> | 3248 2215 3248 2240
10 <5,0,0 > <1,0,0,0,0,1,0,0,1,0,0,0> | 3248 2325 3248 224LY
11 <5,0,0 > <1,0,0,0,0,1,0,0,1,0,0,0> | 3356 552022 3356 ;510922
12 <6,0,1> <1,0,0,0,0,1,0,0,1,0,0,0> | 3356 52022 3356 ;510922
13 <6,0,1> <1,0,0,0,0,1,0,0,1,0,0,0 > 3936 322503 3936 32202
14 <7,01> <1,0,0,0,0,1,0,0,1,0,0,0 > 3936 22302 3936 5332305
15 <7,0,1> <1,0,0,0,0,1,0,0,1,0,0,0> | 5270 43815958 5270 35345058
16 <10,0,1> | <1,0,0,0,0,1,0,0,1,0,0,0> | 5270 $52120%6 5270 4342050
17 <10,0,1> | <1,0,0,0,0,1,0,0,1,0,0,0> | 6665 35292056 6665 0202058
18 <11,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 6665 35292056 6665 0202058
19 <11,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 8161 32515837 8161 52212837
20 <12,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0 > 8161 52315837 8161 32515832
21 <12,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 9646 $-T19930 9646 +1T19020
22 <13,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 9646 £-T1990 9646 1119020
23 <13,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 10018 13239136 | 10018 11259156
24 <14,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 10018 $3239136 | 10018 11259156
25 <14,0,1> | <0,0,0,0,0,1,0,0,1,0,0,0> | 11039 13356370 | 17039 18306576
26 <15,0,0> | <0,0,0,0,0,1,0,0,1,0,0,0 > 0 335055 11039 4330937
27 <15,0,0> | <0,0,0,0,0,1,0,0,1,0,0,0 > 991 23979008 12031 220550
28 <1,0,0 > <0,0,0,0,0,1,0,0,1,0,0,0 > 0 s3ers 12031 220550
29 <1,0,0 > <0,0,0,0,0,1,0,0,1,0,0,0 > 616 21594219 12647 33485769
30 <2,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 616 21594219 12647 33485769
31 <2,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 1524 225188 13555 $239998
32 <3,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 1524 22518 13555 11139998
33 <3,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 1681 32298720 13713 525838
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32498720 4735838
34 <4,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 1681 32498720 13713 35838
22637552 28429102
35 <4,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 2161 22587252 14192 23429192
22637552 28429102
36 <5,0,0 > <0,0,0,0,0,1,0,0,1,0,0,0 > 2161 22587252 14192 23429102
37 <5,0,0 > <0,0,0,0,0,1,0,0,1,0,0,0 > 2225 249313 14256 $5240863
4
38 <6,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 2225 219313 14256 $2229863
7524704 13316254
39 <6,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 2861 o2dT0d 14892 1331625
7524704 13316254
40 <7,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 2861 o270 14892 13316254
41 <7,0,1> <0,0,0,0,0,1,0,0,1,0,0,0 > 3621 SB8T0 15652 13875525
42 <8,0,0 > <0,0,0,0,0,1,0,0,1,0,0,1 > 3621 SB8T0 15652 33878325
43 <8,0,0 > <0,0,0,0,0,1,0,0,1,0,0,1 > 4724 28668746 16755 32464296
74 4
44 <8,1,1> <0,0,0,0,0,1,0,0,1,0,0,1 > 4724 23508138 16755 52250290
45 <8,1,1> <0,0,0,0,0,1,0,0,1,0,0,1 > 5436 2723924 17467 3303079
46 <8,2,0> <0,0,0,0,0,1,0,0,1,0,0,2 > 5436 21289201 17467 3389751
Table 3: The witness
k ‘ variables | clauses BMC sec | BMC MB RSAT sec | RSAT MB ‘ SAT ‘
0 422 637 0.0 3.0 0.0 1.3 NO
2 3492 9118 0.1 3.3 0.0 2.0 NO
4 6700 18060 0.3 3.7 0.0 2.7 NO
6 10057 27415 0.4 4.1 0.0 34 NO
8 13381 36674 0.6 4.5 0.1 4.2 NO
10 16771 46111 0.7 4.9 0.1 4.9 NO
12 20514 56536 0.9 5.3 0.1 5.8 NO
14 24083 66463 1.1 5.8 0.2 6.6 NO
16 27718 76568 1.2 6.2 0.2 7.4 NO
18 31419 86851 1.4 6.6 0.3 8.3 NO
20 35186 97312 1.6 7.1 0.3 9.1 NO
22 39541 109431 | 1.8 7.6 0.5 10.0 NO
24 43487 120382 | 1.9 8.0 0.5 11.0 NO
26 47499 131511 | 2.1 8.5 0.6 11.8 NO
28 51577 142818 | 2.3 9.0 0.9 12.7 NO
30 55721 154303 | 2.5 9.4 1.7 13.7 NO
32 59931 165966 | 2.7 9.9 1.6 14.5 NO
34 64207 177807 | 2.9 10.4 2.3 15.5 NO
36 68549 189826 | 3.1 11.0 1.6 16.5 NO
38 72957 202023 | 3.3 11.5 1.9 17.4 NO
40 77431 214398 | 3.5 12.0 2.6 18.5 NO
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42 81971 226951 3.7 125 3.3 19.2 NO

44 87616 242636 4.0 13.3 2.5 20.8 NO

46 92335 255679 4.2 13.8 18.8 245 YES
In total: 46.2 13.8 40.1 24.5

Table 4: Propertye F(wait locations)

5. Summary

We have proposed a preliminary Timed Automata with DiscBdéa model of Java programs, which is
going to be a base for a verification module of the tool VerlO8t method exploits two basic constructs
of the concurrency model in Java: data accessible by onlyloead (mutual exclusion) and semaphore
(a classic concurrency control construct).

The process of extracting TADD models from the Java sourde,dm some degree, depends on the
language. Although, many aspects of our method are mordyagelicable and could be used to model
programs written in other languages, for example C/C++, ADA

We have also provided preliminary experimental resultghédlgh we have constructed the TADD
model for the source code of the Alternating Bit Protocol laypdh, we trust that this processes can be
done in a full automatic way and effectively; in fact, the trat is currently being implemented as part
of the tool VerICS.

We cannot compare our results with existing tools - Band#?&_2 - since both of them analyse the
bytecode of a Java program, but not the Java program itseléaio.
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