
Fundamenta Informaticae 85 (2008) 533–548 533

IOS Press

Towards Verification of Java Programs in√erICS∗

Andrzej Zbrzezny, Bożena Woźna†

IMCS, Jan Długosz University

Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland

a.zbrzezny@ajd.czest.pl

b.wozna@ajd.czest.pl

Abstract. VerICS is a tool for the automated verification of timed automata and protocols written in
both the Intermediate Language and the specification language Estelle. Recently, the tool has been
extended to work with Timed Automata with Discrete Data and with multi-agent systems. This paper
presents a prototype Timed Automata with Discrete Data model of Java programs. In addition, we
show how to use the model together with the verification core of VerICS to validate the well-known
alternating bit protocol written in Java.

1. Introduction

Given a description of a systemS and a property (specification)P theverification problemconsists in
establishing whetherS satisfiesP. This can be achieved by using eitherhomogeneousor heterogeneous
verification methods. The former class of methods assumes that both the system and the specification
are given in the same formalism, while the latter allows the system and the specification to be described
in different formalisms.

Model checkingis a verification technique that was originally developed for temporal logics. Its main
idea consists in representing a finite state system, often derived from a hardware or software design, as
a labelled transition system (model), representing a specification by a temporal formula, and checking
automatically whether the formula holds in the model.

∗The authors acknowledge partial support from the Ministry of Science and Higher Education under grant number 3T11C
01128.
†Address for correspondence: IMCS, Jan Długosz University,Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland

534 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

For the last twenty years model checking has became a widely recognised and prominent technique
in hardware [16] and protocol verification [11]. Also, during the last two decades surprisingly many
efficient verification tools have appeared. The most advanced and popular are SPIN [12], NuSMV [4],
Uppaal [20], AVISPA [3]. This paper employs VerICS, a new verification tool developed in the past five
years.

VerICS is fully automated and geared toward verification of time dependent and multi-agent systems
as well as communication and security protocols. It can be downloaded from [1]. The tool is designed
to accept a number of input languages that either are translated into Intermediate Language (IL)[8] or
directly into a formalism called Timed Automata with Discrete Data (TADD) [14, 24]. The core of the
verification engine of the tool is mainly based on translations of the model checking problem into the
SAT problem [9]. Further, VerICS uses state-of-art SAT solvers likeZCHAFF [17] and RSAT [21], and it
is also equipped with GUI interfaces. The architecture of VerICS is composed of the following modules:

• Language Translator: it takes a system description in Estelle [13], which is an ISOstandard
specification language designed for describing communication protocols and distributed systems,
and it translates this description into IL that allows for describing a system as a set of processes,
which exchange information by message passing (via boundedor unbounded channels) or memory
sharing (using global variables).

• Automata Translator: it constructs timed automata (with discrete data) from an ILprogram.

• BMC Analyser: it verifies ECTLK [15] properties over models for timed automata and TECTL
[19] properties over models for TADD.

• UMC Analyser: it verifies CTLK properties over models for timed automata.

In this paper, we consider the problem of verification of concurrent Java programs. We consider
Java because it is now one of dominant languages for writing concurrent software. Verifying programs
written in programming languages like Java is different from verifying hardware or protocols; the state
space is often infinite and the relationships between possible states are harder to understand because
of asynchronous behaviour and complex underlying semantics of the languages. Further, the size and
complexity of software force us to treat model checking rather as a debugging technique in software
verification than a fully automated validation process of the software. In particular, for what concerns
verification of Java programs, we see model checking as a method that can be applied to the more crucial
parts of a Java software.

In order to investigate the challenges that Java programs pose for model checking, we have developed
a preliminary Timed Automata with Discrete Data (TADD) model of Java that is accurate enough to
detect concurrency errors and yet abstract enough to make model checking tractable. The main aim of
the paper is to describe this model, which can be further usedto build a verification module of Java
programs in VerICS. In addition, we show how to use our model together with the symbolic verification
core of VerICS to validate the well-known alternating bit protocol written in Java.

The rest of the paper is organised as follows. The next section provides a discussion on related
works. In Section 3 we define a TADD model of a subset of Java. Finally, we use the model to verify the
alternating bit protocol by means the model checker VerICS.

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 535

2. Related work

Model checking of Java programs has become increasingly popular during the last decade. However, to
the best of our knowledge, there are only two existing model checkers that can verify Java programs.
The first tool is called JavaPathFinder [10, 23, 18] and the second one is called Bandera [6].

The first release of JavaPathFinder(JPF1) is described in [10]. JPF1 translates Java code into Promela
code, which then can be model checked by means of the SPIN model checker [12]. In this realisation Java
programs may contain: dynamic creation of objects with dataand methods, class inheritance, threads,
synchronized statements, the���� and��� ��� methods, exceptions, thread interrupts and most of the
standard programming languages constructs such as assignment statements, conditional statements and
loops. However, the translator misses some features, such as packages, overloading, method overriding,
recursion, strings, floating point numbers, some thread operations like suspend and resume, and some
control constructs such as the continue statement. In addition, arrays are not objects as they are in Java,
but are modelled using Promela’s own arrays to obtain efficient verification.

The second generation of JavaPathFinder(JPF2) is described in [23, 18]. This version of JPF2 com-
bines model checking techniques with techniques for dealing with large or infinite state spaces. These
techniques include a static analysis for supporting partial order reductions of the set of transitions to
be explored by the model checker, a predicate abstraction for abstracting the state space, and a runtime
analysis such as race condition detection and lock order analysis to pinpoint potentially problematic
code fragments. JPF2 techniques operate on the Java bytecode. Currently, the NASA model-checker
Java PathFinder is one of the backend model-checkers supported by Bandera.

The Bandera tools [7, 6] are designed to compile a Java program to a finite-state transition system that
can be processed by model-checking tools. This is accomplished by first compiling a Java source code
into Java byte-code. Second, using the Soot Java compiler framework [22] Java byte-code is translated
to an intermediate language calledJimple. Jimple is essentially a language of control-flow graphs where:

• statements appear in a three-address-code form, and

• various Java constructs such as method invocations and synchronized statements are represented in
terms of their virtual machine counterparts (such as: invokevirtual, monitorenter and monitorexit).

Third, the Jimple code is translated into a guarded command language called BIR (Bandera Intermediate
Representation). The BIR model can then be translated into the input languages of different model
checking tools. In particular there are translations from BIR to Promela (the input language of SPIN)
and the Bogor input language.

There are basically 2 releases of Bandera: 0.x and 1.x. The 0.x releases work but it is hard to
experiment with them. Only in this version however there is atranslation form BIR to Promela. The
1.x releases are focused on direct work with the Bogor model checking framework only, and they do not
support the translators or tools to work with SMV or Spin/Promela.

The Bandera tools give a direct support for unbounded dynamic creation of threads and objects, au-
tomatic memory management (garbage collection), virtual methods and exceptions. It supports virtually
all of the Java language features. However, Bandera does notcurrently model full Java standard library.
In particular, some of Java library classes were taken from the GNU Classpath library, and still native
calls are not modelled.

536 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

3. A TADD model of Java programs

This section describes a prototype Timed Automata with Discrete Data (TADDs) model of Java pro-
grams. TADDs [24] are standard diagonal timed automata augmented to include integer variables over
which standard arithmetic and Boolean expressions can be defined. These automata take as an input a
set of initialised integer variables and a set of propositional variables, true at particular states.

We start by describing thealternating bit protocol(ABP), a well-known communication protocol
that is often used as a test case for automated verification tools, and then we briefly describe concurrency
model in Java.

3.1. Alternating Bit Protocol

The protocol involves three active components: a sender, a receiver and a bidirectional communication
channel. Each message contains a control bit only and is sentfrom the sender to the receiver through an
unreliable communication channel. The protocol works in the following way. The sender starts sending
the bit to the receiver, which is initially silent. The sending of the bit proceeds until the sender receives
an acknowledgement. After that, the sender flips the controlbit and starts all over again. As soon as the
receiver receives the control bit that matches its internalcontrol bit, an acknowledgement is sent to the
sender. Then, the receiver flips his internal control bit andwaits for another bit.

The communication channel transmits bits both from the sender to the receiver, and from the receiver
to the sender. There are four possible situations that can occur. Bits are properly transmitted from the
sender (the receiver) to the receiver (the sender), or bits are corrupted or lost during such a transmission.

Listing 1 shows a Java source code of ABP, which will then be modelled as a network of TADDs that
run in parallel, communicate with each other via shared variables and perform transitions with shared
labels synchronously; we assume here a definition of parallel composition [24] that is an extension of the
standard definition of parallel composition [2] that takes into account integer variables.

3.2. Concurrency in Java

In Java, threads are instances either of the class������ or subclasses of the class������, that is, there
are two ways of creating threads: implementing an interface�������� or extending the class������.
We consider the most common way of creating threads, that is,by using the constructor for������
that takes as a parameter any object implementing the interface��������, which essentially means the
object has a method��� 	
. Once a thread is started by calling its����� 	
 method, the thread executes
the ��� 	
 method of this object. Although threads may have assigned priorities to control scheduling,
in this paper we assume that all threads have equal priorities and are scheduled arbitrarily.

Consider the ABP system shown in Listing 1. In this example, the program starts, as usual, by execut-
ing the static method���� 	
. As a result there are created: (1) an instance������ of ������������,
(2) instances of������ and������� that take������ as an argument, (3) two instances of������
that take as arguments the object of the class������ and�������, respectively. Then, all the threads
are started, which means that their��� 	
 methods are executed. The Sender and Receiver threads put/get
bit to the shared channel.

Recall that every Java object has an implicit lock. When a thread executes a synchronized method,
it must acquire the lock of the object on which the method has been invoked before executing the body

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 537

import j a v a . u t i l . Random ;
pub l i c c l a s s A l t B i t P r o t o c o l {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
LossyChannel channe l =new LossyChannel () ;
(new Thread (new Sender (channe l))) . s t a r t () ;
(new Thread (new Rece ive r (channe l))) . s t a r t () ;

}
}
c l a s s LossyChannel {

p r i v a t e boolean p r o t o c o l B i t , channelEmpty =t rue , a c k B i t = t rue ;
p r i v a t e Random r ;
pub l i c LossyChannel () { r = new Random () ; }
pub l i c synchron ized boolean ge tAckB i t () { n o t i f y () ; re turn a c k B i t ; }
pub l i c synchron ized vo id pu tAckBi t (boolean a c k B i t) {

t h i s . a c k B i t = a c k B i t ;
i n t i g n o r e B i t = r . n e x t I n t (2) ;
i f (i g n o r e B i t > 0) { t h i s . a c k B i t = ! t h i s . a c k B i t ; } n o t i f y () ;

}
pub l i c synchron ized boolean g e t () {

whi le (! channelEmpty) {t r y { wa i t () ; } ca tch (I n t e r r u p t e d E x c e p t i o n e) { } }
channelEmpty = t rue ; n o t i f y () ; re turn p r o t o c o l B i t ;

}
pub l i c synchron ized vo id pu t (boolean p r o t o c o l B i t) {

whi le (! channelEmpty) {t r y { wa i t () ; } ca tch (I n t e r r u p t e d E x c e p t i o n e) { } }
i n t i g n o r e B i t = r . n e x t I n t (2) ;
channelEmpty = f a l s e ; i f (i g n o r e B i t > 0) channelEmpty =t rue ;
n o t i f y () ;

}
}
c l a s s Sender implements Runnable {

p r i v a t e LossyChannel channe l ;
pub l i c Sender (LossyChannel channe l) {t h i s . channe l = channe l ; }
pub l i c vo id run () {

boolean p r o t o c o l B i t = f a l s e ; Random r = new Random () ;
whi le (t rue) {

i f (p r o t o c o l B i t != channe l . ge tAckB i t ()) channe l . pu t (p r o t oc o l B i t) ;
e l s e p r o t o c o l B i t = ! p r o t o c o l B i t ;
t r y { Thread . s l e e p (r . n e x t I n t (1 5 0 0)) ; }ca tch (I n t e r r u p t e d E x c e p t i o n e) { }

}
}

}
c l a s s Rece ive r implements Runnable {

p r i v a t e LossyChannel channe l ;
pub l i c Rece ive r (LossyChannel channe l) {t h i s . channe l = channe l ; }
pub l i c vo id run () {

Random r = new Random () ;
whi le (t rue) {

boolean p r o t o c o l B i t = channe l . g e t () ; channe l . pu tAckBi t (p r o t o c ol B i t) ;
t r y { Thread . s l e e p (r . n e x t I n t (1 5 0 0)) ; }ca tch (I n t e r r u p t e d E x c e p t i o n e) { }

}
}

}

Listing 1. Java source code of the alternating bit protocol

538 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

of the method, releasing the lock when the body of the method is exited. If the lock is unavailable,
the thread will be blocked until the lock is released. In addition, every object also provides the wait-
and-notify mechanism that allows threads to be in waiting states. This wait-and-notify technique is
a communication mechanism between threads; it allows one thread to communicate to another thread
when a particular condition has occurred. In our ABP examplecallers of��� 	
 and���� �� �� 	
 must
wait either for an ackBit or for a fresh bit in the channel, callers of ��� 	
 and���� �� �� 	
 must wait
until the channel is nonempty. That is, the precondition forany operation mentioned above is checked,
and, if false, the thread blocks itself on the object by executing the���� 	
 method, which releases the
lock. When a method changes the state of the object in such a way that a precondition might now be true,
it executes the��� ��� 	
 method, which wakes up a thread waiting on the object.

3.3. A TADD model

We model a concurrent multi-threaded Java program with a network of TADDs. Each state of TADD
is an abstraction of the state of the Java program, and each transition represents the execution of code
transforming this abstract state. The modelled subset of Java contains: definitions of integer variables,
standard programming language constructs like assignmentstatements, conditional statements and loops,
definitions of classes, objects, methods and threads, synchronized and static methods (blocks), and the
methods���� 	
, ��� ��� 	
, ����� 	
 and������ 	
.

The method of constructing the TADD model of a Java program isthe following. State variables are
used to record the current control location of each thread and the values of key program variables and
any run-time information necessary to implement the concurrent semantics (e.g., whether each thread
is ready, running, or blocked on some object). Each transformation represents the execution of a Java
instruction (for example an assignment statement) for somethread. There is one TADD for each thread:
one TADD for the� ��� 	
 method and� identical TADDs for each��� 	
 method of class C (where n
is the number of instances for class C). In this paper we assume all method calls have been inlined; this
limits the analysis to programs with statically bounded recursion.

To produce an automaton for a thread, we proceed as follows. First, for all the variables��� of
type ��� or ������� of the considered thread class that are defined in the body of the method��� 	
,
we introduce corresponding local integer variables��������� �����. Next, we model��� 	
 methods
according to the following scheme:

variable:=expr;
in out

Tr(S1) Tr(S2)Tr(S2)

out2

in2

Tr(S1)

out1

in1
B=true B=false

Tr(if(B){S1}else{S2})

out

in

(a) (b)

Figure 1. An automata model of: (a) an assignment statement;(b) a conditional statement.

• If there is an assignment statement of the form��	
��� � ��	 �, then we produce an automaton
as it is shown in Figure 1a.

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 539

• If there is a conditional statement of the form�� 	����� ��� �
{������ ��� � � �} ����
{������ ��� �� �}, then we first build automata forS1 and S2, written Tr(S1) and Tr(S2).
Next, we produce an automaton that is a sum of automataTr(S1) andTr(S2) such that the initial
locationsin1 andin2 become one initial locationin, and the final locationsout1 andout2 become
one final locationout (see Figure 1b).

Tr(S1)Tr(S1)

out1

in1

B=true

in1

out1

B=false

Tr(while(B){S1})

out2

Tr(S1)

Tr(S2)

Tr(S2)in1
in2
out1 out2Tr(S1)

in1 out1

in2 out2

statement S1; statement S2;

(a) (b)

Figure 2. An automata model of: (a) a loop statement; (b) concatenation of two statements.

• If there is a loop statement of the form�� ��� 	��� �� ��� �
{��������� �� �}, then we first
build an automaton forS1, written Tr(S1), and next we produce an automaton as it is shown in
Figure 2(a).

• If there are two consecutive statements��������� �� � ������ ��� �� �, then we first build au-
tomata forS1 andS2, written Tr(S1) andTr(S2). Next, we produce an automaton which is
the concatenation ofTr(S1) andTr(S2), that is, the new automaton has as an initial location the
initial location ofTr(S1) (i.e., in1), as a final location the final location ofTr(S2) (i.e., out2), and
as a “contact” location a new location (out1-in2), which is amerger of the final location ofTr(S1)
(i.e., out1) and the initial location ofTr(S2) (i.e., in2) (see Figure 2(b)).

• A model of synchronized methods is shown in Figure 3(c). The way synchronization is realised is
the following. Letl be a number of objects on which synchronized methods are invoked. First, we
introducel binary semaphores andl special variablesnwt1, . . . , nwtl. The value of variablenwti
is equal to the numebr of threads waiting on the lock of the object numberi. In particular, initially
all the variables are set to zero. Then, we build an automatonthat has two special locations (in and
out), and two special transitions that are labelled with synchronized actionsinj andoutj, respec-
tively, wherej denotes the number of a thread which has invoked the synchronized method under
consideration,in denotes acquiring a lock of the object on which the method hasbeen invoked
and the entrance to the method, andout denotes releasing the lock and exit from the method. The
labelsinj andoutj will have the following general form:x_threadName_threadNumber with
x ∈ {in, out} (for examplein_sender_1, out_sender_1 - see the resulting automata for ABP).

• A model of the method���� 	
 is as shown in Figure 3(a), that is, we have an automaton of four
locations with(m− 1) + 2 transitions (m is the number of threads). The first transition is labelled
by actionwaitj which denotes the fact that thread numberj goes to awaiting stateand opens
the semaphore. In this state the thread is waiting to be notified by any other thread. Here this is
represented by the actionsnotify(1,j), . . . , notify(j−1,j), notify(j+1,j), . . . , notify(m,j); these
are synchronized actions between threads. Once that actionhappens, the thread gets into theready
state. A thread in this state is ready for execution, but is not beingcurrently executed. Once a

540 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

ready

out

in

wait

Tr(wait())

activej

waitj

notify(1,j), . . . , notify(j−1,j),
notify(j+1,j), . . . , notify(m,j)

(a) wait()

in

out

Tr(notify())

nwt1 = 0

nonej

k ∈ {1, . . . , j − 1, j + 1, . . .m}

notify(j,k)
nwt1 := nwt1 − 1

nwt1 > 0

(b) notify()

out

in

Tr(synchronized method)

the synchronized
method

the body of
Model of

outj

inj

(c) a synchronized method

Figure 3. An automata model of methodswait(), notify()and a synchronized method for threadj.

thread in the ready state gets access to the CPU, it gets converted to the running state. This is done
by invoking a synchronized actionactivej , which will close the semaphore.

• A model of the method��� ��� 	
 that wakes up an arbitrary chosen thread from all the threads
waiting on the object’s lock is as shown in Figure 3(b). Namely, we have an automaton of two
locations withm transitions labelled bynotify(j,k), for k ∈ {1, . . . , j − 1, j + 1, . . . ,m}, and
nonej, respectively. The synchronized actionnotify(j,k) represents the fact that thread number
j notifies the thread numberk, which thereby is moved to theready state. This action can be
performed only if the value of the variablenwti is grater than0, wherei is the number of the
object on which the synchronized method under consideration is invoked. Further, with this action
an instructionsnwti := nwti−1 is associated, which means that the number of the waiting threads
has been decreased by one. If there are no waiting threads, the ��� ��� 	
 method has no effect;
this is realised by the local actionnonej, which is enabled only if the value of the variablenwti is
equal to zero.

• A model of the methodsleep() consists in introducing a new clock with the general name
x_number_threadName_threadNumber (precisely, one clock for all instances of the method
sleep() in a thread) and producing an automaton that consists of three locations and two transi-
tions (see Figure 4(b)). The first transition must be labelled by the reset operation of the form
x_number_threadName_threadNumber := 0; the second transition must be labelled by:
(1) an action with general namesleepNumber_threadName_threadNumber (for example,
sleep1_sender_1); (2) the reset operation of the formx_number_threadName_threadNumber
:= 0; and (3) a guard of the form0 ≤ x_number_threadName_threadNumber ≤ value,
wherevalueis a parameter of the methodsleep()(for example,0 ≤ x1_sender_1 ≤ 1500).

• A model of the methodrandom() is simulated by an automaton that has two locations andn
transitions (n is a value of the parameter of the method random()) decoratedwith the instructions
of the formx := i, wherex is an integer variable andi ∈ {0, . . . , n − 1}.

• Values that are returned by methods of a non-void type are stored in integer variables with the
general namethreadName_threadNumber_methodName.

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 541

• Passing parameters of the typeint andbooleanto a function is realised in the following two steps.
First, we introduce as many new integer variables as the function under consideration has para-
meters; the general name of the new variables isclassName_methodName_parameterName.
Second, we introduce a set of assignment instructions of theform: className_methodName
_parameterName := value, wherevalue is the value of a parameter with the nameparameter
Name. This instruction is attached to a transition labelled withthe actionin_threadName_
threadNumber, if the function under consideration is a synchronized function. Otherwise, this
instruction is attached to a transition labelled with the action in_className_methodName.

close

open

in
_s

en
de

r_
1

ac
tiv

e_
2

ou
t_

se
nd

er
_1

in
_r

ec
iv

er
_1

ou
t_

re
ci

ve
r_

1

ac
tiv

e_
1

nw
t_

1:
=

nw
t_

1+
1

w
ai

t_
2

w
ai

t_
1

nwt_1:=nwt_1+1
out

in

x_number_threadName_threadNumber:=0

0<=x_number_threadName_threadNumber<=value

sleep−number_threadName_threadNumber

x_number_threadName_threadNumber:=0

(a) (b)
Figure 4. Automata for: (a) semaphore (b) methodsleep().

S6

S11

S12

S0

S1

S2

S3

S4

S5
s_protocolBit!=s_getackBit

out_sender_1 in_sender_1

S7
s_put:=s_protocolBit

S8

 wait_1

S9

active_1
S10

S13

S14

none_1
S15

out_sender_1
 s:=0

 s:=0
sleep_1

0<=s<=1500

in_sender_1
s_protocolBit=s_getackBit

 s_protocolBit:=1−s_protocolBit

 s:=0

s_protocolBit:=0

channel_channelEmpty=1
channel_channelEmpty=0

s_getackBit:=channel_ackBit

s_protocolBit = sender_protocolBit ;
LEGEND: s = x1_sender_1 ; sleep_1 = sleep_1_sender_1 ;

notify_(1,2)

notify_(2,1)

nwt_1=0

nwt_1>0

nwt_1:=nwt_1−1

s_ignorePacket=sender_1_ignorePacket
s_put=sender_1_put ; s_getackBit=sender_1_getackBit

nwt_1:=nwt_1−1
notify_(1,2)

nwt_1>0

nwt_1=0
none_1

channel_channelEmpty:=0

 channel_protocolBit:=s_put

s_ignoreBit:=0 s_ignoreBit:=1

s_ignoreBit=1s_ignoreBit=0

channel_channelEmpty:=1

Figure 5. An automaton for Sender

Given the above it is easy to infer the network of timed automata with discrete data that model
Alternating Bit Protocol; this is shown in Figures 4(a), 5 and 6.

542 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

S0

S1

S4

S2

S3

active_2

S5

S6

S7 S8 S10S9

S11

S12

S13

S14S15

r_protocolBit:=r_get

 r:=0

in_receiver_1

in_receiver_1

out_receiver_1

channel_channelEmpty=0
 channel_channelEmpty:=1

channel_channelEmpty=1
wait_2

r_putackBit:=r_protocolBit

channel_ackBit:=r_putackBit

LEGEND: r_get=receiver_1_get ;

 r:=0
0<=r<=1500sleep_1_receiver_1

notify_(1,2)

none_2

none_2

nwt_1=0

nwt_1=0

nwt_1>0

nwt_1>0

nwt_1:=nwt_1−1

r_ignoreBit=receiver_1_ignoreBit

r=x1_receiver_1 ;

r_putackBit=receiver_1_putackBit ;

r_protocolBit=receiver_1_protocolBit

r_ignoreBit:=1r_ignoreBit:=0

r_ignoreBit=1
r_ignoreBit=0

channel_ackBit:=1−channel_ackBit

notify_(2,1)

out_receiver_1

r_get:=channel_protocolBit

nwt_1:=nwt_1−1

notify_(2,1)

Figure 6. An automaton for Receiver

4. Experimental results

In this section we show how to use our model together with the verification core of VerICS (in fact
the BMC module) to validate the Alternating Bit Protocol written in Java; the tested code is shown
in Listing 1 in Section 3. All the experiments have been performed on a computer equipped with the
processor Intel Celeron M 1.30GHz, 768 MB RAM and the operating system Linux 2.6.24.

Since the BMC module is designed to look for errors, we have introduced in our Java code the
following errors: in the classLossyChannelwe have set the variablechannelEmptyto false (i.e., we have
put channelEmpty=0), and we have exchanged the condition of the while loop in themethodget() to the
following one: �� ��� 	������������
� ����.

These two small changes cause the protocol to stop working nearly immediately, which means that
a deadlock has occurred, because the both threads are waiting for two locks to be freed and the circum-
stances in the program are such that the locks are never freed. To find the cause of this behaviour, we
have checked the modified Java code of Alternating Bit Protocol for the existence of deadlocks. The
simplest way to find deadlocks is to verify whether the generated network of TADDs admits finite runs
only. To this end, it is enough to check whether the ECTL formula EFtrue [5] is true in the model
of the considered network for any possible length of a run. Inour example, it is possible to verify that
there is no run of length longer than 24. The generated witness shows the reason for such a situation: the
protocol gets into a state where both threads wait for a notification from another thread, but none of them
can invoke the methodnotify(). Table 1 reports this witness; experimental results are reported in Table 2.

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 543

Length locations values of variables Sender’s clock Receiver’s clock

0 < 0, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 0 0

16384
0 0

16384

1 < 0, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 571 13487

16384
571 13487

16384

2 < 0, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 571 13487

16384
571 13487

16384

3 < 0, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 881 11118

16384
881 11118

16384

4 < 0, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 881 11118

16384
881 11118

16384

5 < 0, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 1289 10857

16384
1289 10857

16384

6 < 1, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 1289 10857

16384
1289 10857

16384

7 < 1, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 2175 14820

16384
2175 14820

16384

8 < 2, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 2175 14820

16384
2175 14820

16384

9 < 2, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 2478 15509

16384
2478 15509

16384

10 < 3, 3, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2478 15509

16384
2478 15509

16384

11 < 3, 3, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3089 5652

16384
3089 5652

16384

12 < 4, 3, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3089 5652

16384
3089 5652

16384

13 < 4, 3, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 4349 9746

16384
4349 9746

16384

14 < 5, 3, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 4349 9746

16384
4349 9746

16384

15 < 5, 3, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 5674 7304

16384
5674 7304

16384

16 < 5, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 5674 7304

16384
5674 7304

16384

17 < 5, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 6049 2753

16384
6049 2753

16384

18 < 5, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 6049 2753

16384
6049 2753

16384

19 < 5, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 6952 3525

16384
6952 3525

16384

20 < 6, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 6952 3525

16384
6952 3525

16384

21 < 6, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 8194 15846

16384
8194 15846

16384

22 < 7, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 8194 15846

16384
8194 15846

16384

23 < 7, 2, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 8738 7928

16384
8738 7928

16384

24 < 8, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2 > 8738 7928

16384
8738 7928

16384

Table 1: The witness

544 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

k variables clauses BMC sec BMC MB RSAT sec RSAT MB SAT

0 416 619 0.0 3.0 0.0 1.3 YES
2 3482 9088 0.1 3.3 0.0 2.0 YES
4 6686 18018 0.3 3.7 0.0 2.6 YES
6 10039 27361 0.4 4.1 0.1 3.4 YES
8 13359 36608 0.6 4.5 0.1 4.2 YES
10 16745 46033 0.7 4.9 0.1 4.9 YES
12 20484 56446 0.9 5.3 0.2 5.8 YES
14 24049 66361 1.0 5.8 0.3 6.5 YES
16 27680 76454 1.2 6.2 0.5 7.3 YES
18 31377 86725 1.4 6.6 1.6 8.3 YES
20 35140 97174 1.6 7.1 0.9 9.1 YES
22 39491 109281 1.8 7.6 2.2 10.3 YES
24 43433 120220 2.0 8.0 1.7 11.1 YES
26 47441 131337 2.1 8.5 0.4 11.8 NO

In total: 14.1 8.5 8.1 11.8

Table 2: Property EFtrue.

In Table 1 the first column shows the length of the witness, thesecond column shows locations of
Sender, Receiver and Semaphore, respectively, the third column shows values of integer variables with
the meaning: z0: channel_channelEmpty, z1: channel_protocolBit, z2: r_get, z3: r_protocolBit, z4:
r_put_ackBit, z5: channel_ackBit, z6: r_ignoreBit, z7: s_protocolBit, z8: s_getackBit, z9: s_put, z10:
s_ignoreBit, z11: nwt_1 and the last two columns show the values of clocks for Sender and Receiver,
respectively.

For the second experiment, we have introduced in our Java code only one error by modifying the
methodget() as illustrated above. This small change causes the protocoleither to stop working, or to
perform some infinite loop.

The reason for the deadlock is the following: the protocol can reach a state where both threads wait
for a notification from another thread, but none of them can invoke the methodnotify(). We can show
formally that such a situation indeed exists by checking reachability of a state in our TADD model which
contains ”wait” locations (i.e., locations to which automata for Sender and Receiver can get in, if actions
wait_1andwait_2are performed). We have done such a reachability test, and wehave found a witness
of length 46 which shows that both Sender and Receiver can both move to a waiting state, and there is
no way for them to move to a ready state; for this witness see Table 3; experimental results are presented
in Table 4.

The reason the modified Java program may go into an infinite loop can be found by examining the
witnesses for the reachability property mentioned above: the Sender can continuously send messages,
but he never gets an acknowledgement.

Length locations values of variables Sender’s clock Receiver’s clock

0 < 0, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 0 0

33554432
0 0

33554432

1 < 0, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 638 31095471

33554432
638 31095471

33554432

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 545

2 < 1, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 638 31095471

33554432
638 31095471

33554432

3 < 1, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1421 28288043

33554432
1421 28288043

33554432

4 < 2, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1421 28288043

33554432
1421 28288043

33554432

5 < 2, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2712 14254826

33554432
2712 14254826

33554432

6 < 3, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2712 14254826

33554432
2712 14254826

33554432

7 < 3, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2825 16790440

33554432
2825 16790440

33554432

8 < 4, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2825 16790440

33554432
2825 16790440

33554432

9 < 4, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3248 5394119

33554432
3248 5394119

33554432

10 < 5, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3248 5394119

33554432
3248 5394119

33554432

11 < 5, 0, 0 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3356 870022

33554432
3356 870022

33554432

12 < 6, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3356 870022

33554432
3356 870022

33554432

13 < 6, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3936 132865

33554432
3936 132865

33554432

14 < 7, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3936 132865

33554432
3936 132865

33554432

15 < 7, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 5270 16845056

33554432
5270 16845056

33554432

16 < 10, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 5270 16845056

33554432
5270 16845056

33554432

17 < 10, 0, 1 > < 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 6665 15302656

33554432
6665 15302656

33554432

18 < 11, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 6665 15302656

33554432
6665 15302656

33554432

19 < 11, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 8161 32515834

33554432
8161 32515834

33554432

20 < 12, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 8161 32515834

33554432
8161 32515834

33554432

21 < 12, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 9646 17719040

33554432
9646 17719040

33554432

22 < 13, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 9646 17719040

33554432
9646 17719040

33554432

23 < 13, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 10018 14559156

33554432
10018 14559156

33554432

24 < 14, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 10018 14559156

33554432
10018 14559156

33554432

25 < 14, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 11039 18366376

33554432
11039 18366376

33554432

26 < 15, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 0 0

33554432
11039 18366376

33554432

27 < 15, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 991 20979606

33554432
12031 5791550

33554432

28 < 1, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 0 0

33554432
12031 5791550

33554432

29 < 1, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 616 27694219

33554432
12647 33485769

33554432

30 < 2, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 616 27694219

33554432
12647 33485769

33554432

31 < 2, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1524 5345448

33554432
13555 11136998

33554432

32 < 3, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1524 5345448

33554432
13555 11136998

33554432

33 < 3, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1681 32498720

33554432
13713 4735838

33554432

546 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

34 < 4, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 1681 32498720

33554432
13713 4735838

33554432

35 < 4, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2161 22637552

33554432
14192 28429102

33554432

36 < 5, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2161 22637552

33554432
14192 28429102

33554432

37 < 5, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2225 9449313

33554432
14256 15240863

33554432

38 < 6, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2225 9449313

33554432
14256 15240863

33554432

39 < 6, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2861 7524704

33554432
14892 13316254

33554432

40 < 7, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 2861 7524704

33554432
14892 13316254

33554432

41 < 7, 0, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 > 3621 8083799

33554432
15652 13875349

33554432

42 < 8, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 3621 8083799

33554432
15652 13875349

33554432

43 < 8, 0, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 4724 26668746

33554432
16755 32460296

33554432

44 < 8, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 4724 26668746

33554432
16755 32460296

33554432

45 < 8, 1, 1 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 > 5436 27239241

33554432
17467 33030791

33554432

46 < 8, 2, 0 > < 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2 > 5436 27239241

33554432
17467 33030791

33554432

Table 3: The witness

k variables clauses BMC sec BMC MB RSAT sec RSAT MB SAT

0 422 637 0.0 3.0 0.0 1.3 NO
2 3492 9118 0.1 3.3 0.0 2.0 NO
4 6700 18060 0.3 3.7 0.0 2.7 NO
6 10057 27415 0.4 4.1 0.0 3.4 NO
8 13381 36674 0.6 4.5 0.1 4.2 NO
10 16771 46111 0.7 4.9 0.1 4.9 NO
12 20514 56536 0.9 5.3 0.1 5.8 NO
14 24083 66463 1.1 5.8 0.2 6.6 NO
16 27718 76568 1.2 6.2 0.2 7.4 NO
18 31419 86851 1.4 6.6 0.3 8.3 NO
20 35186 97312 1.6 7.1 0.3 9.1 NO
22 39541 109431 1.8 7.6 0.5 10.0 NO
24 43487 120382 1.9 8.0 0.5 11.0 NO
26 47499 131511 2.1 8.5 0.6 11.8 NO
28 51577 142818 2.3 9.0 0.9 12.7 NO
30 55721 154303 2.5 9.4 1.7 13.7 NO
32 59931 165966 2.7 9.9 1.6 14.5 NO
34 64207 177807 2.9 10.4 2.3 15.5 NO
36 68549 189826 3.1 11.0 1.6 16.5 NO
38 72957 202023 3.3 11.5 1.9 17.4 NO
40 77431 214398 3.5 12.0 2.6 18.5 NO

A. Zbrzezny and B. Woźna / Towards Verification of Java Programs 547

42 81971 226951 3.7 12.5 3.3 19.2 NO
44 87616 242636 4.0 13.3 2.5 20.8 NO
46 92335 255679 4.2 13.8 18.8 24.5 YES

In total: 46.2 13.8 40.1 24.5
Table 4: PropertyEF (wait locations)

5. Summary

We have proposed a preliminary Timed Automata with DiscreteData model of Java programs, which is
going to be a base for a verification module of the tool VerICS.Our method exploits two basic constructs
of the concurrency model in Java: data accessible by only onethread (mutual exclusion) and semaphore
(a classic concurrency control construct).

The process of extracting TADD models from the Java source code, to some degree, depends on the
language. Although, many aspects of our method are more widely applicable and could be used to model
programs written in other languages, for example C/C++, ADA.

We have also provided preliminary experimental results. Although we have constructed the TADD
model for the source code of the Alternating Bit Protocol by hand, we trust that this processes can be
done in a full automatic way and effectively; in fact, the method is currently being implemented as part
of the tool VerICS.

We cannot compare our results with existing tools - Bandera,JPF2 - since both of them analyse the
bytecode of a Java program, but not the Java program itself aswe do.

References

[1] VerICS. http://verics.ipipan.waw.pl/verics/.

[2] R. Alur. Timed Automata. InProceedings of the 11th International Conference on Computer Aided Verifi-
cation (CAV’99), volume 1633 ofLNCS, pages 8–22. Springer-Verlag, 1999.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, P.-C. Héam,
J. Mantovani, S. Moedersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and
L. Vigneron. The AVISPA Tool for the Automated Validation ofInternet Security Protocols and Applications.
In Proceedings of 17th International Conference on Computer Aided Verification (CAV’05), volume 3576 of
LNCS, pages 281–285, Edinburgh, Scotland, UK, 2005. Springer-Verlag.

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model verifier. InProceed-
ings of the 11th International Computer Aided Verification Conference (CAV’99), volume 1633 ofLNCS,
pages 495–499. Springer-Verlag, 1999.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[6] J. Corbett, M. Dwyer, J. Hatcliff, Robby C. Pasareanu, S.Laubach, and H. Zheng. Bandera: Extracting
finite-state models from java source code. InProceedings of the 22nd International Conference on Software
Engineering(ICSE ’00), pages 439–448, New York, NY, USA, 2000. ACM Press.

548 A. Zbrzezny and B. Woźna / Towards Verification of Java Programs

[7] James C. Corbett. Constructing compact models of concurrent java programs. InInternational Symposium
on Software Testing and Analysis, pages 1–10, 1998.

[8] A. Doroś, A. Janowska, and P. Janowski. From specification languages to Timed Automata. InProceedings
of the International Workshop on Concurrency, Specification and Programming (CS&P’02), volume 161(1)
of Informatik-Berichte, pages 117–128. Humboldt University, 2002.

[9] J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for thesatisfiability (SAT) problem: a survey. InSatis-
fiability Problem: Theory and Applications, volume 35 ofDiscrete Mathematics and Theoretical Computer
Science(DIMASC), pages 19–152. American Mathematical Society, 1996.

[10] K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA PathFinder.International
Journal on Software Tools for Technology Transfer (STTT), V2(4):366–381, March 2000.

[11] G. J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall, 1991.

[12] G. J. Holzmann. The model checker SPIN.IEEE transaction on software engineering, 23(5):279–295, 1997.

[13] ISO/IEC 9074(E), Estelle - a formal description technique basedon an extended state-transition model.
International Standards Organization, 1997.

[14] A. Janowska and P. Janowski. Slicing of timed automata with discrete data.Fundamenta Informaticae,
72(1-3):181–195, 2006.

[15] M. Kacprzak, A. Lomuscio, and W. Penczek. From bounded to unbounded model checking for temporal
epistemic logic.Fundamenta Informaticae, 63(2,3):221–240, 2004.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[17] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference (DAC’01), pages 530–535, June 2001.

[18] C. Pasareanu and W. Visser. Verification of Java Programs Using Symbolic Execution and Invariant Genera-
tion. In Proceedings of SPIN’04, volume 2989 ofLNCS, pages 164–181. Springer-Verlag, 2004.

[19] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal fragment of CTL.
Fundamenta Informaticae, 51(1-2):135–156, 2002.

[20] P. Pettersson and K. G. Larsen. UPPAAL2k. Bulletin of the European Association for Theoretical Computer
Science, 70:40–44, February 2000.

[21] Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. Technical Report D–153, Auto-
mated Reasoning Group, Computer Science Department, UCLA,2007.

[22] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
java bytecode optimization framework. InProceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research (CASCON ’99), page 13. IBM Press, 1999.

[23] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. InProceedings of the 15th
International Conference on Automated Software Engineering (ASE), September 2000.

[24] A. Zbrzezny and A. Pólrola. Sat-based reachability checking for timed automata with discrete data.Funda-
menta Informaticae, 79(3–4):579–593, 2007.

