
Fundamenta Informaticae 85 (2008) 35–50 35

IOS Press

Methods as Parameters:
A Preprocessing Approach to Higher Order in Java

Marco Bellia, M. Eugenia Occhiuto∗

Dipartimento di Informatica

Universit̀a di Pisa, Pisa, Italy

bellia@di.unipi.it; occhiuto@di.unipi.it

Abstract. The paper investigates the use of preprocessing in adding higher order functionalities to
Java, that is in passing methods to other methods. The approach is based on a mechanism which
offers a restricted, disciplined, form of abstraction thatis suitable to the integration of high order
and object oriented programming. We show how this integration can be exploited in programming
through the development of an example. Then, we discuss how the expressive power of the language
is improved. A new syntax is introduced for formal and actualparameters, hence the paper defines
a translation that, at preprocessing time, maps programs ofthe extended language into programs of
ordinary Java.

Keywords: Higher order programming, object oriented programming, preprocessing

1. Introduction

Higher order programming,HO, is considered the main programming methodology of functional lan-
guages [3]. In this class of languages, in fact, programs arefunctions and functions are first class values
of the language. This means that functions can be passed as parameters to other functions, returned as
result of the computation and furthermore, functions can bevalues in data structures (i.e. we can have
lists, records and arrays of functions). The benefits obtained by HO programming are in the expressive-
ness of the code, which becomes more concise, clear and well structured and can be reused more easily.
These topics are extensively discussed in the literature onfunctional programming. References, that are
a starting point, are [15] and [25].

∗Address for correspondence: Dipartimento di Informatica,Università di Pisa, Pisa, Italy

36 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

Though functional languages have never become an effectivealternative to the imperative ones, in-
stead limited HO programming features have been added to imperative, first order languages to improve
their expressiveness. Examples in this direction are Pascal [17], C [18] and C++ [23]. Such languages
have been defined providing features to allow to pass programs (i.e. procedures or functions) as para-
meters to other programs. In fact, in this way an abstractionmechanism is added to the language, in
particular, programs are generalized with respect to the programs they invoke in the body.

Object-oriented languages improve code reusability and, in a sense, also add higher order features
to imperative languages. In fact, in this case, objects are first class values of the language [1] and [10].
In Java, objects contain values (instance variables) and methods (instance methods) and can be seen as
records [1] and interpreted as defining environments, (Ide 7→ {Val ∪ Methods}), binding selectors to
either values or methods, namelyIde is the set of selectors that specify object identifiers,Val is the set
of object values, andMethodsis the set of object methods. Methods, in this case, are not themselves
values, but are contained in objects which are values, henceone method can beimplicitly passed as a
parameter, returned as result and stored in data structuresas far as an object containing such a method is
passed to, returned from and stored in. In this way, the language provides a kind of higher order, [22].
This viewpoint is not of great help: It leads to programs weighted down from an indirect and tricky use
of objects to refer to methods [5], and it leads to complicated codes in the attempt to rephrase, in Java,
higher order programs already written, for instance, in a functional language.

In [6] and [7] several approaches to higher order programming in Java are considered. They are
characterized by:

• introspection, using meta-methods through the package java.lang.reflectfor meta programming in
Java [5] and [9];

• emulationof a calculus of functions through anonymous inner classes of Java [24] or function
pointers [20];

• extensionof the language, introducing special entities for functionabstractions as in Pizza [22] or
delegates as in J++ [11].

• integration of languages, using JNI for interoperation of method and function execution as in
Lambada [21].

All the approaches above are valid techniques to support themethodology but none of them seems
definitely better than the others. Furthermore, all of them either provide only an indirect way to support
the HO methodology or make a neat separation between functions and methods that limits the program
expressiveness and makes the use of HO programming a bit tricky. A different solution within the
extension approach is discussed in [6] and [7] where the problem of extending the OO paradigm with
method abstraction and method extraction is investigated,in the first orderζ-calculus [1], and a way to
overcome the conflict originated by combining extraction and subsumption is discussed.

In this paper we discuss an approach to extend Java with mechanisms to pass methods (not arbitrary
functions) as parameters and to generalize method invocation. We also discuss how its implementation
can be treated at preprocessing time. The main features of the approach are:

• It adds a new kind of parameter: the mparameter. A mparameter can be interpreted as defining a
function that maps objects (or classes) into instance (respectively, class) methods.

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 37

• Since they are functions, mparameters could be well defined by resorting to function abstraction.
Our approach uses a mechanism much less general which offersa restricted, disciplined, form of
function abstraction but suitable to the integration of high order and object oriented programming.

• It enhances code reusability by supplying the language witha higher order based, programming
expressiveness.

• All the extensions that it introduces can be implemented by apreprocessing technique that maps
programs of the extended language into programs of the ordinary language.

In order to show the benefits of the extensions, in Section 2, we compare the code, in Java, of a program
that uses higher order generalization with the code in the extended language. In Section 3 we introduce
the language extensions. In Section 4 we formally define the translationE that maps programs of the
extended language into programs of standard Java. The last section concludes the paper.

2. Code reusability: generalization vs. inheritance

We illustrate the reasons and the benefits for extending the language with features for higher order gener-
alization and how these features are integrated with those for object oriented programming, mainly code
reusability and inheritance.

2.1. Example of the code development for a class of geometricshapes

Let us consider the development, in Java, of the code for the computation of the lists of the areas and
of the perimeters of geometric shapes, equipped with methods to compute the area and the perimeter of
the shape [16] [4]. In Figure 1 we start giving a very concise definition for genericlists of objects: class
FList providesInsert, Val andTail operators.

Then we define the classShapes and several subclasses: one for each specific geometric shape, with
two obvious methodsArea andPerimeter. The fourth classFListShape is an extension ofFList,
equipped with two additional methodsFListArea andFListPerimeter, to compute the list of areas
and perimeters of a given list of shapes.

2.2. Higher order generalization

As it is clear, examining the code, the methodFListArea and the methodFListPerimeter are con-
stituted by the same code except for the name of the method in the invocation. In effect, once we have
defined one of the two methods, we would like to obtain the other one, using the mechanisms that the
language furnishes for code reusability. Unfortunately inJava these mechanisms are based on class hi-
erarchy and inheritance and they are unable to support this kind of code development. Higher order
generalization would provide an adequate support to that form of code development and reusability.
In fact it allows both togeneralizeinvocation((Shape)Val()).Area() into ((Shape)Val()).F(),
whereF is a functional variable, and to bindF to the right method. In the example of Figure 1, this would
allow to define a higher order method,Map, with a parameterF. At each invocation ofMap, the parameter
F should be bound to an object operation, namelyArea or Perimeter, which is to be used forF. The
methodMap would apply the operation bound toF to each objectVal().F() of the list, and return the list

38 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

public class FList {
private Object elem;

private FList next;

public FList () {elem=null; next=null;}
public FList Insert (Object x) {

FList l= new FList(); l.elem=x; l.next=this; return l; }
public Object Val () { return elem; }
public FList Tail () { return next; } }

public abstract class Shape {
public abstract Double Area();

public abstract Double Perimeter();}
public class Circle extends Shape {

private double radius;

public Circle(double r){radius=r;}
public Double Area() {return new Double(radius*radius*Math.PI);}
public Double Perimeter() {return new Double(radius*2*Math.PI);}}

public class Rectangle extends Shape {
private double base;

private double height;

public Rectangle(double b, double h){base=b; height=h;}
public Double Area() {return new Double(base*height);}
public Double Perimeter() {return new Double(2*(base+height));}}

public class FListShape extends FList {
public FListShape Insert (Object x) {...}
public FList FListArea(){

FList L= new FList();

if (Val()!=null) {L=((FListShape)Tail()).FListArea();
L=L.Insert(((Shape) Val()).Area());}

return L;}
public FList FListPerimeter(){

FList L= new FList();

if (Val()!=null) {L=((FListShape) Tail()).FListPerimeter();

L=L.Insert(((Shape) Val()).Perimeter());}
return L; }}

Figure 1. A class of geometric shapes in Java

of the computed objects. The invocation ofL.Map(Area) would compute likeL.FListArea() while
the invocation ofL.Map(Perimeter) would compute likeL.FListPerimeter(). Hence, the code for
Map would be reused forFListArea(), FListPerimeter() and for any other method that is obtained
by instantiating the generalization introduced in the definition of Map.

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 39

public class FList {
...same as above for instance variables, constructor and methods val, etc.
public FList Map(Fun → Object F){

FList L=new FList();

if (Val()!=null){L=Tail().Map(F);
L=L.Insert(Val().F());}

return L; }}
public class FListShape extends FList{

public FListShape Insert (Object x){...}
public FList FListArea() {return Map(Abs Area); }
public FList FListPerimeter() {return Map(Abs Perimeter); }}

Figure 2. Classes FList and FListShape in the extended language

2.3. Them parameter: A restricted form of function abstraction

We extend Java with a mechanism for higher order generalization of the sort described above. However
we cannot simply pass methods as parameters because of the late binding semantics of method overriding
[14]. Instead, we pass am parameter. It is denoted byAbs m and defines a mapping that, given an object,
in an invocation, selects the most specific method of the object having namem and the right types for the
arguments of that invocation. This yields the solution, in our extended language, in Figure 2:Map has
one mparameterF whose type isFun → Object. This means that the methods bound toF have no
arguments and compute a value of typeObject as results.FListShape is still containing two methods,
whose bodies are invocations ofMap: Map (Abs Area) for FListArea andMap (Abs Perimeter)

for FListPerimeter.

2.4. Integration with ordinary OO mechanisms

Since a mparameter is a function from objects (or classes) into instance (respectively, class) methods,
in the evaluation ofL.Maps(Abs Area), for instance, the parameterAbs Area stands for the function
that, given an objectv, returns themost specific[13] methodArea defined forv. Assumed thatL is the
list (v1, ..., vn), thenL.Map(Abs Area) computes the list(r1, ..., rn) where, for each1 ≤ i ≤ n, ri is
the result ofvi.mi() andmi is themost specificmethodArea of objectvi. For 1 ≤ i 6= j ≤ n, the
methodsmi andmj selected for objectvi andvj , respectively, may differ, as it is the case whenvi is
an instance of classCircle while vj is instance of classRectangle. Though objects of classCircle
and objects of classRectangle are objects of the superclassShape and they may inherit fromShape
the code for many methods, the code of methodArea is based on subclass specialization and is different
in the two classes. In this way we obtain a perfect integration of higher order generalization with the
mechanisms of class hierarchy and inheritance allowing to write programs of an OO language using a
higher order methodology.

3. Extension to the language

In this section we discuss the extensions to Java to support higher order generalization, in particular
parameter passing and method invocation.

40 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

3.1. Method declaration

The syntax for method declaration, [13]§8.4, is modified in the following way:

MethodDeclaration::=ResultType Identifier([FType Identifier (, FType Identifier)*])
Block

FType::= Type| Fun FTList→ Type| Fun FTList→ void
FTList::= [FType (, FType)*]

it defines a new syntactic category,FType, which replacesTypein MethodDeclaration. FTypecan be an
ordinaryTypeor a newly defined type, identified by the type constructorFun that specifies the types of
the arguments and type of the result of the methods that can bebound to the parameter, see§3.2.a.

3.2. Method invocation

The syntax for invocation, [13]§15.12, is modified in the following way:

MethodInvocation::= Expression.Identifier([AExpression (, AExpression)*])
| Expression.Parameter([AExpression (, AExpression)*])

AExpression::= Expression
| Abs Identifier

with the following meanings and constraints:

(a) method invocation is extended by the second rule ofMethodInvocation. It adds invocations of
the forme.p(l) wherep is a formal mparameter ande andl are object and list of arguments,
respectively, of the invocation. LetAbs m be the actual mparameter bound top. Let p be of type
Fun t1, ...tn → t. Let [|e|] be the value computed bye. Then the meaning ofe.p(l) is the
invocation ofe.m(l), provided thati) l is a list of expressions of type t1, . . . tn, and ii) m is the
name of a method, of the hierarchy of[|e|], that applies to a list of arguments of type t1, . . . tn and
returns a value of type t.

(b) actual parameters are extended by the second rule ofAExpression. It adds parameters of the form
Abs m, wherem is the name of a method. The meaning is a function that given anobjectc of any
class hierarchyC yields the most specific method ofc having namem.

3.3. Example

In the extended language we can write, for instance, in a class C, the declaration:

int A (B X, Fun int → int F) {return X.F(0);}

This defines a methodA, which returns an integer and has two parameters:X of typeB andF of typeFun
int → int. Let Abs M be the actual parameter bound toF. Then, in the invocationX.F(0), in the
body ofA, the most specific method of the class hierarchy of (the object bound to)X, having nameM, one
argument of typeint and returning a value of typeint, is selected and applied, with argument0, to X.
For instance, letc be an object of classC, andb be an object of classB, the invocationc.A(b, Abs M)

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 41

ClassDeclaration::= class Identifier [extends Type] [implements TypeList]{(MemberDecl)*}
MemberDecl::= ;

|ModifiersOpt FieldDeclarator
|ModifiersOpt Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt Type Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOptvoid Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt ClassOrInterfaceDeclaration
|[static] Block

FParameters::= ([FParameter (,FParameter)*])
FParameter::= [final] FType VariableDeclaratorId
FType::= Type |Fun FTList→ Type |Fun FTList→ void

FTList::=[FType(, FType)*]
Selector::= .Identifier [Arguments] |.Par Arguments |.this

|.super SuperSuffix |.new InnerCreator|[Expression]
Arguments::= ([AExp (, AExp)*])
AExp::= Expression| Abs Identifier

Figure 3. Extended syntax [13]

appliesA to c with argumentsb and the mparameterAbs M. In the evaluation of the body ofA, X.F(0)
yields the invocation of the most specific method ofb which has nameM and typeint → int. Because
of Java overriding many methods may exist with nameM and typeint → int for the objects of classB.
Hence different objectsb may involve different methods in the evaluation ofX.F(0).

4. Implementation

4.1. Preprocessing: Structure of a syntactic translation

The implementation proposed in this paper uses a preprocessing technique which maps programs, of the
extended language, back into programs of Java 1.4 [13]. A formal definition of the transformation is given
by the mappingE . It applies, separately, to each class of the source programproducing a corresponding
class of an equivalent program in Java 1.4.E is a compositional transformation and this allows to express
the translation through the collection of rules of Figures 4and 5 that apply descending on the class
syntactic structure of the extended language. Because of space limitations, we restrict the presentation
to the class structure of Figure 3.E is indexed by the additional parameterρ: It is an environment with
the scope information; It contains the binding〈name, FType〉 of each formal mparameter, visible in
the code, currently transformed byE . At the basis ofE there is the transformation of the higher order
introduced by the functionsAbs m into structures that can be handled at first order, in Java. All these
functions:

• differ one another for the method that must be selected once the object to apply to and the types of
the arguments of the invocation are known, while

• share the computation structurei) to apply the function to the object and the types,ii) to access the
class hierarchy of the object,iii) to find the most specific method with that name and types of the
arguments,iv) to apply the selected method to the object with the argumentsof the invocation.

42 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

Let ClassDef≡ public class A {
ModifiersOpt Type0 Ide0 [=Exp0] ;
. . .
ModifiersOpt Typeh Ideh [=Exph] ;
ModifiersOpt A(TypeC0

IdeC0
)BlockC0

. . .
ModifiersOpt A(TypeCk

IdeCk
)BlockCk

ModifiersOpt TypeM0
IdeM0

(FTypeFPM0

IdeFPM0

) BlockM0

. . .
ModifiersOpt TypeMk

IdeMk
(FTypeFPM

k

IdeFPM
k

) BlockMk

ModifiersOptvoid IdeMk+1
(FTypeFPM

k+1

IdeFPM
k+1

) BlockMk+1

. . .
ModifiersOptvoid IdeMn

(FTypeFPMn

IdeFPMn

) BlockMn

E [[ClassDef]]ρ = public class A implements ApplyClass {
ModifiersOpt Type0 Ide0[=Exp0] ;
. . .
ModifiersOpt Typeh Ideh[=Exph] ;
ModifiersOpt A (TypeC0

IdeC0
)BlockC0

. . .
ModifiersOpt A (TypeCk

IdeCk
)BlockCk

ModifiersOpt TypeM0
IdeM0

(E [[FTypeFPM0

IdeFPM0

]]ρ)E [[BlockM0
]]ρ′

0

. . .
ModifiersOpt TypeMk

IdeMk
(E [[FTypeFPMk

IdeFPMk

]]ρ)E [[BlockMk
]]ρ′

k

ModifiersOptvoid IdeMk+1
(E [[FTypeFPMk+1

IdeFPMk+1

]]ρ)E [[BlockMk+1
]]ρ′

k+1

. . .
ModifiersOptvoid IdeMn

(E [[FTypeFPMn

IdeFPMn

]]ρ)E [[BlockMn
]]ρ′n

Figure 4. TransformationE - part 1

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 43

private static int Dispatcher(String S){int pos=-1;

if (S.equals(ToS(IdeM0
))) pos=0;

else if ...

else if (S.equals(ToS(IdeMk
))) pos=k;

else if (S.equals(ToS(IdeMk+1
))) pos=k+1;

else if ...

else if (S.equals(ToS(IdeMn
))) pos=n;

return pos;}
public Object Apply(String M, Object Par) throws MethodNotFoundException{

int pos=Dispatcher(M);

switch (pos){case 0 : return IdeM0
((E [[FTypeFPM0

]]ρ)Par);

...

case k : return IdeMk
((E [[FTypeFPMk

]]ρ)Par);}

default : throw new MethodNotFoundException();}
public void ApplyS(String M, Object Par) throws MethodNotFoundException {

int pos=Dispatcher(M);

switch (pos){case k+1 : {IdeMk+1
((E [[FTypeFPM

k+1

]]ρ)Par);

break; }
...

case n : {IdeMn
((E [[FTypeFPMn

]]ρ)Par);}

break; }
default : throw new MethodNotFoundException();}}

where:ρ′i = R[[FTypeMk
IdeMk

]]ρ
R[[FType Ide]]ρ(x) =FType if Ide= x
R[[FType Ide]]ρ(x) =ρ(x) if Ide 6=x

E [[Block]]ρ = E [[St]]ρ; E [[StList]]ρ with Block = St; StList

E [[Arguments]]ρ = [E [[AExp]]ρ(, E [[AExp]]ρ)∗

E [[AExp]]ρ = E [[Expression]]ρ | ToS(Ide)

E [[FType]]ρ =











Type with FType= Type

String with FType= Fun FType→ Type

String with FType= Fun FType→ void

44 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

E [[St]]ρ =































































((ApplyClass)E [[Exp
1
]]ρ).ApplyS(Par,

new Object[]{(FType)E [[Exp
2
]]ρ)}, with St= Exp

1
.Par(Exp

2
) ∧

ρ(Par) = Fun FType→ void

E [[Exp
1
]]ρ.Ide(E [[Exp

2
]]ρ), with St= Exp

1
.Ide(Exp

2
) ∧

ρ(Ide) = ⊥

if(E [[Exp]]ρ)E [[St1]]ρ else E [[St2]]ρ; with St= if Exp St
1
else St2

while(E [[Exp]]ρ)E [[St]]ρ with St= while Exp St

etc.

E [[Exp]]ρ =



















































(Type)((ApplyClass)E [[Exp]]ρ).Apply(Par,

new Object[]{(FType)E [[Exp]]ρ)}, with Exp= Exp.Par(Exp)∧

ρ(Par) = Fun FType→ Type

E [[Exp]]ρ.Ide(E [[Exp]]ρ), with Exp= Exp.Ide(Exp)∧

ρ(Ide) = ⊥

E [[Exp]]ρ OpE [[Exp]]ρ with Exp= Exp Op Exp

etc.

Where:

• Exp, St, StList, FParameters, Ide stand forExpression, Statement, StatementList, FormalParame-
ters, Identifier respectively;

• ToS(m) computes the string univocally associated to the method ofnamem

Figure 5. TransformationE - part 2

The idea is to have the computation structure of those functions as a sort of run time support that is
included in the classes of the transformed programs, and used through suitable methods. This leads to
methods,Apply, ApplyS that deal with all phasesi)-iv) and are specific to each source class having
methods that are passed as mparameters in the source program. Invocations ofApply andApplyS
replace, in the transformed program, invocations in which the invoked method is a mparameter. An
interfaceApplyClass defines them as two abstract methods:

public interface ApplyClass {
public abstract Object Apply(String M, Object [] Pars) throws

MethodNotFoundException;

public abstract void ApplyS(String M, Object [] Pars) throws

MethodNotFoundException;}

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 45

They have two parameters:

1. M is the string univocally (seeToSbelow) associated to the name of the method to invoke,

2. Pars is the array of the actual parameters of the method to invoke.Each parameter of the ar-
ray is cast to the corresponding type of the argument type list bound to the mparameter in the
environmentρ.

Apply andApplyS find, throughDispatcher, the method whose name is equal toM and invoke it with
appropriate parameters taken fromPars. They differ because:

• Apply is used for methods returning a value, i.e. methods whose invocation is an expression. In
this caseApply returns an object: the one computed by the invoked method. A type cast inE is
imposed onApply result.

• ApplyS is used for methods which do not return any value. In this caseApplyS simply invokes
the method. No type cast is required.

Auxiliary methodDispatcher is introduced to help in structuring phaseiii) . It traverses the class
hierarchy to find the method of a given name. Found the class containing the right definition, it computes
the position in the class of the method. A string, namelyToS(Idei), is univocally associated to each
method name,Idei, for this purpose.

4.2. Example: The transformed program

The program resulting from the preprocessing of the programin Figure 2 is presented in Figures 6,7 and
8. The code for the classRectangle is omitted since it is equal to the one forCircle. All environments
ρ involved are empty except for classFList.

Let us consider now the execution of the methodFListArea on a list ofShapes constituted of
two elements a circlec and a rectangler. Suppose the circle is the first element in the list, obtained
applyingVal in the firstMap invocation. Hence, applyingApply to such element (of the classCircle)
with argument the string"Area", yields the invocation of the methodArea of the classCircle. In the
second recursive invocation, a rectangle is obtained byVal invocation. Hence applyingApply to such
element (of the classRectangle) with still "Area" yields the invocation of the methodArea of the class
Rectangle. So two different methodsArea of the classCircle andArea of the classRectangle are
invoked, within aMap invocation with the same mparameterF. This would not be possible ifF value
were a method, but more important, this is the behavior required in a language with class hierarchy and
inheritance mechanisms.

4.3. Syntactic simplifications

We confined the presentation ofE in several ways. However,E can be completed for full Java 1.4 ex-
tended with the mechanisms for mparameters. In particular, source programs may contain:i) m para-
meters that yield methods with more that one argument or thatare class methods,ii) exceptions,iii) class
hierarchies involving abstract classes and interfaces,iv) inner, embedded and local classes. Moreover,
E makes a different treatment between the classes of the source programs that can contain methods that
are passed as mparameters and those that cannot. Only the transformation of the former requires, to be

46 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

public class FList implements ApplyClass {
...same as Figure 1 for instance variablesetc.
public FList Map(String F){

FList L=new FList();

if (Val()!=null) { L=Tail().Map(F);

L=L.Insert((Object)((ApplyClass)Val().Apply(F,

new Object[]{}))); }
return L; }

private static int Dispatcher(String S){
int pos;

if (S.equals("Insert")) pos=0;

else if (S.equals("Val")) pos=1;

else if (S.equals("Tail")) pos=2;

else if (S.equals("Map")) pos=3;

else pos=-1;

return pos;}
public Object Apply(String M,

Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher(M);

switch (pos){ case 0:return Insert((Object)Pars[0]);

case 1:return Val();

case 2:return Tail();

case 3:return Map((String)Pars[0]);}
default : throw new MethodNotFoundException();}}

public void ApplyS ...}

where:ρ is such thatρ(F) = Fun→ Object;

Figure 6. Class FList

public class Circle extends Shape implements ApplyClass {
...same as Figure 1 for instance variables etc.
private static int Dispatcher(String S){int pos;

if (S.equals("Area")) pos=0;

else if (S.equals("Perimeter")) pos=1;

else pos=-1;

return pos;}
public Object Apply(String M,

Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher(M);

switch (pos){ case 0:return Area();

case 1: return Perimeter();}
default: throw new MethodNotFoundException();}}

public void ApplyS ...}

Figure 7. Class Circle

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 47

public class FListShape extends FList implements ApplyClass {
public FList FListArea(){ return Map("Area");}
public FList FListPerimeter(){return Map("Perimeter");}
private static int Dispatcher(String S){

int pos;

if (S.equals("FListArea")) pos=0;

else if (S.equals("FListPerimeter")) pos=1;

else pos=-1;

return pos;}
public Object Apply(String M,

Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher(M);

switch (pos){ case 0: return FListArea();

case 1: return FListPerimeter();

default: throw new MethodNotFoundException();}}
public void ApplyS ...}

Figure 8. FListShape

completed, the code to implement the interfaceApplyClass. The currently available implementation ap-
plies to programs of full Java 1.4 extended with mparameters and an additional modifier for classes that
explicitly declare whether the class is an implementation of ApplyClass. The first prototype was ob-
tained from scratch and was developed using Lex-Yacc tools.This prototype uses the syntactic categories
of Java 1.4. reported in chapter 18 of [13]. It is one-pass preprocessor and can be freely downloaded from
[8]. A new, and more elaborate, implementation is in progress. The new implementation automatically
detects the classes that are implementation ofApplyClass. Detection is obtained through the program
analysis designed for the static checks discussed later on in 4.7: A classC can contain methods passed
as mparameters if both(i) and(ii) hold for one of its methods:i) it has same signature and same return
type of a mparameter occurring in the declaration of a method, let us say p; ii) it has same name of (the
name in) the actual parameter, bound to the mparameter, in one of the invocation ofp in the program
(having the class in its scope). Also this implementation, is one-pass preprocessor but it resorts to back-
patching techniques [2] in order to complete the code of the classes that can contain methods passed as
m parameters once detected.

4.4. Overloaded methods

Currently,E assumes that overloaded methods are not yielded by mparameters. In fact, selecting, in
each invocation, the most specific signature among those matching the signature the invocation expects
for the method, solves method overloading, in Java. Lete.p(l) be an invocation of a method of name
p which is overloaded in the classe (belongs to), the expected signature depends only from the type of
l and is known at compile time. Dealing with mparameters, the expected signature, in an invocation
of p, now, passed as parameter, is the signature of the formal parameter,p is bound to, which is also
known at compile time. Instead, in our approach, it is classe which is unknown at compile time. Since
m parameters are mappings from classes (resp. objects) to class (resp. object) methods, the knowledge

48 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

of the class where to look for the most specific signature should be deferred to run time. So the actual
implementation forbids to pass overloaded methods, including constructors, as mparameters. Similar
arguments forbid also the use of overloaded methods with mparameters. Nevertheless, along the lines
sketched in 4.7, progress has been done to support overloaded methods as parameters. The idea is to
specify the class (hierarchy) the passed method belongs to.This would be done through a different kind
of m parameters , namely mcparameters that allow to specify the class (hierarchy) in addition to the
signature.

4.5. Program locality

Our approach maintains textual locality [12]. In particular: i) the class structure of the extended language
does not differ from that of ordinary Java nor the programs written in the extended language have a
different structure than Java programs. Again, programming in the extended language does not require
any additional ability and it leads to programs that show a structure of the classes defined in the program
that is close to the one of programs obtained with ordinary Java: the latter ones can contain additional
classes and methods in order to specialize, with the expected objects and methods, those invocations that,
in the program in the extended language, are abstracted using m parameters.ii) The transformationE
does not modify the class structure of the source program. Noting that the same cannot be obtained when
function pointers[20] are used since they require the introduction, in the program, of suitable additional
classes to contain their definitions.

4.6. Basic types and Java library

Our approach is strongly based on the language class hierarchy. In Java 1.4,basic types, includingint,
boolean etc. are not classes. In particularObject is not a superclass of the basic types. This fact
forbids the use, as mparameters, of the common operators on these types , i.e.+,-, == etc. and also of
each method having basic types in the signature. This impuretreatment of basic types is modified in the
most recent releases of Java, namely 1.5 and 1.6. They introduce adequate new classes, e.g.Integer,

Boolean etc., for each basic type and suitable, automatic, conversion mechanisms, namelyboxingand
unboxingto pass from primitive values to the corresponding objects (and backward). In Java 1.4, we
must explicitly define, in the program, the class,Ct in which boxing-unboxing the basic typet that is
involved in a mparameter. In particular each occurrence oft in the signature of the mparameter must
be replaced byCt and if an operator is passed as a mparameter, then a suitable method ofCt must be
passed instead.

Special care is required when the mparameter involves methods that are defined in Java API. In this
case, it is necessary that the class, containing such a method, is equipped with the methodsApply and
ApplyS, hence its definition must be preprocessed and then recompiled.

4.7. Types and static checks

The type of a formal mparameter isFun FTList → Type: It states number and types of the arguments
and type of the result of the methods that can be used in any invocation in which the mparameter applies.
It has the advantage that such methods belong to different, possibly unrelated, class hierarchies. The ef-
fective hierarchy, as well as the effective definition, for overridden methods, depends on the object (resp.

M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java 49

class) the mparameter applies to, in the invocation. This enhances abstraction and code reusability of
the classes that are using mparameters but forbids the ability to lead some static checks on the source
program. For instance, we are unable to statically check theclass hierarchies that will be involved, at
run time, in method passing for the effective presence of a method with the right signature [13]. The
situation is still more complicated if skew inheritance is considered [19]. The execution of one of the
methodsApply or ApplyS of the transformed program can throw aMethodNotFoundException().
This guarantees program safety against any wrong use of mparameters: in no way it can lead to un-
trapped errors. However, to perform deeper checks on the source program, as those required to deal with
method overloading, we are currently considering the introduction of mcparameters as a specialization
of the mparameters. An mcparameter is simply a mparameter with a class which can be interpreted as
the root of the class hierarchy of all the classes to which them parameter can apply. Thus, the type of
a mcparameter has formFun Class: FTList → Type that in addition specifies the class hierarchy
Class. The analysis of the methods in the hierarchy rooted inClass can be used:i) to find all the
classes that are implementation ofApplyClass; ii) to look for the presence of a method namedm and
matching the signatureFTList, for each invocation that binds the mcparameter to the actualAbs m; iii)
to have a technique to statically solve overloading when method namedm, in the actualAbs m, is over-
loaded and has most specific signatureFTList’. The replacement ofFTList with FTList’ in the type
of mc parameter is promising to solve overloading problem. The implementation under development
supports such a statically analysis technique.

5. Conclusions

The paper discussed a preprocessing implementation that supports Java 1.4 extended with higher order
functionalities. The approach is based on mparameters, which introduce functions that map each object
(class) of the program into the most specific method of the object (resp. class) having a given name and
type. This notion offers a restricted, disciplined, form offunction abstraction but suitable to the integra-
tion of higher order and object oriented programming. The main advantages of this solution are that it
is simple and expressive, it copes with code reusability andit is well suited to class hierarchy and inher-
itance mechanisms of Java. It is reasonably efficient, sinceit uses one-pass preprocessing. It does not
require any modification to JVM. The approach maintains textual locality. In particular the class struc-
ture of the extended language does not differ from the one of ordinary Java and the transformation does
not modify the class structure of the source program. The approach guarantees program safety against
any wrong use of mparameters. Although, the presentation ofE , in the paper, has been given for a lim-
ited program structure, an implementation of it for full Java 1.4 is currently available at [8]. Currently,
E assumes that overloaded methods are not yielded by mparameters. However, the use of a specialized
form of m parameters provides a promising solution to extend method passing to overloaded methods
and is currently under development in a new and more elaborate one-pass, backpatched, preprocessing.

References

[1] M. Abadi and L. Cardelli.A theory of objects. Springer-Verlag, 1996.

[2] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles, Tecniques, and Tools. Addison-Wesley, 1988.

50 M. Bellia and M.E. Occhiuto / Methods as Parameters: A Preprocessing Approach to Higher Order in Java

[3] J. Backus. Can programming be liberated from the von neumann style? a functional style and its algebra of
programs.Communication of the ACM, 21:613–641, 1978.

[4] J. Bloch.Programming Language Guide. Prentice Hall PTR, 2001.

[5] M. Bellia and M.E. Occhiuto. Higher order programming through Java reflection. InCS&P’2004, volume 3,
pages 447–459, 2004.

[6] M. Bellia and M.E. Occhiuto. Higher order programming inJava: Introspection, Subsumption and Extrac-
tion. Fundamenta Informaticae, 67(1):29–44, 2005.

[7] M. Bellia and M.E. Occhiuto. From Object Calculus to Java with Passing and Extraction of Methods.
University of Pisa, Dipartimento Informatica, 2006.

[8] M. Bellia and M.E. Occhiuto. Jh-preprocessing, 2007. //http://www.di.unipi.it/ occhiuto/JH/.

[9] B. Bringert. HOJ - higher-order Java, 2005. //cs.chalmers.se/bringert/hoj/.

[10] G. Castagna.Object-Oriented Programming: A Unified Foundation. Birkhauser Verlag AG, 1997.

[11] Microsoft Corporation. Delegates in visual J++, 2004.//msdn.microsoft.com/vjsharp/productinfo/visualj/
visualj6/technical/articles/general/delegates/default.aspx.

[12] R. Dyer, H. Narayanappa, and H. Rajan. Nu: Preserving design modularity in object code.ACM SIGSOFT
Software Engeneering Notes, 31, 2006.

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha.The JavaTM Language Specification - Second Edition.
Addison-Wesley, 2000.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha.The JavaTM Language Specification - Third Edition. Addison-
Wesley, 2005.

[15] P. Hudak. Conception, evolution , and application of functional programming languages.ACM Computing
Surveys, 21:359–411, 1989.

[16] P. Hudak.The Haskell school of Expression. Cambridge University Press, 2000.

[17] K. Jensen and N. Wirth.Pascal User Manual and Report. Springer, 1975.

[18] B. W. Kernighan and D. M. Ritchie.The C programming Language. Prentice-Hall, 1988.

[19] H. Langmaack, A. Salwicki, and M. Warpechowski. A deterministic algorithm elaborating direct super-
classes in java-like languages. InCS&P’2007, pages 388–399, 2007.

[20] G. McCluskey. Using method pointers and abstract classes vs. interfaces.Electronic Notes TCS, 2001.
//java.sun.com/developer/JDCTechTips/2001/tt1106.html.

[21] E. Meijer. Lambada, Haskell as a better Java.Electronic Notes TCS, 41(1), 2001.

[22] M. Odersky and P. Wadler. Pizza into Java: translating theory into practice. InProc. 24th Symposium on
Principles of Programming Languages, pages 146–159, 1997.

[23] H. Schildt.C++ The Complete Reference. McGraw Hill, Inc, 1995.

[24] A. Setzer. Java as a functional programming language. In TYPES 2002,LNCS 2646., pages 279–298, 2003.

[25] P. Wadler. The essence of functional programming. InProc. 19th Symposium on Principles of Programming
Languages, pages 1–14, 1992.

