Fundamenta Informaticae 85 (2008) 35-50 35
I0S Press

Methods as Parameters:
A Preprocessing Approach to Higher Order in Java

Marco Bellia, M. Eugenia Occhiutc*
Dipartimento di Informatica

Universit di Pisa, Pisa, Italy
bellia@di.unipi.it; occhiuto@di.unipi.it

1.

Abstract. The paper investigates the use of preprocessing in addyighorder functionalities to
Java, that is in passing methods to other methods. The agpi®dased on a mechanism which
offers a restricted, disciplined, form of abstraction tlsasuitable to the integration of high order
and object oriented programming. We show how this integnatan be exploited in programming
through the development of an example. Then, we discusslmextpressive power of the language
is improved. A new syntax is introduced for formal and acpelameters, hence the paper defines
a translation that, at preprocessing time, maps progrartieeaxtended language into programs of
ordinary Java.

Keywords: Higher order programming, object oriented programmingppocessing

Introduction

Higher order programming;O, is considered the main programming methodology of funetidan-

guages [3]. In this class of languages, in fact, program$useions and functions are first class values
of the language. This means that functions can be passedasegiars to other functions, returned as
result of the computation and furthermore, functions candlees in data structures (i.e. we can have
lists, records and arrays of functions). The benefits obthlyy HO programming are in the expressive-
ness of the code, which becomes more concise, clear andtvuelitsed and can be reused more easily.
These topics are extensively discussed in the literatufermtional programming. References, that are

a starting point, are [15] and [25].

*Address for correspondence: Dipartimento di Informatidaiversita di Pisa, Pisa, Italy

36 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

Though functional languages have never become an effeaitiomative to the imperative ones, in-
stead limited HO programming features have been added teratipe, first order languages to improve
their expressiveness. Examples in this direction are Pfsca C [18] and C++ [23]. Such languages
have been defined providing features to allow to pass pragfas procedures or functions) as para-
meters to other programs. In fact, in this way an abstraati@chanism is added to the language, in
particular, programs are generalized with respect to thgrams they invoke in the body.

Object-oriented languages improve code reusability amd, sense, also add higher order features
to imperative languages. In fact, in this case, objects esediass values of the language [1] and [10].
In Java, objects contain values (instance variables) arbads (instance methods) and can be seen as
records [1] and interpreted as defining environmeritée (~ {Val U Methodg), binding selectors to
either values or methods, nametle is the set of selectors that specify object identifidfa,is the set
of object values, an#lethodsis the set of object methods. Methods, in this case, are eotgblves
values, but are contained in objects which are values, heneanethod can binplicitly passed as a
parameter, returned as result and stored in data strucsrfas as an object containing such a method is
passed to, returned from and stored in. In this way, the agguyrovides a kind of higher order, [22].
This viewpoint is not of great help: It leads to programs viaégl down from an indirect and tricky use
of objects to refer to methods [5], and it leads to complidatedes in the attempt to rephrase, in Java,
higher order programs already written, for instance, inrefional language.

In [6] and [7] several approaches to higher order progrargnnnJava are considered. They are
characterized by:

e introspection using meta-methods through the package java.lang.réfleateta programming in
Java [5] and [9];

e emulationof a calculus of functions through anonymous inner clas$ekwa [24] or function
pointers [20];

e extensiorof the language, introducing special entities for functidastractions as in Pizza [22] or
delegates as in J++ [11].

e integration of languages, using JNI for interoperation of method andtion execution as in
Lambada [21].

All the approaches above are valid techniques to supportribinodology but none of them seems
definitely better than the others. Furthermore, all of théimee provide only an indirect way to support
the HO methodology or make a neat separation between fusctind methods that limits the program
expressiveness and makes the use of HO programming a Wiy.tri& different solution within the
extension approach is discussed in [6] and [7] where thelgmolof extending the OO paradigm with
method abstraction and method extraction is investigatethe first order(-calculus [1], and a way to
overcome the conflict originated by combining extractiod anbsumption is discussed.

In this paper we discuss an approach to extend Java with misamato pass methods (not arbitrary
functions) as parameters and to generalize method ineocail/e also discuss how its implementation
can be treated at preprocessing time. The main featureg afijproach are:

e It adds a new kind of parameter: theparameter. A nparameter can be interpreted as defining a
function that maps objects (or classes) into instance €émsely, class) methods.

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 37

¢ Since they are functions, 1parameters could be well defined by resorting to functionrabton.
Our approach uses a mechanism much less general which affesdricted, disciplined, form of
function abstraction but suitable to the integration ohhigder and object oriented programming.

e It enhances code reusability by supplying the language avitigher order based, programming
expressiveness.

¢ All the extensions that it introduces can be implemented pyeprocessing technique that maps
programs of the extended language into programs of theamgdianguage.

In order to show the benefits of the extensions, in Sectionex;ampare the code, in Java, of a program
that uses higher order generalization with the code in thenebed language. In Section 3 we introduce
the language extensions. In Section 4 we formally definerdneskationg that maps programs of the
extended language into programs of standard Java. Theelz&irs concludes the paper.

2. Code reusability: generalization vs. inheritance

We illustrate the reasons and the benefits for extendingatigulage with features for higher order gener-
alization and how these features are integrated with trarsebject oriented programming, mainly code
reusability and inheritance.

2.1. Example of the code development for a class of geometsbapes

Let us consider the development, in Java, of the code for dhgpatation of the lists of the areas and
of the perimeters of geometric shapes, equipped with mettmdompute the area and the perimeter of
the shape [16] [4]. In Figure 1 we start giving a very concisérition for generidists of objects: class
FList providesInsert, Val andTail operators.

Then we define the clashapes and several subclasses: one for each specific geometrie,shiip
two obvious methoddrea andPerimeter. The fourth clas§ListShape is an extension ofList,
equipped with two additional metho@$.istArea andFListPerimeter, to compute the list of areas
and perimeters of a given list of shapes.

2.2. Higher order generalization

As it is clear, examining the code, the methtidistArea and the metho#ListPerimeter are con-
stituted by the same code except for the name of the methduakimvocation. In effect, once we have
defined one of the two methods, we would like to obtain therotime, using the mechanisms that the
language furnishes for code reusability. Unfortunatelyama these mechanisms are based on class hi-
erarchy and inheritance and they are unable to support this & code development. Higher order
generalization would provide an adequate support to than fof code development and reusability.
In fact it allows both tageneralizeinvocation ((Shape)Val()) .Area() into ((Shape)Val()).FQ),
whereF is a functional variable, and to biridto the right method. In the example of Figure 1, this would
allow to define a higher order methagsp, with a parameteF. At each invocation oflap, the parameter

F should be bound to an object operation, nanmelga or Perimeter, which is to be used foF. The
methodMap would apply the operation bound¥do each objectal () .F () of the list, and return the list

38 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

public class FList {
private Object elem;
private FList next;
public FList () {elem=null; next=null;}
public FList Insert (Object x) {
FList 1= new FList(); l.elem=x; l.next=this; return 1; }
public Object Val () { return elem; }
public FList Tail () { return next; } }
public abstract class Shape {
public abstract Double Area();
public abstract Double Perimeter();}
public class Circle extends Shape {
private double radius;
public Circle(double r){radius=r;}
public Double Area() {return new Double(radius*radius*Math.PI);}
public Double Perimeter() {return new Double(radius*2*Math.PI);}}
public class Rectangle extends Shape {
private double base;
private double height;
public Rectangle(double b, double h){base=b; height=h;}
public Double Area() {return new Double(base*height);}
public Double Perimeter() {return new Double(2*(base+height));}}
public class FListShape extends FList {
public FListShape Insert (Object x) {...}
public FList FListArea(){
FList L= new FList();
if (Val()!=null) {L=((FListShape)Tail()).FListArea();
L=L.Insert (((Shape) Val()).Area());}
return L;}
public FList FListPerimeter (){
FList L= new FList();
if (Val()!=null) {L=((FListShape) Tail()).FListPerimeter();
L=L.Insert(((Shape) Val()).Perimeter());}
return L; }}

Figure 1. A class of geometric shapes in Java

of the computed objects. The invocationIlafMap (Area) would compute likel..FListArea () while
the invocation of..Map (Perimeter) would compute likeL.FListPerimeter (). Hence, the code for
Map would be reused foFListArea(), FListPerimeter () and for any other method that is obtained
by instantiating the generalization introduced in the dédin of Map.

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 39

public class FList {
.. .same as above for instance variables, constructor and detiad etc.
public FList Map(Fun — Object F){
FList L=new FList();
if (Val()!=null){L=Tail() .Map(F);
L=L.Insert(Val().F());}
return L; }}
public class FListShape extends FList{
public FListShape Insert (Object x){...}
public FList FListArea() {return Map(Abs Area); }
public FList FListPerimeter() {return Map(Abs Perimeter); }}

Figure 2. Classes FList and FListShape in the extended &yegu

2.3. Them_parameter: A restricted form of function abstraction

We extend Java with a mechanism for higher order generalizaf the sort described above. However
we cannot simply pass methods as parameters because déthmtding semantics of method overriding
[14]. Instead, we passra_parameter It is denoted bywbs m and defines a mapping that, given an object,
in an invocation, selects the most specific method of thecobjaving name and the right types for the
arguments of that invocation. This yields the solution, im extended language, in Figure Rap has
one mparametef whose type ifun — Object. This means that the methods boundtbave no
arguments and compute a value of typpgect as resultsFListShape is still containing two methods,
whose bodies are invocations ¥dp: Map (Abs Area) for FListArea andMap (Abs Perimeter)

for FListPerimeter.

2.4. Integration with ordinary OO mechanisms

Since a mparameter is a function from objects (or classes) into &g respectively, class) methods,
in the evaluation of..Maps (Abs Area), for instance, the parametébs Area stands for the function
that, given an object, returns thanost specifi§13] methodArea defined forv. Assumed that. is the
list (v1, ..., v,), thenL.Map (Abs Area) computes the lisry, ..., 7,) where, for each < i < n,r;is
the result ofv;.m;() andm, is themost specifianethodArea of objectv;. Forl < i # j < n, the
methodsm; andm; selected for object; andv;, respectively, may differ, as it is the case wheris

an instance of classircle while v; is instance of clasRectangle. Though objects of classircle
and objects of clasBectangle are objects of the superclaSsape and they may inherit fronShape
the code for many methods, the code of methaéda is based on subclass specialization and is different
in the two classes. In this way we obtain a perfect integnatibhigher order generalization with the
mechanisms of class hierarchy and inheritance allowingrtteyerograms of an OO language using a
higher order methodology.

3. Extension to the language

In this section we discuss the extensions to Java to suppitehorder generalization, in particular
parameter passing and method invocation.

40 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

3.1. Method declaration
The syntax for method declaration, [1§8.4, is modified in the following way:

MethodDeclaration=ResultType Identifie{FType Identifier (, FType Identifier))]

Block
FType:= Type| Fun FTList— Type| Fun FTList— void
FTList:= [FType (, FType)*]

it defines a new syntactic categoRType which replace§ypein MethodDeclaration FTypecan be an
ordinary Typeor a newly defined type, identified by the type construétat that specifies the types of
the arguments and type of the result of the methods that choudred to the parameter, sg&2.a.

3.2. Method invocation

The syntax for invocation, [13]15.12, is modified in the following way:

MethodInvocation::= Expression.ldentifi§fAExpression (, AExpression)}]
| Expression.ParametdfAEXxpression (, AExpression)y]

AExpression:.= Expression
| Abs Identifier

with the following meanings and constraints:

(&) method invocation is extended by the second rul&lethodinvocation It adds invocations of
the forme.p(1) wherep is a formal mparameter and and1 are object and list of arguments,
respectively, of the invocation. Léabs m be the actual nparameter bound tp. Letp be of type
Fun ty, ...t, — t. Let]e] be the value computed iy Then the meaning af.p (1) is the
invocation ofe.m(1), provided that) 1 is a list of expressions of type,t...t,, andii) m is the
name of a method, of the hierarchy [ef], that applies to a list of arguments of type t. .t, and
returns a value of type t.

(b) actual parameters are extended by the second rd&xiression |t adds parameters of the form
Abs m, wherem is the name of a method. The meaning is a function that givevbgettc of any
class hierarchy yields the most specific method ethaving namen.

3.3. Example
In the extended language we can write, for instance, in & Clabe declaration:

int A (B X, Fun int — int F) {return X.F(0);}

This defines a methatl which returns an integer and has two parameters.type B andF of type Fun
int — int. Let Abs M be the actual parameter boundfoThen, in the invocatiox.F(0), in the
body ofA, the most specific method of the class hierarchy of (the vbj@aend to)x, having name1, one
argument of typeint and returning a value of typint, is selected and applied, with argumento X.
For instance, let be an object of class, andb be an object of clasg, the invocationc.A(b, Abs M)

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 41

ClassDeclaration:= class Identifier [extends Type] [implements TypeList]{(MemberDecl)*}
MemberDect=;
|ModifiersOpt FieldDeclarator
[ModifiersOpt Identifier FParametershrows QualifiedldentifierList] Block
|IModifiersOpt Type Identifier FParametershrows QualifiedldentifierList] Block
IModifiersOptvoid Identifier FParametersthrows QualifiedldentifierList] Block
|IModifiersOpt ClassOrlnterfaceDeclaration
|[static] Block
FParameters= ([FParameter (,FParameter)?)
FParameter.;= [final] FType VariableDeclaratorld

FType:= Type |Fun FTList— Type |Fun FTList— void
FTList:=[FType(, FType)*]
Selector:= .ldentifier [Arguments] |.Par Arguments |.this

|. super SuperSuffix | .new InnerCreator |[Expressioh

Arguments= ([AExp (, AExp)*)
AExp:= Expression Abs Identifier

Figure 3. Extended syntax [13]

appliesA to c with arguments and the mparameteibs M. In the evaluation of the body af X.F(0)
yields the invocation of the most specific methodafhich has nam# and typeint — int. Because
of Java overriding many methods may exist with nafend typeint — int for the objects of clasB.
Hence different objects may involve different methods in the evaluationXof (0).

4. Implementation

4.1. Preprocessing: Structure of a syntactic translation

The implementation proposed in this paper uses a prepiiaogasghnique which maps programs, of the
extended language, back into programs of Java 1.4 [13]. rAdbdefinition of the transformation is given
by the mapping. It applies, separately, to each class of the source prograducing a corresponding
class of an equivalent program in Java X4s a compositional transformation and this allows to expres
the translation through the collection of rules of Figureandl 5 that apply descending on the class
syntactic structure of the extended language. BecauseacEdpmitations, we restrict the presentation
to the class structure of Figure 8.is indexed by the additional paramejerlt is an environment with
the scope information; It contains the bindifigame FType of each formal mparameter, visible in
the code, currently transformed By At the basis of there is the transformation of the higher order
introduced by the functionsbs m into structures that can be handled at first order, in Javhthase
functions:

¢ differ one another for the method that must be selected dreceliject to apply to and the types of
the arguments of the invocation are known, while

¢ share the computation structuyeo apply the function to the object and the typi@sto access the
class hierarchy of the objedti) to find the most specific method with that name and types of the
argumentsiv) to apply the selected method to the object with the argunwadritse invocation.

42 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

Let ClassDef= public class A {
ModifiersOpt Typgldey [=EXpo];

ModifiersOpt Typg Ide;, [ZEXp}];
ModifiersOpt AType:, Idec,)Block,

ModifiersOpt AType-, Idec,)Blocks,
ModifiersOpt Typgy, Idey, (FTypq:pMOIderMO) Blockay,

ModifiersOpt Typgy, Idey, (FTypq:pMk |derMk) Blocky,
ModifiersOptvoid Ideyy, ., , (FType]:pMk+1 |derMk+l) Blockys, .,

ModifiersOptvoid Idey;, (FTypg-p, Idegp) Blocky,
E[ClassDef, = public class A implements ApplyClass {
ModifiersOpt Typg ldey[=EXxpol;

ModifiersOpt Typg lde,[=EXp.];
ModifiersOpt A (Typeg, Idec,)Block:,

ModifiersOpt A (Type, Idec,)Block:,
ModifiersOpt Typgy, Idexr, (E[FTypeep,, Idepp,, [,)€[Blocku,],

ModifiersOpt Typeg, Idey, (€ [[FTypq:pMk IderMk Io)€[Blocky,],
ModifiersOptvoid Ideyy, ., , (5[[FType;:pMk+1 IdeFPMkH]]p)g[[BIOCkMk+1]]p;€+1

ModifiersOptvoid Idex, (E[FTypegp,, ldegp,, 1,)E[Blocky,],

Figure 4. Transformatioé - part 1

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 43

private static int Dispatcher(String S){int pos=-1;
if (S.equals(ToS(Ideps))) pos=0;
else if ...
else if (S.equals(ToS(Ideys,))) pos=k;
else if (S.equals(ToS(Idey,,,))) pos=k+1;
else if ...
else if (S.equals(ToS(Ideys,))) pos=n;
return pos;}
public Object Apply(String M, Object Par) throws MethodNotFoundException{
int pos=Dispatcher (M) ;

switch (pos){case0 : return Idehh((EHFTypeFTmmﬂp)Par);
case k : return Idey, (([FTyperp,, |,)Par);}
k
default : throw new MethodNotFoundException();}

public void ApplyS(String M, Object Par) throws MethodNotFoundException {
int pos=Dispatcher (M) ;
switch (pos){case k+1 : {Idewu+1«éﬁFYyperMhH]p)Par);

break; }
case . : {Iden,((E[FTypepp, |, Par);}
break; }
default : throw new MethodNotFoundException();}}

where:p; = R[FType,, Idey,],

R[FType Idg,(x) =FType if Ide=x
R[FType Idg,(x) =p(x) if Ide #x

E[BlocK, = £[S{,; £[StLisf, with Block = St; StList

E[Argument}, = [E] AEXP],(, [AEXp],)*
E[AExq, = £[Expressior], | ToS(de)

Type with FType= Type

E[FTypd, = ¢ String with FType= Fun FType— Type

String with FType= Fun FType— void

44 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

((ApplyClass)E[Exp],).ApplysS (Par,
new Object [1{(FTypgE[EXp,],)}, with St= Exp,.Par(Exp,) A
p(Par) = Fun FType— void
£[si, - E[EXp,],-1de(E[EXp,],), with St= Exp,.lde(Exp,) A
p(lde) = L
if(E[Exp,)E[St], else E[Sb],; with St= if Exp St else St
while(E[Exp],)E[ST, with St= while Exp St
etc
((Type)((ApplyClass)E[Exp,).Apply (Par,
new Object [1{(FTypeE[EXM,)}, with Exp = Exp.Par(Exp) A
p(Par) = Fun FType— Type
E[EXp, = { E[Exp,.1de(E[ExM],), with Exp = Explde(Exp)A
p(lde) = L
E[Exp, Op E[Exp], with Exp = Exp Op Exp
| etc
Where:

e Exp St StList FParameterside stand forExpression StatementStatementListFormalParame-
ters ldentifierrespectively;

e ToS(Mm) computes the string univocally associated to the methothofem

Figure 5. Transformatioé - part 2

The idea is to have the computation structure of those fonstas a sort of run time support that is
included in the classes of the transformed programs, ardlthseugh suitable methods. This leads to
methods,Apply, ApplyS that deal with all phaseg-iv) and are specific to each source class having
methods that are passed asparameters in the source program. Invocationagfly and ApplyS
replace, in the transformed program, invocations in whiwh ihvoked method is a rparameter. An
interfaceApplyClass defines them as two abstract methods:

public interface ApplyClass {
public abstract Object Apply(String M, Object [] Pars) throws
MethodNotFoundException;
public abstract void ApplyS(String M, Object [] Pars) throws
MethodNotFoundException; }

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 45

They have two parameters:

1. Mis the string univocally (se€oSbelow) associated to the name of the method to invoke,

2. Pars is the array of the actual parameters of the method to invdk&ch parameter of the ar-
ray is cast to the corresponding type of the argument typddiand to the mparameter in the
environmentp.

Apply andApplys find, throughDispatcher, the method whose name is equaMtand invoke it with
appropriate parameters taken frears. They differ because:

e Apply is used for methods returning a value, i.e. methods whoseEation is an expression. In
this caseApply returns an object: the one computed by the invoked methogpé tast inf is
imposed oMpply result.

e ApplyS is used for methods which do not return any value. In this aagayS simply invokes
the method. No type cast is required.

Auxiliary methodDispatcher is introduced to help in structuring phagg. It traverses the class
hierarchy to find the method of a given name. Found the clagmiting the right definition, it computes
the position in the class of the method. A string, nan&g(lde;), is univocally associated to each
method namelde;, for this purpose.

4.2. Example: The transformed program

The program resulting from the preprocessing of the progralRigure 2 is presented in Figures 6,7 and
8. The code for the clasgctangle is omitted since it is equal to the one faitrcle. All environments
p involved are empty except for claBgist.

Let us consider now the execution of the metirid stArea on a list of Shapes constituted of
two elements a circle and a rectangle. Suppose the circle is the first element in the list, obtained
applyingVval in the firstMap invocation. Hence, applyingpply to such element (of the clagssrcle)
with argument the stringjArea", yields the invocation of the methdd-ea of the clasircle. In the
second recursive invocation, a rectangle is obtainetdalyinvocation. Hence applyingpply to such
element (of the clasgectangle) with still "Area" yields the invocation of the methdd-ea of the class
Rectangle. So two different methodsrea of the clasCircle andArea of the clasRectangle are
invoked, within aMap invocation with the same marametef. This would not be possible i value
were a method, but more important, this is the behavior redun a language with class hierarchy and
inheritance mechanisms.

4.3. Syntactic simplifications

We confined the presentation 8fin several ways. Howeveg, can be completed for full Java 1.4 ex-
tended with the mechanisms forparameters. In particular, source programs may contaim_para-
meters that yield methods with more that one argument ortieatlass methods) exceptionsiii) class
hierarchies involving abstract classes and interfais@snner, embedded and local classes. Moreover,
£ makes a different treatment between the classes of theespurgrams that can contain methods that
are passed as qmarameters and those that cannot. Only the transformatithve dormer requires, to be

46 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

public class FList implements ApplyClass {
...same as Figure 1 for instance variablesc .
public FList Map(String F){
FList L=new FList();
if (Val()!=null) { L=Tail().Map(F);
L=L.Insert ((Object) ((ApplyClass)Val() .Apply(F,
new Object[1{}))); }
return L; }
private static int Dispatcher(String S){
int pos;
if (S.equals("Insert")) pos=0;
else if (S.equals("Val")) pos=1;
else if (S.equals("Tail")) pos=2;
else if (S.equals("Map")) pos=3;
else pos=-1;
return pos;}
public Object Apply(String M,
Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher (M) ;
switch (pos){ case O:return Insert((Object)Pars[0]);
case 1l:return Val(Q);
case 2:return Tail();
case 3:return Map((String)Pars[0]);}
default : throw new MethodNotFoundException();}}
public void ApplyS ...}

where:p is such thap(F) = Fun — Object
Figure 6. Class FList

public class Circle extends Shape implements ApplyClass {
.. .same as Figure 1 for instance variables etc.
private static int Dispatcher(String S){int pos;
if (S.equals("Area")) pos=0;
else if (S.equals("Perimeter")) pos=1;
else pos=-1;
return pos;}
public Object Apply(String M,
Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher (M) ;
switch (pos){ case O:return Area();
case 1: return Perimeter();}
default: throw new MethodNotFoundException();}}
public void ApplyS ...}

Figure 7. Class Circle

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 47

public class FListShape extends FList implements ApplyClass {
public FList FListArea(){ return Map("Area");}
public FList FListPerimeter () {return Map("Perimeter");}
private static int Dispatcher(String S){
int pos;
if (S.equals("FListArea")) pos=0;
else if (S.equals("FListPerimeter")) pos=1;
else pos=-1;
return pos;}
public Object Apply(String M,
Object [] Pars) throws MethodNotFoundException{
int pos=Dispatcher(M);
switch (pos){ case 0: return FListArea();
case 1: return FListPerimeter();
default: throw new MethodNotFoundException();}}
public void ApplyS ...}

Figure 8. FListShape

completed, the code to implement the interfapelyClass. The currently available implementation ap-
plies to programs of full Java 1.4 extended withparameters and an additional modifier for classes that
explicitly declare whether the class is an implementatibApgplyClass. The first prototype was ob-
tained from scratch and was developed using Lex-Yacc tatlis. prototype uses the syntactic categories
of Java 1.4. reported in chapter 18 of [13]. Itis one-paspnoaessor and can be freely downloaded from
[8]. A new, and more elaborate, implementation is in progirdhe new implementation automatically
detects the classes that are implementatiomnppfLyClass. Detection is obtained through the program
analysis designed for the static checks discussed later 417i A classC' can contain methods passed
as mparameters if botki) and(ii) hold for one of its methods) it has same signature and same return
type of a mparameter occurring in the declaration of a method, let yps#) it has same name of (the
name in) the actual parameter, bound to thpamameter, in one of the invocation @fn the program
(having the class in its scope). Also this implementatisrgrie-pass preprocessor but it resorts to back-
patching techniques [2] in order to complete the code of tasses that can contain methods passed as
m_parameters once detected.

4.4. Overloaded methods

Currently, £ assumes that overloaded methods are not yielded Iparameters. In fact, selecting, in
each invocation, the most specific signature among thosehingtthe signature the invocation expects
for the method, solves method overloading, in Java. dyefl) be an invocation of a method of name
p which is overloaded in the clags(belongs to), the expected signature depends only fromyfedf

[and is known at compile time. Dealing with_parameters, the expected signature, in an invocation
of p, now, passed as parameter, is the signature of the formaider,p is bound to, which is also
known at compile time. Instead, in our approach, it is classhich is unknown at compile time. Since
m_parameters are mappings from classes (resp. objects)sto (¢&sp. object) methods, the knowledge

48 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

of the class where to look for the most specific signature Ishibe deferred to run time. So the actual
implementation forbids to pass overloaded methods, iffudonstructors, as rmparameters. Similar
arguments forbid also the use of overloaded methods wifflarameters. Nevertheless, along the lines
sketched in 4.7, progress has been done to support ovetdloaethods as parameters. The idea is to
specify the class (hierarchy) the passed method belonghtewould be done through a different kind
of m_parameters , namely njgarameters that allow to specify the class (hierarchy) witeh to the
signature.

4.5. Program locality

Our approach maintains textual locality [12]. In particulid the class structure of the extended language
does not differ from that of ordinary Java nor the programitew in the extended language have a
different structure than Java programs. Again, progrargnmrthe extended language does not require
any additional ability and it leads to programs that showacstire of the classes defined in the program
that is close to the one of programs obtained with ordinama:Jéhe latter ones can contain additional
classes and methods in order to specialize, with the exphetfects and methods, those invocations that,
in the program in the extended language, are abstracted osparametersii) The transformatior€
does not maodify the class structure of the source progrartinglthat the same cannot be obtained when
function pointerg20] are used since they require the introduction, in thgmm, of suitable additional
classes to contain their definitions.

4.6. Basic types and Java library

Our approach is strongly based on the language class HigrdncJava 1.4basic typesincludingint,
boolean etc. are not classes. In particuldisject is not a superclass of the basic types. This fact
forbids the use, as marameters, of the common operators on these typest, k€. == etc. and also of
each method having basic types in the signature. This impegment of basic types is modified in the
most recent releases of Java, namely 1.5 and 1.6. They iniecadequate new classes, dgteger,
Boolean etc., for each basic type and suitable, automatic, coremsiechanisms, nameboxingand
unboxingto pass from primitive values to the corresponding objeatsl (backward). In Java 1.4, we
must explicitly define, in the program, the clasg, in which boxing-unboxing the basic typethat is
involved in a mparameter. In particular each occurrence af the signature of the rparameter must
be replaced bg+ and if an operator is passed as goarameter, then a suitable methodcgfmust be
passed instead.

Special care is required when thegarameter involves methods that are defined in Java APlidn th
case, it is necessary that the class, containing such a thethequipped with the methodgply and
ApplyS, hence its definition must be preprocessed and then recespil

4.7. Types and static checks

The type of a formal nparameter iSun FTList — Type: It states number and types of the arguments
and type of the result of the methods that can be used in aogaton in which the nparameter applies.

It has the advantage that such methods belong to differessilly unrelated, class hierarchies. The ef-
fective hierarchy, as well as the effective definition, feenidden methods, depends on the object (resp.

M. Bellia and M.E. Occhiuto/Methods as Parameters: A Prepssing Approach to Higher Order in Java 49

class) the mparameter applies to, in the invocation. This enhancesaattistn and code reusability of
the classes that are usingparameters but forbids the ability to lead some static checkthe source
program. For instance, we are unable to statically checkldes hierarchies that will be involved, at
run time, in method passing for the effective presence of thogewith the right signature [13]. The
situation is still more complicated if skew inheritance @sidered [19]. The execution of one of the
methodsApply or ApplyS of the transformed program can throwlathodNotFoundException().
This guarantees program safety against any wrong use gdnammeters: in no way it can lead to un-
trapped errors. However, to perform deeper checks on thesuogram, as those required to deal with
method overloading, we are currently considering the dhtobion of mcparameters as a specialization
of the mparameters. An mparameter is simply a rparameter with a class which can be interpreted as
the root of the class hierarchy of all the classes to whichmbygarameter can apply. Thus, the type of
a mcparameter has forflun Class: FTList — Type that in addition specifies the class hierarchy
Class. The analysis of the methods in the hierarchy roote@liass can be usedi) to find all the
classes that are implementationgfplyClass; ii) to look for the presence of a method nanednd
matching the signatureéTList, for each invocation that binds the mparameter to the actuabs m; iii)

to have a technique to statically solve overloading wherhotehamedh, in the actualibs m, is over-
loaded and has most specific signatBfeist’. The replacement ®fTList with FTList’ inthe type

of mc_parameter is promising to solve overloading problem. Thelémentation under development
supports such a statically analysis technique.

5. Conclusions

The paper discussed a preprocessing implementation thpbds Java 1.4 extended with higher order
functionalities. The approach is based orparameters, which introduce functions that map each object
(class) of the program into the most specific method of theatlffesp. class) having a given name and
type. This notion offers a restricted, disciplined, fornfafiction abstraction but suitable to the integra-
tion of higher order and object oriented programming. Thénnadvantages of this solution are that it
is simple and expressive, it copes with code reusabilityigisdvell suited to class hierarchy and inher-
itance mechanisms of Java. It is reasonably efficient, sineses one-pass preprocessing. It does not
require any modification to JVM. The approach maintainsu@tocality. In particular the class struc-
ture of the extended language does not differ from the onedifiary Java and the transformation does
not modify the class structure of the source program. Thecagh guarantees program safety against
any wrong use of nparameters. Although, the presentatior€pin the paper, has been given for a lim-
ited program structure, an implementation of it for full da\.4 is currently available at [8]. Currently,

£ assumes that overloaded methods are not yielded _parameters. However, the use of a specialized
form of m_parameters provides a promising solution to extend metlasdipg to overloaded methods
and is currently under development in a new and more elabora-pass, backpatched, preprocessing.

References

[1] M. Abadi and L. Cardelli.A theory of objectsSpringer-Verlag, 1996.

[2] A.V. Aho, R. Sethi, and J.D. UllmanCompilers: Principles, Tecniques, and Taafgddison-Wesley, 1988.

50 M. Bellia and M.E. Occhiuto/ Methods as Parameters: A Prepesing Approach to Higher Order in Java

[3] J. Backus. Can programming be liberated from the von reeunstyle? a functional style and its algebra of
programs.Communication of the ACM1:613-641, 1978.

[4] J. Bloch. Programming Language Guid®rentice Hall PTR, 2001.

[5] M. Belliaand M.E. Occhiuto. Higher order programmingdhgh Java reflection. I6S&P’2004 volume 3,
pages 447-459, 2004.

[6] M. Bellia and M.E. Occhiuto. Higher order programminglava: Introspection, Subsumption and Extrac-
tion. Fundamenta Informatica®7(1):29—-44, 2005.

[7] M. Bellia and M.E. Occhiuto. From Object Calculus to Java with Passing and Extraction aftivbds
University of Pisa, Dipartimento Informatica, 2006.

[8] M. Bellia and M.E. Occhiuto. Jh-preprocessing, 200Http://www.di.unipi.it/ occhiuto/JH/.
[9] B. Bringert. HOJ - higher-order Java, 2005. //cs.chabrse/bringert/hoj/.
[10] G. CastagnaObject-Oriented Programming: A Unified FoundatidBirkhauser Verlag AG, 1997.

[11] Microsoft Corporation. Delegates in visual J++, 200isdn.microsoft.com/vjsharp/productinfo/visualj/
visualj6/technical/articles/general/delegates/défspx.

[12] R. Dyer, H. Narayanappa, and H. Rajan. Nu: Preservisgpdenodularity in object codéACM SIGSOFT
Software Engeneering Noteil, 2006.

[13] J. Gosling, B. Joy, G. Steele, and G. Brachahe JavdM Language Specification - Second Edition
Addison-Wesley, 2000.

[14] J. Gosling, B. Joy, G. Steele, and G. Brachhe JavdgM Language Specification - Third EditioAddison-
Wesley, 2005.

[15] P. Hudak. Conception, evolution , and application afdtional programming languageA&CM Computing
Surveys21:359-411, 1989.

[16] P. Hudak.The Haskell school of Expressio@ambridge University Press, 2000.
[17] K. Jensen and N. WirthPascal User Manual and Reporpringer, 1975.
[18] B. W. Kernighan and D. M. RitchieThe C programming Languag®rentice-Hall, 1988.

[19] H. Langmaack, A. Salwicki, and M. Warpechowski. A det@ristic algorithm elaborating direct super-
classes in java-like languages. @$&P’2007 pages 388-399, 2007.

[20] G. McCluskey. Using method pointers and abstract elass. interfacesElectronic Notes TCS2001.
/ljava.sun.com/developer/JDCTechTips/2001/tt1106.ht

[21] E. Meijer. Lambada, Haskell as a better Jakzbectronic Notes TCS11(1), 2001.

[22] M. Odersky and P. Wadler. Pizza into Java: translativepty into practice. IfProc. 24th Symposium on
Principles of Programming Languaggsages 146-159, 1997.

[23] H. Schildt. C++ The Complete Referenc&cGraw Hill, Inc, 1995.
[24] A. Setzer. Java as a functional programming languag@YPES 2002,LNCS 264@ages 279-298, 2003.

[25] P. Wadler. The essence of functional programming?riic. 19th Symposium on Principles of Programming
Languagespages 1-14, 1992.

Copyright of Fundamenta Informaticae is the property of IOS Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's express
written permission. However, users may print, download, or email articles for individual use.

