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Abstract The goal of autonomic computing is to reduce
the configuration, operational, and maintenance costs of
distributed applications by enabling them to self-manage,
self-heal, and self-optimize. This paper provides two
contributions to the Model-Driven Engineering (MDE) of
autonomic computing systems using Enterprise Java Beans
(EJBs). First, we describe the structure and functionality
of an MDE tool that visually captures the design of EJB
applications, their quality of service (QoS) requirements,
and the adaptations applied to their EJBs. Second, the paper
describes how MDE tools can be used to generate code to sim-
ulate adaptive systems for verification and plug EJBs into a
Java component framework that provides runtime adaptation
capabilities.

Keywords Autonomic Computing · Model-Driven
Engineering · Enterprise Java Beans

1 Introduction

1.1 Autonomic computing challenges

Developing and maintaining enterprise applications is hard,
due in part to their complexity and the impact of human oper-
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ator error [27], which has been shown to be a significant con-
tributor to distributed system repair and down time [28]. The
aim of autonomic computing is to create distributed appli-
cations that have the ability to self-manage, self-heal, self-
optimize, self-configure, and self-protect [20,26], thereby
reducing human interaction with the system to minimize
down-time from operator error. Although the benefits of auto-
nomic computing are significant [20], the pressures of limited
development timeframes and inherent/accidental complexi-
ties of large-scale software development have discouraged
the integration of sophisticated autonomic computing func-
tionality into distributed applications. Some enterprise appli-
cation platforms, such as Enterprise Java Beans (EJB) [25],
offer limited autonomic features, such as application server
clustering capabilities, though they tend to have large devel-
opment teams and long development cycles.

A key challenge limiting the use of autonomic features in
enterprise applications today is the lack of design tools and
frameworks that can (1) alleviate the complexities stemming
from the use of manual development methods, (2) generate
code that mirrors the specifications of the model, and (3) pro-
vide mechanisms for validating adaptive systems early in the
design cycle. Some infrastructure does exist, such as IBM’s
Autonomic Computing Toolkit [16], which focuses on sys-
tem-level logging and management. System-level autonomic
toolkits are inadequate, however, for fine-grained autonomic
capabilities, such as adjusting algorithms to handle different
request demands, which are intended to fix problems early
before an entire application must be restarted.

To address the limitations with system-level autonomic
toolkits, component-level adaptive frameworks are needed
to reduce the effort of developing autonomic applications.
Component-level autonomic properties support more fine-
grained healing, optimization, configuration, monitoring,
and protection than system-level toolkits. For example, a
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mission-critical command and control system for emergency
responders should be able to shutdown/restart application
components selectively as they fail, rather than shutdown/
restart the entire application. With existing autonomic infra-
structure based on the system-level, the failure of a key com-
ponent triggers a restart of the entire application [7], which
can incur excessive overhead, particularly for Java-based sys-
tems due to JVM initialization latency. In contrast, a com-
ponent-level adaptive framework provides mechanisms to
restart only the point of failure [6].

Creating applications with either system- or component-
level autonomic frameworks requires moving large amounts
of state data, analysis data, actions plans, and execution com-
mands between components. These types of applications also
require careful weaving of monitoring, analysis, planning,
and execution logic into the functional components of the
system. Manually analyzing application autonomic aspects
such as checking whether the right state is being monitored
by the right components, is a complex process. Moreover,
creating a system that provides component-level adaptation
greatly increases the difficulty of assuring that it operates
properly throughout all of its adaptive modes [15].

1.2 Simplifying autonomic system development via MDE
techniques

Model-Driven engineering (MDE) [31] is a generative soft-
ware paradigm that combines

• Domain-specific modeling languages (DSMLs) whose
type systems formalize the application structure, behav-
ior, and requirements within particular domains, such
as software defined radios, avionics mission computing,
online financial services, warehouse and freight man-
agement, or even the domain of middleware platforms.
DSMLs are described using metamodels, which define the
relationships among concepts in a domain and precisely
specify the key semantics and constraints associated with
these domain concepts. Developers use DSMLs to build
applications using elements of the type system captured
by metamodels and express design intent declaratively,
rather than imperatively.

• Transformation engines and generators that analyze cer-
tain aspects of models and then synthesize various types
of artifacts, such as source code, simulation inputs, XML
deployment descriptions, or alternative model represen-
tations. The ability to synthesize artifacts from models
helps ensure the consistency between application imple-
mentations and analysis information associated with
functional and quality of service (QoS) requirements cap-
tured by models.

MDE tools are a promising means of reducing the cost
associated with creating and validating autonomic computing

systems. Models of autonomic systems developed with MDE
tools can be constructed and checked for correctness (semi-
)automatically to ensure that application designs meet
autonomic requirements. These tools can also generate the
various capabilities to move data, coordinate actions, and
perform other autonomic functions.

To address the need for component-level autonomic com-
puting—and to avoid ad hoc techniques that manually imbue
autonomic qualities into distributed applications—we have
created the J3 Toolsuite, which is an open-source1 MDE envi-
ronment that supports the design and implementation of EJB
autonomic applications. J3 consists of several MDE tools and
their supporting autonomic computing frameworks including
(1) J2EEML, which is an MDE tool that captures the design
of EJB applications, their QoS requirements, and the adap-
tation strategies of their EJBs via a DSML [22], (2) Jadapt,
which is an MDE tool that analyzes the QoS and adaptive
properties of J2EEML models, and (3) JFense, which is an
adaptive computing framework that enables the monitoring,
configuring, and resetting of individual EJBs [10].

This paper builds on our previous work on autonomic sys-
tems presented in [34] and provides new results on our work
that simplifies the design and validation of systems with
component-level autonomic behavior. The paper describes
the structure and functionality of J2EEML and shows how
it simplifies autonomic system development by providing
notations and abstractions that are aligned with autonomic
computing, QoS, and EJB terminology, rather than low-level
features of operating systems, infrastructure middleware plat-
forms, and third-generation programming languages. We also
describe how

• Jadapt generates Prolog simulation and Java implemen-
tations from J2EEML models to ensure that autonomic
applications meet their specifications with minimal man-
ual coding,

• Prolog Qualitative differential equation (QDE) simula-
tions generated from Jadapt can greatly reduce the com-
plexity of system validation, and

• JFense provides a set of reusable autonomic components
that allow developers to plug-in EJB applications and
focus on crafting their autonomic logic, rather than writ-
ing the glue code for constructing autonomic systems.

Finally, we present a case study that qualitatively and quanti-
tatively evaluates how the J3 Toolsuite reduces the complex-
ity of developing an autonomic EJB application.

Our case study centers on an EJB-based Constraint Opti-
mization aNd Scheduling sysTem (CONST) that schedules
highway freight shipments using the multi-layered autonomic
architecture shown in Fig. 1. The system has a list of freight

1 The J3 Toolsuite DSMLs, tools, and frameworks are available in open-
source form at http://www.sourceforge.net/projects/j2eeml.
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Fig. 1 An Autonomic Architecture for Scheduling Highway Freight
Shipments

shipments that it must schedule. It uses a constraint-
optimization engine to find a cost effective assignment of
drivers and trucks to shipments.

A central component in Fig. 1 is the Route Time Module
(RTM), which determines the route time from a truck’s cur-
rent location to a shipment start or end point. The RTM uses
a geo-database and the GPS coordinates from the truck to
perform the calculation. This module is critical to the proper
operation of the optimization engine. Since a heavy load is
placed on the RTM, it must be designed to maintain its QoS
assertions, such as ensuring that the RTM does not exceed a
maximum response time of 100 ms. QoS assertions are prop-
erties that the system can introspectively measure about itself
to determine whether the measured value for the property is
beneficial to the system. These measured QoS goals allow
the system to decide whether it is in a good state and predict
whether it will continue to remain in a good state.

1.3 Paper organization

The remainder of this paper is organized as follows: Section 2
describes the MDE J3 Toolsuite we created to simplify the
development of autonomic EJB applications; Sect. 3 gives an
overview of the J3 Toolsuite and describes key challenges we
faced when developing it; Sect. 4 presents the Prolog QDE
simulation and validation environments generated by Jadapt;
Sect. 5 quantifies the reduction in manual effort achieved by
using the J3 Toolsuite on our CONST case study shown in
Fig. 1; Sect. 6 compares our work with related research; and

Sect. 7 presents concluding remarks and summarizes lessons
learned from our work.

2 The J3 Toolsuite for autonomic system development

It is hard to develop adaptive applications with third-
generation programming languages, such as Java and C++,
since these languages do not capture concepts, such as adap-
tive conditions, that are critical to developing a correctly
functioning adaptive application. Third-generation languages
focus on encapsulating data, providing polymorphism, and
other OO concepts that help simplify the development of
applications where the structure of the application remains
relatively constant. When an application has the ability to
change its functionality and architecture in response to envi-
ronmental stimuli, however, traditional methods of testing
and evaluating an application no longer work as expected.

Testing, for example, is greatly complicated by an appli-
cation’s ability to change structurally. A common approach
to testing application components is to create tests that ensure
an application component performs properly at the bound-
aries of the range of input data it can receive [8]. A test will
check that the smallest value that can be processed by the
component is handled properly and that the largest value is
dealt with appropriately. For example, if the RTM can handle
route time requests for locations at least 100 m and at most
3,000 km apart, these boundaries can be tested to improve
the confidence that the RTM functions correctly.

If an application component varies in structure, however,
an application component’s correct functionality at its input
boundaries may need to be tested in each of its adaptive
configurations. For example, one configuration of the RTM
may use a route calculation algorithm for highways that
can handle requests for waypoints between 1 and 3,000 km
apart. Another RTM algorithm may provide route times for
waypoints separated by as little as 100 m and as much as
2,000 km. With two separate adaptive configurations, the
RTM must now test each of the two boundary sets.

A developer must also ensure that components provide
data to each other that is within the input boundaries. For
example, the CONST application components that call the
RTM must never request routes between waypoints that do
not fit within the current bounds of the RTM’s routing algo-
rithm. The structural variability of the RTM (e.g. its abil-
ity to change algorithms) requires testing to not only check
multiple boundary conditions of the component receiving the
input, but also to ensure that the components producing the
input are generating data in the correct range.

Each point of adaptation increases the variability of the
application and consequentially the complexity of the test-
ing. If the components providing input to the RTM may adapt
as well, testers must ensure that these components never
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produce route time requests with invalid waypoint ranges
in any of their adaptive configurations. If there are M ways
that the RTM can be configured and N ways that the RTM’s
calling component can be configured, there are a total of
M × N possible combinations of caller and boundary con-
ditions that need to be checked. As the number of possible
adaptations increases, verifying the correct functionality of
the application becomes increasingly hard.

Design decisions that affect non-function QoS properties
of an application, such as response time, also are hard to val-
idate when an application has multiple adaptive modes. In
applications with a relatively static structure, execution paths
through components can be evaluated to understand the per-
formance of the application. With an adaptive application,
however, execution paths change over time and thus a design
decision must be validated with respect to each possible path.

As applications grow larger, it becomes infeasible to
validate the design decisions and ensure that functional cor-
rectness assumptions hold, such that two incompatible
components never communicate. There are simply too many
possible configurations of components to test all possible
executions of large applications. Instead, design exploration
tools are needed that can help capture the high-level adaptive
properties of an application that are not apparent in source
code and allow developers to use automated tools to explore
and test the critical application configurations.

Design exploration tools allow developers to verify that
their assumptions about an adaptive application’s behavior
are true. With a traditional third-generation programming
language approach to building an autonomic system, a devel-
oper cannot guarantee that specific system configurations
will never be reached. Using design space exploration tools,
a developer can ensure two components do not interact in
a certain configuration, that conflicting and incompatible
adaptations are not triggered, and that the application does
not contain extraneous adaptations that are never invoked.
Design exploration tools allow developers to ensure that their
designs behave as they predict that they will.

To address the need for high-level design exploration tools,
we have developed the J3 Toolsuite, which contains the fol-
lowing MDE tools and component middleware frameworks
that address the challenges of developing adaptive EJB appli-
cations:

• J2EEML, which is a DSML-based MDE tool tailored
for designing autonomic EJB applications. J2EEML uses
visual representations to model domain-specific abstrac-
tions, such as beans, QoS properties, and adaptations.
J2EEML also specifies the mapping from QoS require-
ments to application components.

• Jadapt, which is an MDE tool that produces many arti-
facts required to implement autonomic EJB applications
modeled in J2EEML. Jadapt generates code that meets

the J2EEML specifications and also reduces the amount
of code that application developers must write manually.

• JFense, which is an autonomic computing framework
that provides components for monitoring, analysis, plan-
ning, and execution. Developers can use these compo-
nents to avoid writing custom autonomic software. JFense
can be configured to meet the autonomic requirements for
a range of EJB applications.

This section focuses on the design and function of J2EEML
and illustrates how it can be used to create structural models
of EJB applications.

The J2EEML DSML enables EJB developers to construct
models that incorporate autonomic and QoS concepts as first-
class entities. J2EEML itself was developed for both the
Generic Modeling Environment (GME) [23] and the Generic
Eclipse Modeling System (GEMS) [33], which are general-
purpose MDE environments that were created to simplify the
creation of metamodels and model interpreters. The J2EEML
metamodel characterizes the roles and relationships in the
autonomic computing domain, and model interpreters gen-
erate many artifacts required to implement autonomic EJB
applications. J2EEML captures the relationship between QoS
assertions and application components to address key design
challenges of developing autonomic applications. For exam-
ple, J2EEML helps developers understand which compo-
nents to monitor in their EJB applications by enabling them to
visualize and analyze the relationships between components
and QoS assertions.

Developers use J2EEML to capture the design of auto-
nomic systems and the mapping of components to QoS asser-
tions in four phases:

1. They create a structural model of the EJBs comprising
an autonomic system,

2. They create models of the QoS properties that the system
is attempting to maintain,

3. They map these QoS properties to the specific beans
within the system that the properties are measured from,
and

4. They design courses of action to take when the desired
QoS properties are not maintained.

This modeling process captures the structure of the system,
how the QoS properties are related to the structure, and what
adaptation should occur if a QoS property is not within an
acceptable range.

2.1 Modeling EJB Structures with J2EEML

Exploring an adaptive application’s design requires capturing
information, such as adaptive conditions, that cannot be eas-
ily discerned from third-generation programming languages.
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Design exploration tools for adaptive systems provide a
higher-level of abstraction that allows developers to express
their application structure, the points of variability in the
structure, the adaptive conditions, and the structural reor-
ganizations that can take place to adapt. The higher level
of abstraction provides a mechanism for the design tool to
understand the components of the application the possible
ways that they may be reorganized. Moreover, this model
explicitly defines how the application’s environment and
introspection lead to specific structural re-organizations of
the application.

The first component of this higher-level modeling abstrac-
tion is the structural model, which documents the applica-
tion’s constituent components. The structural model is
generally tightly aligned with the implementation of the
application. J2EEML provides a structural model aligned
with EJBs, which describes the components of the system
that will be managed autonomically. This model defines the
beans that compose the system and captures the EJB specifics
of each bean, including JNDI names, transactional require-
ments,
security requirements, package names, descriptions, remote
and local interface composition, and bean-to-bean interac-
tions. An EJB structural model is constructed via the
following six steps:

1. Each session bean is represented by dragging and drop-
ping session bean atoms into the J2EEML model. Devel-
opers then provide the Java Naming and Directory
Interface (JNDI) name of each bean, its description, and
its state type (i.e., stateful or stateless).

2. For each session bean, a model is constructed of the busi-
ness methods and creators supported by the bean by drag-
ging and dropping method and creator atoms. Figure 2

shows a model of the remote interface composition of
the TruckStatusModule from CONST.

3. Entity beans are dragged and dropped into the model
to construct the data access layer. These beans are pro-
vided a JNDI name/description and properties indicating
if they use container managed persistence (CMP) or bean
managed persistence (BMP).

4. Persistent fields, methods, and finders are dragged and
dropped into the entity beans. Each persistent field has
properties for setting visibility, type, whether it is part
of the primary key, and its access type (i.e., read-only or
read-write).

5. Relationship roles are dragged and dropped into the entity
beans and connected to persistent fields. These relation-
ship roles can be connected to other relationship roles to
indicate entity bean relationships.

6. Connections are made between beans to indicate bean-
to-bean interactions. Capturing these interactions allows
Jadapt to later generate the required JNDI lookup code
for a bean to obtain a reference to another bean.

After these six steps have been completed, the J2EEML
model contains enough information to represent the com-
position of the EJBs.

Figure 3 shows a J2EEML structural model of our CONST
case study application described in Sect. 1. In this figure, each
bean within CONST has been modeled via J2EEML. Inter-
actions between the beans are also modeled, thereby allow-
ing developers to understand which beans interact with one
another. Figure 3 also illustrates snippets of the XML deploy-
ment descriptor and Java class generated for the Scheduler.

To support decomposition of complex enterprise archi-
tectures into smaller pieces, J2EEML allows EJB structural
models to contain child EJB structural models or subsystems.

Fig. 2 J2EEML Remote
Interface Composition Model
for the TruckStatusModule

Fig. 3 J2EEML Structural
Model Showing Bean-to-Bean
Interactions
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Beans within these children show up as ports that can receive
connections from the parent solution. This hierarchical
design allows developers to decompose models into manage-
able pieces and enables different developers to encapsulate
their designs.

For CONST, we constructed a structural model of each
bean required for the Route Time Module, constraint-
optimization engine, truck status system, and incoming
pickup request system, as shown in Fig. 3. The model also
includes information on the entity beans used to access the
truck location and pickup request databases. Finally, we set
the various transactional, remote visibility, and state type
properties of the various bean model entities.

Using J2EEML provides several advantages in the design
phase, including (1) visualization of beans and their interac-
tions, component security requirements, system transactional
requirements, and interactions between beans, (2) enforce-
ment of EJB best practices, such as the Session Façade pattern
[1], which hides Entity beans from clients through Session
beans, and (3) model validation, including checks for proper
JNDI naming.

The J2EEML structural model captures the EJB-specific
properties that can change due to adaptation. The structural
model provides the basis for understanding how adaptations
influence the underlying implementation details. Section 3
shows how adaptive conditions and actions are mapped to
the structure of the EJBs in a J2EEML model. Section 4 then
describes how the QSim algorithm is used to allow develop-
ers to explore and simulate the application’s reaction to its
environment.

3 Designing J2EEML to address key concerns
of autonomic computing

Autonomic applications require four elements to achieve their
goals: monitoring, analysis, planning, and execution [20].
These elements form a controller that observes and adapts
the application to maintain its functional and QoS goals,
such as maintaining a minimum response time of 100 ms for
requests. This section describes how the monitoring, anal-
ysis, and planning aspects of autonomic systems presented
unique challenges when designing and building J2EEML and
shows how we addressed each challenge. To focus the discus-
sion, we use the CONST RTM shown in Fig. 1 as a case study
to illustrate key design challenges associated with autonomic
systems.

3.1 Monitoring

Monitoring is the phase in autonomic systems where appli-
cations observe their own state. Since this state informa-
tion is used in later phases to control system behaviors it is

crucial that the right information be collected at the right
times without adversely impacting system functionality and
QoS. A design space exploration tool must be able to model
the data sources that the adaptive application analyzes to
determine when to adapt.

The model of an adaptive application’s monitoring sys-
tem defines what information triggers changes in application
structure. Without a well-defined model of what an applica-
tion monitors, a design space exploration tool cannot prop-
erly simulate the data streams that will lead to adaptation.
The monitoring model must be able to detail both the types
of information that is observed and the ways that observation
is performed.

The following are key design challenges faced when mod-
eling the monitoring aspects of autonomic systems:

3.1.1 Providing the ability to specify the large range of data
that can be monitored by the system

Developers of autonomic systems must address the issue of
how to self-monitor key data, e.g., by capturing CPU and
memory utilization, exceptions thrown by the application,
or error messages in a log. The model for specifying what
information to capture from the system must be flexible and
support a range of data types. The model must also be exten-
sible and support unforeseen future data types that might be
needed later.

A core concept of J2EEML is that autonomic EJB appli-
cations can measure properties of their current state intro-
spectively and determine if the property values indicate the
application is in a safe or optimal state. J2EEML models the
properties it measures via QoS assertions, which determine
which properties an autonomic system can introspectively
measure and analyze to determine if the properties are in an
acceptable assertion range. Each assertion provides proper-
ties for setting its name and description. Developers can drag
and drop these assertions into J2EEML models.

QoS assertions can be based on a traditional measure-
ment of system health, such as response time, or a non-tra-
ditional measurement, such as the most recent sequence of
thrown exceptions. J2EEML allows assertions based on both
types of variables. For traditional measurements based on
continuous variables, such as response time, a QoS asser-
tion specifies a list of conditions under which it is active. For
example, the QoS assertion “Location Management System
too Slow” might become active when the response time of
the Geo Database is greater than 300 ms and the response
time of the RTM is greater than 2 s. Developers create QoS
conditions by placing Condition model entities as the chil-
dren of QoS assertions. Each Condition entity specifies a
continuous variable, a comparator, such as less than, and a
value to compare to. For non-traditional measurements, the
appropriately named QoS entity is added to the model but
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no continuous variable conditions are specified. In Sects. 4
and 5, we provide further discussion on how non-traditional
assertions are utilized for simulation and code-generation.

The continuous variables utilized by J2EEML may be
directly measured from the system or derived from other
known values of continuous variables. Continuous variables
are described by dragging and dropping ContinuousVariable
entities into the model. Each ContinuousVariable may con-
tain multiple child Landmark entities that indicate the distin-
guished values of the variable that are relied upon by the QoS
assertions. For our “Location Management System too Slow”
assertion, we are interested when the response time of the
Geo Database exceeds 300 ms. The developer would first cre-
ate a ContinuousVariable named “ Geo Database Response
Time.” Instead of directly specifying the 300 ms landmark,
the developer adds a Landmark abstraction to the “Geo Data-
base Response Time” called “Response Time Too High for
Location Management.” Further Landmark abstractions may
be added as well, such as “Response Time Allows Increased
Accuracy,” to indicate that the Geo Database’s response time
is below the level allowed to use more accurate positioning
algorithms. Abstracting away the exact values of the distin-
guished landmarks of the variables allows for the behavior
to be modeled before real values are known. This type of
abstraction also allows the behavior to be modeled indepen-
dently of the underlying hardware. If the autonomic system
runs on a different platform, the description of the behavior
is still correct although the Landmark abstractions may be
bound to different real values. The “Location Management
Too Slow” assertion would then have a Condition child added
specifying that it is active when “Geo Database Response
Time” is greater than “Response Time Too High for Loca-
tion Management.”

To provide for relationships between continuous values
in the system, J2EEML provides mechanisms for specify-
ing how a continuous variable is derived from another con-
tinuous variable. Two or more ContinuousVariables can be
connected through Derivation connections specifying how
they evolve with respect to each other. ContinuousVariables
may be monotonically increasing, monotonically decreasing,
sum, difference, product, or quotient functions of each other.
ContinuousVariable derivations can be used to specify queu-
ing relationships, such as deriving mean queue length from
arrival rate and service time, or other valuable properties. In
Sect. 4, we discuss how ContinuousVariables, Landmarks,
and Derivations are used by Jadapt to facilitate validation
and simulation of an autonomic application and reduce the
cost of verifying its correctness.

The J2EEML QoS assertions model is critical for under-
standing an autonomic system’s QoS properties, how they
can be measured, what their values should be, and how degra-
dations in them can be corrected. Understanding QoS asser-
tions is also crucial to designing the structural architecture

of EJB applications and understanding how they meet those
assertions. Capturing and mapping QoS requirements to the
appropriate structural architecture have traditionally used
natural language descriptions, such as “the service must sup-
port 1,000 simultaneous users with a good response time.”
Due to the lack of an unambiguous formal notation, such
descriptions are prone to different interpretations, which
result in architectures that do not meet the QoS requirements.
Choosing an EJB architecture that best fits the QoS require-
ments can be complex and error-prone since specification
ambiguity and hidden architectural trade-offs make it hard
to choose the appropriate design.

For example, deciding whether to use remote interfaces
for a J2EE implementation of a service can have a substantial
impact on end-to-end system QoS. Remote interfaces allow
distribution of beans across servers, which can increase sca-
lability and reliability. Distribution can also increase latency,
however, since requests must travel across a network or vir-
tual machine boundaries.

With the RTM in our case study, one QoS assertion is
the average response time. This QoS assertion states that the
system will measure all requests to the RTM and track the
average time required to service each request. If the calcu-
lated average response time exceeds 50 ms, the assertion is
false, indicating that the RTM is taking too long to respond,
otherwise the assertion is true, indicating that the RTM is
responding properly.

Figure 4 illustrates a J2EEML model of the scheduling
system and the association of the RTM to the ResponseTime
QoS property. This model shows J2EEML’s ability to model
QoS properties as aspects [24] that are applied to a com-
ponent. When the model is interpreted and the Java imple-
mentation generated, the association between the RTM and
ResponseTime assertion will generate the appropriate moni-
toring code in the RTM’s implementing class.

3.1.2 Building a system to specify where monitoring logic
should reside in the system

The decision of what to monitor directly affects where the
monitoring logic will reside. To monitor a log for errors, the
logic could be at any level of the application, such as a cen-
tral control level. For observing exceptions or the load on
a specific subcomponent of the application, the monitoring
logic must be embedded more deeply. In particular, develop-
ers must position the monitoring capability precisely so that
it is close enough to capture the needed information, but not
so deeply entangled in the application logic that it adversely
affects performance and separation of concerns [32].

In CONST, for example, we must ensure separation of
concerns in the application design and find an efficient means
of monitoring. A natural approach to collecting request sta-
tistics for the RTM might be to simply add the appropriate
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Fig. 4 J2EEML Model
Associating the ResponseTime
QoS Assertion with the
RouteTimeModule

state collection code into the route time logic. The monitor-
ing logic for the RTM, however, should not be entangled with
the route time calculation logic, and reduce its readability and
maintainability. Moreover, the time to monitor and analyze
each request should be insignificant compared to the time to
fulfill each route request.

After the structural and QoS assertion models are com-
pleted, developers can use J2EEML to map QoS assertions to
EJBs in the structural model. This mapping documents which
QoS assertions should be applied to each component. It also
indicates where monitoring, analysis, and adaptation should
occur for an autonomic system to maintain those assertions.
For example, to determine the average response time of the
RTM, calls to the RTM’s route time calculation method must

be intercepted to calculate their servicing time. The relation-
ship between the RTM bean and average response time asser-
tion in the model indicates that the RTM bean must monitor
its route time calculation requests.

J2EEML supports aspect-oriented modeling [13] of QoS
assertions, i.e., each QoS assertion in J2EEML that cross-
cuts component boundaries can be associated with multiple
EJBs. For example, maintaining a maximum response time
of 100 ms is crucial for both the RTM and the Scheduler bean.
Connecting multiple components to a QoS assertion, rather
than creating a copy for each EJB, produces clearer models. It
also shows the connections between components that share
common QoS assertions. Figure 5 shows a mapping from
QoS assertions to EJBs. Both the RTM and the Scheduler in

Fig. 5 J2EEML Mapping of
QoS Assertions to EJBs
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this figure are associated with the QoS assertions Response-
Time and AlwaysAvailable. The ResourceTracker and Ship-
mentSchedule components also share the AlwaysAvailable
QoS assertion in the model.

Components can have multiple QoS assertion associa-
tions, which J2EEML supports by either creating a single
assertion for the component that contains sub-assertions or by
connecting multiple QoS assertions to the component. If the
combination of assertions produces a meaningful abstraction,
hierarchical composition is preferred. For example, the RTM
is associated with a QoS assertion called AlwaysAvailable
constructed from the sub-assertions NoExceptionsThrown
and NeverReturnsNull. Combining MinimumResponseTime
and NoExceptionsThrown, however, would not produce a
meaningful higher-level abstraction, so the multiple connec-
tion method is preferred in this case.

3.2 Analysis

Analysis is the phase in autonomic systems, which takes
state information acquired by monitoring and reasons about
whether certain conditions have been met. For example, anal-
ysis can determine if an application is maintaining its QoS
requirements. The analysis aspects of an autonomic system
can be (1) centralized and executed on the entire system state
or (2) distributed and concerned with small discrete sets of
the state. The following are key challenges faced when devel-
oping an autonomic analysis engine:

3.2.1 Building a model to facilitate choosing the type
of analysis engine and Challenge 3.2.2: Building
a model to facilitate choosing how the engine
should be decomposed

To choose a hierarchical multi-layered (composed of a tree
structure of analysis components) versus monolithic single-
component analysis engine, the tradeoffs of each must be
understood. Concentration of analysis logic into a single
monolithic engine enables more complex calculations. How-
ever, for simple calculations, such as the average response
time of the RTM component, a monolithic engine requires
more overhead to store/retrieve state information for indi-
vidual components than an analysis engine dedicated to a
single component. A monolithic analysis engine also pro-
vides a central point of failure. A key design question is thus
where analysis should be done and at what granularity.

A model to facilitate choosing the appropriate type of
analysis engine must enable developers to identify what data
types are being analyzed, what beneficial information about
the system state can be gleaned from this information, and
how that beneficial information can most easily be extracted.
It is important that the model enable a standard process

for examining the required analyses and determining the
appropriate engine type.

To create an effective analysis engine, developers must
determine the appropriate hierarchy or number of layers of
analysis logic. A key issue to consider is whether an appli-
cation should have a single-layer vs. a hierarchical multi-
layered analysis engine. At each layer, the original monitoring
design questions are applicable, i.e., what should be moni-
tored and how should it be monitored? A model to enable
these decisions must clearly convey the layers composing
the system [2,19]. It must also capture what analysis takes
place at each layer and how each layer of analysis relates
with other layers.

In the context of our highway freight scheduling system, a
key question is whether the RTM’s autonomic layer analyzes
its response time or whether a layer above the RTM should
do it. At each layer, the analysis design considerations are
important too, e.g., what information the system is looking
for in the data, how it finds this information, and how this can
be better accomplished by splitting the layer. For example,
a developer must consider whether to monitor every request
to the RTM to determine if the RTM is meeting its minimum
response time QoS. Conversely, perhaps only certain types
of requests known to be time consuming should be moni-
tored. Another question facing developers is how the RTM’s
monitoring logic sends data to its analysis engine.

Developers can use J2EEML to design hierarchical QoS
assertions to simplify complex QoS analyses via divide-and-
conquer. A hierarchical QoS assertion is only met if all its
child assertions are met, i.e., all the child QoS assertions
must hold for the parent QoS assertion to hold. With respect
to the RTM, the QoS assertion GoodResponseTime only holds
if both the child QoS assertions AverageResponseTime and
MaximumResponseTime also hold. This hierarchical compo-
sition is illustrated in Fig. 6, where GoodResponseTime is an
aggregation of several properties of the response time.

Modeling QoS assertions hierarchically can help enhance
developer understanding of what type of analysis engine to
choose. A small number of complex QoS assertions that can-
not be broken into smaller pieces implies the need for a mono-
lithic analysis engine. A large number of assertions—espe-
cially hierarchical QoS assertions—implies the need for a
multi-layered hierarchical analysis engine.

Modeling QoS assertions hierarchically also enhances
developer understanding of how to decompose the analysis
engine into layers. The hierarchical model of QoS assertions
corresponds directly to the decomposition of the analysis
engine into layers. Developers can use J2EEML to first add
complex QoS assertions to their models and then determine if
the complex assertion can be accomplished by combining the
results of several smaller analyses. If so, developers can add
these smaller QoS assertions as children of the original QoS
assertion to represent the smaller analyses and then apply this
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Fig. 6 J2EEML Hierarchical
Composition of ResponseTime
QoS Assertion J2EEML
Hierarchical Composition of
ResponseTime QoS Assertion

iterative process to the new children. Further decomposition
analyses can be performed by taking into account the adap-
tive actions triggered by each QoS assertion. In Sect. 3.3.1,
we discuss these other analyses.

3.3 Planning

Planning is the phase in autonomic systems where applica-
tions examine the results of their analyses and decide what
actions to take to reach their assertions. For our highway
freight scheduling example, this could involve changing the
RTM to use a less precise but faster algorithm that main-
tains the minimum response time as demand grows. A typi-
cal autonomic application may have hundreds of assertions
and planning the correct actions in the face of QoS failures
is critical to an autonomic application.

As described in Sect. 2, there are numerous configura-
tions that an adaptive application can enter into during its
execution. A typical adaptive application has enough points
of variability and hence possible configurations that a devel-
oper cannot predict nor test each. Developers must therefore
make assumptions about the configurations that the appli-
cation will and will not pass through. If these assumptions
are incorrect, an unanticipated non-functional configuration
may be reached during execution.

The increased level of abstraction provided by design
exploration tools allows developers to formalize when and
how an application changes its configuration. A design explo-
ration tool can then use the adaptation rules to which the
application adheres to explore the design space on behalf
of the developer and ensure that particular configurations
will never be reached. Validating these developer hypoth-
eses reduces the number of application configurations that
must be tested and rectified during development.

The following are key challenges faced when developing
an autonomic planning engine:

3.3.1 Designing a means to specify layered adaptation
plans

As with monitoring and analysis, planning can be imple-
mented with a layered architecture. A simple, one-layer archi-
tecture would monitor, reason, and react to all system events
at one level, which works well for macro-level events and
actions. For applications that need more flexible and fine-
grained control of their behavior this simple one-layer archi-
tecture is less suitable. For example, if the RTM needs to
switch algorithms in response to a degradation in response
time, a small controller located close to the RTM would be
able to react more quickly and with less overhead than a larger
controller located farther away. If however, the RTM needed
to switch algorithms due to a period of high demand pre-
dicted from historical data, a small controller located close
to the RTM is infeasible since it is unlikely to have access
to the appropriate data for the prediction. Moreover, a pre-
dicted period of high demand may necessitate changes to
components other than just the RTM and thus require a large
monolithic controller with access to multiple components.
To increase flexibility and fine-grained control, therefore,
more layers can be integrated into the system. Layers distrib-
ute intelligence throughout the system and support a divide-
and-conquer approach to planning.

After the planning is provisioned into layers, each layer
must be assigned a responsibility to react to and recover from
QoS failures. In CONST, one layer ensures that the RTM
is always available and the next layer down ensures that a
minimum response time is maintained. Intelligent separa-
tion of responsibilities can produce hierarchical chains of
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command that reduce the complexity of accomplishing the
overall assertion. Finding these well-proportioned divisions
of labor is hard.

J2EEML models adaptation by specifying the actions the
system should take when a QoS assertion fails. Each appli-
cation component may have a group of assertions associated
with it. If one assertion does not hold for the component, it
indicates a QoS failure that must be fixed. Developers can
use J2EEML to specify groups of actions that must be taken
to correct these failures.

Modelers can specify each action and its affect on sys-
tem state. Intention entities can be dragged to an action to
specify which continuous variable will be changed by the
action and the direction of its influence, either increase or
decrease, thereby enabling modelers to capture the affects
of actions and identify actions that have incompatible inten-
tions. As discussed in Sect. 4.2, these intentions can auto-
matically identify possible unsafe evolutions of autonomic
system state.

Once an assertion has failed to hold for a specific compo-
nent, the application must determine how to fix the problem.
To model the appropriate actions, J2EEML uses adaptation
plans, which are groups of actions that fix a specific type of
QoS assertion failure. For example, if the average response
time assertion fails, the RTM must change its calculation
algorithms to be less precise but run faster. Figure 7 shows a
J2EEML model that associates the ResponseTime QoS asser-
tion with the ChangeAlgorithms single-layered adaptation
plan.

Adaptation plans indicate the responsibilities of an auto-
nomic layer, i.e., the adaptation plan specifies the actions that
the autonomic layer can perform in the event of a QoS failure.
This association also guides the selection of a single-layer or

multi-layered planning architecture. If a complex QoS asser-
tion does not have adaptation plans associated with its chil-
dren, the proper course of action to take when one of the
child QoS assertions fails cannot be determined by the data
available to the child. If only top-level QoS assertions have
associated adaptation plans, this implies the need for a single
planning layer. If, however, the QoS children have adaptation
plans associated with them, this implies that they can deter-
mine the corrective course of action and require a multi-lay-
ered planning solution.

The key to determining the right granularity of the anal-
ysis and planning is determining the relationship between
QoS assertions and the adaptation plans they trigger. A multi-
layered QoS assertion with an adaptation plan containing a
single action cannot be broken into several independent anal-
ysis and planning layers since it requires a specific combi-
nation of values of several continuous variables to become
active. If an adaptation plan contains multiple actions con-
nected to the same condition, the plan can be subdivided
into a hierarchical set of QoS assertions. In the hierarchical
organization each assertion is based on a single continuous
variable and action.

For example, consider a QoS assertion, Improve_Response
_Time, to reduce the response time of the RTM that contains
two continuous variable conditions, RTM_Response_Time
> Medium and RTM_Request_Arrival_Rate > Medium, and
two adaptive actions Use_Less_Accurate_Algorithms and
Use_Batch_Processing. In this case, Use_Less_Accurate
_Algorithms is relevant when the response time is too high
and Use_Batch_Processing is relevant when the request
arrival rate is high enough to make it efficient. In this case,
Improve_Response_Time could be composed hierarchically
of two QoS assertions, one that switches to less accurate

Fig. 7 An Association between
the ResponseTime QoS
Assertion and the
ChangeAlgorithms Adaptation
Plan
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algorithms when the response time is too high and one that
turns on batch processing when the request arrival rate is
sufficiently high.

QoS assertions that are based on a single continuous var-
iable that is derived from one or more other continuous vari-
ables may also be subdivided if the adaptive actions that
are triggered by it are designed to alter the variables from
which the conditional variable is derived. For example, con-
sider a QoS assertion that when the RTM’s mean queue
length exceeds a specific landmark switches the RTM to
less accurate algorithms and causes the RTM to begin reject-
ing some portion of its requests (possibly based on priori-
ties). In this case, the continuous condition is based on mean
queue length which is derived from the arrival rate and ser-
vice time of the RTM. Clearly, using less accurate algorithms
will decrease service time and rejecting requests will cap or
decrease the request arrival rate. Thus, the QoS assertion can
be subdivided into two QoS assertions, one that attempts to
decrease the arrival rate when it exceeds a threshold and one
that decreases the service time when the mean queue length
exceeds a specified value. Having a model of the continuous
variables, their derivations, and the adaptive conditions for
the system greatly informs decisions on whether to choose a
monolithic or layered planning and analysis engine and how
a layered engine should be hierarchically composed.

3.4 Reducing the complexity of developing autonomic
systems with JFense and Jadapt

JFense is a component-level framework that performs auto-
nomic functions, such as monitoring the QoS of EJBs, ana-
lyzing system state, communicating between autonomic
layers, determining how to adapt to QoS failures, and execut-
ing adaptation plans. Figure 8, shows the high-level architec-
ture of the J3 Toolsuite and how JFense fits into it. Jadapt is a
J2EEML model interpreter that supports rapid development
and verification of autonomic code by generating implemen-
tations of EJBs from a structural model.

Jadapt is a bridge between a J2EEML model and the
JFense framework, i.e., it generates Java code for (1) the
J2EEML structural model and (2) plugging the generated
EJBs into the JFense framework. Jadapt generates configu-
rations for JFense to mirror the J2EEML model, stubs for the
EJBs, EJB deployment descriptors, and monitoring, analy-
sis, planning, and execution class stubs, which relieves devel-
opers from tedious and error-prone coding tasks. Moreover,
Jadapt ensures that the code mirrors the system architecture in
the J2EEML implementation, which reduces problems stem-
ming from misinterpreting specifications and inconsistencies
between interfaces and their implementations.

To simplify the development of autonomic EJB appli-
cations, we created the JFense framework for constructing
autonomic EJB systems. JFense provides a multi-layered

Fig. 8 Developing an Autonomic Application with the J3 Toolsuite

architecture for monitoring, analyzing, planning, and exe-
cuting in an autonomic system. The basic structure of JFense
is defined as follows:

1. Each bean has a JFense guardian class responsible for
monitoring its state and running QoS analysis, as shown
in Fig. 9. Guardian classes are not visible in J2EEML
but created to aggregate information for each bean. The
beans push state data out to the guardians using an event-
based system. The guardians act as observers on the
beans, i.e., they are the key elements for monitoring
beans and routing state information to the proper QoS
analysis objects.

2. An analysis class for each QoS goal is created by Jadapt.
These QoS goals are used by the guardians to analyze
the bean’s current state and determine if it is meeting its
QoS requirements. Hierarchical QoS goals are created
through aggregation.

3. Each guardian class has an associated action plan for
determining the course of action if a QoS goal fails. The
guardian also notifies any guardians at the level above
when it cannot maintain its QoS goals.

Fig. 9 The JFense Architecture
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When a bean’s state changes, it notifies its guardian that
a state change event has occurred. The guardian then uses
each of its QoS analysis objects to analyze the bean’s state
and ensure that its objectives are still being met.

Bean requests are the default state information monitored
by guardians. Jadapt generates proxies that monitor the input,
output, time, and exceptions thrown for each method acces-
sible through the beans local or remote interface and pass it
to the Guardians.

Beans monitor requests on their accessible methods
through generated proxies. When a request is issued to the
bean, the generated proxy first receives the request and notes
the starting time. The proxy then notifies the guardian that a
request is starting so that any pre-conditions on the request
can be analyzed. These pre-conditions can be used to identify
QoS failures in other portions of the system, other systems,
or clients. The proxy then passes the request to the actual
method that contains the logic to fulfill it (we refer to this
method as the implementing method). When the implement-
ing method has returned, the bean again notifies its guardian,
which enables the guardian to check post-conditions, such
as output correctness or servicing time. Finally, the result is
passed back to the caller.

After the state is routed to the analysis object, it deter-
mines if its QoS property is being met. JFense has several
predefined analysis objects for common functions, such as
monitoring request time. Other autonomic analyses can be
added by extending the JFense analysis interfaces or imple-
menting the class skeletons generated by Jadapt from the
J2EEML model. If the QoS is not being maintained, the anal-
ysis object notifies the guardian, which will either directly
execute an action plan or propagate the QoS failure event up
the chain of guardians.

Guardians also use the Strategy pattern [11] to determine
how to react to a QoS failure. Different planning strategies
can be plugged into a guardian at design- or run-time to
find the appropriate course of action for each QoS failure.
The default strategy uses a hashing scheme to associate QoS
analysis objects with Command pattern [11] actions, which
encapsulate actions as objects, to allow adaptations to be
queued, logged, or undone. In the event of a QoS failure, the
appropriate action is looked up from the table and executed.

JFense alleviates developers of the need to build an
autonomic framework from scratch. In the highway freight
scheduling system, for example, JFense handles inter-layer
communication so that developers can focus on the logic
needed to analyze the state data, determine the correct course
of action, and adapt the system. JFense also provides the com-
munication, monitoring, and message bus infrastructure to
glue the provided logic together, which significantly reduces
the time and effort required to build autonomic applications
that monitor their own state and adapt to achieve their
goals.

4 Simulating and validating autonomic systems
with the J3 Toolsuite

To address the challenge of testing and validating a system
with component-level autonomic properties, we developed
a simulation environment for the J3 Toolsuite based on the
qualitative differential equation (QDE) simulation algorithm
[21]. The J3 Qualitative Simulation (QSim) environment is
an adaptation of the Prolog implementation described in [5].
QSim predicts the possible behaviors consistent with a quali-
tative differential equation model of a system. A QDE model
is an abstraction of an ordinary differential equation model
that specifies a set of real valued variables and the functional
and algebraic constraints between them [21]. QDE models
abstract away real values of variables in favor of a finite set of
Landmarks, or values of interest. The values of variables can
then be constrained to monotonically increasing or decreas-
ing functions of each other to describe how their states evolve
with respect to each other.

QDE simulation is well-suited for decreasing the com-
plexity of validating the behavior of an autonomic system in a
specific environment. The J3 simulator treats the Continuous-
Variables described in J2EEML models as the environment
that the autonomic application reacts to. The QoS assertions
specify regions of values of the ContinuousValues in which
AdaptationPlans become active. Using this information, the
J3 simulator can predict the evolution of the ContinuousVari-
ables (the autonomic system’s environment) and discover the
sequence of autonomic adaptations that will occur. This type
of simulation allows developers to simulate and validate the
behavior of an autonomic system early in the design cycle
and catch design errors before the application is implemented
and they are more costly to correct.

4.1 Validating adaptive assumptions via simulation

Design exploration relies on the ability of a modeling tool
to simulate and validate that particular application configu-
rations can or cannot be achieved. Hypotheses on the con-
figurations that can be entered from a given starting state of
an application can be tested by performing controlled execu-
tions of the application under the modeled conditions. The
advantage of this approach is that it conforms to conventional
functional testing methodologies [4]. The disadvantage is
that hypotheses cannot be validated until late in the applica-
tion development cycle when design flaws require more effort
to correct. Another disadvantage is that significant time may
be required to run each experiment and there may be a large
number of experiments needed.

An alternate method of validating adaptive design deci-
sions is to use the model captured in a design space explora-
tion tool and formally analyze the reachability [30] of various
application configurations. If a developer believes that a state
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can be reached, the tool can be used to verify that the state can
in fact be entered into from a given starting trajectory. One
advantage of a formal model analysis is that more general
claims can be tested, such as that a particular configuration
can never be entered from any starting trajectory of the appli-
cation.

Despite their analytic power, formal techniques are often
computationally intensive and in many cases too complex for
validating production systems. Moreover, formal models are
generally not comprehensible to ordinary application devel-
opers. To address these challenges, a design space explora-
tion tool must carefully balance the abstraction level of the
modeling language and the types of analyses that can be per-
formed so that the tool is both usable to ordinary developers
and provides useful analyses. The key to striking this delicate
balance is in understanding what key problems of adaptive
system design can be tackled using formal analysis.

One difficulty of designing an autonomic application
without a design space exploration tool is that it is hard to
understand what states the application will enter due to its
adaptations. For example, it may be difficult to foresee that
one adaptation may trigger a series of changes in the appli-
cation that cause two other conflicting adaptations to occur.
For example, assume that the Optimizer contains an adap-
tation that when the Optimizer is under light load causes
it to switch to a more accurate mode of operation. Under
the more accurate mode of operation, the Optimizer requests
that the RTM also use a more accurate route time algo-
rithm. Assume that the RTM also has an adaptation that when
under heavy load causes it to switch to a less accurate algo-
rithm. In this situation, it is possible for the Optimizer and
RTM to enter a situation where the Optimizer is request-
ing that the RTM use more accuracy and the RTM is trying
to decrease accuracy. These adaptations are not compatible,
since both involve disruptive algorithmic changes, but can
become active together. It is crucial that these types of con-
flicting adaptive plans be identified. Without a formal method
of predicting how and when a set of adaptations will occur, an
autonomic application requires enormous amounts of testing
to ensure that it has been tested in all of its possible adaptive
states.

The J3 simulation environment allows developers to query
the Prolog autonomic application simulator for the possible
adaptive executions of the system given an initial state for
the continuous variables of the environment. The J3 simula-
tor uses the QSim algorithm to evolve the continuous vari-
ables according to the QDE model described in J2EEML and
identify the AdaptationPlans that are active in each environ-
mental state. In each simulation step, the J3 simulator identi-
fies the currently active adaptations and their modeled affect
on the environment. For example, if an action is triggered
that decreases the response time of the RTM, the simulation
will ensure that the RTM’s response time either transitions

from increasing to steady or steady to decreasing in the next
simulation step.

Questions can be posed to the J3 simulator, such as “can
a system state be reached in which both the Optimizer’s
increase accuracy adaptation and the RTM’s decrease accu-
racy adaptation are active?” This querying capability allows
developers to validate their assumptions about the autonomic
behavior and ensure that error conditions do not occur. The
simulator can also be posed questions, such as “can the sys-
tem ever reach a state such that the RTM’s response time is
greater than the high landmark?” This querying capability
allows developers to not only model an autonomic applica-
tion but to check that their assumptions about its behavior
are correct.

Another aspect of the simulation is the role of the QoS
assertions that are not dependent on a continuous variable
condition but instead on a non-simulatable property, such
as the most recently thrown series of exceptions. For these
assertions and the adaptation plans they trigger, the simula-
tor assumes that they can become active in any system state.
Simulating all valid adaptive states that could be produced by
the non-simulatable assertions would be extremely complex.

It is also beneficial that developers include as few adap-
tations that affect the continuous variables as possible since
they make the behavior of the system non-deterministic. By
default, the simulator does not factor in the intents of these
assertions but can be enabled to do so. Developers can still,
however, make useful deductions about the non-simulatable
properties. For example, they can query the simulation for
states that can be reached where a simulatable-assertion trig-
gers an action that is incompatible with an action of a non-
simulatable assertion. The non-simulatable assertions can
still be used to identify possibly unsafe sets of adaptations.

4.2 Reducing QDE simulation complexity with J3

As discussed in [21], the QSim algorithm can experience
a combinatorial explosion if a large number of continuous
variables are modeled that each have multiple landmarks.
Each state of the system environment is denoted by a set of
tuples identifying each variable’s current landmark and the
direction of change of the variable. Landmarks may either
be a specific value from the model, such as medium, or
a value between two landmarks, such as between medium
and high (denoted by medium..high). Since the variables are
continuous, between any two system states, a variable may
remain at the same landmark, or change to the next land-
mark with either the same direction of change or remain
steady. For example, the RTM’s response time may transition
from medium/std to low..medium/dec, medium...high/inc, or
medium/std. At each step in the system state, there are four
possible next states for each variable. Thus there are 4C possi-
ble next system states, where C is the number of continuous
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variables. Clearly, a large number of continuous variables
can create a combinatorial explosion and make evolving the
system computationally expensive.

Autonomic systems, modeled in J2EEML, exhibit a
unique property that greatly reduces the number of possible
next system states (by system, we are describing the con-
tinuous environment of the application). Each landmark of
a continuous variable indicates a point at which an adaptive
action is enabled. Each action, in turn, has a specific affect
on the continuous variables of the system, which is specified
through the Intention entities. In system states where adap-
tation actions are active, the number of next states is reduced
since the actions fix the direction of change of the contin-
uous variable it is affecting. If an adaptive action is active
that affects a continuous variable, then that variable can have
at most two possible next states. Either the variable remains
between two landmarks (between the landmarks X and Y
is denoted X ..Y ) and switches its direction of change, or it
remains between two landmarks with the same direction of
change, as seen in Fig. 10. If the variable is exactly at a sin-
gle landmark, it will have only one possible next state that is
proscribed by the direction of change.

For example, if the RTM’s response time is medium/inc
and an adaptation becomes active that reduces the response
time, the variable must transition to medium/std. If the action
caused the response time to increase, the variable would tran-
sition to medium..high/inc. Each variable thus has exactly
one or two next states when affected by an adaptation action.
At any state, if T variables are proscribed to two next states
by actions and O variables are proscribed to a single next
state, the system has (2T)(4O) fewer possible next states.
The J3 Toolsuite is therefore most effective at simulating

systems with a large number of adaptive actions relative to
the number of continuous variables. For example, if we have
ten different adaptive actions that are triggered by various
states of two continuous variables, the continuous variables
will be proscribed to a significantly smaller set of states than
if fewer adaptive actions were present. Systems with large
numbers of adaptive actions are precisely those that are most
difficult to analyze manually.

It is also worth noting that a continuous variable will only
be present in a model if it has a QoS assertion that relies
on it. Every continuous variable will therefore have at least
one adaptive action that can influence it. Each continuous
variable will also have at most one landmark, corresponding
to no active adaptations, that isn’t used by a QoS assertion.
Any other landmark of a continuous variable must corre-
spond to a value of interest to a QoS assertion. More than one
unused landmark yields superfluous information that merely
increases the simulation complexity.

4.3 Analyzing architectural properties to inform design
decisions

The J3 simulator can also be asked static questions about the
autonomic system, such as “are there any QoS assertions that
are based on a single continuous variable and trigger adaptive
actions that modify the constituents from which the variable
is derived?” This question directly corresponds to the deri-
vation decomposition analysis described in Sect. 3.3.1. The
query is resolved by asking Prolog if there exists a QoS asser-
tion whose QoS condition relies on a variable Z such that Z
is derived from variables X, Y and the adaptation plan of the
assertion contains two actions with intentions that affect X

Fig. 10 ContinuousVariable
Evolution

ResponseTime: low/inc

low..medium/inc low/std

low/std zero..low/declow..medium/std low..medium/inc low..medium/inc

ResponseTime: low/inc

low..medium/inc low/std

medium/inc low/std zero..low/declow..medium/std low..medium/inc low..medium/inc

low/std

low/std zero..low/declow..medium/inc

deleted ContinuousVariable Evolution Possibilities
resulting from fixing the direction of change to inc
for one system state transition

medium/inc
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and Y . We can therefore use the Prolog simulation model to
identify QoS assertions that can be decomposed and guide
architectural design decisions.

The other decomposition analysis described in 3.3.1 can
also be aided by the Prolog simulation. The user can query
Prolog for a QoS assertion with conditions based on a set of
continuous variables C, that triggers an adaptation plan con-
taining actions A, such that each action in A affects exactly
one variable in C. This query corresponds to finding QoS
assertions that contain multiple conditions that could pos-
sibly be split into several QoS assertions each containing a
single condition and triggering a single adaptation on their
continuous variable.

4.4 Generating the simulation from J2EEML

A straightforward transformation is used to generate a Pro-
log knowledge base for the QSim algorithm. For each model
entity, a predicate/argument statement is generated specify-
ing the type of the entity and its unique id. A QoS asser-
tion with id 23, for example, will be transformed into the
Prolog statement “qosassertion(23).” Properties of the enti-
ties are transformed into predicate relations on the id of the
entity and the value of the property. A QoS assertion with
id 23 and named “ResponseTime” would generate the predi-
cate self_name(23,‘ResponseTime’). Relationships between
entities denoted by connections or containment, such as the
Adaptation plan which is used by a QoS assertion, become
predicate statements relating the two ids of the related enti-
ties. If ResponseTime uses the ChangeAlgorithms Adapta-
tion plan with id 24, a predicate self_adaptationplan(23,24)
would be generated.

After the Prolog knowledge base is generated by Jadapt,
a predefined set of rules are generated to connect the knowl-
edge base to the QSim algorithm. A sample rule to find the
landmarks of a continuous variable is:

landmarks(VarName,LandmarkNames) :-
self_name(VarId,VarName),
self_landmarks(VarId,Landmarks),
findall(LName,
(member(V,Landmarks),
self_name(V,LName), LandmarkNames).

Similar rules are generated to determine the active actions
given a system state, the set of continuous variables, and other
rules needed by the Prolog implementation of the QSim algo-
rithm described in [5].

5 Evaluating development effort savings of the J3
toolsuite

We developed the CONST highway freight scheduling sys-
tem case study described in Sect. 1 to show the advantages

of using the J3 Toolsuite to develop autonomic EJB applica-
tions. The initial implementation of this case study required
∼1,200 lines of Java code. The generated EJB implementa-
tions accounted for nearly 75% of the complete code base, the
test framework accounted for 20%, and the JFense glue code
accounted for 5%. Using a traditional development approach,
all of this code would have been developed manually. With
the J3 Toolsuite, in contrast, ∼883 lines of code were gener-
ated by Jadapt from our J2EEML specification.

Using our highway freight scheduling case study, we eval-
uated the impact of adding new sources of information that
required monitoring and where the logic would reside. In our
initial design, only response times of the Scheduling compo-
nent were monitored. We then refactored the design to moni-
tor response times of the RTM component, as well. Adjusting
the design using J2EEML and re-generating the implemen-
tation took approximately five mouse clicks and resulted in
the generation of ∼20 new lines of source code that correctly
mirrored the specification. This refactoring can be seen in
Fig. 11.

To evaluate the impact of design refactoring on the anal-
ysis and planning layers of the highway freight system, we
modified its initial design by changing its response time anal-
ysis and adaptation into a hierarchy of average and maximum
response times. The refactoring in J2EEML was straightfor-
ward and took ∼12 mouse clicks. The change generated ∼75
new lines of code, which minimized the complexity of the
design change and implementation update. Again, for large
development projects without MDE tool support, many such
changes would occur and hence the manual redevelopment
effort would be much higher.

To evaluate the development effort associated with sharing
adaptation plans between QoS assertions, we refactored our
highway freight system to share the improved response time
adaptation plan between both the average response time QoS
assertion and the maximum response time QoS assertion.
After this change was made to the model and Jadapt regen-
erated the model artifacts, 36 new lines of code were present
that updated the existing adaptation plan to include the new
adaptations and changed the adaptation plan of the maximum
response time to use its modified adaptation plan. As with
other refactorings we analyzed, adjusting the J2EEML model
and regenerating the code required ∼12 mouse clicks, while
developing the equivalent functionality manually required
significantly more effort.

As with the autonomic modeling and generation capabili-
ties of the J3 Toolsuite, significant reductions in development
complexity were yielded by applying MDE to the implemen-
tation of the structural model. For example, when a single
SessionBeanwith one method was added to the J2EEML
model, the resulting bean, interfaces, deployment descriptor,
and helper classes generated 116 lines of Java code and 80
lines of XML. The model change in J2EEML required two
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Fig. 11 Refactoring the RTM’s
QoS Assertions

drag and drop operations. As with the autonomic code gener-
ated by Jadapt, the code was correct-by-construction and the
JNDI name of the bean was also correct. Adding two interac-
tions from existing beans to the new bean generated another
∼12 lines of error-prone JNDI lookup/narrowing code that
was automatically generated by Jadapt, thereby simplifying
developer effort and enhancing confidence in the results.

6 Related work

Kandasamy et al. [18] present an online optimization
framework for autonomic applications using a hierarchical
architecture similar to J2EEML. The paper also presents
forecasting and control strategies for managing an autonomic
application. This work is complementary to the J3 Toolsuite
in that it provides methods for designing how an autonomic
system reacts and behaves. Moreover, the hierarchical con-
trol structure used by JFense could be adapted to incorporate
the methods presented in [18]. One significant difference of
the J3 Toolsuite and the work presented in [18] is that J3 is
an MDE approach to building autonomic applications. The
optimization framework presented in [18], conversely, does
not provide an integrated modeling tool or simulation envi-
ronment as J3 does.

Many of the decomposition analyses that the J3 simula-
tor enables are similar to the design rules that are proposed
in [3,29], i.e., the simulator promotes the decision of how
to decompose the QoS entities into appropriate independent
modules so that they can be developed and function inde-
pendently of each other. The static Prolog representation of
the QoS entities, continuous variable conditions, and speci-
fied adaptive action intentions, allow automated analysis of
whether the entities can be further decomposed into inde-
pendent modules. The simulation work is complementary to
these types of design rules and can be used to automate some
of types of design analysis for large scale systems.

An increasing number of MDE tools exist for model-
ing component-based systems. Cadena [14] is an MDE tool

for building and modeling component-based DRE systems,
with the goal of applying static analysis, model-checking,
and lightweight formal methods to enhance these systems.
Other tools, such as Rational Rose, provide UML model-
ing capabilities for component-based systems. In contrast to
J2EEML, these tools are not tailored to the domain of mod-
eling autonomic functionality in component-based systems.
For example, they lack the ability to establish the critical
mapping between QoS properties, components, and adap-
tations, which forces developers to (1) resort to traditional
textual descriptions for specifying QoS properties and (2)
maintain separate models for understanding how the QoS,
adaptation, and components in the system interrelate. As a
result, additional code must be written to enable an applica-
tion to monitor itself and specify how it will react to QoS
failures.

Other research initiatives present middleware approaches
to managing the QoS of distributed applications similar to
JFense. The Generic Object Platform Infrastructure (GOPI)
[9] provides a pluggable and modular platform for the devel-
opment of middleware. GOPI, in particular, includes support
for annotating interface interaction points with QoS attri-
butes. As with the J3 Toolsuite, there is no limitation on
what can be considered a QoS attribute. These attributes are
mapped to specific middleware configurations through code
to tailor an application’s performance. QoS groups can be
created to partition the interaction points into sets that share
QoS requirements. JFense also provides the ability to associ-
ate components that have similar QoS requirements. JFense,
however, allows a single component to be associated with
multiple QoS groups whereas GOPI does not. In GOPI, each
communication protocol can have a QoS manager associated
with it to ensure that a communication binding maintains its
required QoS. This design is similar to the JFense approach
of using Guardian classes to monitor EJBs and notify the
appropriate adaptations when QoS degrades. GOPI requires
that developers implement the planning logic that determines
what response should be taken to a QoS degradation. By
using the J3 Toolsuite, the planning logic is automatically
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generated from the J2EEML model. Furthermore, adapta-
tions can be written once and incorporated into multiple
aspects of an application by merely updating the J2EEML
model and regenerating the JFense code. Using a model-
driven middleware approach provides significant benefits to
the implementation and refactoring of adaptation logic when
compared to hand-coding with a platform such as GOPI.

QuO [36] is another middleware architecture for mapping
QoS to objects. In QuO, the state of the operating environ-
ment can be partitioned into regions. Transitions between
these regions trigger adaptive behavior. This architecture is
similar to how JFense operates, i.e., JFense adaptations occur
as assertions become true or false. A key difference between
the J3 Toolsuite and QuO is that J3 is a complete model-
driven process for developing adaptive applications and not
just a QoS-aware middleware framework. With J3, most of
the tedious configuration and implementation code is gener-
ated from the modeling tool. As discussed previously, this
greatly reduces the cost of refactoring adaptations as the
understanding of the target operating domain improves.
Moreover, it decreases the initial entry cost of building an
adaptive application.

IBM’s Autonomic Toolkit [16] addresses the issues of
monitoring, analysis, planning, and executing autonomic
applications. It includes the Autonomic Management Engine,
which monitors events, analyzes them, then plans and exe-
cutes corrective action on a computing resource; the Generic
Log Adapter [16] for Autonomic Computing, which converts
existing log files to the Common Base Event format [17];
and the Log and Trace Analyzer for Autonomic Computing,
which reads logs in the Common Base Event format, cor-
relates the logs based on different criteria, and displays the
correlated log records. These tools do not, however, address
the complexity of integrating autonomic functionality into
applications, i.e., they do not help developers design their
autonomic applications or implementing the logic required
by them. In contrast, the J3 Toolsuite is specifically tailored
to reducing design and implementation complexity, as well
as providing a runtime framework.

Another related research area is microrebooting [6], which
posits that entering unsafe states in large-scale systems is
unavoidable and can be combated by recursively rebooting
increasingly larger portions of the system until the unsafe
state is cleared. This research is complementary to our J3
work, e.g., JFense provides a framework whereby rebooting
logic can be inserted at the component level to enable micror-
ebooting. Moreover, in J2EEML, application designers can
specify exactly which components must support rebooting
and use Jadapt to automatically weave the required code into
those locations.

Another related avenue of research is requirements spec-
ification for autonomic systems. Zhang et al. [35] present
a method based on temporal logic to describe the correct

adaptation of an autonomic application. Their temporal logic
method allows developers to formally specify the require-
ments or correctness properties of a program both before
and after adaptation. By creating a formal specification of
an adaptation based on temporal logic, developers can use
verification tools to ensure the correctness of their designs.

Zhang et al.’s work is complementary to the work pre-
sented in this paper. Their work assumes programs are Finite
State Machines (FSMs) and analyzes discrete behavior.
J2EEML and QSim, however, are used to analyze the inter-
action of the adaptive control logic and the continuous sys-
tem properties triggering adaptation. Using both approaches,
developers could both ensure that (1) the application met its
pre and post adaptation requirements with temporal logic and
(2) the adaptation plan will not trigger conflicting adaptations
or incompatible adaptations.

In [12], Gjorven et al. propose casting the adaptive mecha-
nism of an application as a service. By describing an applica-
tion’s adaptive mechanism as a service, Gjorven et al. show
that the adaptive logic for an application can be reused and
itself adapted. We also view this work as complementary
to J3. Although JFense does not use a service-based adap-
tation mechanism, it could be adapted to do so. Moreover,
using J2EEML, both the adaptive service and the application
adaptation could be modeled. Simulations could then be run
using J3’s Prolog QSim capabilities to analyze the interaction
between the application and adaptation service.

7 Concluding remarks

In theory, autonomic systems can minimize the impact of
human error in development and management. In practice,
however, it is hard to develop the monitoring, analysis, plan-
ning, and execution aspects required for autonomic systems
reliably and productively since developers must reason about
complex sets of QoS assertions and ensure that applications
meet them. The J3 Toolsuite described in this paper pro-
vides Model-Driven Engineering (MDE) tools and an auto-
nomic computing framework, which enable EJB applications
to self-manage and maintain their QoS assertions.

To facilitate self-management, the J3 Toolsuite allows
developers to capture the structure of EJB applications and
their QoS assertions in models so applications can reason
about themselves. The bridge between the QoS assertions of
autonomic systems and their structural designs involves map-
ping these assertions to specific system components. With-
out this mapping, applications could not use introspection to
determine whether their QoS assertions are being met. The
J2EEML MDE tool helps link assertions and structure by
allowing developers to specify this mapping via a DSML.
J2EEML also includes mechanisms for modeling and simu-
lating complex EJB structures, interactions, and architectures
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and using these models to generate code that mirrors the
specifications from the model, which frees developers from
reinventing complex autonomic software for each new appli-
cation.

After capturing structural properties, QoS assertions, and
assertion to structure mapping in J2EEML, developers still
must integrate autonomic features into their distributed EJB
applications. This integration can be complicated due to the
lack of component-level frameworks for autonomic systems.
To address these concerns, we have developed the Jadapt
code generation tool and the JFense autonomic computing
framework. Jadapt allows developers to generate the code
needed to plug their application’s EJBs into JFense. JFense
provides a comprehensive and flexible framework for multi-
layered autonomic monitoring, analysis, planning, and exe-
cution architectures, which allows developers to focus on the
system’s business logic and QoS analysis logic.

The J3 Toolsuite also provides a simulation environment
that greatly reduces the complexity of validating developer
assumptions about autonomic behavior. This environment
uses an automatically generated Prolog knowledge base to
enable the simulation to identify QoS assertions that may be
decomposable and provide a more flexible system design. As
shown in the experiments described in Sect. 5, this autonomic
system simulation and analysis capability greatly improves
the ability of the developer to test, validate, and refine auto-
nomic system designs.

The following summarizes our lessons learned thus far by
developing and applying the J3 Toolsuite:

• Developing adaptations for EJB applications is hard. Most
EJB developers do not think about designing components
that can be adapted, swapped, restarted, or reconfigured
to handle errors.

• A model of the introspectively measured continuous prop-
erties of an autonomic EJB application and how it reacts
to them can be simulated with QSim, but modelers must
only specify continuous variables and landmarks directly
related to the adaptations. Polluting a model with extra-
neous information creates a combinatorial explosion for
the simulation.

• Creating a model and simulation of an autonomic EJB
application greatly enhances the ability of developers to
understand the complex behavior that would ordinarily
be buried in hundreds of source files.

• Constraint checking and code generation can greatly
reduce and/or eliminate hard-to-debug runtime errors,
such as JNDI naming errors.

• Adaptive system behavior validation can be simplified
by using a modified QDE simulator. A simulation, how-
ever, relies on intention entities to predict all the conse-
quences of an adaptive action correctly. In many cases, all

the side-effects of an adaptation may not be completely
known until the system is built and tested.

• Non-simulatable properties, such as the list of the most
recent exceptions thrown by the application, are prob-
lematic when predicting the behavior of an autonomic
EJB system. New techniques will need to be developed
to fully understand how they may affect an autonomic
application’s behavior.

In future work, we are developing more sophisticated auto-
nomic distributed applications in the domain of enterprise
Java applications and earth science experiments using our
J3 Toolsuite. These applications will serve as a testbed for
investigating various autonomic architectures. We are also
enhancing these tools to increase their simulation capabili-
ties to include the ability to provide weighted intentions of
actions. Using weighted intentions will allow the simulation
to predict the result of the activation of conflicting actions.
Finally, we plan to explore modeling and simulation of adap-
tive re-deployment of components in response to hardware
and software failures.

References

1. Alur, D., Crupi, J., Malks, D.: J2EE Core Patterns. Sun Microsys-
tems Press (2003)

2. Asikainen, T., Männistö, T., Soininen, T.: Representing feature
models of software product families using a configuration ontology
ECAI 2004. Workshop on Configuration (2004)

3. Baldwin, C., Clark, K.: Design Rules: The Power of Modular-
ity. MIT, Cambridge (1999)

4. Beizer, B.: Black-box Testing: Techniques for Functional Testing
of Software and Systems. Wiley, New York (1995)

5. Bratko, I.: Prolog: Programming for Artificial Intelligence, Third
Edition. Addison Wesley, New York (2001)

6. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Mic-
roreboot—a technique for cheap recovery. In: Proceedings of the
6th Symposium on Operating Systems Design and Implementation
(OSDI), San Francisco, CA, December (2004)

7. Candea, G., Fox, A.: Designing for high availability and measur-
ability. In: Proceedings of the 1st Workshop on Evaluating and
Architecting System Dependability (2001)

8. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit
testing: the JML and JUnit way. In: Proceedings Of European Con-
ference on Object-oriented Programming, June (2002)

9. Coulson, G., Baichoo, S., Moonian, O.: A retrospective on the
design of the GOPI middleware platform. In: ACM Multimedia J
(2002)

10. Eymann, T., Reinicke, M.: Self-organizing resource allocation for
autonomic networks. In: Proceedings of the DEXA Workshops
(2003)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, New York (1995)

12. Gjorven, E., Eliassen, F., Aagedal, J.O.: Quality of adaptation. In:
Proceedings of the International Conference on Autonomic and
Autonomous Systems, July (2006)

123



22 J. White et al.

13. Gray, J., Roychoudhury, S.: A technique for constructing aspect
weavers using a program transformation engine. In: Proceedings
of AOSD ’04, Lancaster, UK (2004)

14. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Prasad, V.: Cadena:
An integrated development, analysis, and verification environment
for component-based systems. In: Proceedings of the 25th Interna-
tional Conference on Software Engineering, Portland, OR (2003)

15. Huebscher, M.C., McCann, J.A.: Simulation model for self-adap-
tive applications in pervasive computing. In: Proceedings of 14th
International Conference on Database and Expert Systems Appli-
cations, Prague, Czech Republic, September (2004)

16. IBM, Autonomic Computing Toolkit, http://www106.ibm.com/de-
veloperworks/autonomic/overview.html.

17. IBM Developerworks, Specification: Common Base Event (http://
www106.ibm.com/developerworks/webservices/library/ws-cbe/)

18. Kandasamy, N., Abdelwahed, S., Khandekar, M.A.: Hierarchical
optimization framework for autonomic performance management
of distributed computing systems. In: Proceedings 26th IEEE Inter-
national on Distributed Computing Systems, ICDCS 2006. Lisbon,
Portugal, July (2006)

19. Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson,
S.A.: Feature Oriented Domain Analysis (FODA)-feasibility study.
Technical report. Carnegie-Mellon University, (1990)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
IEEE Computer, January (2003)

21. Kuipers, B.: Qualitative simulation. Artif. Intell. 29, 289–338
(1986)

22. Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P., Nordstrom, G.,
Sprinkle, J., Karsai, G.: Composing domain-specific design envi-
ronments. IEEE Computer, November (2001)

23. Ledeczi, A.: The generic modeling environment. In: Proceedings
of Workshop on Intelligent Signal Processing, Budapest, Hungary
(2001)

24. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Karr, D., Vanegas,
R.: QoS aspect languages and their runtime integration. In: Pro-
ceedings of the Fourth Workshop on Languages, Compilers and
Runtime Systems for Scalable Components (1998)

25. Matena, V., Hapner, M.: Enterprise Java Beans Specification, Ver-
sion 1.1. Sun Microsystems, December (1999)

26. Melcher, B., Mitchell, B.: Towards an autonomic framework: self-
configuring network services and developing autonomic applica-
tions. Intel Technol. J. November (2004)

27. Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R., Nguyen, T.:
Understanding and dealing with operator mistakes in internet ser-
vices. In: Proceedings of the 6th Symposium on Operating Systems
Design and Implementation, San Francisco, CA, December (2004)

28. Oppenheimer, D., Ganapathi, A., Patterson, D.: Why do Internet
services fail, and what can be done about it?. In: Proceedings
of USENIX Symposium on Internet Technologies and Systems,
March (2003)

29. Parnas, D.L.: On the criteria to be used in decomposing systems
into modules. Commun. ACM 15(12), 1053–1058 (1972)

30. Reps, T.: Program analysis via graph reachability. In: Information
and Software Technology, vol 40, No. 11–12, pp. 701–726. Else-
vier, Amsterdam (1998)

31. Schmidt, D.: Model-driven engineering. IEEE Comput. 39(2), 41–
47 (2006)

32. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N degrees of sepa-
ration: multi-dimensional separation of concerns. In: Proceedings
of the 21st International Conference on Software Engineering, May
(1999)

33. White, J., Schmidt, D.: Simplifying the development of
product-line customization tools via MDD. In: Proceedings of
the Workshop: MDD for Software Product Lines, ACM/IEEE 8th
International Conference on Model Driven Engineering Languages
and Systems, October (2005)

34. White, J., Schmidt, D., Gokhale, A.: Simplifying the development
of autonomic enterprise Java Bean applications via model driven
development. In: Proceedings of the ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems,
Montego Bay, Jamaica, October (2005)

35. Zhang, J., Cheng, B.: Using temporal logic to specify adaptive
program semantics. In Journal of Systems and Software, Elsevier.
Special issue on Architecting Dependable Systems, Vol. 79, No.
10, pp. 1361–1369, October (2006)

36. Zinky, J., Bakken, D., Schantz, R.: Architectural support for qual-
ity of service for CORBA objects. Theory Pract. Object Syst. 3(1)
(1997)

Author’s Biography

Dr. Aniruddha S. Gokhale is an
Assistant Professor in the Elec-
trical Engineering and Computer
Science (EECS) Department and
a Senior Research Scientist at
the Institute for Software Inte-
grated Systems (ISIS) at Vander-
bilt University, Nashville, TN.
His research focuses on real-
time component middleware
optimizations, distributed sys-
tems and networks, model-driven
software synthesis applied to

component middleware-based distributed systems, and distributed
resource management. He is currently leading several DARPA projects
involving modeling and middleware solutions and distributed dynamic
resource management. Dr. Gokhale is also leading industry-sponsored
R&D efforts on the CoSMIC (www.dre.vanderbilt.edu/cosmic) open-
source model-driven middleware toolkit. Dr. Gokhale previously
worked as a Member of the Research Staff at Bell Laboratories,
Lucent Technologies (1998-2002), where he was responsible for efforts
on high-performance Fault-tolerant CORBA, networked call centers,
and network element software management solutions. He has pub-
lished over 50 refereed journal and conference papers, and cur-
rently has a patent application pending. Dr. Gokhale received his
Bachelor of Engineering (B.E., Computer Engineering) from Univer-
sity of Pune, Pune, India in 1989; Masters of Science (M.S., Com-
puter Science) from Arizona State University, Tempe, AZ in 1992;
and Doctor of Science (D.Sc., Computer Science) from Washington
University, St. Louis, MO in 1998. URL: www.dre.vanderbilt.edu/∼
gokhale. Email: gokhale@dre.vanderbilt.edu.

123



Simplifying autonomic enterprise Java Bean applications via model-driven engineering and simulation 23

Douglas C. Schmidt is a Full
Professor in the Electrical Engineer-
ing and Computer Science (EECS)
Department, Associate Chair of the
Computer Science and Engineering
program, and a Senior Research Sci-
entist at the Institute for Software
Integrated Systems (ISIS) at Vander-
bilt University, Nashville, TN. For the
past two decades, he has led pioneer-
ing research on patterns, optimization
techniques, and empirical analyses of
object-oriented and component-based
frameworks and model-driven devel-
opment tools that facilitate the devel-

opment of distributed middleware and applications. Dr. Schmidt is
an expert on distributed computing patterns and middleware frame-
works and has published over 350 technical papers and 9 books that
cover a range of topics including high-performance communication
software systems, parallel processing for high-speed networking proto-
cols, real-time distributed object computing, object-oriented patterns
for concurrent and distributed systems, and model-driven develop-
ment tools. In addition to his academic research, Dr. Schmidt has
over fifteen years of experience leading the development of widely
used, open-source middleware platforms (www.dre.vanderbilt.edu) that
contain a rich set of components and domain-specific languages that
implement key patterns for high-performance distributed systems. Dr.
Schmidt received his Ph.D. in Computer Science from the University
of California, Irvine in 1994. URL: www.dre.vanderbilt.edu/∼schmidt.
Email: schmidt@dre.vanderbilt.edu.

Jules White is a Ph.D. candidate in
the Distributed Object Computing
(DOC) group at Vanderbilt Univer-
sity’s Institute for Software Inte-
grated Systems (ISIS). Mr. White’s
research focuses on using con-
straint logic programming tech-
niques to dynamically configure
distributed component-based sys-
tems and reduce the complexity
of modeling large domains. Before
joining the DOC group, he worked
in IBM’s Boston Innovation Cen-
ter. Mr. White is the head of devel-
opment for the Generic Eclipse

Modeling System (GEMS) http://www.sf.net/projects/gems.

123






