
March 11, 2009 11:44 WSPC/123-JCSC 00496

Journal of Circuits, Systems, and Computers
Vol. 18, No. 1 (2009) 103–120
c© World Scientific Publishing Company

STUDYING ENERGY-ORIENTED DYNAMIC
OPTIMIZATIONS IN JAVA VIRTUAL MACHINES

YU SUN∗ and WEI ZHANG†

Department of Electrical and Computer Engineering,
Southern Illinois University Carbondale,

Carbondale, IL 62902, USA
∗sunyu@engr.siu.edu
†zhang@engr.siu.edu

Revised 7 July 2008

Virtual machines have been increasingly used in embedded and mobile devices. Limited
processing power and energy resources become a major challenge for modern virtual
machines. The traditional virtual machines running on server computers also face the
similar requirement to reduce energy dissipation. To address these challenges, a number
of research works have been done in the area of energy-oriented dynamic optimization in
Java Virtual Machines (JVM). Some of them focus on virtual machine directed hardware
optimizations, while others exploit pure software approaches on virtual machine or com-
piler to reduce energy consumption. Additionally, client/server framework among mul-
tiple processors is also used to offload power-consuming tasks from low-power devices.
This paper surveys the current progress of energy-oriented dynamic optimizations in
JVMs.

Keywords: Dynamic compiler; energy dissipation; Java Virtual Machine.

1. Introduction

Java technique46 has been widely used in the past decades, from heavy workload
servers to low-power mobile devices. Java Virtual Machine (JVM) is the most basic
and crucial component of Java platform, which manages and executes Java pro-
grams. There are plenty of implementations of JVM, such as Sun JVM, Jikes
RVM,47 KVM,48 etc. Besides providing basic compilation/interpretation from Java
program to native machine code, modern JVMs also employ dynamic or adap-
tive optimizations to generate code that is able to achieve higher performance.
Furthermore, dynamic optimizations like Refs. 1–4 are becoming the hotspot in
JVM-related researches because JVM can collect accurate application characteris-
tics during runtime.

In modern JVMs, performance is not the only important issue. Energy con-
sumption has also become a critical design consideration for systems ranging from
battery-operated embedded devices to high-performance servers. Total amount of

103



March 11, 2009 11:44 WSPC/123-JCSC 00496

104 Y. Sun & W. Zhang

energy consumed by an application generally depends on two factors — average
power consumption of hardware components per cycle (or time unit generally),
which includes CPU core power, memory power and I/O power, and the total
execution time of this application. The goal of energy-oriented optimization is to
improve one or both of these two factors so that the total energy consumption can be
reduced. While there have been many studies on software-based energy reduction,
mainly directed by a static compiler, there are relatively fewer works in study-
ing energy optimizations in the context of dynamic compilers or JVMs. Therefore,
this paper attempts to survey the related and most recent work in energy-oriented
dynamic optimizations in JVMs, which can help researchers to understand the
state-of-the-art and to possibly advance this important research area.

The fundamental of energy-oriented optimizations in JVM is to model JVM’s
energy behavior accurately. Dynamic optimization requires runtime energy con-
sumption measurement and estimation. References 5–8 introduced their work about
JVM energy models and runtime energy measurement. With these works, dynamic
optimization systems can estimate future energy consumption in different cases and
dynamically make the best decision to achieve the least energy usage.

There are many approaches to implementing energy-oriented dynamic optimiza-
tions in JVM. Hardware methods are the mainstream methods used to reduce power
usage. Some static hardware optimizations like Refs. 9–11 have also been studied.
However, by combining these works with JVM technique, more improvement can
be achieved. Pure software approaches also have the ability to reduce energy con-
sumption. For example, compiler optimizations like Refs. 12, 13 are introduced to
low-power devices. Moreover, distributed computing provide a new way for JVM to
make remote/local energy tradeoffs, especially for low-power mobile devices working
with a resource-rich server.

The survey is organized as follows: Sec. 2 describes the optimizations on single
processor environments, including software directed hardware optimizations and
pure software-based energy optimizations; Sec. 3 presents the optimizations based
on client/server framework; Sec. 4 makes concluding remarks and discusses possible
future work in this area.

2. Optimizations on Single Processor

Firstly, we explore the research works on traditional single processor environment.
Both hardware and software approaches are presented in this field. These two kinds
of optimizations are described in Secs. 2.1 and 2.2 respectively.

2.1. Virtual machine directed hardware energy optimizations

Any energy consumption of an application is directly generated by hardware circuit,
although it can also be impacted by the software that runs on top of the hardware.
Therefore, energy-efficient hardware optimizations are the most direct way to reduce



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 105

energy dissipation. Although JVM itself is software, the runtime information col-
lected by JVM can be quite useful to intelligently guide energy-oriented hardware
optimizations.

2.1.1. Virtual machine driven dynamic voltage scaling

In CMOS circuits, the dynamic energy consumption is proportional to where v is
the supply voltage and f is the clock frequency. Dynamic Voltage Scaling (DVS) is
a technique to reduce the energy consumption by scaling down the supply voltage.
With a lower supply voltage, although the execution time of an application increases
due to the slower frequency, the total energy consumption will decrease because
of the quadratic effect of voltage scaling on the energy dissipation. DVS can be
directly supported by many processors, such as Intel Speedstep49 and Transmeta’s
Crusoe.50 A number of research efforts on DVS at OS level14–16 and static compiler
level13,17,18 have been conducted in the literature. By comparison, this paper will
review related work in DVS driven by the dynamic compiler or JVM.

Wu et al.19 presented a design framework of the runtime DVFS (Dynamic Volt-
age and Frequency Scaling) in a general dynamic compilation system. In this work,
a new DVFS decision algorithm was proposed, which was based on an analytical
DVFS decision model. Their evaluation, based on a real hardware platform and the
measurement of CPU current and voltage, indicate that significant energy can be
saved with little performance degradation.

Haldar et al.20 described an approach, which used the fine-grained execution
information about the actual workloads from virtual machine to make DVS deci-
sions with higher precision. This VM-driven DVS20 presented an algorithm based
on runtime profiling of bytecodes executing in a virtual machine. The goal of this
work was to reduce energy consumption by means of scaling down frequency, while
at the same time minimizing performance loss. DVS decisions for methods were
made by considering two factors. First, the new execution time of a method must
stay within a threshold of the original runtime. Moreover, the voltage/frequency
switch overhead must be significantly smaller than the method’s runtime. The meth-
ods which meet these two conditions will be scaled down at next invocation. The
on-line profiling and future estimation mechanism were the same as the heuristic
in Jikes RVM.47 Their work led up to a 13% saving in simulated processor power
consumption with a performance loss of no more than 33%.20

Rauch and Gal21 made some further research along this direction. They pre-
sented a dynamic adaptive power-management plug-in for the JVM that improved
the precision of power management decisions by utilizing fine-grained high-level
program state information. This virtual machine plug-in injected runtime profil-
ing probes and power management triggers at the Java bytecode-level and was
thereby independent of target architecture, JVM implementation, and host oper-
ating system. Java Virtual Machine Tool Interface (JVMTI)51 was exploited to
extract profiling information from runtime JVM. Up to 6% overhead was brought by



March 11, 2009 11:44 WSPC/123-JCSC 00496

106 Y. Sun & W. Zhang

the profiling activities. Three heuristics were presented in this paper: (1) memory-
allocation heuristic, scaling the CPU clock based on the memory throughput of the
application so as to achieve the maximal throughput at the lowest possible clock
frequency; (2) I/O heuristic, trying to run the program at the lowest clock frequency
without compromising the I/O throughput; and (3) CPU heuristic, which reduced
the CPU clock frequency only if the throughput was not affected. A power manage-
ment system combining these three heuristics can achieve an average 19% energy
saving with average 21% performance loss during the experiments on SpecJVM98
benchmarks.52

2.1.2. Virtual machine based configurable unit managements

Hu et al.22,23 presented another software–hardware combined approach to reduce
energy consumption of virtual machine-based application. The motivation of their
work is that a group of configurable hardware units can be managed to fit the min-
imal requirement of different applications. Turning off unnecessary units can sig-
nificantly reduce the energy consumption of execution. Previous research indicated
that five components dominated the energy consumption of a microprocessor.24

These units were issue queue, reorder buffer, L1 instruction and data caches, and
L2 cache.

This research work focused on two major issues — when to adapt hardware
resources and which configuration to adapt to. The first one was addressed by the
program phase detection. It was implemented by Jikes RVM dynamic hot method
detector, which can closely represent program phase behavior. The second issue
also employed the Jikes RVM. More specifically, Hu et al.22,23 proposed a scheme
for efficient management of multiple CUs based on a generic dynamic optimization
(DO) system. By exploiting the existing hot method detection mechanism and
cost/benefit estimation model of the DO system, the proposed adaptive computing
environment (ACE) framework adapted micro-architectural resources at hotspot
boundaries. A hotspot tuning procedure was inserted after on-line optimization of
Jikes RVM to select the best CU configuration for one hot method.

The experiments based on Dynamic Simple Scalar53 (DSS), Jikes RVM and
SpecJVM98 benchmark suite showed an energy reduction in L2 cache by as much
as 52%, and the average energy reductions of all CUs are between 28% and 45%. On
the other hand, this technique resulted in an average 5% performance degradation
to all the benchmarks.

Furthermore, Hu and John25 studied the impacts of JVM optimizations and
garbage collection on energy consumption with adaptive hardware. Their research
revealed that JIT optimizations and garbage collection interferred with hardware
adaptation. Both JIT optimizations and garbage collection altered program behav-
ior and runtime requirements. In adaptive micro architectures, such changes of
runtime requirements can considerably affect the adaptation decisions of config-
urable hardware units, and eventually influence the overall energy consumption of



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 107

the underlying adaptive micro architecture. This research also studied the adapta-
tion preferences of CUs on the JIT optimizer and the garbage collector. Owing to
their distinct runtime characteristics, such as poor data cache performance for the
both of them, the two dynamic optimizations had adaptation preferences that dif-
fered substantially from the applications. For instance, both the JIT compiler and
garbage collector preferred a simple core for energy reduction. On the other hand,
the JIT optimizer usually required larger data caches to sustain its performance,
while the garbage collector chose smaller caches with minimal performance loss.

2.1.3. Memory hierarchy energy reduction

Memory hierarchy system, including cache and main memory, has great impact on
the total energy consumption of entire system. Some important research works were
presented in this particular field to improve memory energy efficiency by hardware
approaches.

One of these studies was done by Chen et al.,26 whose work centered on inves-
tigating data cache leakage energy for Java objects in virtual machine. Three tech-
niques were explored to detect and save leakage energy in data cache lines: garbage
collection, trace-based escape analysis and last-use analysis. Garbage collection
(GC) was invoked when heap memory ran out. It traversed all Java objects and
swept the objects that could not be reached from the root object. Turning off cache
line containing “garbage objects” saved the data cache energy consumption by 9%.
Escape analysis27,28 identified local objects in methods and turned off correspond-
ing cache lines when the methods returned. The combination of GC and this scheme
achieved a 17% data cache energy reduction on average. Last-use analysis inserted
“deactivate” instruction into method code to turn off some objects immediately
after their last access instead of the return point of method. This more aggressive
scheme exploited profiling traces and training sets to locate the position of deac-
tivate instructions. On the average, they achieved 11% data cache energy savings
through last-use analysis optimization and GC scheme. When it was combined with
escape analysis, it could save 6% more energy on average. Additionally, access gap
analysis was introduced to estimate the intervals between two consecutive accesses
to objects and turn off cache lines when the intervals were long enough. A combi-
nation of GC, escape analysis, and access gap analysis can reduce the data cache
energy by 21% on average.

Tomar and Kim29 presented another approach to improving energy efficiency of
Java applications, by applying local memory in on-chip memory instead of using
cache-only architecture. Local memory was used in their work to store frequently
used Java objects, avoiding them to be replaced from cache due to conflicts. In
presence of the LM, the main memory energy decreased by 11.2% on average across
different benchmarks. The reason was fewer accesses to the main memory, which
was a result of higher number of cache hits and more references being captured in
the LM. Local memory also consumed less energy than the cache due to the absence



March 11, 2009 11:44 WSPC/123-JCSC 00496

108 Y. Sun & W. Zhang

of tag access. This improvement was made in large size cache and local memory.
Small size local memory like 1 KB or 2 KB could not make any profit because small
local memory did not contain as many heap references as to cause a drop in the
miss rate, and subsequently, energy. Annotation-based implementation was used to
decide which Java objects were to be placed into local memory. According to their
experiment results, this implementation can achieve 10.37% energy reduction on
average with 4 KB cache and 4 KB local memory, compared to 8 KB cache only.

Code cache, which is a small on-chip memory storing dynamically compiled
native code of Java methods, was used in Ref. 30 to make improvement in energy
aspect. In their system, a strategy that combined recency of use with frequency of
use was adopted to decide which methods had the right to put their compiled native
code into code cache. With a proper configuration of the code cache management
strategy, an average 40% energy reduction across 6 SpecJVM98 benchmarks could
be achieved compared to all-compile strategy, and 50% energy reduction compared
to all-interpretation approach.

Guha et al.74 presented several techniques to improve code cache performance
by reducing exit stub spaces. Both code traces and exit stubs were stored in a
code cache. Exit stubs kept track of the branches of a trace and consumed up to
66.7% space of the code cache. They first described two schemes that used a dele-
tion approach to reduce the space occupied by stubs in an application-independent
and partially JVM-independent manner. Furthermore, Guha et al.74 proposed two
schemes, which identified characteristics of stubs that could be further optimized to
minimize their space requirements. The four schemes are Deletion of Stubs, Avoid-
ing Stub Compilation, Exit Stub Size Reduction and Target Address Specific Stubs.
These techniques reduced memory consumption of the code cache by 43.5% while
improving performance by 1.5%.

On-chip scratch-pad memory (SPM) and pretenuring technique, which segre-
gated Java objects into separated memory regions, were introduced in Ref. 31 to
reduce energy consumption and data accessing cycles for Java execution. In their
work, Java objects were divided into several categories: (1) young objects, which
lived a quite short period of time; (2) hot-immortal objects, which were frequently
referenced objects living the whole life time of application; (3) hot-mature objects,
where were frequently referenced but with short life time; (4) cool-immortal and
(5) cool-mature objects, which were not frequently referenced during application
running. The scratch-pad memory bypassed caches and was employed to store
young, hot-immortal and hot-mature objects. This policy decreased excessive copies
on dead young objects, as well as conflicts of hot-immortal and hot-mature objects
in cache. As a result, the energy efficiency of memory hierarchy could be improved.
Besides, an effective pretenuring mechanism, which made use of object lifetime and
reference density, was presented in their paper. This mechanism can significantly
reduce object tenuring costs. However, no experimental results about energy con-
sumption were presented.



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 109

Chen et al.32 also used on-chip scratch-pad memory in their approach, where
compression technique was combined with SPM and a mechanism that turns off
power supply to the unused portions of the memory to control leakage. In this
approach, the code of the embedded JVM system and the associated library classes
were stored in a compressed form in the memory. Whenever the compressed code or
classes were required by the processor core, a mapping structure stored in a reserved
part of the SPM was used to locate the required block of data in the compressed
store. Then, the block of data after decompression was brought into the SPM. The
use of scratch-pad memory in conjunction with a compressed memory store led
to the reduction of both dynamic and leakage energy dissipation. KVM, Shade54

and the CACTI tool Version 2.055 were used in their simulation experiments. The
results showed an average 20% energy reduction in read-only portion of the main
memory and the SPM and 7% in all the main memory and the SPM.

2.2. Pure software-based energy optimizations

In addition to the aforementioned hardware-based energy optimizations, there are
also some pure software energy optimizations in the literature. A major advantage of
pure software-based approach is that no additional hardware modification is needed.
Thus the software optimizations can be directly applied on existing systems to gain
the benefits of energy reduction.

2.2.1. Energy-oriented compiler optimizations

Parikh et al.33 presented and evaluated several instruction scheduling algorithms
that reorder a given sequence of instructions, taking into account the energy
considerations. Their work compared a performance-oriented scheduling technique
with three energy-oriented instruction scheduling algorithms: Top-Down, Bottom-
Up and Look-Ahead approaches. They also proposed three scheduling algorithms
by considering energy and performance at the same time. Their experiment results
showed that the best scheduling from the performance perspective was not nec-
essarily the best scheduling from the energy perspective. Furthermore, scheduling
techniques that considered both energy and performance simultaneously were quite
successful in reducing energy consumption and their performance was comparable
to that of a pure performance-oriented scheduling. Another conclusion from the
results was that the energy-oriented scheduling reduced energy consumption by up
to 30% compared to the performance-oriented scheduling.

In the work of Kadayif et al.,34 a novel Energy-Aware Compilation (EAC) frame-
work that can estimate and optimize energy consumption of a given code was pre-
sented. It provided a low-cost high-level energy estimation model that could be
incorporated into an optimizing compiler, and a validation of the compiler-directed
energy estimation using a cycle-accurate architectural-level energy simulator for a



March 11, 2009 11:44 WSPC/123-JCSC 00496

110 Y. Sun & W. Zhang

simple architectural model. An energy-constrained version of iteration space tiling35

was also presented in their paper as an example.
Some other software-based energy optimizations were introduced in Refs. 36

and 37. However, these energy-oriented compiler optimizations are not specially
designed for Java language or JVM. There is still more research to be performed
so that these techniques can be adopted by JVM.

2.2.2. Optimizations on garbage collector in JVMs

Garbage collector (GC) is a very important feature of Java technique. GC is per-
formed in almost any Java application dealing with Java objects stored in memory.

Chen et al.’s research38 showed that GC is not only important for limited-
memory systems but also for energy-constrained architectures. They presented a
GC-controlled leakage energy optimization technique that shut off memory banks
that did not hold live data. Two Mark-and-Sweep (M&S) garbage collectors of
KVM, which were commonly employed in current embedded JVM environments,
were tuned to test the impact of GC’s configurations. Assuming that GC worked
with a banked memory system in which memory banks could be turned off to save
energy, the energy simulation performed by Shade showed that this leakage control
policy could save 31% heap energy consumption on the average. The results also
showed that more frequent GC was beneficial for energy-constraint systems. With
an Active-Bank-First object allocation strategy which tried current active memory
banks first, more than 30% heap energy could be saved. Their work also studied
the impact of object compaction and cache memory.

A new energy-efficient garbage collector was proposed by Griffin et al.39 It was
a hybrid scheme falling between the standard mark-sweep-compact collector avail-
able in Sun’s KVM and a limited-field reference counter. This scheme could reclaim
memory space, resulting in less garbage collection invocations. Lower energy con-
sumption could be achieved by this GC scheme because memory access accounted
for a large amount of power dissipation. The experimental results showed that the
proposed scheme could reduce the energy consumption in two out of six applica-
tions. For the remaining four applications, however, there were almost no differences
between the default and the proposed algorithms.

Velasco et al.40 performed a complete study from an energy viewpoint of the
different state-of-the-art garbage collectors mechanisms (e.g., mark-and-sweep, gen-
erational garbage collectors) for embedded systems. Their work was based on
Jikes RVM and DSS environment. Five GC policies were explored: Mark-and-
Sweep, SemiSpace, Generational Copy (GenCopy), Generational Mark-and-Sweep
(GenMS) and Copying collect with Mark-and-Sweep. Their results showed that all
GCs based on Generational collectors (i.e., GenMS and GenCopy) achieved the best
energy results compared to more typical GCs implemented in the JVM of real-life
Java-based embedded devices.



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 111

2.3. Embedded virtual machines and compilers

Besides the abovementioned approaches applied, this section will introduce energy-
oriented optimizations specifically targeting JVM-enabled embedded devices. These
systems typically share some common features such as lightweight, low memory
usage and energy-efficiency.

E-Bunny selective dynamic compiler56,57 was applied on J2ME/CLDC58 vir-
tual machine KVM, which targeted low-end mobile devices. This compiler selected
methods to be compiled based on their invocation frequency. The low frequency
methods stayed at interpreted mode. It reduced the energy dissipation based on
two factors. First, it had a small memory footprint as low as 138 KB. Second,
it implemented an efficient one-pass stack-based machine code generation. Also,
E-Bunny accomplished a speedup of 400% with respect to the original version of
Sun’s KVM.

Scylla59 is a specially designed Java virtual machine for embedded devices with
limited energy resources. Energy estimation was performed whenever a method was
to be compiled in Scylla virtual machine. The core energy estimation was based on
a look-up table whose entries corresponded to energy estimates obtained for the
native architecture via instruction level power analysis similar to that in Ref. 60.
Another part of energy estimation came from communication energy calculation
based on the payload size of transmission. The virtual machine would terminate
applications whose estimated energy cost exceeded some limit, and attempt to exe-
cute the application’s fault handler. Scylla can monitor and manage the energy
consumption of Java methods during runtime. Besides, Scylla’s instruction set was
carefully designed to get close to popular processors used in embedded devices. Con-
sequently, the compilation complexity was quite small and the compilation energy
consumption was reduced.

Koshy and Pandey61 introduced VM* — a software framework for synthesizing
runtime environments for wireless sensor networks (WSN). The approach was VM-
based; programmers wrote applications over a common abstract interface. Device-
specific features were accessed through a lightweight native interface. Porting the
VM across various node architectures allowed applications to be deployed uniformly
in heterogeneous environments. VM* was based on the key insight that the VM
running on a specific device did not need to reflect the full VM specification. It
only needed to provide services that were needed by the application running on
the device. Furthermore, different services could be implemented differently on
devices based on resource availability. VM contained a general description of a
VM, which was instantiated and specialized for each application and device. It also
implemented a continuous updated model, in which WSN nodes could be updated
incrementally when changes occurred in applications and the VM. By tracking pro-
gram changes at the VM abstraction level, the cost of distributing and applying
application updates was significantly reduced.



March 11, 2009 11:44 WSPC/123-JCSC 00496

112 Y. Sun & W. Zhang

Mate62 was a stack-oriented VM implemented using TinyOS.63 It was built on
top of several system components providing access to sensors, transceivers, and
external storage. Mate instructions hid the asynchronous nature of the TinyOS
event model to provide a simpler synchronous programming interface. Also, it
implemented a fixed thread-pool of contexts that could react to hardware events
and commands from the application. Each context had its own operand stack for
passing data between operations. Contexts could share variables, and ran concur-
rently at instruction granularity. Each instruction was executed as a TinyOS task.
The instruction set was designed for compactness. Users could also define custom
instructions for a domain specific instruction set. A key goal of Mate was the repro-
gramming capability. VM applications were injected as code capsules into deploy-
ments of nodes programmed with Mate. A viral code distribution scheme infected
nodes in the network with the application capsules. More recent work on Mate
generalized the framework for building application-specific VMs.

Zhang and Krintz64 studied the design, implementation, and empirical evalu-
ation of a compiled-code management system that could be integrated into any
compilation-based JVM. The system unloaded compiled code to reduce the mem-
ory usage of the VM. It did so by dynamically identifying and unloading dead or
infrequently used code. If the code was later reused, it was then recompiled by
the system. Therefore, the system adaptively traded off memory footprint and its
associated memory management costs, with recompilation overhead. Their empiri-
cal evaluation showed that the code management system significantly reduced the
memory requirements of a compile-only JVM, while maintaining the performance
benefits enabled by compilation. Moreover, Zhang and Krintz investigated a num-
ber of implementation alternatives that used dynamic program behavior and system
resource availability to determine when to unload and what code to unload. Their
system reduced code size by 36–62%, on average, which translated into significant
reduction of the execution time and energy dissipation.

3. Client/Server Framework Optimizations

As more and more Java applications are now running on low-power mobile devices
with wireless network connection, it is a good idea to move part of compilation or
execution tasks from energy constraint clients to a connected resource-rich server.
The transmission of source code, native code, execution parameters and return
values brings some overhead. However, an energy reduction can be made by using
proper offloading policy that controls which tasks should be performed remotely.

3.1. Remote compilation

Palm and Lee41 described a remote compilation/optimization service based on Jikes
RVM. A tethered compilation/optimization server provided its service via wireless
network to a number of handheld computers with different hardware and operat-
ing systems. Using the SpecJVM98 benchmark suite, they evaluated the energy



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 113

consumption of four configurations: local baseline, local optimized, server base-
line and server optimized. The mechanism of server compilation/optimization was
simply to move these tasks to the server and client devices staying idle before it
could download the compiled/optimized machine code from the server. The exper-
iment results showed that downloading both Java bytecode and machine code did
not have much impact on the total energy consumption, while the idle energy
spent on waiting server to do optimizations did. Smart compilation/optimization
framework could significantly improve the energy efficiency of Java programs run-
ning on mobile devices. However, good selective optimization mechanism and pre-
compilation should be used to achieve the best improvement.

JCod,65 the Java compiled-on-demand, was proposed to avoid the memory over-
heads of a JIT compiler on resource-limited devices. Whenever JCod determined
that a method should be compiled, it sent this method to a compilation server on
the local network. The compilation server replied by sending the native code back
to JCod, which installed it within the VM. From that time on, the native code was
used, resulting in performance and energy improvement.

Teodorescu and Pandey66 investigated JUCE (Java for Ubiquitous Computing
Environments). The JUCE restructured the traditional JVM by introducing two
new concepts: Remote Just-In-Time compiler (R-JIT) and Configurable Runtime
System (C-RTS). R-JIT exploited the fact that much of the overhead associated
with Java bytecode processing (for instance, code verification or just-in-time compil-
ing) could be relocated to a remote host from the device executing the code. Thus,
the code targeting an embedded device was compiled just-in-time on a remote host
and migrated to the device in the native code format. This meant that a resource-
limited device could efficiently execute a Java application while a more powerful
node used to tolerate the actual Java-specific overhead. The C-RTS had a modular
structure that allowed JUCE to adapt its configuration according to the resources
availability and application requirements. Thus, in JUCE, the different RTS mod-
ules were loaded as required by the application. In the traditional approach the
Java VM was entirely loaded before starting the execution of the application. In
this way, a device running a Java application only needed to deal with the overhead
produced by the RTS services currently required by the application.

Newsome and Watson67 explored MoJo, a new native compiler which allowed
embedded clients to connect to servers and delegate compilation of Java class pack-
ages to native code libraries. MoJo implemented a custom-designed, client/server
protocol for proxy compilation sessions. It assumed TCP packet transport and con-
sequently did not concern itself with packet loss handling. The protocol allowed
clients to specify target code requirements to servers and to receive native bina-
ries back from the server. The MoJo proxy compilation scheme gave a 94% speed
increase over the fastest surveyed interpreter system and a 20% speed increase over
the fastest surveyed JIT system. The MoJo-generated binaries for the application
also proved to be 45 times smaller than those required by its nearest iPAQ JRE
competitor and 275 times smaller than the Sun JRE v1.3.1 for iPAQ.



March 11, 2009 11:44 WSPC/123-JCSC 00496

114 Y. Sun & W. Zhang

3.2. Remote execution

Tallam and Gupta42 presented a fast profile-guided partitioning algorithm that
could choose the program parts to be executed remotely so as to save energy on
the embedded device. The partitioning was performed at Java object level. Profiled
information included: (1) the number of objects of each java class created; (2) the
amount of communication, in bytes, between each object pair; and (3) the processor
time spent in executing in the context of every object. Energy estimation based on
the profile was modeled in the form of a graph. Then in the partitioning step, either
a MIN-CUT algorithm43 or a “fast greedy” approach would be selected. According
to the experiment results, the fast algorithm could achieve energy savings from 29%
to 43%, while the complicated optimal algorithm reduced the energy consumption
by 44% on average.

Based on their VM* virtual machine, Wirjawan et al.68 described a remote
Just-In-Time (JIT) compilation service that was effective in combining interpreta-
tion with native execution to arrive at an efficient hybrid execution configuration.
The VM* JIT compilation framework implemented a distributed infrastructure for
identifying a small set of performance critical Java methods. Nodes collected profil-
ing data about performance-critical methods, and sent the data over the radio to the
base station. The VM* JIT compilation framework used Soot69 for compiling perfor-
mance critical methods. Then it used a remote linker to integrate generated binary
on sensor nodes. Their test applications yielded speedups of up to 77% in applica-
tion configurations suitable for JIT compilation, with program footprints increased
by a factor of 5.58 for Mica270 and 3.74 for Telos.71 Overall stack requirements, how-
ever, depended on application call patterns. The experimental results demonstrated
that through selective compilation of performance-critical methods, the efficiency
of VM-based execution environments can be significantly improved, making them
viable as a basis for software development, deployment and execution in WSNs.

Based on profiling information on computation time and data sharing at the
level of procedure calls, Li et al.72 studied a scheme to offload computation from
energy-constraint devices. In their scheme, offloading units were defined at the level
of procedure calls. Each unique call site to a function (or a procedure) was iden-
tified as a task. They first collected profiling information on computation time
and data sharing at the level of procedure calls. Based on that, a cost graph was
constructed for the given program so that they could apply a task mapping algo-
rithm to statically divide the program into server tasks and client tasks to minimize
energy dissipation. Experiments were performed on a suite of multimedia bench-
marks, which indicated considerable energy saving for several programs through
offloading.

3.3. Combination of remote compilation and execution

Chen et al.44 proposed both adaptive compilation and execution strategies on a
client/server model. When a method was to be compiled, the client computed its



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 115

energy cost to offload the compilation to server and compared it to the version of
local compilation to select the better one. Similar procedure was performed to select
the best execution strategy. The energy cost was computed based on hardware con-
stants, method size, transmitted data size and current wireless network condition. A
series of proxies that could be added by the programmer or automatically created
using profile data at server, were designed to do this job. The proxies evaluated
and compared local compilation and offloading cost when an invocation occurred.
The proxies were also in charge of transmitting method name and parameters when
remote execution was performed, as well as receiving the results back. Additionally,
reconfigurable data path45 and data compression at transmission were also used to
further reduce the energy consumption.

The Proxy Virtual Machine73 was introduced to reduce the energy consump-
tion of mobile devices by combining application partitioning with dynamic opti-
mization. The framework positioned a powerful server infrastructure, the proxy,
between mobile devices and the Internet. The proxy included a just-in-time com-
piler and bytecode translator. A high bandwidth, low-latency secure wireless con-
nection mediated communication between the proxy and mobile devices in the
vicinity. Users can request Internet applications as they normally would through a
Web browser. The proxy intercepted these requests and reissues them to a remote
Internet server. The server sent the proxy the application in mobile code format.
The proxy verified the application, compiled it to native code, and sent part of the
generated code to the target. The remainder of the code executed on the proxy
itself to significantly reduce energy consumption on the mobile device.

4. Concluding Remarks

We have reviewed the current state and progress of energy-efficient compiler tech-
niques in Java Virtual Machines. This review is expected to help researchers
understand the state-of-the-art and conduct further studies to enhance the energy
efficiency for Java programs, which is especially important for battery-operated
embedded Java devices.

We have generally classified the energy-oriented dynamic optimizations into
hardware-based, software-based and hardware/software hybrid approaches. We find
that hardware-based approaches are clearly the most direct way to reduce energy
consumption, while software-based approaches can save energy directly for existing
systems without modifying hardware. The software–hardware-combined techniques,
however, seem to be able to achieve the largest energy reduction. There are rela-
tive few research efforts in the direction of hardware–software cooperative energy
optimizations, which, we think should be emphasized. For example, the DVS on
virtual machine introduced above was based on an interpreter. It is possible to
adopt the work to a JIT dynamic compilation-based virtual machine such as Jikes
RVM. The preciseness of configurable unit management can also be improved by
applying better dynamic profiling mechanisms available in JVM.



March 11, 2009 11:44 WSPC/123-JCSC 00496

116 Y. Sun & W. Zhang

Also, there have been plenty of studies on energy-oriented compiler optimiza-
tions for statically-compiled programs; however, few of them have been currently
applied or extended to modern JVMs. Therefore, in our future work, we would
like to evaluate the feasibility and potential of extending those optimizations to an
open-source Java virtual machine such as Jikes RVM to significantly improve the
energy efficiency of dynamic compilation and applications running on Java Virtual
Machines. Moreover, we intend to study how to exploit the runtime information
that is available to the dynamic optimizers to further enhance the energy efficiency
of Java applications.

Acknowledgments

This work was funded in part by the NSF grant CNS 0613633. We would like to
thank the anonymous referees for the detailed comments that helped us improve
the paper.

References

1. M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano, V. C.
Sreedhar, H. Srinivasan and J. Whaley, The Jalapeño dynamic optimizing compiler
for Java, Proc. ACM’99: Conf. Java Grande, June 1999.

2. M. Arnold, M. Hind and B. G. Ryder, Online feedback-directed optimization of Java,
SIGPLAN Not. 37 (November 2002).

3. T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu and T. Nakatani, A dynamic opti-
mization framework for a Java just-in-time compiler, SIGPLAN Not. 36 (November
2001).

4. M. Arnold, S. J. Fink, D. Grove, M. Hind and P. F. Sweeney, A survey of adaptive
optimization in virtual machines, Proc. IEEE (2005).

5. N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam and M.
J. Irwin, Energy behavior of Java applications from the memory perspective, 1st
USENIX Java Virtual Machine Research and Technology Symp., April 2001.

6. S. Lafond and J. Lilius, An energy consumption model for an embedded Java virtual
machine, Int. Conf. Architecture Computing Systems (2006).

7. K. I. Farkas, J. Flinn, G. Back, D. Grunwald and J. M. Anderson, Quantifying the
energy consumption of a pocket computer and a Java virtual machine, Proc. 2000
ACM SIGMETRICS Int. Conf. Measurement and Modeling of Computer Systems,
June 2000.

8. C. Seo, S. Malek and N. Medvidovic, An energy consumption framework for dis-
tributed Java-based software systems, ACM SIGSOFT (2006).

9. J. J. Sharkey, D. V. Ponomarev, K. Ghose and O. Ergin, Instruction packing: Reducing
power and delay of the dynamic scheduling logic, Proc. 2005 Int. Symp. Low Power
Electron. Des. (ISLPED), August 2005.

10. M. Valluri, L. John and H. Hanson, Exploiting compiler-generated schedules for energy
savings in high-performance processors, Proc. 2003 Int. Symp. Low Power Electronics
and Design (2003).

11. M. Valluri and L. John, Hybrid-scheduling: A compile-time approach for energy-
efficient superscalar processors, IBM Austin Conference on Energy-Efficient Design,
March 2004.



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 117

12. N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim and W. Ye, Energy-driven
integrated hardware-software optimizations using SimplePower, Proc. 27th Int. Symp.
Computer Architecture (2000).

13. C. H. Hsu and U. Kremer, The design, implementation and evaluation of a com-
piler algorithm for CPU energy reduction, Proc. ACM SIGPLAN Conf. Programming
Languages, Design, and Implementation (2003).

14. A. Dudani, F. Mueller and Y. Zhu, Energy-conserving feedback EDF scheduling for
embedded systems with real-time constraints, Proc. Conf. Languages, Compilers and
Tools for Embedded Systems (2002).

15. Y. Zhu and F. Mueller, Preemption handling and scalability of feedback DVS-EDF,
Proc. Workshop Compilers and Operating Systems for Low Power (2002).

16. F. Gruian, Hard real-time scheduling for low-energy using stochastic data and DVS
processors, Proc. 2001 Int. Symp. Low Power Electronics and Design (2001).

17. D. Shin, J. Kim and S. Lee, Low-energy intra-task voltage scheduling using static
timing analysis, Proc. 38th Conf. Design Automation (2001).

18. S. Lee and T. Sakurai, Run-time voltage hopping for low-power real-time systems,
Proc. 37th Conf. Design Automation (2000).

19. Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee and
D. Brooks, A dynamic compilation framework for controlling microprocessor energy
and performance, Proc. 38th IEEE/ACM Int. Symp. Microarchitecture (2005).

20. V. Haldar, C. W. Probst, V. Venkatachalam and M. Franz, Virtual-machine driven
dynamic voltage scaling, Technical Report CS–03–21, University of California, Irvine,
CA, October 2003.

21. M. Rauch, A. Gal and M. Franz, Dynamic adaptive power management for and by a
Java Virtual Machine, Technical Report No. 06–19, Donald Bren School of Informa-
tion and Computer Science, University of California, Irvine, November, 2006.

22. S. Hu, M. Valluri and L. K. John, Effective adaptive computing environment man-
agement via dynamic optimization, Code Generation and Optimization (2005).

23. S. Hu, M. Valluri and L. K. John, Effective management of multiple configurable
units using dynamic optimization, ACM Trans. Architecture and Code Optimization
3 (December 2006).

24. D. Folegnani and A. Gonzalez, Energy-effective issue logic, Proc. 28th Int. Symp.
Computer Architecture (2001).

25. S. Hu and L. K. John, Impact of virtual execution environments on processor energy
consumption and hardware adaptation, Proc. 2nd Int. Conf. Virtual Execution Envi-
ronments, June 2006.

26. G. Chen, N. Vijaykrishnan, M. Kandemir, M. J. Irwin and M. Wolczko, Tracking
object life cycle for leakage energy optimization, 1st IEEE/ACM/IFIP Int. Conf.
Hardware/Software Codesign and System Synthesis (2003).

27. J. Whaley and M. Rinard, Compositional pointer and escape analysis for Java pro-
grams, ACM SIGPLAN Conf. Object-Oriented Programming Systems, Languages, and
Applications, November 1999.

28. J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar and S. P. Midkiff, Escape analysis
for java, Conf. Object-Oriented Programming Systems, Languages and Applications
(1999).

29. S. Tomar, S. Kim, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, Use of local
memory for efficient Java execution, Proc. 2001 Int. Conf. Computer Design (2001).

30. G. Chen, M. Kandemir, N. Vijaykrishnan and M. J. Irwin, Energy-aware code cache
management for memory-constrained Java devices, Proc. IEEE Int. SOC Conf. (2003).



March 11, 2009 11:44 WSPC/123-JCSC 00496

118 Y. Sun & W. Zhang

31. K. F. Chong, C. Y. Ho and A. S. Fong, Pretenuring in Java by object lifetime and
reference density using scratch-pad memory, 15th EUROMICRO Int. Conf. Parallel,
Distributed and Network-Based Processing (2007).

32. G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin and W. Wolf, Energy savings
through compression in embedded java environments, Proc. 10th Int. Symp. Hard-
ware/Software Codesign (2002).

33. A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan and M. J. Irwin, Instruction
scheduling for low power, J. VLSI Signal Process. Syst. 37 (May 2004).

34. I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan, M. J. Irwin and A. Sivasub-
ramaniam, Compiler-directed high-level energy estimation and optimization, Trans.
Embedded Comput. Syst. 4 (November 2005).

35. M. D. M. Wolf and D. Chen, Combining loop transformations considering caches and
scheduling, Proc. Int. Symp. Microarchitecture (1996).

36. V. Tang, J. Siu, A. Vasilevskiy and M. Mitran, A framework for reducing instruc-
tion scheduling overhead in dynamic compilers, Proc. 2006 Conf. of the Center for
Advanced Studies on Collaborative Research (2006).

37. J. Cavazosand and J. Moss, Inducing heuristics to decide whether to schedule, Proc.
Conf. Programming Language Design and Implementation, June 2004.

38. G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin and M. Wolczko,
Tuning garbage collection in an embedded Java environment, Proc. 8th Int. Symp.
High-Performance Computer Architecture, February 2002.

39. P. Griffin, W. Srisa-an and J. M. Chang, An energy efficient garbage collector for Java
embedded devices, Proc. 2005 ACM SIGPLAN/SIGBED Conf. Languages, Compil-
ers, and Tools for Embedded Systems, June 2005.

40. M. Velasco, D. Atienza, L. Pinuel and F. Catthoor, Energy-aware modelling of garbage
collectors for new dynamic embedded systems, Proc. 1st Int. Workshop Power-Aware
Real-Time Computing, September 2004.

41. J. Palm, H. Lee, A. Diwan and J. Moss, When to use a compilation service? Proc.
Joint Conf. Languages, Compilers and Tools for Embedded Systems (2002).

42. S. Tallam and R. Gupta, Profile-guided Java program partitioning for power-aware
computing, Proc. 18th Int. Parallel and Distributed Processing Symp., April 2004.

43. Z. Li, C. Wang and R. Xu, Task allocation for distributed multimedia processing
on wirelessly networked handheld devices, Int. Parallel and Distributed Processing
Symp., April 2002.

44. G. Chen, B. T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin and R. Chan-
dramouli, Studying energy trade offs in offloading computation/compilation in Java-
enabled mobile devices, IEEE Trans. Parallel and Distributed Syst. 15 (2004) 705–809.

45. Z. Huang and S. Malik, Exploiting operation level parallelism through dynamically
reconfigurable datapaths, Proc. 39th Design Automation Conf. (2002).

46. Sun Microsystems, Java Technology, http://java.sun.com/
47. Jikes RVM, http://jikesrvm.org/
48. Sun Microsystems, KVM — Kilobyte Virtual Machine White Paper, http://

java.sun.com/products/cldc/wp/
49. Mobile Intel Pentium III Processors, http://www.intel.com/support/processors/

mobile/pentiumiii/ss.htm
50. Transmeta Corporation, LongRun power management: Dynamic power management

for Crusoe processors, White Paper (2001).
51. JVM Tool Interface, http://java.sun.com/j2se/1.5.0/docs/guide/jvmti.2006
52. Standard Performance Evaluation Corporation, SPEC JVM98 Benchmarks, http://

www.spec.org/osg/jvm98/



March 11, 2009 11:44 WSPC/123-JCSC 00496

Studying Energy-Oriented Dynamic Optimizations in Java Virtual Machines 119

53. X. Huang, J. Moss and K. McKinley, Dynamic SimpleScalar: Simulating Java virtual
machines, 1st Workshop on Managed Run Time Environment Workloads, March 2003.

54. B. Cmelik and D. Keppel, Shade: A fast instruction-set simulator for execution profil-
ing, Proc. ACM SIGMETRICS Conf. Measurement and Modeling of Computer Sys-
tems, May 1994.

55. G. Reinman and N. Jouppi, An Integrated Cache Timing and Power Model (COMPAQ
Wester Research Lab, 1999).

56. M. Debbabi, A. Gherbi, L. Ketari, C. Talhi and N. Tawbi, E-Bunny: A dynamic
compiler for embedded Java virtual machines, J. Object Technol. 4 (January–February
2005).

57. M. Debbabi, A. Mourad and N. Tawbi, Armed E-Bunny: A selective dynamic compiler
for embedded Java virtual machine targeting ARM processors, Proc. 2005 ACM Symp.
Applied Computing (2005).

58. Connected, Limited Device Configuration, Specification Version 1.0, Java 2 Platform
Micro Edition, White Paper.

59. P. Stanley-Marbell and L. Iftode, Scylla: A smart virtual machine for mobile embed-
ded systems, Proc. 3rd IEEE Workshop Mobile Computing Systems and Applications
(2000).

60. V. Tiwari, S. Malik and A. Wolfe, Power analysis of embedded software: A first step
towards software power estimation, IEEE/ACM Int. Conf. Computer-Aided Design,
August 1994, pp. 384–390.

61. J. Koshy and R. Pandey, VM*: Synthesizing scalable runtime environments for sensor
networks, Proc. 3rd Int. Conf. Embedded Networked Sensor Systems, November 2005.

62. P. Levis and D. Culler, Mate: A tiny virtual machine for sensor networks, Proc.
Int. Conf. Architectural Support for Programming Languages and Operating Systems
(2002).

63. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister, System architecture
directions for networked sensors, Proc. Int. Conf. Architectural Support for Program-
ming Languages and Operating Systems, Cambridge (2000), pp. 93–104.

64. L. Zhang and C. Krintz, The design, implementation, and evaluation of adaptive code
unloading for resource-constrained devices, ACM Trans. Archit. Code Optim., June
2005.

65. B. Delsart, V. Joloboff and E. Paire, JCOD: A lightweight modular compilation tech-
nology for embedded Java, Proc. 2nd Int. Conf. Embedded Software, October 2002.

66. R. Teodorescu and R. Pandey, Using JIT compilation and configurable runtime sys-
tems for deployment of Java programs on ubiquitous devices, Proc. Ubiquitous Com-
puting 2001, September 2001.

67. M. Newsome and D. Watson, Proxy compilation of dynamically loaded Java classes
with MoJo, Proc. Joint Conf. Languages, Compilers and Tools for Embedded Systems:
Software and Compilers for Embedded Systems, June 2002.

68. I. Wirjawan, J. Koshy, R. Pandey and Y. Ramin, Balancing computation and code
distribution costs: The case for hybrid execution in sensor networks, Tech. Rep. TR-
CSE-2006-35, University of California, Davis, 2006.

69. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon and P. C. Soot, A Java
optimization framework, Proc. Centers for Advanced Studies Conference (1999).

70. J. Hill and D. Culler, Mica: A wireless platform for deeply embedded networks, IEEE
Micro 22 (2002) 12–24.

71. J. Polastre, R. Szewczyk and D. Culler, Telos: Enabling ultra-low power wireless
research, Proc. 4th Int. Conf. Information Processing in Sensor Networks: Spe-
cial Track on Platform Tools and Design Methods for Network Embedded Sensors
(IPSN/SPOTS) (2005).



March 11, 2009 11:44 WSPC/123-JCSC 00496

120 Y. Sun & W. Zhang

72. Z. Li, C. Wang and R. Xu, Computation offloading to save energy on handheld devices:
A partition scheme, Proc. 2001 Int. Conf. Compilers, Architecture, and Synthesis for
Embedded Systems, November 2001.

73. V. Venkatachalam, L. Wang, A. Gal, C. Probst and M. Franz, ProxyVM: A network-
based compilation infrastructure for resource-constrained devices, Technical Report
03–13, University of California, Irvine, March 2003.

74. A. Guha, K. Hazelwood and M. L. Soffa, Reducing exit stub memory consumption in
code caches, Proc. High Performance Embedded Architectures and Compilers (2007).




