
Published in IET Software
Received on 3rd April 2012
Revised on 17th July 2012
Accepted on 31st August 2012
doi: 10.1049/iet-sen.2012.0056

Special Issue: 11th IEEE International Working
Conference on Source Code Analysis and Manipulation

ISSN 1751-8806

I2SD: reverse engineering Sequence Diagrams from
Enterprise Java Beans with interceptors
Serguei Roubtsov1, Alexander Serebrenik1, Aurelién Mazoyer2, Mark G.J. van den Brand1,

Ella Roubtsova3

1Eindhoven University of Technology, POB 513, 5600 MB, Eindhoven, The Netherlands
2France Labs CICA 2229, route des Crêtes 06560, Valbonne, France
3Open University of the Netherlands POB 2960, 6401DL Heerlen, The Netherlands

E-mail: a.serebrenik@tue.nl

Abstract: An Enterprise JavaBeans (EJB) interceptor is a software mechanism that provides for introducing behaviour
implemented as separate code into the execution of a Java application. In this way, EJB interceptors provide a clear
separation of the core functionality of the bean and other concerns, such as logging or performance analysis. Despite the
beauty of the idea behind the i nterceptors, developing, testing and managing dependencies introduced by the interceptors are
considered to be daunting tasks. For example, the developers can specify interceptors at multiple locations and by multiple
means. However, different locations and specification means influence the order of the interceptor invocation, which is
governed by more than 15 different intertwined rules defined in the EJB standard. To facilitate development of EJB
applications, we have designed I2SD, Interceptors to Sequence Diagrams, a tool for reverse engineering EJB applications
with interceptors to unified modeling language (UML) sequence diagrams. I2SD provides the developer with a visual
feedback and can be used by quality managers to obtain insights in the ways interceptors are used in their project.

1 Introduction

Maintaining software is similar to renovating a house: while
rebuilding a house one has to understand the location of the
pipelines connecting different rooms, software maintenance
requires understanding dependencies between different
software components. While traditional mechanisms
implementing dependencies, such as method calls, are well
understood, this is not the case for such mechanisms as
interceptors [1–4]. Interceptors, being a restricted form of
aspect-oriented programming (AOP), provide means to
dynamically introduce behaviour implemented as separate
code into the execution of an application. Rather than
implementing, for instance, such typical cross-cutting
concerns as logging, access control or exception handling
as the part of the system core functionality, one can
implement them as separate modules and use interceptors to
introduce them into the execution of the core application.
Many currently available Java frameworks [5, 6] exploit
interceptors to extend Enterprise JavaBeans™ (EJB) with
AOP features.
Both the currently available Java frameworks [5, 6] and the

EJB standard [2–4] provide multiple ways of specifying
interceptors. ‘Business method interceptors’ are invoked
when a certain method is called, ‘life-cycle callback
interceptors’ are invoked when a certain event occurs such
as an object creation, and ‘timeout method interceptors’ are
invoked by the EJB Timeout service. The developer can
decide to specify the interceptors using XML files, known

as deployment descriptors and/or Java annotations; with
respect to a bean class and/or to a method; in a separate
class, as part of the bean class itself, in a superclass or in
an injected bean. For instance, if the developer is interested
in logging all invocations of methods of a certain class, she
should specify a business method interceptor on the class
level, using either a deployment descriptor or a Java
annotation. In the presence of multiple interceptors the
system behaviour depends on whether business method
interceptors, life-cycle callback interceptors or both kinds of
interceptors are involved, in what way they are specified, at
which level and location. Continuing the running example,
assume that in addition to logging, the developer intends
to measure the time spent on executing a certain method.
If time measurement is implemented as a method-level
interceptor, by default the logging interceptor will be called
first, and then the time measurement will be performed.
Should the developer desire to include logging time in the
time being measured, she should overrule this default
strategy by explicitly specifying the invocation order in the
deployment descriptor. For business method interceptors
the EJB standard specifies nine different rules governing the
order of interceptor invocation, for life-cycle callback
interceptors – seven. Hence, while EJB interceptors provide
the developers with a high degree of flexibility, the
associated complexity of dependencies introduced by means
of interceptors make managing EJB applications more
difficult [7]. Developing such applications is associated
with longer periods and higher costs [8], and the developers

www.ietdl.org

150 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

have been reported to struggle with configuring and
debugging such applications [8].
We aim at supporting the aforementioned development

process by facilitating understanding, and therefore,
maintenance of EJB applications with interceptors. We
choose to derive UML sequence diagrams from EJB
applications with interceptors. UML sequence diagrams are
a part of the industrial de facto standard and are supported
by multiplicity of development tools. They have also been
shown to be beneficial for program comprehension [9].
Since interceptor invocation is essentially sequential and
data independent, it is specifically well suited for being
portrayed by UML sequence diagrams.
The main contribution of this paper consists, therefore, in

presenting a tool for reverse engineering UML sequence
diagrams from EJB applications with interceptors. The tool
is called I2SD, Interceptors to Sequence Diagrams and is
available from http://www.laquso.com/tools/. Building upon
the algorithm for business method interceptors presented in
our previous work [10], I2SD targets two kinds of users:
software developers and quality assessors. To assist the
developers, I2SD should readily provide feedback during
the software development. Since numerous software
developers spend their workday in an integrated
development environment (IDE) [11], I2SD should be
integrated in an IDE. Moreover, I2SD should be applicable
to incomplete programs, as programs under development
are often incomplete. To meet these requirements we opt
for a static analysis technique and integrate I2SD in
NetBeans. To support the quality assessors, I2SD should be
able to run as a stand-alone application and produce plain
text descriptions of sequence diagrams, providing for
further diagram processing, for example, metrics calculation
[12]. Hence, we also designed a stand-alone version of I2SD.
The remainder of the paper is organised as follows. After a

brief discussion of EJB interceptors in Section 2, we discuss
the design of I2SD in Section 3. Section 4 discusses
application of I2SD in three use cases related to software
development and quality assessment. To assist in the latter
task, Section 5 presents an empirical study of interceptors’
use in practice. We review the related work in Section 6,
and finally conclude in Section 7.

2 EJB interceptors

In this section we present a brief overview of EJB interceptors
following the EJB 3.0 [2] and the EJB 3.1 standards [3, 4]
[The next version of the EJB standard, EJB 3.2, also known
as JSR-345, is being prepared at the time of writing but is
yet to be made public.]. The EJB 3.0 standard distinguishes
between life-cycle callback interceptors, interceptors
invoked when objects are,for example, created or destroyed,
and business method interceptors invoked with a business
method invocation. The EJB 3.1 standard adds timeout
method interceptors that intercept timeout methods invoked
by the EJB Timeout service.

2.1 EJB callback methods

Similarly to traditional objects’ life cycle of a Java bean
instance starts with the bean instance being created and
ends with the bean instance being destroyed. Creation and
destruction events can be intercepted allowing the
developer, for example, to allocate and release resources
when beans instances are constructed and destroyed. To

achieve this a @PostConstruct annotation can be added to
methods that allocate resources and a @PreDestroy
annotation to methods that release them. It is also possible
to specify < post-construct > and < pre-destroy > tags in
the deployment descriptor XML file.
Furthermore, one usually distinguishes between ‘stateful

beans and stateless beans’ [13]. Stateful beans record the
so-called ‘conversational state’, ‘remembering’ the results of
previous exchanges of information between the client and
the bean. Stateless beans do not record the conversational
state. Absence of state information in stateless beans
improves system performance as it becomes possible to
reuse bean instances for different clients using pooling
[13]. Stateful beans, however, cannot be reused as they
need to save client-specific conversational state. This also
means that stateful session bean instances with multiple
concurrent clients can have a significant memory footprint.
In order to alleviate this problem, the EJB container
removes idle bean instances from time to time from the
memory, serialises them and places them in a temporal
storage. This process is known as ‘passivation’. Should a
passivated bean instance be required by a client, it has first
to be activated, that is, reloaded to the memory. Hence, in
addition to creation and destruction events occurring in life
cycles of both stateful and stateless beans, life cycle of
stateful bean also has passivation and activation events,
that can be intercepted as well. Thus, similarly to
@PostConstruct and @PreDestroy annotations (or,
equivalently < post-construct > and < pre-destroy >
tags), stateful beans can be annotated with @PostActivate
and @PrePassivate (or, equivalently < post-activate >
and < pre-passivate > tags).
Callback methods may be associated with multiple

annotations: for example, a method annotated with
@PostConstruct and @PostActivate will be invoked
whenever the bean instance is created or activated. A given
class may, however, have no more than one life-cycle
callback method for the same life-cycle event.

2.2 EJB timeout methods

Many business work flows depend on time: certain
activities should happen on a certain date, should be
repeated every month or should not take longer than the
specified amount of time. To support this behaviour EJB
3.1 introduced the timer service [3]. Using this, service
developers can create timers such that when a timer
expires, the container calls a timeout method of the
bean’s implementation class.
EJB distinguishes between timers created

programmatically and automatically. For programmatically
created timers, timer creation is explicitly implemented in
the source code. The corresponding timeout method may be
a method that is annotated with the @Timeout annotation
or the < timeout-method > in the deployment descriptor,
or the bean may implement the javax.ejb.TimedObject
interface. This interface has a single method called
ejbTimeout. Every bean can have only one programmatic
timer.
For automatically created timers, timer creation occurs

when a specified moment of time arrives. For instance, the
following annotation requires the container to call a timeout
method on Mondays: @Schedule(dayOfWeek = ‘Mon’).
In general, a timeout method for an automatically created
timer may be a method that is annotated with annotations
@Schedule or @Schedules or tags < schedule > or

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 151
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

http://www.laquso.com/tools/
http://www.laquso.com/tools/
http://www.laquso.com/tools/
http://www.laquso.com/tools/
http://www.laquso.com/tools/

< schedules > . Beans may have multiple automatic timers,
corresponding, for example, to timeouts that should occur
with different frequencies during the working days and
during weekends.
Both for programmatically and automatically created

timers, the timeout methods should return void, accept a
javax.ejb.Timer object as the only parameter and may not
throw application exceptions.

2.3 EJB interceptors

‘Business method interceptors’, known as ‘method
interceptors’ in [4], are invoked prior to the beginning of a
business method execution, and may resume after its
completion, for example, to inspect the business method
return value or exceptions thrown. Annotation
@Interceptors allows the developer to indicate which
classes should be consulted to determine the interceptors for
a given method, or all methods of a given class. Each class
implementing a business method interceptor should have
exactly one method annotated with @AroundInvoke or
associated with an < around-invoke > tag: this method is
the interceptor entry point, it will be invoked when the
interceptor should be invoked. Owing to this reason
business method interceptors are also known as
AroundInvoke-interceptors [14]. The entry point can be
also specified in the deployment descriptor using the
< around-invoke > tag.
With ‘life-cycle callback interceptors developers’ can

isolate functionality into a class and invoke it when a
life-cycle event is triggered. Inside these classes, methods
that should be invoked are identified by means of
annotations or tags discussed in Section 2.1. In a similar
way, developers can intercept calls to the timeout methods
by means of ‘timeout method interceptors’: methods with
the @AroundTimeout annotation or < around-timeout >
tag will be invoked before timeout methods. Similarly to
around-invoke methods, each class implementing a timeout
method interceptor should have exactly one method
annotated with @AroundTimeout or associated with an
< around-timeout > tag.

Fig. 1 shows how the three kinds of interceptors can be
defined within one class.

2.4 Invocation order of interceptors

The EJB specifications [2–4] provide the developer with
multiple means of specifying interceptors. The developer
can decide to specify the interceptors using deployment
descriptor XML file ejb-jar.xml and/or Java annotations; in
a separate class, as part of the bean class itself, in a
superclass or in an injected bean; at the default level, the
bean class level, the level of all methods with the same
name within a class or the method level. As specified in the
invocation rules of EJB [2, 4], should multiple interceptors
be present, all these specification options influence the
order of their invocation. Furthermore, EJB 3.0 provides
mechanisms to exclude invocation of some interceptors: for
example, if a business method is annotated with
@ExcludeClassInterceptors, interceptors defined on the
class level and applicable to all methods of the class of the
business method should not be called.
For each kind of interceptors the EJB standards provide a

set of rules governing the order of interceptors invocation.
Moreover, different kinds of interceptors can be defined on
the same class. To illustrate complexity of the rules
determining the invocation order, in Fig. 2 we quote the
business method interceptors rules [4].
Presence of multiple ways to specify interceptors and

multiple rules determine the order of invocation challenges,
therefore, developers’ comprehension of software systems
based on recent version of Enterprise JavaBeans. Without
adequate tool support, to understand the order of interceptor
invocation, the developer has to scrutinise her code and
manually check which of the invocation rules apply.

3 Tool design

To assist comprehension of EJB-based software systems we
have developed a tool, called I2SD, for reverse engineering
EJB applications with interceptors to UML sequence
diagrams. UML sequence diagrams visualise the sequence

Fig. 1 Example of a life-cycle callback interceptor, a business method interceptor and a timeout method interceptor (cf. [57])

www.ietdl.org

152 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

of method invocations, including interceptors, and have also
been shown to be beneficial for program comprehension
[9]. Moreover, since interceptor invocation is essentially
sequential and data independent, it is specifically well
suited for being portrayed by UML sequence diagrams.
The architecture of I2SD is shown on Fig. 3: I2SD is

implemented as a pipe-and-filter architecture [15]. The Java
parser has been obtained using JavaCC [16], a popular
parser generation tool. Given a language grammar JavaCC
generates a Java program that can recognise matches to the
grammar. To parse Java code we have extended the Java
grammar used in our visual software analytics toolset
SQuAVisiT [17], to include interceptor-related annotations.
The reasons to implement the Java parser as a separate
component rather than as a part of the central reverse
engineering step are facilitation of co-evolution with the
Java language and reuse of individual components of I2SD.
From the co-evolution perspective we observe that the
parser is the only part of I2SD that has to be adapted when
new language features are being added to Java, as, for
example, expected in Java 7 under ‘Project Coin’.
Moreover, once the abstract syntax tree has been stored as
an XML file, the same XML parser can be used both for
this file and for the deployment descriptor ejb-jar.xml. For
XML parsing we have opted for JDOM [18].
The core part of I2SD is the reverse engineering step. The

reverse engineering algorithm has been based on the EJB
specifications [2, 3, 4]. However, the standards are textual
descriptions rather than formal specifications and as such,
might be subject to misinterpretations and ambiguities.
To resolve potential misinterpretations and ambiguities we
have tested the algorithm against the actual interceptor

order, provided by an existing EJB container. Specifically,
we have opted for the GlassFish application server [19], a
free application server, shipped by Oracle in a bundle with

Fig. 2 Rules for invocation of multiple business method interceptors [4]

Fig. 3 I2SD is implemented as a pipe-and-filter architecture

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 153
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

NetBeans Java EE edition. Since the EJB 3.0 specification is
also owned by Oracle, we expected the implementation to
adhere to the specification. The test cases were developed
using Product Manager, the example application
distributed with GlassFish. If the sequence diagram reverse
engineered by I2SD did not match the behaviour of
GlassFish, the reverse engineering algorithm has been
corrected to match the behaviour of GlassFish. Examples of
discrepancies between the standard and GlassFish
application server pertain to specification of total interceptor
ordering in the deployment descriptor, relative priorities of
< interceptor-order > element and the exclude- elements
and structure of the <method > element [10].
We postpone a more detailed discussion of the reverse

engineering algorithm for business method interceptors till
Section 3.1, life-cycle callback interceptors till Section 3.2
and timeout method interceptors till Section 3.3. The
reverse engineering step can either produce a sequence
diagram or a warning, indicating that the interceptor’s chain
may be broken (Section 3.1). The sequence diagram is
stored in the UMS format suitable for visualisation
generation by UML Speed [http://umlspeed.sourceforge.net/].
Furthermore, since UMS is a plain text format, it makes the
sequence diagrams generated amenable for further analyses,
for example, such as discussed in [12].
The final step consists in visualising the sequence diagram

using UML speed. The sequence diagrams are stored as an
image in the SVG graphical format. The SVG format [20]
has been designed with web-graphics in mind, and,
therefore, it allows linking the image to classes and
methods mentioned in the sequence diagram, facilitating
system comprehension by visual inspection of the diagrams.
I2SD has been implemented as a plug-in for version 7.0.1

of NetBeans. Our main reason for choosing NetBeans is that
the EJB support in NetBeans is better than in Eclipse [21].
We also plan to integrate I2SD in Eclipse.

3.1 Business method interceptors

EJB-based programs combine three forms of method
invocation: traditional (‘method A calls method B’),
object-oriented (‘method A calls method B of class C but
method B1 of the subclass C1 is actually executed’) and
interceptor-based. The business method interceptors reverse
engineering algorithm assumes that a class name C and a
business method m in C are given, and produces a sequence
diagram, including the interceptors invoked when m is
being called.
The reverse engineering algorithm consists of two parts:

the main algorithm following the order of the rules in Fig. 2
(Section 3.1.1), and an auxiliary algorithm traversing the
inheritance hierarchy (Section 3.1.2).

3.1.1 Main algorithm: The main reverse engineering
algorithm ensures that interceptors are invoked according to
the rules in Fig. 2. The algorithm assumes business method
m of a bean class C to be provided as the input. Auxiliary
algorithm traverseInheritance called by main is discussed
Section 3.1.2.
The precondition of main is that m is a business method in

C, that is, that m satisfies the following requirements of [3]:

† The method names can be arbitrary, but they must not start
with ‘ejb’ to avoid conflicts with the callback methods used
by the EJB architecture.
† The business method must be declared as public.

† The method must not be declared as final or static.
† If the method corresponds to a business method on the
session bean’s remote business interface or remote interface,
the argument and return value types for a method must be
legal types for Java Remote Method Invocation interface
over the Internet Inter-Orb Protocol (RMI/IIOP) [22]. Legal
types for RMI/IIOP are defined in Chapter 4 of [23].
† If the method is a web service method or corresponds to a
method on the session bean’s web service endpoint, the
argument and return value types for a method must be legal
types for Java API for XML Web Services or Java API for
XML-based RPC (JAX-WS/JAX-RPC [24]). For instance,
Java primitive types such as int or boolean are legal both
for RMI/IIOP and for JAX-WS/JAX-RPC.
† The throws clause may define arbitrary application
exceptions.

Moreover, experiments with GlassFish [19] have revealed
that no interceptors are invoked when m is an
around-invoke method. Therefore we assume as an
additional precondition that m is not an around-invoke
method.
Since the interceptors are invoked sequentially, we opt for a

global queue Q of all the method invocations as the main data
structure used. The queue Q is initially empty. Whenever
main or traverseInheritance decide that a method should
be invoked, a triple is enqueued to Q, containing names of
the caller class, of the callee class, and of the method
called. The order of the elements in the queue corresponds
to the order of invocation.
For the sake of readability we present the algorithm main

in multiple figures (Figs. 4–9), intertwined with explanation.
Recall that the interceptor invocation order defined in the

deployment descriptor, if present, overrides the interceptor
invocation order specified in annotations (Rule 7 in Fig. 2).
Therefore, the first and the second step of the algorithm
(Fig. 4) verify whether an interceptor invocation order is
explicitly specified in the deployment descriptor for C or
for m. If this is the case, then for each one of the
interceptors mentioned in the deployment descriptor, one
has first to check whether their superclasses contain
@AroundInvoke methods that have to be invoked first.
If the interceptors’ invocation order has not been explicitly

modified in the deployment descriptor, then the default
interceptors should be applied first if present (Rule 1 in
Fig. 2). If default interceptors are present, they are defined
in the deployment descriptor and are applicable to a set of
target classes. Application of default interceptors can be
excluded with the @ExcludeDefaultInterceptors
annotation or < exclude-default-interceptors > tag (Fig. 5).

Fig. 6 shows the next step dedicated to the class-level
interceptors (Rule 2 in Fig. 2). We stress that the
@Interceptors annotation introduces a sequence of
interceptor classes, and therefore ‘FOR class IN
(@Interceptors(...) on C)’ also ensures that the interceptor
classes are considered in the same order as they are
specified (Rule 3 in Fig. 2). The call to traverseInheritance
ensures that if an interceptor class itself has superclasses,
then the interceptor methods defined by the superclasses are
invoked before the interceptor method defined by the
interceptor class, most general superclass first (Rule 4 in
Fig. 2).
Method-level interceptors are called after the class-level

interceptors (Rule 5a in Fig. 2). Similarly to class-level
interceptors, the algorithm steps in Fig. 7 ensure that the
interceptors are invoked in the order of specification of their

www.ietdl.org

154 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

http://umlspeed.sourceforge.net/
http://umlspeed.sourceforge.net/
http://umlspeed.sourceforge.net/
http://umlspeed.sourceforge.net/
http://umlspeed.sourceforge.net/

Fig. 4 Main algorithm starts by verifying whether the invocation order is explicitly defined in the deployment descriptor

Fig. 6 Class-level interceptors are invoked of the order of the @Interceptors annotation

Fig. 5 Default interceptors are called before class- or method-level ones

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 155
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

classes in the @Interceptors annotation. Instead of one step
in Fig. 6, for the sake of readability in Fig. 7 we separate the
analysis in two steps. Step 6 pertains to analysis of
interceptors specified by means of annotations, whereas
Step 7 – to interceptors specified in the deployment
descriptor.
Finally, interceptor methods defined on C and its

superclasses are invoked (Rule 5 in Fig. 2).

After all interceptors that should have been invoked, have
been invoked, the business method m itself should be called
(Fig. 9). In our previous work [10] we have assumed
presence of a reverse engineering technique capable of
inferring sequence diagrams for programs with traditional
and object-oriented method invocations, and augmented this
technique with an algorithm for programs combining all
three invocation forms. While this approach results in the

Fig. 7 Method-level interceptors are invoked in the order of the specification of their classes in the @Interceptors annotation

Fig. 8 Interceptor methods defined on C and its superclasses are the last interceptors invoked

Fig. 9 Finally m is invoked and, if required, warnings are generated

www.ietdl.org

156 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

most complete picture of the invocations, it also might result
in an overtly complex diagram requiring close inspection, and
therefore, hindering software development in an IDE rather
than facilitating it. Therefore as opposed to [10], in the
algorithm we exclude the analysis of the business method
‘body’ and focus solely on the interceptors invoked.
To alert, the developer the algorithm generates a warning if
an @AroundInvoke method calls another business method
of another bean as invocation of this method can involve
additional interceptors. In this case, the developer can
invoke I2SD again, focusing on one of the methods called.

3.1.2 Traversing inheritance hierarchy: The
traverseInheritance algorithm presented in Figs. 10–12

ensures that interceptor methods of superclasses are invoked
before the interceptor methods of the subclasses, most
general superclass first. The algorithm assumes class D to
be provided as the input and updates the global queue Q.
Furthermore, traverseInheritance(class D) makes use of a

list L and a stack S. The list L contains all methods of all
classes on the inheritance path from D to the most general
user-defined class from which D inherits. The stack S
consists of pairs (c, n), where n is an @AroundInvoke
method of a class c on the inheritance path. Both the list L
and the stack S are initially empty.
Recall that rules 4, 5b and 5c in Fig. 2 require the

around-invoke method on the target class to be called after
the around-invoke methods of the superclasses. Since Step

Fig. 12 Reversal of the stack S and update of the invocation queue Q

Fig. 11 Upwards traversal of the invocation chain

Fig. 10 Initialisation of the local variables

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 157
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

3 of traverseInheritance reverses S to build Q, we start by
considering the input class itself such that the
corresponding invocation becomes the last element of Q,
that is, ‘the currently analysed class’ c is initialised as the
input D.
Starting from D the algorithm traverses the inheritance

chain from a subclass to a superclass, collecting all
around-invoke methods along the chain. However, rule 6 in
Fig. 2 states that an around-invoke method overridden by
another method will not be invoked. Therefore before
pushing the pair (c, n) on S we have to check whether n is
overridden. The construction of L implies that checking
whether n is overridden is tantamount to checking
membership of n in L (Step 2(a)ii in Fig. 11).
The last step of traverseInheritance, presented in Fig. 12,

reverses the stack S and enqueues invocations to Q.
Recall that the invocation order can be controlled using the

InvocationContext (Rule 8 in Fig. 2). Specifically, if
InvocationContext.proceed() is unreachable from one of
the methods invoked in the interceptor chain, then the EJB
container will deadlock. Hence, warnings are generated if
InvocationContext.proceed() is potentially unreachable.
I2SD checks two conditions that can cause
InvocationContext.proceed() to become unreachable: if
InvocationContext.proceed() occurs within a decision
statement or a loop (Step 3(c)i in Fig. 12), or when there is
no direct call to InvocationContext.proceed() (there still
may be a call to another method that in its turn calls
InvocationContext.proceed(); Step 3(c)ii in Fig. 12).
Furthermore, similarly to the main algorithm of Section

3.1.1 we generate a warning if methods called might
involve interceptors. As above, the developer can invoke
I2SD again, focusing on one of the methods called.

3.1.3 Correctness of the algorithm: We conclude this
section with a brief discussion of the algorithm’s
correctness. To show partial correctness we have indicated
for each step of the algorithm which invocation rules
prescribed by the EJB standards [2–4] does the step
implement. Algorithm traverseInheritance(class D)
terminates because of finiteness of the inheritance path from
Object to D. Each one of the loops in main terminates
because of finiteness of the Java code and of the
deployment descriptor.

3.2 Life-cycle callback interceptors

Construction of sequence diagrams in presence of life-cycle
callbacks requires: (1) identification of an occurrence of a
life-cycle event and (2) construction of sequences of
method invocations caused by the occurrence of the
life-cycle event. Life-cycle events are managed by the EJB
container: while the bean itself can request to be destroyed
using the @Remove annotation, the container can also
decide to destroy beans based on timeout considerations
[These time-out considerations are not related to the EJB
Timer Service or timeout method interceptors discussed in
Section 3.3.]. Similarly, when the memory reserved by the
container to store active stateful beans becomes full, it will
decide to passivate the least recently used bean [2]. Hence,
destruction and passivation events may occur independently
from the source code, based on the settings of the EJB
container. Moreover, since a bean can be activated only
after it has been passivated and occurrence of a passivation
event depends on the settings of the container, occurrence
of an activation event also depends on the settings of the

container. Finally, the bean instance is created not only
when a business method of a stateless session bean is
invoked for the first time, but also the same method has
been invoked for the second time and the bean instance has
been destroyed between the method invocations. Hence,
since destruction can happen solely based on the container
settings, the same is also true for (some of the) creation
events. Dependency on the container settings compromises
portability, in the same way dependency on the object
request broker implementation compromised portability of
the CORBA interceptors [25]. Therefore since the exact
prediction of life-cycle events goes beyond the abilities of
static source code analysis, our algorithm assumes the class
C and the event e as inputs, and generates a warning stating
that additional, potentially undesirable, life-cycle events can
occur during the execution of method calls caused by e,
depending on the Java source code, XML deployment
descriptor and settings of the EJB container.
The reverse engineering algorithm for life-cycle

interceptors follows the big lines of the reverse engineering
algorithm for the business method interceptors. However,
since life-cycle interceptors are invoked when a life-cycle
event takes place rather than when a business method is
called, all checks related to m are dropped. Moreover, as
the event e can be one of PostConstruct, PreDestroy,
PostActivate or PrePassivate, four different annotations
and the corresponding deployment description tags should
be considered instead of @AroundInvoke. Finally, we
have to differentiate between the interceptors defined in the
bean itself and those defined in other classes: interceptors
defined on the bean itself do not need to invoke
InvocationContext.proceed().

3.3 Timeout method interceptors

Rules governing the invocation of timeout method
interceptors are almost identical to those for business
method interceptors in Fig. 2. The only differences are that
instead of around-invoke methods the rules consider
around-timeout methods, that is, methods with the
@AroundTimeout annotation or < around-timeout > tag
in the deployment descriptor.
The only difference between business method interceptors

and timeout method interceptors is related to class-level
interceptors. In the case of business method interceptors,
the class-level interceptor applies to all methods of the
target class. In the case of timeout method interceptors,
however, the class-level interceptor applies only to timeout
methods of the target class. Recall from Section 2.2 that
timeout methods are methods annotated with @Timeout.
This means that the algorithms discussed in Section 3.1 can
be used to reverse engineer sequence diagram for timeout
method interceptors; however, I2SD offers the opportunity
to generate such a diagram if either a timeout method or a
class containing at least one such method is selected by the
user.

4 Use cases

In this section, we present three use cases showing the
applications of I2SD. In the first use case discussed in
Section 4.1, we focus on a developer that uses I2SD to
gain understanding of the software. In Section 4.2, I2SD is
applied as part of the quality assessment. Quality
assessment is based on comparing the system being

www.ietdl.org

158 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

assessed with comparable systems. To assist in the latter task
Section 5 compares interceptor use in two benchmark
systems. Finally, in Section 4.3, we discuss the application
of I2SD to an incomplete system.

4.1 I2SD for software development

To illustrate how I2SD can support a software developer we
consider a modification of an existing system. As the running
example we consider a product management system inspired
by one of the NetBeans samples. Fig. 13 shows a code snippet
from one of the files in the NetBeans IDE.
Developer Alice intends to optimise performance of the

business method productInfo. Given a product identifier,
productInfo first retrieves the information about the
corresponding product from the database, creates the
corresponding object (POJO [2]) and then consults the data
stored in that object to provide additional information about
the product manufacturer, using methods find and
Manufacturer.getName, respectively.
Alice starts by measuring the execution time of

productInfo: she applies the PerformanceInterceptor to
the business method. Knowing that the method-level
interceptors are called in the same order as they are listed in
the @Interceptor annotation, Alice adds

PerformanceInterceptor after all other interceptors that
have already been defined for productInfo, that is, after
ProductIdValidationInterceptor (see Fig. 13).
Running the program Alice observes that the execution

time of productInfo constitutes 2016 ms, which Alice
attributes to the need to retrieve data from the database.
Since productInfo consults the database twice, Alice
decides to measure the execution of each one of the
database operations separately. To this end she calls
System.currentTimeMillis before find, immediately after
find and after Manufacturer.getName, and calculates the
time elapsed between the calls. She discovers that find takes
546 ms, while the time needed for Manufacturer.getName
is negligible and reported as 0 milliseconds. Where did the
remaining 2016–546 = 1470 ms go?
I2SD can help Alice to resolve the mystery. By selecting

productInfo in the IDE (Fig. 13) she can create the
sequence diagram of the interceptors involved when the
productInfo is called. The output window in the bottom of
Fig. 13 shows a link to the sequence diagram produced by
I2SD (Fig. 14). Looking at this diagram Alice can observe
that, in fact, PerformanceInterceptor measures time spent on

1. user access validation implemented in EJBObject.
validateAccess,

Fig. 14 Sequence diagram created by I2SD for ProductFacade.productInfo

Fig. 13 I2SD integrated in the NetBeans development environment

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 159
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

2. control transfer by means of InvocationContext.proceed,
3. logging implemented in ProductFacade.logMethods,
4. another control transfer by means of InvocationContext.
proceed, and finally,
5. the business method ProductFacade.productInfo itself.

Hence, the measurements above indicate that t1 + t2 + t3 +
t4 + t5 = 2016 and t5 = 546, where ti is the execution time of
the step (i) in milliseconds. Assuming t2 and t4 to be
negligible, Alice should check how the remaining 1470
milliseconds are spent on t1 (EJBObject.validateAccess)
and t3 (ProductFacade.logMethods). To this end she adds
appropriate System.currentTimeMillis calls and discovers
that the lion’s share of the execution time has been spent on
t1 (EJBObject.validateAccess).
The performance issue encountered by Alice can be

attributed to a common problem in using interceptors, that
is, combination of interceptors with inheritance that can
easily lead to a very convoluted behaviour [26].

4.2 I2SD for quality assessment

In the second example, we consider the quality assessor’s
perspective. Quality assessor Bob decides to use software
metrics to get insights in system quality and maintainability.
As suggested in [12], he considers depth of the scenario as
an important characteristic of the architecture complexity.
He wants to investigate how deep the interceptor-related
scenarios in his system are. Formally, the depth of a
scenario is defined as the number of calls in the scenario
[12]. We adapt this definition and consider only methods
that can be reverse engineered by I2SD, that is, interceptor
invocations, calls to InvocationContext.proceed(), calls to
AroundInvoke-methods within the bean itself, business
method invocations and methods triggered by life-cycle
events. For example, the depth of the interceptor-related
scenario in Fig. 14 is 11.
To calculate the scenario depths for different business

methods of his system Bob runs I2SD as a batch job that
creates a separate UMS file for each class and business
method. Next, these UMS files are analysed to count the
number of method calls per UMS file and, subsequently, to
determine the interceptor-related scenarios’ depths. Finally,
he can compare the values obtained with similar values
obtained for comparable systems. To assist Bob in the latter
task, Section 5 presents a similar investigation for a number
of benchmark systems.

4.3 I2SD for incomplete systems

We have mentioned in the introduction that I2SD should be
applicable to incomplete programs. To illustrate this point,
we consider the following example. Let Charlie be a novice
programmer that recently joined an EJB3-based project and
started implementing his first bean. Charlie’s bean is
incomplete and contains for the moment only the class
name. Charlie believes that when existing beans are being
constructed certain resources are always allocated.
However, he does not know which resources precisely are
allocated, and whether these resources are sufficient for his
bean.
Charlie starts with reconstructing the sequence diagram for

the @PostConstruct life-cycle callback interceptors of his
own bean. Despite the fact that his code is incomplete,
default interceptors as well as interceptors on the

superclasses of Charlie’s bean can be invoked and allocate
the resources he needs. Hence, analysing the diagram
produced by I2SD, Charlie can decide whether additional
resources need to be allocated.

5 I2SD for benchmarking interceptors’ use

To assist quality assessor Bob (Section 4.2) in evaluating his
project, we need a frame of reference, that is, we need to
understand how interceptors are used in practice. While
performing an extensive empirical investigation was not the
main goal of our work, in this section we show how I2SD
can assist in conducting such an evaluation.
We have start by performing a series of searches on Google

code search. Specifically, we looked for presence of
interceptor-related annotations in Java files and
interceptor-related tags in files called ejb-jar.xml. We
continued this study by a more in-depth investigation of the
interceptors’ scenarios’ depth induced by business methods
in 108 open source software systems.

5.1 Presence of annotations and tags

In January 2012 we have conducted a series of searches on
Google code search to determine the frequency of use of
different interceptor-related constructs. Statistics obtained
by means of these searches are summarised in Fig. 15.
Inspecting this figure we observe that the most frequently
used annotations are @PostConstruct (3117 hits) and
@PreDestroy (690). While these annotations can be used
to introduce life-cycle callback interceptors, this is not
necessarily the case (cf. Section 2). The third most popular
annotation is @AroundInvoke (320 hits) that is related to
business method interceptors. Finally, the least popular
annotation is @AroundTimeout (14 hits). This, however,
should not be surprising: as opposed to life-cycle callback
interceptors and business method interceptors introduced in
[2], timeout method interceptors have been introduced in
[4], that is, three years later.

Fig. 15 Most popular annotations @PostConstruct and
@PreDestroy are not necessarily used to introduce interceptors.
Least popular one @AroundTimeout introduces the most recent
type of interceptors

www.ietdl.org

160 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

The numbers of hits associated with the deployment
descriptor XML files were clearly lower that those
associated with annotations: the most popular tag
< around-invoke > corresponds to 12 hits, while Google
code search failed to find files containing the
< post-construct > tag. These figures suggest that
developers prefer to specify behaviour within Java code as
opposed to separate configuration files, and therefore, the
results agree with our earlier observation that maintenance of
centralised configuration files might become prohibitive [26].
Summarising the preceding discussion, we remark that

such annotations as @PostConstruct and @PreDestroy
are not necessarily related to interceptors, and the use of
timeout method interceptors in the ‘Google code search’
code base was very limited. Therefore in Section 5.2, we
focus on an empirical study of business method interceptors.

5.2 Business method interceptors in practice

To obtain insights in how business method interceptors are
used in practice, we have downloaded repositories of all
projects found via ‘Google code search’ that contain files
with @AroundInvoke or @Interceptors annotations. In
this way, we have obtained 108 repositories: the number
of repositories does not equal to the number of
@AroundInvoke-hits together with the number of
@Interceptors-hits, since multiple annotations, and
therefore, hits can be present in the same repository. Next,
we have observed that repositories usually contain multiple
interrelated versions of the same software system, for
example, in the /trunk and /tags folders. Moreover, some
repositories contain multiple /trunk and /tags folders
associated with different subsystems. To ensure statistical
soundness of the results to come, we have decided to
consider only one software version per repository, namely
the ‘development version’ consisting of the files in /trunk
folders.
Recall that the precondition of the reverse engineering

algorithm described in Section 3.1.1 is that the input
method is a ‘business method’, that is, satisfies the
requirements of [3] and is not an around-invoke method.
The current implementation of I2SD does not verify these
conditions completely: we check only that the input method
is public and that it is not an around-invoke method. In
total, systems in the 108 repositories contained 323 014
public and non-around-invoke methods: the smallest system
included 11 methods, the largest one – 60 681. A more
precise implementation of the conditions defining when a
method is a business method [3] is considered as a part of
the future work.
Out of 323 014 methods that could possibly have been

intercepted, only 5057 (≃1.57%) methods were
intercepted. This result seems to support the finding of our
previous study [27] stating that the use of interceptors is
usually limited to a relatively small part of the software
system. Closer inspection of the data reveals, however, a
slightly different picture:

† 19 systems did not include intercepted methods at all. This
might seem puzzling since we have downloaded only projects
containing files with @AroundInvoke or @Interceptors
annotations. However, in 17 out of 19 cases presence of
interceptors does not necessarily indicate their use. For
instance, the carebearmail.googlecode.com project
defines one interceptor but does not define intercepted
methods. Similarly, materiasucb.googlecode.com defines

one interceptor and contains a class referring to the
interceptor through @Interceptors annotation. However,
the referring class does not contain methods. The two
remaining systems, redams.googlecode.com and
rockframework.googlecode.com make use of Apache
Struts interceptors rather than EJB interceptors. While
Apache Struts interceptors are essentially similar to the
interceptors considered in this paper, the Apache Struts
deployment descriptors are not called ejb-jar.xml, and
therefore, are not recognised by I2SD.
† 36 systems have less than 1% of intercepted methods, and
31 additional systems have between 1% and 5% of the
methods. For these projects, we can indeed claim that the
use of interceptors is limited as suggested in [27].
† 18 further systems have between 5 and 25% of the
intercepted methods.
† Finally, four systems have almost all methods being
intercepted. In these systems, a default interceptor is
specified in the deployment descriptor, and therefore,
calling any business method should involve invocation of
the default interceptor, unless this invocation has been
explicitly excluded using < exclude-default-interceptors
> or @ExcludeDefaultInterceptors.

The overall distribution of the percentages of methods
being intercepted can be considered log-normal (after
elimination of the zeros and the logarithmic transformation,
Shapiro-Wilk’s W = 0.9871 and p-value = 0.5323, that is,
normality hypothesis cannot be rejected).
Using I2SD we have reverse engineered sequence

diagrams for the methods above and calculated depths of
scenarios, that is, numbers of calls in the sequence diagram
[12]. Every sequence diagram consists of a series of
interceptor invocations, each followed by a call to
InvocationContext.proceed(), and the final call of the
business method itself. Therefore depth of scenario is
always an odd number:

† 617 methods (12%) induce scenarios of depth 1, that is,
scenarios that do not involve interceptor invocation.
Scenarios of depth 1 are possible if no interceptors are
indicated for the business method, or if some of the
interceptors are explicitly excluded with < exclude-
class-interceptors > or @ExcludeClassInterceptors. We
have also observed that in some situation scenario depth
can be underestimated by I2SD. For instance, method
getUserName from com.alesj.blade.login.LoginAction
in the bladecut.googlecode.com repository contains
annotation @Interceptors(SeamInterceptor.class). The
file SeamInterceptor.java is part of the Seam framework
[6] and, hence, its source code is not included in the
bladecut.googlecode.com, and therefore, is not included
in the analysis. Hence, I2SD calculates the depth of the
scenario for getUserName as 1.
† The lion’s share of the intercepted methods, 4064 out of
5057 or 80%, induce a scenario of depth 3, corresponding
to invocation of one interceptor.
† 317 methods or 6% induce a scenario of depth 5,
corresponding to two interceptors.
† The remaining 59 methods induce scenarios deeper than 5
with the deepest scenarios of depth 13 (six interceptors). The
only packages with methods inducing scenario of depths 9, 11
and 13 are subpackages of org.apache.openejb.test in svn.
apache.org.

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 161
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

Inspired by the previous observation that the test-packages
in svn.apache.org include deep scenarios, we have decided
to check whether, in general, methods in test packages induce
deeper scenarios than in non-test packages. As test packages
we consider packages containing segments ‘test’ or ‘tests’ in
the fully qualified names. Formally, we state the following
hypotheses:

† H0: Depths of scenarios for methods in test-packages are
following the same distribution as those for methods in
non-test-packages;
† Ha: Depths of scenarios for methods in test-packages are
deeper than those for methods in non-test-packages.

Since the distribution of the scenario depths for methods in
test packages is not normal (Shapiro–Wilk’s test statistic W =
0.7832, p-value <2.2 × 10−16) to test the hypotheses we
apply the Mann–Whitney test, a non-parametric counterpart
of the classic t-test for two samples. The test statistics
equals 624 857.5 and the p-value equals 6.36 × 10−5, that
is, we can confidently reject H0 and claim that depths of
scenarios for methods in test-packages are deeper than
those for methods in non-test-packages. Furthermore, H0

can be rejected even if the aforementioned testing
subpackages of org.apache.openejb.test are excluded
from consideration (p-value calculated by the Mann–
Whitney test equals 1.48 × 10−7). Rejecting H0 suggests
that at the time of data collection (January 2012) the depths
of interceptor scenarios in the production code of
open-source software systems was limited.
Additional support of the limited depth of interceptor

scenarios can be found in the number of systems with
methods inducing scenarios of a given depth. Fig. 16
illustrates that the number of systems with methods
inducing scenarios of a given depth rapidly decreases with
the increase of scenarios depth: 54 systems have methods
inducing scenarios of depth 3, and only 15 – of depth 5.
Threats to validity As any empirical investigation, our

study is subject to a number of threats to validity. One
commonly distinguishes three kinds of experiment validity:
construct validity, internal validity and external validity [28].

‘Construct validity’ can be threatened by calculation of the
scenarios depths performed by I2SD. As explained above,
I2SD tends to underestimate depths of scenarios that involve
non-EJB interceptors, for example, originating from the Seam
framework. Moreover, since the current implementation of
I2SD approximates the notion of a business method of [3]
by checking whether the input method is public and it is
not an around-invoke method, the data obtained includes
values for methods that should not be considered as
business methods, and, hence, should be excluded.
‘Internal validity’ pertains to soundness of procedures used

to derive conclusions within the experimental settings. To
ensure internal validity we have paid special attention to the
choice of appropriate statistical procedures.
Finally, ‘external validity’ pertains to the ability to

generalise the conclusions beyond the experimental settings.
In our case, this would indicate the ability to generalise our
conclusion beyond the systems included in the benchmarks
collection. The systems we have included are open-source
and are predominantly hosted at googlecode.com. To ensure
external validity we intend to replicate this study on a larger
and more diverse code base. Moreover, to ensure that our
conclusion applies to commercial software, the code base
has to include commercial software systems as well.

5.3 DataPortal and WasabiBeans

To illustrate how interceptors are used in practice, we discuss
two systems from the collection above. We have opted for
two systems with a comparable number of Java files,
DataPortal and WasabiBeans. In addition to business
method interceptors, in this subsection we also discuss
life-cycle callback interceptors.
DataPortal The first system we consider is the DataPortal

[http://dataportal.googlecode.com/], a visual front-end to one
or more ICAT repositories, containing scientific data
generated by facilities such as synchrotrons, satellites and
telescopes. Version 3.2.2.1 of the system contains 635 files,
275 out of them are Java files.
No deployment descriptor is present and only one file,

DataPortal.java, has an @Interceptors annotation,
namely @Interceptors({ArgumentValidator}). Class
DataPortal inherits from SessionEJBObject, which
inherits from EJBObject. While SessionEJBObject does
not have AroundInvoke-methods, EJBObject has one,
named logMethods, that should be invoked first when any
business method of DataPortal is called. Moreover, the
@Interceptors({ArgumentValidator}) annotation is
specified at the class level in DataPortal.java, meaning
that the corresponding interceptors should be invoked for
any business method of this class, unless class-level
interceptors are explicitly excluded. Two out of 24 methods
defined in DataPortal.java, init and isFinished, exclude
class-level interceptors with @ExcludeClassInterceptors.
Keeping in mind that interceptor invocations should be
followed by a call to InvocationContext.proceed() and
that the last call in the sequence diagram generated by
I2SD is the call to the business method itself, we can
observe that init and isFinished produce scenarios of depth
3, while all other methods of DataPortal produce scenarios
of depth 5. Fig. 17 shows one such scenario of depth 5,
namely, the sequence diagram created for DataPortal.
getDataReferences.
The only life-cycle annotation in the system is

@PostConstruct present in SessionBean and in
EJBObject. However, SessionBean inherits from

Fig. 16 In most systems the depths of interceptor scenarios is
limited

www.ietdl.org

162 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

http://dataportal.googlecode.com/
http://dataportal.googlecode.com/
http://dataportal.googlecode.com/
http://dataportal.googlecode.com/
http://dataportal.googlecode.com/

SessionEJBObject, which inherits from EJBObject, and,
therefore, when an instance of SessionBean is created both
the @PostConstruct method of SessionBean and the
@PostConstruct method of EJBObject should be called
(Fig. 18). Hence, the depth of the scenario produced by
SessionBean and the instance construction event is 2. By a
similar argument is the depth of the scenario produced by
EJBObject and the instance construction event is
1. Moreover, for all classes, directly or indirectly inheriting
from EJBObject (with exception of SessionBean) the
depth of the scenario corresponding to the bean instance
construction is 1. The system contains 16 such classes.
WasabiBeans WasabiBeans, abbreviating Web

Application Services and Business Integration, is a
JavaEE-based framework to support the establishment of
cooperative work and learning environments. WasabiBeans
[http://code.google.com/p/wasabibeans/] has been developed
at University of Paderborn, Germany. The most recent
version of WasabiBeans counts 324 Java files.
Similarly to the DataPortal case, no deployment descriptors

were found in the system. Two classes contained
AroundInvoke-methods, that is, should be considered as
interceptors: DebugInterceptor that is not mentioned in the
remaining Java files and JCRSessionInterceptor. The
latter interceptor annotates six beans, including

ObjectService. None of these beans inherits from another
bean. However, nine additional beans inherit from
ObjectService, bringing the total number of beans that can
lead to invocation of JCRSessionInterceptor to 15. In all
beans, the JCRSessionInterceptor interceptor is specified
at the class level. Since none of the business methods of
these classes excludes class-level interceptors, all business
methods of the 15 beans give rise to interceptor-related
scenarios of depth 3. Inheritance and interceptor use in
WasabiBeans are summarised in Fig. 19.
Life-cycle annotations in the system are @PostConstruct

and @PreDestroy. Both annotations are used in the
aforementioned six beans, annotated with
JCRSessionInterceptor, as well as in four additional
beans. None of these 6 + 4 = 10 beans inherits from another
bean and the @PostConstruct (@PreDestroy) annotation
appears only once in each file. Therefore only one method
will be invoked when a bean instance is being created or
destroyed, namely, the @PostConstruct (@PreDestroy)
method of the bean itself.
Comparing DataPortal and WasabiBeans We observe

that in both systems the use of interceptors has been quite
limited: in 18 files out of 275 in DataPortal and in 20 files
out of 324 in WasabiBeans. Moreover, neither of the
systems specified interceptors in the deployment descriptor.

Fig. 17 Sequence diagram created by I2SD for DataPortal.getDataReferences

Fig. 19 Inheritance and interceptor use in WasabiBeans

Fig. 18 Sequence diagram for creation of an instance of SessionBean

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 163
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

http://code.google.com/p/wasabibeans/
http://code.google.com/p/wasabibeans/
http://code.google.com/p/wasabibeans/
http://code.google.com/p/wasabibeans/
http://code.google.com/p/wasabibeans/

The limited adoption of interceptors is not surprising as they
express dependencies that are known to hinder development
of EJB applications [7, 8, 29], and, hence, are avoided by
developers. Furthermore, we observe that in both systems
life-cycle events propagate further through the system than
the business method interceptors: in both cases, all beans
involved in business method interception are also involved
in life-cycle interception, but not other way around.
The way interceptors are used differs strongly from one

system to another. The DataPortal developers opted for a
more complex interplay between inheritance and
interceptors involving a limited number of classes, resulting
in deeper scenarios for these classes: five for business
method interceptors and two for life-cycle interceptors. The
WasabiBeans developers have preferred to use a simpler
structure reflected in more shallow scenarios, but have
applied the business method interceptor’s technology on a
larger scale. Hence, when future development and
maintenance of DataPortal demand a more profound
knowledge of EJB 3.0 from the developer responsible for a
limited number of classes, development and maintenance of
WasabiBeans require only a basic knowledge of the
technique but (potentially) from a larger group of developers.

6 Related work

Presence of complicated dependencies between the
implementation components and the EJB container make
development, testing and management of EJB applications
to a challenging task [7, 8, 29, 30]. To facilitate these tasks
a monitoring system [8] and a profiler [29] have been
proposed. Both solutions assume, however, that the EJB
application is complete and can be executed. We pursue a
complementary approach and aim at supporting the ongoing
development process, that is, I2SD is capable of analysing
incomplete, and hence, non-executable programs.
The current paper builds on and extends our previous work

on dependency injection [26], and specifically on EJB
interceptors [10, 27]. Specifically, we extend [10, 27] by
discussing EJB timeout methods (Section 3.3) and applying
I2SD for empirical evaluation of the interceptors use
(Sections 5.1 and 5.2).
In general, reverse engineering code to UML sequence

diagrams is a well-studied research problem: both static and
dynamic approaches have been proposed. Static approaches,
such as [31–34], do not attempt to execute the system under
investigation, and infer sequence diagrams from the source
code. Dynamic approaches derive sequence diagrams from
observing the system’s run-time behaviour [35–40].
Furthermore, this research has lead to a number of reverse
engineering tools (see [41] for a recent survey of the area).
Dynamic approaches are known to produce more precise
results: for example, owing to presence of dynamic binding.
Applicability of the dynamic approaches is, however,
restricted by the fact that the system analysed should be
executable, while static approaches are capable of analysing
incomplete systems. As explained above, one of our goals
consisted in supporting the software developers during the
development process, we had to consider incomplete or not
necessarily executable systems, and, hence, we opted for a
static approach. When compared with the existing static
approaches to reverse engineering to UML sequence
diagrams [31, 32, 34], I2SD focuses on dependencies
injected in system code, that were not considered by most
of the existing approaches. The only work where such

programs are considered as a subject of the reverse
engineering effort is our previous work [10]. Building on
and extending [10] this paper presents I2SD, going beyond
the analysis of business method interceptors and focusing on
the tool-related aspects as opposed to purely algorithmic ones.
Reverse engineering sequence diagrams can be seen as

related to detection of EJB patterns and anti-patterns [42,
43]. Patterns and anti-patterns pertaining to invocation of
interceptors can be defined on the level of the
corresponding sequence diagram. I2SD can be then used to
infer the sequence diagram and check for presence of such
anti-patterns. Moreover, EJB anti-patterns can be detected
[44] based on EJB Framework Specific Modeling Language
[45], which can further be configured to identify interceptors.
Prior to their emergence in Java EJB applications,

interceptors were available in CORBA [1]. In CORBA,
different interceptor instances can be registered within an
object request broker component. Once a request is
intercepted, all the registered interceptor instances will be
invoked by the object request broker. The invocation order
of interceptors might, however, be dependent on the
specifics of the object request broker implementation in the
same way the invocation order of life-cycle callback
interceptors depends on the settings of the EJB container.
Thus, while some implementations allow interceptors to
define the invocation order, this would introduce
dependencies between the interceptors, and, hence,
compromise their portability [25]. This portability argument
holds to lesser extent for business method interceptors: the
EJB container has to obey the rules governing the
invocation order fixed in the EJB3 standard [2].
As explained above, interceptors are in a way similar to

AOP. In the AOP community sequence diagrams are used in
the forward engineering for choice of join points [46].
Cross-cutting concerns have been modelled using UML
sequence diagrams [47] and used to derive flow graphs and
flow trees to support test generation [48]. While reverse
engineering sequence diagrams of systems with aspects or
cross-cutting concerns did not seem to have so far attracted
attention of the AOP research community, related notions of
call graph and control-flow graph have been studied in
context of static analysis and program maintenance. Sereni
and de Moor [49] adapted the notion of a call graph for
aspect-oriented programs. Unlike a sequence diagram the call
graph, however, contains only information about which
methods (advices) can be called but not about their order of
invocation. Moreover, the approach of Sereni and de Moor
[49] did not support the ‘around’ advice, essential to
implement business method interceptors. These shortcomings
have been addressed in [50], where an inter-procedural
aspect control flow graph has been proposed. This work is
complementary to ours: while control flow graphs necessarily
provide more detailed information than sequence diagrams,
our technique takes into consideration intricate interplay
between inheritance and multiple kinds of interceptors.
Finally, while I2SD applies reverse engineering techniques

to programs with interceptors, in a number of papers the
opposite approach has been taken, that is, programs with
interceptors have been used as means to implement reverse
engineering techniques [51, 52].

7 Conclusions

In this paper, we have introduced I2SD, a reverse engineering
tool for EJB with interceptors. While development, testing

www.ietdl.org

164 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

and management of EJB applications are experienced as
difficult, I2SD can support both developers and quality
managers by providing them with appropriate information:
developers can benefit from visual representation of the
interceptor invocations by means of familiar UML sequence
diagrams, while quality managers can obtain brief
summaries giving a general overview of the project use of
the interceptor technology. I2SD can be used either via
NetBeans or as a stand-alone tool. We stress that the current
prototype implementation focuses on providing the desired
functionality rather than on performance. While inferring a
sequence diagram for a given business method or a
life-cycle event happens almost instantaneously,
performance of the batch processing of thousands of queries
should be improved.
I2SD has been implemented as a highly modular

pipe-and-filter architecture [15]. This architectural decision
facilitates evolution of I2SD and reuse of its individual
components [53]. We have discussed two use cases
showing the applications of I2SD during software
development (Sections 4.1 and 4.3) and as part of the
quality assessment (Section 4.2). To support the application
of I2SD for quality assessment we have conducted an
empirical evaluation of the interceptors use in practice
(Section 5), and observed that the depths of interceptor
scenarios in the production code of open-source software
systems is limited.
As future work we consider a number of possible

directions. The first direction pertains to interpretation of
the EJB specifications by I2SD. From the language
perspective, I2SD will be extended to incorporate more
recent extensions to the interceptor model such as
@InterceptorBinding [54]. We also intend to implement a
more precise check of the requirements a method has to
satisfy to be considered a business method [3]. The
second direction is related to the way user can control
I2SD. Sequence diagrams produced by the current version
of I2SD are focus on interceptors only and do not consider
method bodies. We intend to extend the algorithm and
provide the user with the ability to indicate the desired
nesting level, or method bodies that should be included or
excluded in the analysis. This would also allow Bob (cf.
Section 4.2) to obtain additional metrics related to the depth
of the scenario, for example, the number of interceptors at a
given nesting level. Finally, using modern aggregation
techniques [55, 56] Bob can obtain a general picture of the
interceptor usage from metrics values obtained for
individual scenarios. The third direction is related to
integration of I2SD with other software systems. I2SD will
be connected to our visual software analytics toolset
SQuAVisiT [17]. This connection will make EJB
applications immediately amenable for multiple analysis
and visualisation techniques already integrated in
SQuAVisiT. Next, in addition to the NetBeans plugin
described in Section 3, we plan to integrate I2SD in
Eclipse. Since the core part of the implementation is a
standard Java module, only the GUI and the plug-in
mechanism should be reimplemented to achieve Eclipse
integration. Finally, we intend to conduct a number of user
studies involving I2SD : in the first series of studies we
will ask the participants to use I2SD to perform a number
of development tasks akin to the task performed by Alice in
Section 4.1, whereas in the second series of studies we will
ask the participants to perform a number of analysis tasks
akin to the ones carried out by Bob in Section 4.2 using the
I2SD + SQuAVisiT combination. After implementing the

aforementioned tool extensions we will revisit the empirical
evaluation of Section 5.2.

8 Acknowledgments

The first author cordially acknowledges Laboratory for
Quality Software (LaQuSo) for making this research
possible. This research has been conducted during the third
author’s stay at Eindhoven University of Technology.
During this period he has been supported by the
ERASMUS scholarship.

9 References

1 Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: ‘Using interceptors
to enhance CORBA’, IEEE Comput., 1999, 32, (7), pp. 62–68

2 Sun Microsystems: Sun Microsystems. JSR-220 Enterprise JavaBeans
3.0 (Final Release), 2006

3 EJB 3.1 Expert Group: EJB 3.1 Expert Group. JSR-318 Enterprise
JavaBeans, Version 3.1 (Final Release), 2009

4 EJB 3.1 Expert Group: EJB 3.1 Expert Group. Interceptors 1.1, 2009
5 Vanbrabant, R.: ‘Google Guice: agile lightweight dependency injection

framework’ (APress, Berkeley, CA, USA, 2008)
6 Red Hat: Red Hat. Seam – Contextual Components. A Framework for

Java EE 5, 2007
7 Bellur, U.: ‘A methodology & tool for determining inter-component

dependencies dynamically in J2EE environments’. Proc. Third Int.
Conf. Autonomic and Autonomous Systems, Washington, 2007, DC,
USA, pp. 14:1–14:8

8 Kehe, W., Zhuo, W., Xing, Z., Gang, M.: ‘Design and implementation
of the monitoring system for ejb applications based on interceptors’.
Thirdrd Int. Conf. Advanced Computer Theory and Engineering
(ICACTE), 2010, vol. 4, pp. V4-5–V4-9

9 Tilley, S.R., Huang, S.: ‘A qualitative assessment of the efficacy of
UML diagrams as a form of graphical documentation in aiding
program understanding’, SIGDOC, 2003, pp. 184–191

10 Serebrenik, A., Roubtsov, S.A., Roubtsova, E.E., van den Brand, M.G.
J.: ‘Reverse engineering sequence diagrams for Enterprise JavaBeans
with business method interceptors’, WCRE, 2009, pp. 269–273

11 Murphy, G.C., Kersten, M., Findlater, L.: ‘How are Java software
developers using the Elipse IDE?’, IEEE Softw., 2006, 23, (4), pp. 76–83

12 Muskens, J., Chaudron, M.R., Westgeest, R.: ‘Software architecture
analysis tool: software architecture metrics collection’. Proc. Third
PROGRESS Workshop on Embedded Systems, 2002, pp. 128–139

13 Panda, D., Rahman, R., Lane, D.: ‘EJB 3 in action’ (Manning
Publications Co., Greenwich, CT, USA, 2007)

14 Goncalves, A.: ‘Beginning Java EE p Platform with GlassFish 3: from
novice to professional’ (Apress, Berkely, CA, USA, 2009, 1st edn.)

15 Allen, R.B., Garlan, D.: ‘A formal approach to software architectures’.
Proc. of the IFIP 12th World Computer Congress on Algorithms,
Software, Architecture – Information Processing 1992, Amsterdam,
The Netherlands, pp. 134–141

16 Copeland, T.: ‘Generating parsers with JavaCC’ (Centennial Books,
Alexandria, VA, USA, 2009, 2nd edn.)

17 van den Brand, M.G.J., Roubtsov, S.A., Serebrenik, A.: ‘SQuAVisiT: a
flexible tool for visual software analytics’, CSMR, 2009, pp. 331–332

18 Harold, E.R.: ‘Processing XML with Java’ (Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002), URL http://www.
cafeconleche.org/books/xmljava/

19 Sun Microsystems: Sun Java System Application Server 9.1 Reference
Manual, 2007

20 Jackson, D.: ‘Scalable vector graphics (SVG): the world wide web
consortium’s recommendation for high quality web graphics’. ACM
SIGGRAPH 2002 Conf. Abstracts and Applications, SIGGRAPH’02,
New York, NY, USA, pp. 319–319

21 Savard, M.: ‘Development of OASIS v2’. Tech. Rep. CR 2008–332,
Defence Research and Development Canada, October 2008. URL http://
pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf

22 Oracle: Java RMI over IIOP. Technology Documentation Home Page,
2010. URL http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/
index.html

23 Object Management Group: Java to IDL Language Mapping, 2008.
Version 1.4

24 Yawn, M.: ‘J2EE and Jax: developing web applications and web
services’ (Prentice-Hall Professional, Upper Saddle River, NJ, USA,
2003)

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166 165
doi: 10.1049/iet-sen.2012.0056 & The Institution of Engineering and Technology 2013

http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html

25 Baldoni, R., Marchetti, C., Verde, L.: ‘CORBA request portable
interceptors: analysis and applications’, Concurrency Comput., Pract.
Exp., 2003, 15, (6), pp. 551–579

26 Roubtsov, S.A., Serebrenik, A., van den Brand, M.G.J.: ‘Detecting
modularity ‘Smells’ in dependencies injected with Java annotations’.
Software Maintenance and Reengineering, European Conf., 2010, Los
Alamitos, CA, USA, pp. 244–247

27 Roubtsov, S.A., Serebrenik, A., Mazoyer, A., van den Brand, M.G.J.:
‘I2SD: reverse engineering sequence diagrams from Enterprise Java
Beans with interceptors’. SCAM, 2011, pp. 155–164

28 Perry, D.E., Porter, A.A., Votta, L.G.: ‘Empirical studies of software
engineering: a roadmap’. Proc. of the Conf. The Future of Software
Engineering, ICSE’00, New York, NY, USA, 2000, pp. 345–355

29 Klaczewski, P., Wytrebowicz, J.: ‘j2eeprof—a tool for testing multitier
applications’, Software Engineering Techniques: Design for Quality,
SET 2006, 17–20 October, 2006, Warsaw, Poland, IFIP, vol. 227, pp.
199–210

30 Arthur, J., Azadegan, S.: ‘Spring framework for rapid open source J2EE
Web application development: a case study’. Sixth Int. Conf. Software
Engineering, Artificial Intelligence, Networking and Parallel/
Distributed Computing, 2005 and First ACIS Int. Workshop on
Self-Assembling Wireless Networks, SNPD/SAWN 2005, pp. 90–95

31 Rountev, A., Connell, B.H.: ‘Object naming analysis for
reverse-engineered sequence diagrams’, Int. Conf. Software
Engineering, 2005, pp. 254–263

32 Rountev, A., Volgin, O., Reddoch, M.: ‘Static control-flow analysis for
reverse engineering of UML sequence diagrams’, PASTE, 2005, pp.
96–102

33 Tonella, P., Potrich, A.: ‘Reverse engineering of the interaction diagrams
from C++ code’. Int. Conf. Software Maintenance, 2003, pp. 159–168

34 Korshunova, E., Petkovic,́ M., van den Brand, M.G.J., Mousavi, M.R.:
‘CPP2XMI: reverse engineering of UML class, sequence, and activity
diagrams from C++ source code’. WCRE, 2004, pp. 297–298

35 Briand, L.C., Labiche, Y., Leduc, J.: ‘Toward the reverse engineering of
UML sequence diagrams for distributed Java software’, IEEE Trans.
Softw. Eng., 2006, 32, (9), pp. 642–663

36 Briand, L.C., Labiche, Y., Miao, Y.: ‘Towards the reverse engineering of
UML sequence diagrams’, WCRE, 2003, pp. 57–66

37 Delamare, R., Baudry, B., Le Traon, Y.: ‘Reverse-engineering of UML
2.0 sequence diagrams from execution traces’. Workshop on
Object-Oriented Reengineering at ECOOP 06, Nantes, France

38 Guéhéneuc, Y.G., Ziadi, T.: ‘Automated reverse-engineering of UML
v2.0 dynamic models’, Proc. Sixth ECOOP Workshop on
Object-Oriented Reengineering, 2005, Glasgow, UK

39 Oechsle, R., Schmitt, T.: ‘JAVAVIS: automatic program visualization
with object and sequence diagrams using the Java debug interface
(JDI)’, Software visualization, 2002 (LNCS, 2269), pp. 176–190

40 Richner, T., Ducasse, S.: ‘Using dynamic information for the iterative
recovery of collaborations and roles’. ICSM, 2002, pp. 34–43

41 Bennett, C., Myers, D., Storey, M.A.D., et al.: ‘A survey and evaluation
of tool features for understanding reverse-engineered sequence
diagrams’, Journal of Softw. Maint., 2008, 20, (4), pp. 291–315

42 Crawford, W., Kaplan, J.: ‘J2EE design patterns’ (O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2003)

43 Dudney, B., Krozak, J., Wittkopf, K., Asbury, S., Osborne, D.: ‘J2EE
antipatterns’ (John Wiley & Sons, New York, NY, USA, 2002, 1st edn.)

44 Stephan, M.: ‘Detection of Java EE EJB antipattern instances using
framework-specific models’. Master’s thesis, University of Waterloo,
Waterloo, 04/2009 2009

45 Antkiewicz, M., Czarnecki, K., Stephan, M.: ‘Engineering of
framework-specific modeling languages’, Softw. Eng. IEEE Trans.,
2009, 35, (6), pp. 795–824

46 Stein, D., Hanenberg, S., Unland, R.: ‘Join point designation diagrams: a
graphical representation of join point selections’, Int. J. Softw. Eng.
Knowl. Eng., 2006, 16, (3), pp. 317–346

47 Deubler, M., Meisinger, M., Rittmann, S., Krüger, I.: ‘Modeling
crosscutting services with UML sequence diagrams’, MoDELS, 2005
(LNCS, 3713), pp. 522–536

48 Xu, W., Xu, D.: ‘A model-based approach to test generation for
aspect-oriented programs’. First Workshop on Testing Aspect-Oriented
Programs, 2005, Chicago, IL, USA, pp. 1–6

49 Sereni, D., de Moor, O.: ‘Static analysis of aspects’. Proc. of the Second
Int. Conf. Aspect-Oriented Software Development, 2003, New York,
NY, USA, pp. 30–39

50 Bernardi, M.L., Di Lucca, G.A.: ‘An interprocedural aspect control flow
graph to support the maintenance of aspect oriented systems’. Int. Conf.
Software Maintenance, 2007, pp. 435–444

51 Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: ‘Discovering
architectures from running systems’. IEEE Trans. Softw. Eng., 2006, 32,
(7), pp. 454–466

52 Taïani, F., Killijian, M.O., Fabre, J.C.: ‘COSMOPEN: dynamic reverse
engineering on a budget. How cheap observation techniques can be used
to reconstruct complex multi-level behaviour’, Softw. Pract. Exp., 2009,
39, (18), pp. 1467–1514

53 Garlan, D., Shaw, M.: ‘An introduction to software architecture’, in
Ambriola, V., Tortora, G., (Eds.): ‘Advances in software engineering
and knowledge engineering’ (World Scientific Publishing Company),
1994, pp. 1–39

54 JSR-299 Expert Group: JSR-299: Contexts and Dependency Injection
for the Java EE platform, 2009

55 Serebrenik, A., van den Brand, M.G.J.: ‘Theil index for aggregation of
software metrics values’. Int. Conf. Softw. Maint, 2010, pp. 1–9

56 Vasilescu, B., Serebrenik, A., van den Brand, M.G.J.: ‘You can’t control
the unfamiliar: a study on the relations between aggregation techniques
for software metrics’. Int. Conf. Software Maintenance, 2011, pp.
313–322

57 IBM: EJB 3.x interceptors, 2012. http://www14.software.ibm.com/
webapp/wsbroker/redirect?version=matt&product=was-nd-
dist&topic=rejb_3interceptors

www.ietdl.org

166 IET Softw., 2013, Vol. 7, Iss. 3, pp. 150–166
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0056

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-dist&topic=rejb_3interceptors

Copyright of IET Software is the property of Institution of Engineering & Technology and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

	1 Introduction
	2 EJB interceptors
	3 Tool design
	4 Use cases
	5 I2SD for benchmarking interceptors’ use
	6 Related work
	7 Conclusions
	8 Acknowledgments
	9 References

