
Fundamenta Informaticae 93 (2009) 305–324 305

DOI 10.3233/FI-2009-104

IOS Press

A Translator of Java Programs to TADDs

Artur Rataj

IT&ACS, Polish Academy of Sciences

ul. Bałtycka 5, 44-100 Gliwice, Poland

arataj@iitis.gliwice.pl

Bożena Wózna∗, Andrzej Zbrzezny

IM&CS, Jan Długosz University

Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland

b.wozna@ajd.czest.pl; a.zbrzezny@ajd.czest.pl

Abstract. The model checking toolsUppaal andVerICS accept a description of a network of
Timed Automata with Discrete Data (TADDs) as input. Thus, toverify a concurrent program written
in Java by means of these tools, first a TADD model of the program must be build. Therefore, we
have developed theJ2TADD tool that translates a Java program to a network of TADDs; thepaper
presents this tool.

The J2TADD tool works in two stages. The first one consists in translation of a Java code to an
internal assembly language (IAL). Then, the resulting assembly code is translated to a network of
TADDs. We exemplify the use of the translator by means of the following well-known concurrency
examples written in Java:race condition problem, dining philosophers problem, single sleeping
barber problemandreaders and writers problem.

1. Introduction

Model checking [3] is a widely recognised and prominent automatic verification technique both in hard-
ware [10] and protocol verification [8]. It does not rely on complicated interaction with the user for
incremental property proving. If a property does not hold, the model checker automatically generates a
counterexample. In model checking, the system to be verifiedis modelled as a finite state machine (for

∗Address for correspondence: IM&CS, Jan Długosz University, Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland

306 A. Rataj et al. / A Translator of Java Programs to TADDs

example as a network of timed automata), which further can berepresented by a transition system, and
temporal logics are used for specifying the system properties.

Typical examples of finite systems, for which model checkinghas successfully been applied, are
digital sequential circuits and communication protocols,and typical examples of checked properties are
reachability properties. In this paper, we consider the model checking problem for concurrent programs
written in Java, one of the dominant high-level programminglanguages, and we test these programs for
the properties mentioned above.

Verifying programs written in programming languages like Java is different from verifying digital
sequential circuits or protocols; the state space is often infinite and the relationships between possible
states are harder to understand because of asynchronous behaviour and complex underlying semantics
of the languages. Further, the size and complexity of software force us to treat model checking rather
as a debugging technique in software verification than a fully automated validation process of the whole
software. In particular, for what concerns verification of Java programs, we see model checking as a
method that can be applied to the crucial parts of a Java software.

In order to investigate the challenges that Java programs pose for model checking, we have developed
a J2TADD tool that translates a Java code to a network ofTimed Automata with Discrete Data(TADDs)
[9, 14]. J2TADD implements the translation that has been shown in [15] and there one can find a detailed
description of how the concepts of concurrent programming in Java are translated into TADDs.

The TADD formalism is accurate enough to detect concurrencyerrors and yet abstract enough to
make model checking tractable. Moreover, it is an input language of the model checking toolsVerICS[5]
andUppaal [2], so J2TADD compiler together with these two tools can be used to validate concurrent
programs written in Java.J2TADD is a pure Java application that can be run as a standalone command
line tool on any platform supporting Java 1.5 or later.

Our case studies have been done for a Java program that suffers from arace conditionand for Java
programs that implement the following well-known concurrency examples:dining philosophers prob-
lem, single sleeping barber problem, andreaders and writers problem. As verification engines we have
usedUppaal andBMC4TADD - a new version of the BMC module of the toolVerICS that has been adapted
to work with theJ2TADD translator.BMC4TADD implements the Bounded Model Checking method, where
systems are described as a network of TADDs and properties are the reachability one.

Over the last ten years various approaches and tools have been developed to automatically verify Java
programs. However, the majority of work has been devoted to analysis of Java bytecode and building new
Java Virtual Machines (JVMs) that interpret Java bytecode.In particular, the following two verification
and testing environments for Java have been built:Java PathFinder (JPF) [12] andBandera [4]. Both
tools can model check Java programs on deadlocks and limitedJava assertions only.

Apart from the two above tools one can find the following worksrelated to the model checking of Java
programs [11, 6]. The paper [11] describes a Java model checker that is based on the SAL (Symbolic
Analysis Laboratory) [1] intermediate language and theSoot compiler framework. According to the
paper the architecture of the tool is the following. First, aJava program is compiled to Java bytecode.
Then, the result is converted to aJimple code, one of theSoot output formalisms. Next, theJimple
code is translated to SAL; this should be done by a Jimple to SAL translator, but it is not available on the
web. Thus, it is not possible to run and evaluate the [11] Javamodel checker. Moreover, it seems that the
work is not continued since the year 2000.

The paper [6] presents Java Formal Analysis (JavaFAN), a tool to simulate and formally analyse
multithreaded Java programs at source code and/or bytecodelevels. The tool is based on rewriting logic,

A. Rataj et al. / A Translator of Java Programs to TADDs 307

implemented in the Maude language, and supporting analysesboth the Java language and JVM bytecode.
It allows for the following types of analysis:symbolic simulation, safety violations(via BFS search), and
LTL model checking of rewriting theories. Similarly to the SAL based model checker,JavaFAN is not
available on the web. Moreover, it seems that the work is not continued since the year 2006.

The rest of the paper is organised as follows. The next section shortly describes the idea of our trans-
lation of a Java code to a network of TADDs. Then, in Section 3 we discuss an assembly language that
is used internally by ourJ2TADD translator. In Section 4 we present two stages of our translation (inter-
preting and generating transitions) that are required to convert the internal assembly code to TADDs. In
Section 5 we show a simple Java program that encodes the dining philosophers problem, the resulting
internal assembly code and the final TADD specification resulting from it. Finally, we present a case
study that confirms that our approach provides a valuable aidfor verification of Java programs.

2. Translation from JAVA to TADD

In this section we shortly describe the idea of our translation of a concurrent multithreaded Java program
to a network of Timed Automata with Discrete Data (TADDs) [9,14]; a detailed description of the
translation can be found in [15]. TADDs are standard diagonal timed automata augmented to include
integer variables over which standard arithmetic and Boolean expressions can be defined. These automata
take as an input a set of initialised integer variables and a set of propositional variables, true at particular
states.

Each state of a TADD is an abstraction of a state of a given Javaprogram, and each transition rep-
resents an execution of a code transforming this abstract state. The subset of Java that can be trans-
lated to a network of TADDs contains: definitions of integer variables, standard programming language
constructs like assignments, expressions with most operators, conditional statements and loops (for,
while, do while), instructionsbreak and continuewithout labels, definitions of classes, objects, con-
structors, static and non–static methods and synchronisation of methods and blocks. Also, standard
thread creation constructs and the following special methods: Thread.wait(), Thread.notify(),
Thread.join(Thread), Thread.sleep(int) andRandom.nextInt(int) are recognised.

A theoretical method of constructing a network of TADDs thatmodels a Java program is shown in
[15]. Here we only recall that in TADDs locations are used to record the current control state of each
thread and the values of key program variables and any run–time information necessary to implement
the concurrent semantics (e.g., whether each thread is ready, running, or blocked on some object). Each
transition represents the execution of a Java instruction (for example an assignment statement) for some
thread. There is one TADD for each thread, but the main thread: one TADD for each instance of a started
thread, and one TADD for each used semaphore. The main threadis treated differently: it is executed by
a built–in interpreter instead of being translated like theother threads. The reason for this is twofold:

• to allow for performing computations whose results are normally in Java only known at run–time,
so these results can be used at compile–time when constructing TADDs;

• to interpret allocations that are normally absent in the TADD formalism.
In this paper we assume that direct or indirect recursion is not allowed in the considered fragment of
the Java language. The following operations are allowed in the interpreted thread: allocations of new
objects, including static initialisation, creation and starting of new threads, assignments and method calls,
arithmetic expressions that can be statically determined.

308 A. Rataj et al. / A Translator of Java Programs to TADDs

To implement the translation shown in [15], we first translate a Java code to an internal assembly
language (see the next section). Than, the resulting assembly code is translated to a network of TADDs;
this is presented in Section 4.

3. Internal Assembly Language (IAL)

This section describes an assembly language that is used internally by ourJ2TADD translator; in Section
3.6 we provide a formal grammar of a single operation of the language.

We start with an explanation of what we mean bydereferencesandliterals that we use in our internal
assembly language. Then, we describe how the Java static andnon–static methods are handled. Next, we
discuss polymorphism and annotations. Finally, we define allowed operations and show their connections
with object allocation, method calls, synchronisation andstandard programming language constructs like
assignment, expressions or loops.

3.1. Dereferences and Literals

A dereferenceis a pair (object, field) of two variables, where the first one must be an object reference,
including the null reference. Bothobjectandfieldvariables are always either local or static variables, and
the variableobjectcan benull. If the variableobjectis not null, then this is a dereference of a respective
non–static fieldfield of the Java objectobject, and this is the only case when there is performed an actual
variable dereference. Textual representation of such a dereference isobject::field. If the variable
object is null, then the dereference refers to a local variable or a static field. Textual representation of
such a reference isfield. The type of a dereference in each case is the same as that offield.

Literalsare constant values and can have one of the following types:void, char, byte, int, short, long,
float, doubleand a Java type; TADDs currently support only integer types,though.

In our assembly language we refer to dereferences and literals as to values, i.e., we have〈value〉 ::=
〈literal〉|〈dereference〉.

3.2. Methods

There is no difference between static and non–static Java methods in our assembly language apart from
one: a non–static method has an additional argument calledthis, which is of the type of the class
containing the method. The argument references an instanceof the object “this”, that defines the non–
static context of the method. A constructor is simply a non–static method, but it is named after the class
it constructs.

3.3. Instantiation and Polymorphism

A run-time Java object gets its non–static fields initialised in its method*object. A class we treat as a
special object. The static fields of a class are initialised in the method*static.

In our assembly language we define only one polymorphism rule. Namely, if the class B extends
class A, then an object of the class B can be used when an objectof the class A is required. A run-time
object class type, as opposed to a variable compiled type, decides about which non–static method is

A. Rataj et al. / A Translator of Java Programs to TADDs 309

called. The other possible polymorphism rules can be enforced during parsing, semantic check or code
generation, the assembly language itself does not define or enforce them.

3.4. Annotations

Annotations provide data about a program that is not part of the program itself. They have no direct
effect on the operation of the code they annotate. Annotations have a number of uses, among them:
information for the compiler, compiler-time and deployment-time processing, or run-time processing
(some annotations are available to be examined at run-time).

In our assembly language methods can have annotations like in Java. There are also internal special
annotations that begin with ‘@@’ and annotate special methods:

• @@MARK – do not call, the method is just a marker; it is replaced by ano operation, see the descrip-
tion of no operationfor details;

• @@START_THREAD – start a thread;
• @@IGNORE – ignore any call of the method; it works like@@MARK but it is included for clarity.
Back-ends and interpreters (see Section 4) can define their own annotations, and use them along with

these two described in this section. For example, the interpreter used by the translator uses an annotation
@@START_THREAD to start a new thread, and the TADD backend uses an annotation@@RANDOM to mark a
method that generates random numbers. Both annotations areused together with the annotation@@MARK.
Normally, the user of the translator does not need to know or use these special annotations. Instead, there
is a special library of classes likeObject or Thread, in which certain methods are marked with these
annotations. For example,Thread.start() is annotated with@@START_THREAD in the library.

3.5. Operations

The following operations are defined in the internal assembly language:
• Allocation: <dereference> = new <constructor> (<argument>*). It instantiates an ob-

ject, calls the object’s method*object and then the respective constructor. Example:

#c3 = new ->Sender(mch.abp.v1.Sender, mch.abp.v1.LossyChannel) channel

An object Sender is created using a constructor that takes an argument of the type mch.

abp.v1.LossyChannel. The argument is the copy of a local variablechannel of the caller
method. The other argument is the new object and provides the“this” local variable for the non–
static context. It is, thus, of the type of the created object.

• An assignment:<dereference> = <value>. Example:this::ackBit = ackBit. This op-
eration copies the value of the local variableackBit to the field of the object of a non–static
method.

• A binary expression:<dereference> = <value> <operator> <value>. It allows for stan-
dard Java binary operators and also for a concatenation of a string to any other value. Here the
standard Java rules apply to determine the type of the reference variable; for example, an integer
and a float produce a float. Only the following binary operators are currently supported by the
TADDs, though: plus, minus, multiply, divide, modulus. Example:#c5 = ignoreBit > 2. Test
if a local variableignoreBit is greater than a constant2, and store the result in a local Boolean
variable#c5.

310 A. Rataj et al. / A Translator of Java Programs to TADDs

• A conditional branch:<value> ? <label> : <label>. This conditionvalue can be a derefer-
ence or a constant. The labels point to operations to jump to if the condition is, respectively, true or
false. A label can be null what means that there is no respective jump. Example:#c5?<null>:10.
If #c5 is true, then go to the next operation. Otherwise, jump to theoperation of index 10.

• A call to a method:<dereference> = <method> (<argument>*). If the method returns void,
the dereference is null. As in Java, the non–static methods are virtual. Argument ”this” of non–
static methods is always the first one. Example:

ignoreBit = ->nextInt(java.util.Random, int)

@@MARKER @@RANDOM (this)this::random 5.

Call to a non–static methodnextInt(int) of the object referred by a fieldrandom belonging
to int turn to the object of the calling non–static method. The additional argument of the type
java.util.Random passes a reference to “this” of the called method. A value of5 is copied to
the other parameter. The called method has two internal annotations:@@MARKER and@@RANDOM.

• An unconditional jump:goto <label>. Example:goto 4. Go to the operation at index 4.
• No operation:no op [<dereference> =] <annotation>+ (<argument>*). It can be used

as a holder of a label or of an annotation. Also, despite its name, it can perform something if the
annotation specifies some special operation, that can not beexpressed by the regular assembly
language operations, but that is needed for some particulartranslation. In that case, the operation
may optionally have arguments, and a dereference to hold theresult of the operation. Any call to
a method annotated with@@MARKER is replaced by no operation. Example:

no op @@MARKER @@SLEEP (i#0mch.abp.v2.Sender_run__#c8).

Perform the special operation “sleep” on a thread referenced byi#0mch.abp.v2.Sender_run__
#c8. The operation does not return anything, so the part[<dereference> =] is absent.

• return – returns from a method.
• sync begin|end <dereference> – either the begin or the end of a synchronised code. The

dereference references the semaphore. Example: the code ofa synchronised method always starts
with sync <begin> this and there issync <end> this before eachreturn operator in the
method.

• An unary expression:<dereference> = <operator> <value>. It allows for standard Java
unary operators. Only the following unary operators are currently supported by the TADDs,
though: arithmetic negation and Boolean negation. Example: #c7::ackBit = !#c7::ackBit.
Negate the field ackBit of the object referred by the variable#c7.

We further assume that:

• A return value of a method is in a local variable named*retval.
• A label is simply an index of the target operation, or, in the case of a conditional branch, optional

null meaning no jump, but execution of the following operation instead.
• A signature, like in Java, is an unique key that defines a method. A signature contains the method’s

name and types of arguments. It does not contain the type of “this” argument of non–static meth-
ods.

A. Rataj et al. / A Translator of Java Programs to TADDs 311

3.6. Grammar of an Operation

This section defines a formal grammar of our assembly language operation〈operation〉, provided in the
BNF notation.

• 〈allocation〉 ::= 〈dereference〉 = new〈method call〉 (〈argument〉*)
• 〈annotation〉 ::= 〈identifier〉
• 〈assignment〉 ::= 〈dereference〉 = 〈value〉
• 〈binary expression〉 ::= 〈dereference〉 = 〈value〉 〈binary operator〉 〈value〉
• 〈binary operator〉 ::= PLUS| MINUS | MULTIPLY | DIVIDE | MODULUS| INCLUSIVE OR| EXCLU-

SIVE OR| AND| EQUAL| CONDITIONAL OR| CONDITIONAL AND| INEQUAL| LESS| GREATER|
LESSOR EQUAL| GREATEROR EQUAL| SHIFT LEFT| SHIFT RIGHT| SIGNED SHIFT RIGHT|

• 〈conditionalbranch〉 ::= 〈value〉 ? 〈label〉 : 〈label〉
• 〈call〉 ::= 〈dereference〉 = 〈method call〉 (〈argument〉*)
• 〈expression〉 ::= 〈unary expression〉|〈binary expression〉
• 〈identifier〉 is a string of characters.
• 〈jump〉 ::= 〈unconditionaljump〉| 〈conditionalbranch〉
• 〈label〉 is an index of the target operation. Indices start at 0.
• 〈literal〉 is a constant.
• 〈methodcall〉 ::= → 〈methodsignature〉 ((〈dereference〉)*) (〈annotation〉*)
• 〈methodsignature〉 is the signature of a method, see Sec.3.5 for details.
• 〈no op〉 ::= no op [〈dereference〉 =] (〈annotation〉*)
• 〈operation〉 ::= 〈allocation〉| 〈assignment〉| 〈expression〉| 〈jump〉| 〈methodcall〉| 〈return〉|〈sync〉|
• 〈dereference〉 ::= [〈variablename〉::]〈variablename〉
• 〈return〉 ::= return
• 〈sync〉 ::= sync begin|end〈dereference〉
• 〈unary expression〉 ::= 〈dereference〉 = 〈unary operator〉 〈value〉
• 〈unary operator〉 ::= NEGATION | CONDITIONAL NEGATION | BITWISE COMPLEMENT
• 〈unconditionaljump〉 ::= goto〈label〉
• 〈value〉 ::= 〈literal〉|〈dereference〉
• 〈variablename〉 ::= 〈identifier〉

4. Translation from IAL to TADDs

Once the assembly code is generated, two stages remain to convert the code to TADDs: interpreting the
main thread and then generating transitions from the other threads.

4.1. Interpreter

The role of the interpreter is to initialise variables, loadneeded classes, create objects and threads.
Threads. As in Java, the start method of the main thread is the main method of the translated application.
Only a single main method within the application is allowed by the translator.

The interpreter is started with this single thread and ends once the main thread ends. All other threads,
called here TADD threads, created by the interpreter when executing the main thread are translated to
TADDs, one TADD per thread.

312 A. Rataj et al. / A Translator of Java Programs to TADDs

Library and annotations. The interpreter uses a TADD–specific library that defines theneeded Java
classes likeObject or Thread. As already discussed, some methods in the library are marked with
special annotations beginning with double ‘@’. Let us describe these annotations in detail.

The annotations@@IGNORE, @@MARKER and@@START_THREAD are used as defined by the assembly
language, and were already described in Sec.3.4. Additional TADD–specific annotations defined in the
library are as follows:

• @@NOTIFY – perform notify() on an object, used with marker methods, usually only with
Thread.notify().

• @@RANDOM – generate a random number in the range 0 ... method’s integerargument - 1, used with
marker methods, usually only withRandom.nextInt(int).

• @@SLEEP – sleep by a given number of milliseconds, used with marker methods, usually only with
Thread.sleep(int).

• @@WAIT – perform wait() on an object, used with marker methods, usually only with
Thread.wait().

4.2. Building TADDs

This section describes the process of generating TADDs after interpreting the main thread.

Virtual call resolution. The first step is a virtual call resolution. In Java, a called non–static method
is determined not by compile–time type of an object, but by the run-time type of an object. After the
interpreter is already run and run-time types are known, some calls can be resolved. If it is not possible
because of a null variable or a variable not initialised at the interpreter stage, an error is reported.

Inlining calls. Once the calls are resolved, it is possible to ‘flatten’ the code by the translator. To do
so, the code is recursively inlined with a thread, beginningat each thread’s methodrun(), so that, in
effect, there should be no calls left in the ‘flattened’ code.The operation is performed because no stack
is available in the generated TADDs for calling methods, andalso because inlined code allows for more
efficient optimisations like reduction of variables and assignments.

Optimisation. The next step is an optimisation of the code like: value propagation, optimising branches
with static conditions, compacting jump and assignment chains, checking for dead code, removal of
assignments and locals that are unused. This step is performed even if the code had already been opti-
mised before the discussed inlining of calls. It is because the inlining may allow for substantial further
optimisations, as mentioned above.

Ambiguity check. TheJ2TADD translator allows for assignments of reference variables within the TADD
threads, if the translator can determine that these assignments do not cause a reference to be ambiguous
at compile time. The translator checks only the local reference variables for ambiguity, and thus, assign-
ments to non–local reference variables within TADD threadsare forbidden. Ambiguity means here that
the dereferenced variable can have more than a single value at the time of being dereferenced, or at least
that it was not possible to determine statically, by tracingexecution paths within a method, that there is
only one such value possible. Such an ambiguity of a reference variable would make it impossible to
statically dereference the variable at compile time. This in turn would require the actual dereferences
to be performed at run–time. TADDs, though, do not support dereferences and a run-time emulation of
dereferences is not implemented.

A. Rataj et al. / A Translator of Java Programs to TADDs 313

Generating transitions. Most assembly language operations are straightforwardly translated to TADDs:
assignments, jumps, binary and unary expressions and conditional branches. However, there are some
sequences of assemble language operations that are treatedas a whole and as such transformed to re-
spective TADD transitions:

• a conditional expression followed by a conditional branch,which uses the result of the conditional
expression, is transformed to two opposite conditional expressions on two transitions. Example:

0 c = a < 1

1 c ? <null> : 3

is translated to two conditional expressions:a < 1 on a transition from state 1 to state 2 anda ≥ 1
on a transition from state 1 to state 3.

• a marker method@RANDOM followed by a marker method@SLEEP that uses the result of the first
marker method is transformed to a respective clock condition. Example:

0 c = @@MARKER @@RANDOM (random 150)

1 no op @@MARKER @@SLEEP (c)

is translated to a clock condition(x ≥ 0) ∧ (x < 150).
Annotations@NOTIFY, @WAIT and synchronisation operations cause a new semaphore TADD to be

created for the respective synchronisation object if the semaphore does not exist yet. Transitions are
added to the semaphore as necessary. As required by Java, within a single thread, synchronisation oper-
ations on run-time objectk are ignored if they are nested within synchronisation operations that are also
on the objectk.

5. Example Translation

Let us discuss an example translation of a Java program, which implements a possible solution of the
well known dining philosophers problem (for the discussionof the problem see 6.2), to our assembly
language (IAL), and then to TADDs. The translated class (program)College3 extendsThread and
objects of the class represents threads in the output network of automata. The source of the class is given
in Fig. 1. IAL representation of one of the actual threads is shown in Fig. 2. The IAL code is eventually
translated into one of the automata. The transitions of the automaton, written in theVerics format,
are shown in Fig. 3; the notationtransition x y z means that there is a transtion from locationx to
locationy labelled byz. Because of the length of the representation, comments and lines containing only
the keywordsreset andend, were removed from the file. Lines in each of the three representations
are prefixed withs for the source file,i for the IAL file andt for the output file, as seen in the figures,
and so the lines will further be referred to in this section. Counterparts of each line in the different
representations are shown in Table 1. If a method is called twice, its code is translated twice. In the table,
a group of lines related to such a single call is separated from possible other groups with a semicolon.

Let us now discuss the example translation in detail.
The thread begins with callingrun(), that begins ins61. The method is non–static, and thus, its

local variablethis has to be set to point to the method’s object. As can be seen from the mapping,
there is a related assignment operation ini0. The method itself begins ins62 with a condition that can
be evaluated at compile time. Such operations, and several others within the thread, do not have any

314 A. Rataj et al. / A Translator of Java Programs to TADDs

s1 public class College3 {

s2

s3 public static void main(String args []) {

s4 Fork fork0 = new Fork(false);

s5 Fork fork1 = new Fork(false);

s6 Fork fork2 = new Fork(false);

s7

s8 Philosopher p0 = new Philosopher(0,

fork0, fork1);

s9 Philosopher p1 = new Philosopher(1,

fork1, fork2);

s10 Philosopher p2 = new Philosopher(2,

fork2, fork0);

s11

s12 (new Thread(p0)).start();

s13 (new Thread(p1)).start();

s14 (new Thread(p2)).start();

s15 }

s16 }

s17

s18 class Fork {

s19

s20 private boolean unavailable;

s21

s22 public Fork(boolean unavailable) {

s23 this.unavailable = unavailable;

s24 }

s25

s26 public synchronized void acquire() {

s27 while (unavailable) {

s28 try {

s29 wait();

s30 } catch (InterruptedException e) {

s31 }

s32 }

s33 unavailable = true;

s34 }

s35

s36 public synchronized void release() {

s37 unavailable = false;

s38 notify();

s39 }

s40

s41 }

s42

s43 class Philosopher implements Runnable {

s44 private int nr;

s45 private Fork left, right;

s46

s47 public Philosopher(int nr, Fork left,

Fork right) {

s48 this.nr = nr;

s49 this.left = left;

s50 this.right = right;

s51 }

s52

s53 // @generateHead

s54 private void eating() {

s55 try {

s56 Thread.sleep(1);

s57 } catch (InterruptedException e) {

s58 }

s59 }

s60

s61 public void run() {

s62 while (true) {

s63 try {

s64 Thread.sleep(5);

s65 } catch (InterruptedException e) {

s66 }

s67 left.acquire();

s68 // @(.inline infinite, .annotation

@@NOTIFY_THREAD)observable

s69 right.acquire();

s70 eating();

s71 right.release();

s72 left.release();

s73 }

s74 }

s75 }

Figure 1. Java source code of the programCollege3.

counterparts in both IAL and the TADDs formalism, as there isno need to execute anything related to
operations like that at run time.

The first operation that is actually translated to a network of TADDs is in s64. As it is a call
to a marker method, its counterpart in IAL is an annotated no–operation. The annotations@@MARKER
@@SLEEP and the argument5 describes the original operation. The no–operation is in turn translated to
transitionst1, t2, t10 andt11 that contain a reset of the clockx1 and a conditionx1 >= 5. Thecatch
block ats65 ands66 is empty. While the translator does not support exceptions,it accepts exception–
related constructs that do not effectively contain any exception–related code, assuming, though, that no
exceptions will actually be thrown.

The next operation is the call to a non–static synchronized methodacquire() in s69. In IAL,
translation of the call begins with the assignment of the local variablethis, like it has already been

A. Rataj et al. / A Translator of Java Programs to TADDs 315

i0 i#0<default>.Philosopher_run__this = this::runnable

i1 no op @@MARKER @@SLEEP (5)

i2 i#0<default>.Fork_acquire__this = i#0<default>.Philosopher_run__this::left

i3 sync begin i#0<default>.Fork_acquire__this

i4 i#0<default>.Fork_acquire__this::unavailable ? <null> : 7

i5 no op @@MARKER @@WAIT (i#0<default>.Fork_acquire__this)

i6 goto 4

i7 i#0<default>.Fork_acquire__this::unavailable = true

i8 sync end i#0<default>.Fork_acquire__this

i9 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

i#0<default>.Fork_acquire__this = i#0<default>.Philosopher_run__this::right

i10 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

sync begin i#0<default>.Fork_acquire__this

i11 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

i#0<default>.Fork_acquire__this::unavailable ? <null> : 14

i12 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

no op @@MARKER @@WAIT (i#0<default>.Fork_acquire__this)

i13 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

goto 11

i14 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

i#0<default>.Fork_acquire__this::unavailable = true

i15 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

sync end i#0<default>.Fork_acquire__this

i16 <@()generateHead @(.inline infinite, .annotation @@NOTIFY_THREAD)observable>

no op @@HEAD ()

i17 <@()generateHead> no op @@MARKER @@SLEEP (1)

i18 i#0<default>.Fork_release__this = i#0<default>.Philosopher_run__this::right

i19 sync begin i#0<default>.Fork_release__this

i20 i#0<default>.Fork_release__this::unavailable = false

i21 no op @@MARKER @@NOTIFY (i#0<default>.Fork_release__this)

i22 sync end i#0<default>.Fork_release__this

i23 i#0<default>.Fork_release__this = i#0<default>.Philosopher_run__this::left

i24 sync begin i#0<default>.Fork_release__this

i25 i#0<default>.Fork_release__this::unavailable = false

i26 no op @@MARKER @@NOTIFY (i#0<default>.Fork_release__this)

i27 sync end i#0<default>.Fork_release__this

i28 goto 1

Figure 2. IAL code of one of the threads of objects of the classCollege3.

discussed. Then, as the call is not a marker method likeThread.sleep, but a method with an actual
code, inlining of the code begins. A code in a synchronized method, if the call operation is not already
synchronized with a given lock, needs to be preceded with a synchronization begin operation, in this case
in i3, and a matching synchronization end operation, in the case in i8. As shown in the mapping, there
are equivalent automata transitions int13 andt21. There are also linesi10, i15, t22 andt31 shown
in the array, yet after semicolons. They contain the synchronization code as well, but related to another
call of the methodacquire().

The condition ins27 is translated toi4 and then to two transitions with conditions int14, t15, t16
andt17. The two conditions are opposite and, as it can be seen in the automata code, split the thread
into two branches.

Within the inlined method, there is a call to a marker method in s29, translated, like the previous
call to a marked method, into an annotated no–operation, butthe annotations are different this time –
@@MARKER @@WAIT, and there is no argument. The operation is translated to a set of automata transitions,
as described in the mapping. The assignment operation ins37 has equivalent assignments ini20, t39
andt40.

316 A. Rataj et al. / A Translator of Java Programs to TADDs

t1 transition 0 6 24

t2 reset x1

t3 transition 1 19 25

t4 x1 >= 1

t5 reset x1

t6 transition 2 13 8

t7 transition 3 2 26

t8 transition 4 8 0

t9 transition 5 4 27

t10 transition 6 7 28

t11 x1 >= 5

t12 reset x1

t13 transition 7 8 2

t14 transition 8 9 29

t15 cond z0 = c1

t16 transition 8 10 30

t17 cond z0 = c0

t18 transition 9 5 6

t19 transition 10 11 31

t20 assign c1 + c0 to z0

t21 transition 11 12 4

t22 transition 12 13 10

t23 transition 13 14 32

t24 cond z1 = c1

t25 transition 13 15 33

t26 cond z1 = c0

t27 transition 14 3 14

t28 transition 15 16 34

t29 assign c1 + c0 to z1

t30 transition 17 18 35

t31 transition 16 17 12

t32 transition 19 20 10

t33 transition 18 1 36

t34 reset x1

t35 transition 21 22 37

t36 assign z4 - c1 to z4

t37 transition 21 22 38

t38 cond z4 = c0

t39 transition 20 21 39

t40 assign c0 + c0 to z1

t41 transition 23 24 2

t42 transition 22 23 12

t43 transition 25 26 40

t44 assign z3 - c1 to z3

t45 transition 25 26 41

t46 cond z3 = c0

t47 transition 24 25 42

t48 assign c0 + c0 to z0

t49 transition 26 0 4

Figure 3. Shortened TADDs representation of one of the threads of the objectsCollege3.

Java IL Verics

s26 i3; i10 t13; t22

s27 i4; i11 t14, t15, t16, t17; t23, t24, t25, t26

s29 i5; i12 t18, t9; t27, t7

s32 i6; i13 t8; t6

s33 i7; i14 t19, t20; t28, t29

s34 i8; i15 t21; t31

s36 i19; i24 t32; t41

s37 i20; i25 t39, t40; t47, t48

s38 i21; i26 t35, t36, t37, t38; t43, t44, t45, t46

s39 i22; i27 t42; t49

s53 i16 t30

s56 i17 t33, t34, t3, t4, t5

s61 i0 -

s64 i1 t1, t2, t10, t11, t12

s67 i2 -

s68, s69 i9 -

s71 i18 -

s72 i23 -

s73 i28 t49

Table 1. Mutual dependencies between the lines in each representation.

A. Rataj et al. / A Translator of Java Programs to TADDs 317

The next call inrun(), in the lines69, differs from the previous one in a different value assigned
to the called method’sthis, and in being tagged with@observable. The two differences are seen in
the linesi9 – i15, when compared to the already discussedi2 – i8. The IAL operations are tagged
this time, and in the TADDs formalism, a different variable is assigned – comparet39, t40 with t47,
t48. This is because the fieldunavailable belongs to two different objects in each of the two calls in,
respectively,s67 ands69.

Even that all operations withini9 – i15 are tagged, the TADD backend, while generating transitions
from these operations, will check for the filter.annotation NOTIFY THREAD and will mark only these
transitions as observable that are annotated with@@NOTIFY THREAD.

The next operation in the methodrun() is a call to a not synchronized methodeating(). The
method is tagged withgenerateHead, what is reflected by an additional transition int30.

The next two calls are torelease(). It is a non–static synchronized method, asacquire(). The
method contains a call to a marker methodnotify(). A counterpart IAL code is seen for example in
i21. The code of this particular IAL operation is then translated to transitions shown in linest35, t36,
t37, t38.

The last operation inrun() is a jump ins73 to the condition of thewhile loop. The jump is
translated to agoto operation ini28, which in turn is translated to a transition int49. As seen in the
mapping, to this transition has also been translated the synchronization end operation ati27.

6. Case Study

The main aim of this paper was to show a new model checking method for verification of concurrent
programs written in Java. This method consists in translating a Java program to a network of TADDs,
and then applying the existing model checking tools accepting a description of a network of TADDs as
input. As we have already mentioned at the very beginning of the paper, the model checking tools like
Uppaal or VerICS accept networks of TADDs as input. Thus, to verify concurrent programs written in
Java using those tools, we had to develop theJ2TADD tool that translates a Java program to a network of
TADDs.

In this section, we report on results that we have got when evaluating the effectiveness of the proposed
verification method by means of four well known concurrency examples written in Java. We do this by
comparing our results with those returned by the toolsJPF andBandera.

For all the considered examples we have searched for deadlock states, and additionally, we have
tested arace conditionby usingJPF, Uppaal, and theBMC4TADDmodule ofVerICS. A state is a deadlock
state if there are no outgoing action transitions neither from the state itself or any of its delay successors.

In order to search for a deadlock stateJPF tests for every non-end state if there is any runnable thread
left. In Uppaal, in order to search for a deadlock state, a special state formula E♦deadlock that is
satisfied for all deadlock states is used. It is worth to mention that usingUppaal one can also handle the
following temporal properties: possibility, invariants,potentially always, eventually, if a request occurs
then it will be eventually acknowledge.

In BMC4TADD to search for a deadlock state we test reachability of a statesatisfying certain (usually
undesired) property. For this the transition relation of a given network of TADDs is unfolded up to some
depthk, and encoded as a propositional formula. Then, the reachability property to be tested is encoded
as a propositional formula as well, and satisfiability of theconjunction of these two formulae is checked

318 A. Rataj et al. / A Translator of Java Programs to TADDs

using a SAT–solver. If the conjunction is satisfiable, one can conclude that a counterexample (a path to
an undesirable state) was found. Otherwise, the value ofk is incremented. The above process can be
terminated when the value ofk is equal to the diameter of the system, i.e., to the maximal length of a
shortest path between its two arbitrary states.

All of the experiments have been performed on a computer equipped with the processor Intel Core 2
Duo (2 GHz), 2 GB main memory and the operating system Linux. Moreover, we have set the time–out
limit to 15min for RSAT–solver to get the answer.

6.1. Race Condition

Problem description. In practical multithreaded applications, it is common thattwo or more threads
need to share access to the same objects. However, if two threads have access to the same object and
each calls a method that modifies the state of the object at thesame time, then the result can be partly
what one thread wrote and partly what the other thread wrote.Depending on the order in which the
object was accessed, a corrupted object can result. Such a situation is called arace condition.
An example of a race condition.In our example programRaceCondition4.java(see Listing 1) there are
two threads that run concurrently and access to a shared variable that is initially set to 0. Each thread gets
a value of the shared variable, increase this value by one andwrite back the updated value to the variable.
The above operation is repeatedn times by both threads. Therefore, one could expect that the final value
of the shared variable will be equal to2n. However, one can observe that there exit executions of the
program which end with the value of the shared variable that is less than2n. This is because these threads
do not lock the shared variable while it is being accessed. Ina proper realisation these threads should
lock the shared variable while it is being accessed and then should unlock it when they are finished.

We are able to detect the above race condition by translationof the Java code of our example program
to a network of TADDs and then checking reachability of a state in which the final value of the shared
variable is less than2n; the reachability checking was done by the toolsUppaal andBMC4TADD. W have
also tested the race condition property by means of the theJPF tool; theBandera is not able to check
this property. The results for this property are in Table 2.

Tools n sec. MB

J2TADD + BMC4TADD 4 2797.2 103.6

J2TADD + BMC4TADD 5 - -

JPF <= 16000 <= 57.79 <= 471

J2TADD + Uppaal <= 16000 <=2.9 <=80.4

Table 2: Race condition

6.2. Dining Philosophers Problem

Protocol Description. The description of the dining philosophers problem (DPP) weprovide below is
based on that in [7]. Considern (n ≥ 2) philosophers. Each philosopher has a room in which he engages
in his professional activity of thinking. There is also a common dining room, furnished with a circular
table, surrounded byn chairs, each labelled by the name of the philosopher who is tosit in it. On the left
of each philosopher there is a fork, and in the centre stands alarge bowl of spaghetti, which is constantly
replenished. Whenever a philosopher eats he has to use both forks, the one on the left and the other on

A. Rataj et al. / A Translator of Java Programs to TADDs 319

Listing 1. Java source code of the race condition problem

320 A. Rataj et al. / A Translator of Java Programs to TADDs

the right of his plate. A philosopher is expected to spend most of his time thinking, but when he feels
hungry, he goes to the dining room, sits down on his own chair,and picks up the fork on his left provided
it is not used by the other philosopher. If the other philosopher uses it, he just has to wait until the fork
is available. Then the philosopher tries pick up the fork on his right. When a philosopher has finished he
puts down both his forks, exits dining-room and continues thinking.

We have implemented a possible solution of the DPP problem that could lead to a deadlock; one
can get the implementation by removing from Listing 2 the class Lackey and all the occurrences of
instructions containing the variables. The deadlock can happen, if every philosopher sits down on
his own chair at the same time and picks up his left fork. Then all forks are locked and none of the
philosophers can successfully pick up his right fork. As a result, every philosopher waits for his right
fork that is currently being locked by his right neighbour, and hence a deadlock occurs. The results for
the deadlock property are in Table 3.

Assume now another solution for DPP (see Listing 2), where there is a lackey who ensures that at
mostn− 1 philosophers can be present in the dining room at the same time. This lackey ensures that no
deadlock is possible (see Table 4 for the results).

Tools No. Ph sec. MB

J2TADD + BMC4TADD 5 12 217 279.2

JPF 4 2.21 3.7

JPF 5 - -

J2TADD + Uppaal 60 1.16 41.9

Bandera 60 117.02 3.3

Table 3: Dining Philosophers. Deadlock.

Tools No. Ph sec. MB

J2TADD + Uppaal 5 52.22 418.7

J2TADD + Uppaal 6 - -

JPF 4 16.47 3.7

JPF 5 - -

Bandera 2 76.31 4.6

Bandera 3 - -

Table 4: Dining Philosophers. Absence of deadlocks.

6.3. Single Sleeping Barber Problem

Consider a hypothetical barber shop that has one barber, onebarber chair, and a waiting room with several
chairs for customers. When a barber finishes cutting a customer’s hair, he fetches another customer from
the waiting room if there is a customer, or the barber sits in his chair and sleeps if there are no customers.
A customer who needs a haircut enters the waiting room. If thewaiting room is full, the newly arrived
customer simply leaves. If the barber is busy but in the waiting room there is a vacant chair available,
the customer takes a seat. If the waiting room is empty and thebarber is sleeping, the customer sits in
the barber chair and wakes the barber up.

A. Rataj et al. / A Translator of Java Programs to TADDs 321

Listing 2. Java source code of the dining philosophers problem

Implementing a wrong solution of the problem can lead eitherto deadlock. The deadlock can happen,
if the barber waits on a customer and a customer waits on the barber. We have taken a proper implemen-
tation of the problem from the Bandera website; it is based ona solution discussed in book [13] and we
have checked the solution for absence of deadlocks and the results are in Table 5.

322 A. Rataj et al. / A Translator of Java Programs to TADDs

Tools No. Customers sec. MB

J2TADD+Uppaal 4 107 42.7

JPF 3 18.13 3.7

JPF 4 - -

Bandera 2 612 3.3

Bandera 3 - -

Table 5: Single Sleeping Barber. Absence of deadlocks.

6.4. Readers and Writers

The readers and writers problem has two types of threads accessing the shared data. The first type, called
readers, only wants to read the shared data. The second type,called writers, may want to modify the
shared data. If a writer is accessing the shared data, then noother writer or reader can do this.

We have implemented a possible solution of the above problemfor n writers andn readers,n ≤ 1
(see Listing 3). These programs consist of at least 2 threads: one reader and one writer. To increase the
size of the problem, additional readers and writers can be added. This solution does not admit deadlocks;
the results are in Table 6.

Tools No. of Readers and Writers sec. MB

J2TADD+Uppaal 2 0.02 1.5

J2TADD+Uppaal 5 36.9 138.4

J2TADD+Uppaal 6 - -

JPF 2 3.59 4.9

JPF 3 - -

Bandera 2 150.3 115.54

Bandera 3 - -

Table 6: Readers and writers. Absence of deadlocks.

7. Summary

TheJ2TADD translator is not a self–contained verification system, butinstead it provides an output for a
verification system likeUppaal or VerICS, and it can be used as a part of a modular chain of such tools.
Thus, users can reuse their knowledge ofVerICS, Uppaal or other tools that as a input take a network
of TADDs to use the translator to validate various concurrent programs written in Java. The translator
performs a number of optimisations to decrease the often high memory and time requirements of model
checking.

We have provided four examples of some well–known concurrency problems and and the experi-
ments confirm that our approach provides a valuable aid for Java software verification. In particular,
we have shown that our translator together with the toolUppaal or the SAT-based reachability mod-
ule BMC4TADD of VerICS works as good as theBandera of JPF tools (see 3) or it performs better (see
Tables).

A. Rataj et al. / A Translator of Java Programs to TADDs 323

Listing 3. Java source code of the readers and writers problem

324 A. Rataj et al. / A Translator of Java Programs to TADDs

References

[1] Symbolic analysis laboratory (SAL). http://sal.csl.sri.com/, 2008.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New generation of UPPAAL. In
Proceedings of the International Workshop on Software Tools for Technology Transfer, 1998.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, Cambridge, 1999.

[4] J. Corbett, M. Dwyer, J. Hatcliff, Robby C. Pasareanu, S.Laubach, and H. Zheng. Bandera: Extracting
finite-state models from java source code. InProceedings of the 22nd International Conference on Software
Engineering(ICSE ’00), pages 439–448, New York, NY, USA, 2000. ACM Press.

[5] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny.
VerICS: A tool for verifying Timed Automata and Estelle specifications. InProc. of the 9th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), volume 2619 ofLNCS,
pages 278–283. Springer-Verlag, 2003.

[6] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal analysis of java programs in javafan.
In Proceedings of Computer-aided Verification (CAV’04), volume 3114 ofLNCS, pages 501 – 505, 2004.

[7] C.A.R. Hoare.Communicating sequential processes. Prentice Hall, 1985.

[8] G. J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall, 1991.

[9] A. Janowska and P. Janowski. Slicing of timed automata with discrete data.Fundamenta Informaticae,
72(1-3):181–195, 2006.

[10] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[11] D. Park, U. Stern, J. U. Skakkebaek, and D. L. Dill. Java model checking. InProceedings of the 15th IEEE
International Conference on Automated Software Engineering (ASE’2000).

[12] C. Pasareanu and W. Visser. Verification of Java Programs Using Symbolic Execution and Invariant Genera-
tion. In Proceedings of SPIN’04, volume 2989 ofLNCS, pages 164–181. Springer-Verlag, 2004.

[13] Andrew S. Tanenbaum.Modern Operating Systems. Prentice Hall, Vrije University, Amsterdam, The Nether-
lands, 2/e edition, 2001.

[14] A. Zbrzezny and A. Pólrola. Sat-based reachability checking for timed automata with discrete data.Funda-
menta Informaticae, 79(3–4):579–593, 2007.

[15] A. Zbrzezny and B. Woźna. Towards verification of Java programs in VerICS.Fundamenta Informaticae,
85(1-4):533–548, 2008.

Copyright of Fundamenta Informaticae is the property of IOS Press and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

