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Abstract. The model checking tool8ppaal andVerICS accept a description of a network of
Timed Automata with Discrete Data (TADDs) as input. Thusadfy a concurrent program written
in Java by means of these tools, first a TADD model of the prograust be build. Therefore, we
have developed th#2TADD tool that translates a Java program to a network of TADDsptq@er
presents this tool.

The J2TADD tool works in two stages. The first one consists in trangtatiba Java code to an
internal assembly language (IAL). Then, the resulting mdg code is translated to a network of
TADDs. We exemplify the use of the translator by means of tieing well-known concurrency
examples written in Javarace condition problemdining philosophers problensingle sleeping
barber problemandreaders and writers problem

1. Introduction

Model checking [3] is a widely recognised and prominent engtc verification technique both in hard-
ware [10] and protocol verification [8]. It does not rely onmualicated interaction with the user for
incremental property proving. If a property does not hdhe model checker automatically generates a
counterexample. In model checking, the system to be veiigietbdelled as a finite state machine (for
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example as a network of timed automata), which further carepeesented by a transition system, and
temporal logics are used for specifying the system progerti

Typical examples of finite systems, for which model checHKirag successfully been applied, are
digital sequential circuits and communication protocalsy typical examples of checked properties are
reachability properties. In this paper, we consider the@holecking problem for concurrent programs
written in Java, one of the dominant high-level programmargguages, and we test these programs for
the properties mentioned above.

Verifying programs written in programming languages lilkwal is different from verifying digital
sequential circuits or protocols; the state space is oftéinite and the relationships between possible
states are harder to understand because of asynchroncasicaghtand complex underlying semantics
of the languages. Further, the size and complexity of saéiviarce us to treat model checking rather
as a debugging technique in software verification than s fulkomated validation process of the whole
software. In particular, for what concerns verification afa programs, we see model checking as a
method that can be applied to the crucial parts of a Java audtw

In order to investigate the challenges that Java prograses foo model checking, we have developed
a J2TADD tool that translates a Java code to a networKinfed Automata with Discrete Dat@ADDSs)

[9, 14]. J2TADD implements the translation that has been shown in [15] agwe thne can find a detailed
description of how the concepts of concurrent programminggiva are translated into TADDs.

The TADD formalism is accurate enough to detect concurrearegrs and yet abstract enough to
make model checking tractable. Moreover, itis an input leagg of the model checking todalsrICS[5]
andUppaal [2], so J2TADD compiler together with these two tools can be used to vaidahcurrent
programs written in JavaJ2TADD is a pure Java application that can be run as a standalone adnm
line tool on any platform supporting Java 1.5 or later.

Our case studies have been done for a Java program thasduffer arace conditionand for Java
programs that implement the following well-known concagyg examplesdining philosophers prob-
lem single sleeping barber problerandreaders and writers problemAs verification engines we have
usedUppaal andBMCATADD - a hew version of the BMC module of the taadrICS that has been adapted
to work with theJ2TADD translatorBMC4TADD implements the Bounded Model Checking method, where
systems are described as a network of TADDs and propergethareachability one.

Over the last ten years various approaches and tools hamalbeeloped to automatically verify Java
programs. However, the majority of work has been devotedatyais of Java bytecode and building new
Java Virtual Machines (JVMs) that interpret Java bytecddeparticular, the following two verification
and testing environments for Java have been hidlva PathFinder (JPF) [12] andandera [4]. Both
tools can model check Java programs on deadlocks and liddteadassertions only.

Apart from the two above tools one can find the following wardated to the model checking of Java
programs [11, 6]. The paper [11] describes a Java model ehdiht is based on the SAL (Symbolic
Analysis Laboratory) [1] intermediate language and shet compiler framework. According to the
paper the architecture of the tool is the following. Firsflaaa program is compiled to Java bytecode.
Then, the result is converted taJample code, one of th&oot output formalisms. Next, théimple
code is translated to SAL; this should be done by a Jimple to tE#aslator, but it is not available on the
web. Thus, it is not possible to run and evaluate the [11] daadel checker. Moreover, it seems that the
work is not continued since the year 2000.

The paper [6] presents Java Formal Analysisv@FAN), a tool to simulate and formally analyse
multithreaded Java programs at source code and/or bytéeweels. The tool is based on rewriting logic,
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implemented in the Maude language, and supporting andbgtbghe Java language and JVM bytecode.
It allows for the following types of analysisymbolic simulationsafety violationgvia BFS search), and
LTL model checking of rewriting theorieSimilarly to the SAL based model checkdgvaFAN is not
available on the weh. Moreover, it seems that the work is antisued since the year 2006.

The rest of the paper is organised as follows. The next sestiortly describes the idea of our trans-
lation of a Java code to a network of TADDs. Then, in Sectione3discuss an assembly language that
is used internally by ouf2TADD translator. In Section 4 we present two stages of our traoslénter-
preting and generating transitions) that are required hvext the internal assembly code to TADDs. In
Section 5 we show a simple Java program that encodes theggihifosophers problem, the resulting
internal assembly code and the final TADD specification tagulfrom it. Finally, we present a case
study that confirms that our approach provides a valuabléoaigerification of Java programs.

2. Translation from JAVA to TADD

In this section we shortly describe the idea of our trar@tatif a concurrent multithreaded Java program
to a network of Timed Automata with Discrete Data (TADDs) [9l]; a detailed description of the
translation can be found in [15]. TADDs are standard diabtineed automata augmented to include
integer variables over which standard arithmetic and Bookxpressions can be defined. These automata
take as an input a set of initialised integer variables aret afgpropositional variables, true at particular
states.

Each state of a TADD is an abstraction of a state of a given geagram, and each transition rep-
resents an execution of a code transforming this abstratg. sfThe subset of Java that can be trans-
lated to a network of TADDs contains: definitions of integariables, standard programming language
constructs like assignments, expressions with most agstatonditional statements and looger(
while, do whilg, instructionsbreak and continuewithout labels, definitions of classes, objects, con-
structors, static and non-static methods and synchramisaf methods and blocks. Also, standard
thread creation constructs and the following special m#th@hread.wait (), Thread.notify(),
Thread.join(Thread), Thread.sleep(int) andRandom.nextInt (int) are recognised.

A theoretical method of constructing a network of TADDs thaidels a Java program is shown in
[15]. Here we only recall that in TADDs locations are useddoard the current control state of each
thread and the values of key program variables and any me-tiformation necessary to implement
the concurrent semantics (e.g., whether each thread ig, nieamhing, or blocked on some object). Each
transition represents the execution of a Java instrucfmmegample an assignment statement) for some
thread. There is one TADD for each thread, but the main threae TADD for each instance of a started
thread, and one TADD for each used semaphore. The main tiere@dted differently: it is executed by
a built—in interpreter instead of being translated likeakiger threads. The reason for this is twofold:

¢ to allow for performing computations whose results are ralyrin Java only known at run—time,

so these results can be used at compile—time when consfuADDS;

e to interpret allocations that are normally absent in the DArmalism.

In this paper we assume that direct or indirect recursiorotsatiowed in the considered fragment of
the Java language. The following operations are allowethéniriterpreted thread: allocations of new
objects, including static initialisation, creation andriihg of new threads, assignments and method calls,
arithmetic expressions that can be statically determined.
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To implement the translation shown in [15], we first translatJava code to an internal assembly
language (see the next section). Than, the resulting asgeotde is translated to a network of TADDs;
this is presented in Section 4.

3. Internal Assembly Language (IAL)

This section describes an assembly language that is usedally by ourJ2TADD translator; in Section
3.6 we provide a formal grammar of a single operation of theglage.

We start with an explanation of what we meandgreferenceandliterals that we use in our internal
assembly language. Then, we describe how the Java statimardtatic methods are handled. Next, we
discuss polymorphism and annotations. Finally, we defilogvad operations and show their connections
with object allocation, method calls, synchronisation stahdard programming language constructs like
assignment, expressions or loops.

3.1. Dereferences and Literals

A dereferences a pair (object, field) of two variables, where the first one must be an object referen
including the null reference. Bothbjectandfield variables are always either local or static variables, and
the variableobjectcan benull. If the variableobjectis not null, then this is a dereference of a respective
non-static fieldield of the Java objeabbject and this is the only case when there is performed an actual
variable dereference. Textual representation of such efefence issbject: :field. If the variable
objectis null, then the dereference refers to a local variable datcsfield. Textual representation of
such a reference isield. The type of a dereference in each case is the same as fitlof

Literalsare constant values and can have one of the following tyyd; char, byte int, short long,
float, doubleand a Java type; TADDs currently support only integer tyges,gh.

In our assembly language we refer to dereferences anddi@sao values, i.e., we havealue ::=
(literal)| (dereference

3.2. Methods

There is no difference between static and non-static Jatlaoaein our assembly language apart from
one: a non-static method has an additional argument calieéd, which is of the type of the class
containing the method. The argument references an instartbe object “this”, that defines the non—
static context of the method. A constructor is simply a ntsties method, but it is named after the class
it constructs.

3.3. Instantiation and Polymorphism

A run-time Java object gets its non—static fields initialige its methodkobject. A class we treat as a
special object. The static fields of a class are initialisethé methodstatic.

In our assembly language we define only one polymorphism miemely, if the class B extends
class A, then an object of the class B can be used when an abjtet class A is required. A run-time
object class type, as opposed to a variable compiled typadeke about which non—static method is
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called. The other possible polymorphism rules can be eeébduring parsing, semantic check or code
generation, the assembly language itself does not definefome them.

3.4. Annotations

Annotations provide data about a program that is not parhefprogram itself. They have no direct
effect on the operation of the code they annotate. Annatatltave a number of uses, among them:
information for the compiler, compiler-time and deployrtiime processing, or run-time processing
(some annotations are available to be examined at run-time)

In our assembly language methods can have annotationsilida@va. There are also internal special
annotations that begin with ‘@@’ and annotate special nustho

e QGMARK — do not call, the method is just a marker; it is replaced hy aperation see the descrip-

tion of no operationfor details;

e QOSTART_THREAD — start a thread;

e QQ@IGNORE — ignore any call of the method; it works lik@MARK but it is included for clarity.

Back-ends and interpreters (see Section 4) can define theiannotations, and use them along with
these two described in this section. For example, the ird@pused by the translator uses an annotation
Q@@START_THREAD to start a new thread, and the TADD backend uses an anno@@R¥MNDOM to mark a
method that generates random numbers. Both annotationseddogether with the annotatiQ@MARK.
Normally, the user of the translator does not need to knovseitiese special annotations. Instead, there
is a special library of classes likibject or Thread, in which certain methods are marked with these
annotations. For exampl@hread.start () is annotated witl@@START_THREAD in the library.

3.5. Operations

The following operations are defined in the internal assgndaniguage:
e Allocation: <dereference> = new <constructor> (<argument>x). It instantiates an ob-
ject, calls the object’s methoebbject and then the respective constructor. Example:

#c3 = new ->Sender(mch.abp.vl.Sender, mch.abp.vl.LossyChannel) channel

An object Sender is created using a constructor that takes an argument ofythe nich.
abp.vl.LossyChannel. The argument is the copy of a local variakieannel of the caller
method. The other argument is the new object and provide&tttss local variable for the non—
static context. Itis, thus, of the type of the created object

e An assignment<dereference> = <value>. Example:this::ackBit = ackBit. This op-
eration copies the value of the local variaklekBit to the field of the object of a non—static
method.

e A binary expression<dereference> = <value> <operator> <value>. It allows for stan-
dard Java binary operators and also for a concatenation toing $o any other value. Here the
standard Java rules apply to determine the type of the refereariable; for example, an integer
and a float produce a float. Only the following binary opematare currently supported by the
TADDs, though: plus, minus, multiply, divide, modulus. Exale: #c5 = ignoreBit > 2. Test
if a local variableignoreBit is greater than a consta®f and store the result in a local Boolean
variable#cs.
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e A conditional branchkvalue> ? <label> : <label>. This conditionvalue can be a derefer-
ence or a constant. The labels point to operations to junfghe condition is, respectively, true or
false. A label can be null what means that there is no ressgicimp. Example#c57<null>: 10.

If #c5 is true, then go to the next operation. Otherwise, jump tmfieration of index 10.

e A call to a method<dereference> = <method> (<argument>*). If the method returns void,
the dereference is null. As in Java, the non-static methoelgigual. Argument "this” of non—
static methods is always the first one. Example:

ignoreBit = ->nextInt(java.util.Random, int)
Q@OMARKER QO@RANDOM (this)this::random 5.

Call to a non-static methotlextInt (int) of the object referred by a fieldandom belonging
to int turn to the object of the calling non-static method. The tiolthl argument of the type
java.util.Random passes a reference to “this” of the called method. A valug isfcopied to
the other parameter. The called method has two internaltatioies: @@MARKER and@@RANDOM.

e An unconditional jumpgoto <label>. Example:goto 4. Go to the operation at index 4.

e Nooperationno op [<dereference> = ] <annotation>+ (<argument>x*). It can be used
as a holder of a label or of an annotation. Also, despite itseat can perform something if the
annotation specifies some special operation, that can nekfiessed by the regular assembly
language operations, but that is needed for some partitalaslation. In that case, the operation
may optionally have arguments, and a dereference to holcethdt of the operation. Any call to
a method annotated witt®MARKER is replaced by no operation. Example:

no op QOMARKER Q@Q@SLEEP (i#Omch.abp.v2.Sender_run__#c8).

Perform the special operation “sleep” on a thread refeidbye #0mch . abp.v2.Sender_run__
#c8. The operation does not return anything, so the patereference> = ] is absent.

e return — returns from a method.

e sync begin|end <dereference> — either the begin or the end of a synchronised code. The
dereference references the semaphore. Example: the cadg/nEhronised method always starts
with sync <begin> this and there issync <end> this before eachreturn operator in the
method.

e An unary expression<dereference> = <operator> <value>. It allows for standard Java
unary operators. Only the following unary operators argenly supported by the TADDs,
though: arithmetic negation and Boolean negation. Examia@: :ackBit = !#c7::ackBit.
Negate the field ackBit of the object referred by the variatale.

We further assume that;

e A return value of a method is in a local variable namedtval.

¢ Alabel is simply an index of the target operation, or, in taseof a conditional branch, optional
null meaning no jump, but execution of the following operatinstead.

e Asignature, like in Java, is an unique key that defines a ndetAsignature contains the method’s
name and types of arguments. It does not contain the typdisf ‘@rgument of non—static meth-
ods.
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3.6. Grammar of an Operation

This section defines a formal grammar of our assembly lareyoagrationoperation, provided in the
BNF notation.

(allocation ::= (dereference= new (method call ((argumenit*)

(annotatioh ::= (identifier)

(assignment::= (dereference= (value

(binary_expressioh ::= (dereference= (value (binary_operatoy (value

(binary_operatoy ::= PLUS MINUS | MULTIPLY | DIVIDE | MODULUS| INCLUSIVE_OR| EXCLU-
SIVE_.OR| AND| EQUAL| CONDITIONAL_OR| CONDITIONAL_AND| INEQUAL| LESS GREATER
LESSOR EQUAL| GREATEROR EQUAL| SHIFT_LEFT| SHIFT_RIGHT| SIGNED.SHIFT_RIGHT]|
(conditionalbranch ::= (value ? (label : (label

call) ::= (dereference= (method call ((argument*)

expressioh ::= (unary expressiofi (binary_expressioh

identifien) is a string of characters.

jump) ::= (unconditionaljump)| (conditionalbranch

labe) is an index of the target operation. Indices start at 0.

literal) is a constant.

methodcall) ::= — (methodsignature ( ((dereferencg* ) ((annotatioi*)

methodsignaturé is the signature of a method, see Sec.3.5 for details.

no.op) ::= no op [dereference=1] ((annotatiof’*)

operation ::= (allocatior}| (assignment (expressiof (jump)| (methodcall)| (return|(syng|
dereference::= [(variablename::](variablename

return) ::= return

syng ::= sync begitend (dereference

unary expressiop ::= (dereference= (unary operatoy (value

unary.operatof ::= NEGATION | CONDITIONAL _NEGATION | BITWISE_.COMPLEMENT
unconditionaljump) ::= goto (labe))

value ::= (literal)| (dereference

variablename ::= (identifier)

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

4. Translation from IAL to TADDs

Once the assembly code is generated, two stages remainverctre code to TADDSs: interpreting the
main thread and then generating transitions from the otiteatls.

4.1. Interpreter

The role of the interpreter is to initialise variables, loaegkded classes, create objects and threads.
Threads. As in Java, the start method of the main thread is the mainadaihthe translated application.
Only a single main method within the application is allowsrtie translator.

The interpreter is started with this single thread and ends the main thread ends. All other threads,
called here TADD threads, created by the interpreter whegwding the main thread are translated to
TADDs, one TADD per thread.
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Library and annotations. The interpreter uses a TADD-specific library that definesnéeded Java
classes likeDbject or Thread. As already discussed, some methods in the library are mhaxit
special annotations beginning with double ‘@’. Let us diéscthese annotations in detail.

The annotation®@IGNORE, @@MARKER and @@START_THREAD are used as defined by the assembly
language, and were already described in Sec.3.4. AdditikaD—specific annotations defined in the
library are as follows:

e QONOTIFY — performnotify() on an object, used with marker methods, usually only with

Thread.notify().

e QORANDOM — generate a random number in the range 0 ... method’s inegement - 1, used with

marker methods, usually only witandom.nextInt (int).

e QOSLEEP — sleep by a given number of milliseconds, used with markehats, usually only with

Thread.sleep(int).
e QOWAIT — perform wait() on an object, used with marker methods, usually only with
Thread.wait ().

4.2. Building TADDs
This section describes the process of generating TADDsiat&rpreting the main thread.

Virtual call resolution. The first step is a virtual call resolution. In Java, a called-rstatic method
is determined not by compile—time type of an object, but e/ riim-time type of an object. After the
interpreter is already run and run-time types are known,escafis can be resolved. If it is not possible
because of a null variable or a variable not initialised atittierpreter stage, an error is reported.

Inlining calls. Once the calls are resolved, it is possible to ‘flatten’ théecby the translator. To do
so, the code is recursively inlined with a thread, beginrdhgach thread’'s methaghin (), so that, in
effect, there should be no calls left in the ‘flattened’ cofibe operation is performed because no stack
is available in the generated TADDs for calling methods, @lsd because inlined code allows for more
efficient optimisations like reduction of variables andigissients.

Optimisation. The next step is an optimisation of the code like: value pgagian, optimising branches
with static conditions, compacting jump and assignmeninshachecking for dead code, removal of
assignments and locals that are unused. This step is pedioewen if the code had already been opti-
mised before the discussed inlining of calls. It is becabsdrilining may allow for substantial further
optimisations, as mentioned above.

Ambiguity check. The J2TADD translator allows for assignments of reference variabidimthe TADD
threads, if the translator can determine that these assigisnalo not cause a reference to be ambiguous
at compile time. The translator checks only the local refeeevariables for ambiguity, and thus, assign-
ments to non—local reference variables within TADD threadsforbidden. Ambiguity means here that
the dereferenced variable can have more than a single vietlie &me of being dereferenced, or at least
that it was not possible to determine statically, by tragmgcution paths within a method, that there is
only one such value possible. Such an ambiguity of a refereadable would make it impossible to
statically dereference the variable at compile time. Thisurn would require the actual dereferences
to be performed at run—time. TADDs, though, do not supparéfdeences and a run-time emulation of
dereferences is not implemented.
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Generating transitions. Most assembly language operations are straightforwarahstated to TADDs:
assignments, jumps, binary and unary expressions andtmmadibranches. However, there are some
sequences of assemble language operations that are tesatedhole and as such transformed to re-
spective TADD transitions:
¢ aconditional expression followed by a conditional brarvehich uses the result of the conditional
expression, is transformed to two opposite conditionatesgions on two transitions. Example:

0O0c=ax<x1
1 ¢ ? <null> : 3

is translated to two conditional expressionss 1 on a transition from state 1 to state 2 ang 1
on a transition from state 1 to state 3.

e a marker metho@RANDOM followed by a marker methodSLEEP that uses the result of the first
marker method is transformed to a respective clock condifitxample:

0 ¢ = @GMARKER Q@@RANDOM (random 150)
1 no op @@MARKER QQ@SLEEP (c)

is translated to a clock conditigx > 0) A (x < 150).

Annotations@NOTIFY, @WAIT and synchronisation operations cause a new semaphore TADB t
created for the respective synchronisation object if thmagihore does not exist yet. Transitions are
added to the semaphore as necessary. As required by Javia, avitingle thread, synchronisation oper-
ations on run-time objedt are ignored if they are nested within synchronisation djmara that are also
on the objectk.

5. Example Translation

Let us discuss an example translation of a Java programhvitmplements a possible solution of the
well known dining philosophers problem (for the discussadrthe problem see 6.2), to our assembly
language (IAL), and then to TADDs. The translated classd@m) College3 extendsThread and
objects of the class represents threads in the output nettfautomata. The source of the class is given
in Fig. 1. IAL representation of one of the actual threadisa in Fig. 2. The IAL code is eventually
translated into one of the automata. The transitions of thienaaton, written in th&erics format,
are shown in Fig. 3; the notatiotransition x y z means that there is a transtion from locatioto
locationy labelled byz. Because of the length of the representation, commentsraggidontaining only
the keywordsreset andend, were removed from the file.  Lines in each of the three reptatiens
are prefixed withs for the source filei for the IAL file andt for the output file, as seen in the figures,
and so the lines will further be referred to in this section.ou@terparts of each line in the different
representations are shown in Table 1. If a method is callektits code is translated twice. In the table,
a group of lines related to such a single call is separated frassible other groups with a semicolon.

Let us now discuss the example translation in detalil.

The thread begins with callingun (), that begins ins61. The method is non—static, and thus, its
local variablethis has to be set to point to the method’s object. As can be seem tlie mapping,
there is a related assignment operationdn The method itself begins w62 with a condition that can
be evaluated at compile time. Such operations, and sevtratsowithin the thread, do not have any
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sl public class College3 { s38 notify();
s2 s39  }
s3 public static void main(String args []1) { s40
s4 Fork forkO = new Fork(false); s41 }
sb Fork forkl = new Fork(false); s42
s6 Fork fork2 = new Fork(false); s43 class Philosopher implements Runnable {
s7 s44  private int nr;
s8 Philosopher pO = new Philosopher(0, s45 private Fork left, right;
fork0, forkl); s46
s9 Philosopher pl = new Philosopher(1, s47  public Philosopher(int nr, Fork left,
forkl, fork2); Fork right) {
s10 Philosopher p2 = new Philosopher(2, 548 this.nr = nr;
fork2, forkO0); s49 this.left = left;
si1 s50 this.right = right;
s12 (new Thread(p0)).start(); sb1 T
s13 (new Thread(pl)).start(); s52
s14 (new Thread(p2)).start(); s63 // @generateHead
si6  } sb4  private void eating() {
s16 } s55 try {
s17 s56 Thread.sleep(1);
s18 class Fork { sb7 } catch (InterruptedException e) {
s19 s58 }
s20 private boolean unavailable; sb9  }
s21 s60
s22  public Fork(boolean unavailable) { s61  public void run() {
s23 this.unavailable = unavailable; 562 while (true) {
s24 } s63 try {
s25 s64 Thread.sleep(5);
s26  public synchronized void acquire() { s65 } catch (InterruptedException e) {
s27 while (unavailable) { s66 }
s28 try { s67 left.acquire();
s29 wait(); s68 // @(.inline infinite, .annotation
s30 } catch (InterruptedException e) { Q@ONOTIFY_THREAD)observable
s31 } s69 right.acquire();
s32 i s70 eating();
s33 unavailable = true; s71 right.release();
s34 } s72 left.release();
s35 s73 }
s36 public synchronized void release() { s74  }
s37 unavailable = false; s75 }

Figure 1. Java source code of the progiGoilege3.

counterparts in both IAL and the TADDs formalism, as theradsneed to execute anything related to
operations like that at run time.

The first operation that is actually translated to a netwdrKADDs is in s64. As it is a call
to a marker method, its counterpart in IAL is an annotatedoperation. The annotatior@MARKER
@@SLEEP and the argumers describes the original operation. The no—operation isrim tanslated to
transitionst1, t2, t10 andt11 that contain a reset of the clogk and a conditiorx1 >= 5. Thecatch
block ats65 ands66 is empty. While the translator does not support exceptitbracepts exception—
related constructs that do not effectively contain any pioa—related code, assuming, though, that no
exceptions will actually be thrown.

The next operation is the call to a non-static synchronizethodacquire () in s69. In IAL,
translation of the call begins with the assignment of thalla@riablethis, like it has already been



A. Rataj et al./ A Translator of Java Programs to TADDs 315

i0 i#0<default>.Philosopher_run__this = this::runnable

il no op @@MARKER @Q@SLEEP (5)

i2 i#0<default>.Fork_acquire__this = i#0<default>.Philosopher_run__this::left

i3 sync begin i#0<default>.Fork_acquire__this

i4 i#0<default>.Fork_acquire__this::unavailable ? <null> : 7

i5 no op @OMARKER QQWAIT (i#O<default>.Fork_acquire__this)

i6 goto 4

i7 i#0<default>.Fork_acquire__this::unavailable = true

i8 sync end i#0<default>.Fork_acquire__this

i9 <@(.inline infinite, .annotation Q@NOTIFY_THREAD)observable>
i#0<default>.Fork_acquire__this = i#O<default>.Philosopher_run__this::right

i10 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>
sync begin i#O<default>.Fork_acquire__this

i11 <@(.inline infinite, .annotation Q@NOTIFY_THREAD)observable>
i#0<default>.Fork_acquire__this::unavailable ? <null> : 14

i12 <@(.inline infinite, .annotation Q@NOTIFY_THREAD)observable>
no op @GMARKER QQ@WAIT (i#0<default>.Fork_acquire__this)

i13 <@(.inline infinite, .annotation Q@NOTIFY_THREAD)observable>
goto 11

i14 <@(.inline infinite, .annotation Q@NOTIFY_THREAD)observable>
i#0<default>.Fork_acquire__this::unavailable = true

i15 <@(.inline infinite, .annotation @@NOTIFY_THREAD)observable>
sync end i#0<default>.Fork_acquire__this

i16 <@()generateHead @(.inline infinite, .annotation Q@@NOTIFY_THREAD)observable>
no op Q@@HEAD ()

i17 <@()generateHead> no op @@MARKER @@SLEEP (1)

118 i#0<default>.Fork_release__this = i#0<default>.Philosopher_run__this::right

119 sync begin i#0<default>.Fork_release__this

120 i#0<default>.Fork_release__this::unavailable = false

i21 no op @@MARKER Q@NOTIFY (i#O<default>.Fork_release__this)

i22 sync end i#0<default>.Fork_release__this

123 i#0<default>.Fork_release__this = i#0<default>.Philosopher_run__this::left

i24 sync begin i#O<default>.Fork_release__this

i25 i#0<default>.Fork_release__this::unavailable = false

i26 no op Q@@MARKER Q@NOTIFY (i#O<default>.Fork_release__this)

i27 sync end i#O0<default>.Fork_release__this

i28 goto 1

Figure 2. 1AL code of one of the threads of objects of the cagd ege3.

discussed. Then, as the call is not a marker methodTlike:ad . s1eep, but a method with an actual
code, inlining of the code begins. A code in a synchronizethotk if the call operation is not already
synchronized with a given lock, needs to be preceded witimetspnization begin operation, in this case
in 13, and a matching synchronization end operation, in the casg.iAs shown in the mapping, there
are equivalent automata transitionstit8 andt21. There are also lines10, 115, t22 andt31 shown

in the array, yet after semicolons. They contain the synthation code as well, but related to another
call of the methodhicquire ().

The condition ins27 is translated ta 4 and then to two transitions with conditionstin4, t15, t16
andt17. The two conditions are opposite and, as it can be seen inutioenata code, split the thread
into two branches.

Within the inlined method, there is a call to a marker methodd9, translated, like the previous
call to a marked method, into an annotated no—operationtheuannotations are different this time —
@OMARKER @@WAIT, and there is no argument. The operation is translated tiood aatomata transitions,
as described in the mapping. The assignment operatieairhas equivalent assignmentsiifo, t39
andt40.
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t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17

transition
reset x1
transition
x1 >= 1
reset x1
transition
transition
transition
transition
transition
x1 >= 5
reset x1
transition
transition

1

o U WwN

7
8

cond z0 = cl

transition

8

cond z0 = cO
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t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34

transition 9 5 6
transition 10 11 31
assign cl + cO to z0
transition 11 12 4
transition 12 13 10
transition 13 14 32
cond z1 = cl
transition 13 15 33
cond zl1 = cO
transition 14 3 14
transition 15 16 34
assign cl + cO to z1
transition 17 18 35
transition 16 17 12
transition 19 20 10
transition 18 1 36
reset x1

t35
t36
37
t38
t39
t40
t41
t42
t43
t44
t45
t46
t47
t48
t49

transition 21 22 37
assign z4 - cl to z4
transition 21 22 38
cond z4 = cO
transition 20 21 39
assign cO + cO to z1
transition 23 24 2
transition 22 23 12
transition 25 26 40
assign z3 - cl to z3
transition 25 26 41
cond z3 = cO
transition 24 25 42
assign cO + cO to z0
transition 26 0 4

Figure 3. Shortened TADDs representation of one of the twehthe objectSollege3.

Java IL Verics
s26 i3;i10 t13; t22
s27 i4;i11 t14, t15, t16, t17; t23, t24, 125, t26
s29 i5; 12 t18, t9; t27, t7
s32 i6;i13 t8; t6
s33 i7;i14 t19, t20; 128, t29
s34 i8; 115 t21; t31
s36 i19; 24 | t32; 41
s37 i20; 25 | t39, t40; t47, t48
s38 i21;i26 | t35, 136, t37, t138; t43, t44, t45, t46
s39 i22;i27 | t42;149
s53 i16 t30
s56 i17 t33, 134, t3, 4, t5
s61 i0 -
s64 i1 t1, t2, t10, t11, t12
s67 i2 -
s68,s69 | 9 -
s71 i18 -
s72 i23 -
s73 i28 t49
Table 1. Mutual dependencies between the lines in eachsepiaion.
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The next call intun (), in the lines69, differs from the previous one in a different value assigned
to the called method'shis, and in being tagged withobservable. The two differences are seen in
the linesi9 — i15, when compared to the already discussed- i8. The IAL operations are tagged
this time, and in the TADDs formalism, a different variabdeaissigned — compars39, t40 with t47,
t48. This is because the fielthavailable belongs to two different objects in each of the two calls in,
respectivelys67 ands69.

Even that all operations withind —i15 are tagged, the TADD backend, while generating transitions
from these operations, will check for the filteinnotation NOTIFY_THREAD and will mark only these
transitions as observable that are annotated @NOTIFY_THREAD.

The next operation in the methadin() is a call to a not synchronized methedting(). The
method is tagged witgenerateHead, what is reflected by an additional transitiontigo.

The next two calls are tbelease (). It is a non—static synchronized method,aaguire (). The
method contains a call to a marker methagtify (). A counterpart IAL code is seen for example in
i21. The code of this particular IAL operation is then tranglate transitions shown in lines35s, t36,
t37, t38.

The last operation irun() is a jump ins73 to the condition of theshile loop. The jump is
translated to goto operation ini28, which in turn is translated to a transition t49. As seen in the
mapping, to this transition has also been translated thehsgnization end operation a27.

6. Case Study

The main aim of this paper was to show a new model checking adéftr verification of concurrent
programs written in Java. This method consists in tramgjadi Java program to a network of TADDs,
and then applying the existing model checking tools acogpi description of a network of TADDs as
input. As we have already mentioned at the very beginningn@fiiaper, the model checking tools like
Uppaal or VerICS accept networks of TADDs as input. Thus, to verify concurograms written in
Java using those tools, we had to developX2®ADD tool that translates a Java program to a network of
TADDs.

In this section, we report on results that we have got wheluatiag the effectiveness of the proposed
verification method by means of four well known concurrenggireples written in Java. We do this by
comparing our results with those returned by the td@B andBandera.

For all the considered examples we have searched for déaglates, and additionally, we have
tested aace conditionby usingJPF, Uppaal, and theBMCATADD module ofverICS. A state is a deadlock
state if there are no outgoing action transitions neitrmnfthe state itself or any of its delay successors.

In order to search for a deadlock star¥ tests for every non-end state if there is any runnable thread
left. In Uppaal, in order to search for a deadlock state, a special stateufarim¢deadlock that is
satisfied for all deadlock states is used. It is worth to neentihat usingippaal one can also handle the
following temporal properties: possibility, invarianfsmtentially always, eventually, if a request occurs
then it will be eventually acknowledge.

In BMCATADD to search for a deadlock state we test reachability of a stdisfying certain (usually
undesired) property. For this the transition relation ofve network of TADDs is unfolded up to some
depthk, and encoded as a propositional formula. Then, the rediabioperty to be tested is encoded
as a propositional formula as well, and satisfiability of th@junction of these two formulae is checked
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using a SAT-solver. If the conjunction is satisfiable, one canclude that a counterexample (a path to
an undesirable state) was found. Otherwise, the valueisfincremented. The above process can be
terminated when the value éfis equal to the diameter of the system, i.e., to the maximmgjtte of a
shortest path between its two arbitrary states.

All of the experiments have been performed on a computeipeediwith the processor Intel Core 2
Duo (2 GHz), 2 GB main memory and the operating system Linugrédver, we have set the time—out
limit to 15min for RSAT—solver to get the answer.

6.1. Race Condition

Problem description. In practical multithreaded applications, it is common ttvab or more threads
need to share access to the same objects. However, if twadhieave access to the same object and
each calls a method that modifies the state of the object atatime time, then the result can be partly
what one thread wrote and partly what the other thread wrbiepending on the order in which the
object was accessed, a corrupted object can result. Suttratisi is called aace condition

An example of a race condition.In our example prograRaceCondition4.javésee Listing 1) there are
two threads that run concurrently and access to a shareablathat is initially set to 0. Each thread gets
a value of the shared variable, increase this value by onevételback the updated value to the variable.
The above operation is repeatedimes by both threads. Therefore, one could expect thatribevalue

of the shared variable will be equal 2. However, one can observe that there exit executions of the
program which end with the value of the shared variable #iasss tha2n. This is because these threads
do not lock the shared variable while it is being accessed proper realisation these threads should
lock the shared variable while it is being accessed and theald unlock it when they are finished.

We are able to detect the above race condition by translafitire Java code of our example program
to a network of TADDs and then checking reachability of aestatwhich the final value of the shared
variable is less tha2n; the reachability checking was done by the tdigpaal andBMCATADD. W have
also tested the race condition property by means of thgRRdool; theBandera is not able to check
this property. The results for this property are in Table 2.

Tools n sec. MB
J2TADD + BMCATADD 4 2797.2 103.6
J2TADD + BMC4TADD 5
JPF <= 16000 <=57.79 <=471
J2TADD + Uppaal <= 16000 <=29 <=80.4

Table 2: Race condition

6.2. Dining Philosophers Problem

Protocol Description. The description of the dining philosophers problem (DPP)wavide below is
based on that in [7]. Consider(n > 2) philosophers. Each philosopher has a room in which he exsgag
in his professional activity of thinking. There is also a coon dining room, furnished with a circular
table, surrounded by chairs, each labelled by the name of the philosopher whosi to it. On the left

of each philosopher there is a fork, and in the centre stafatg@bowl! of spaghetti, which is constantly
replenished. Whenever a philosopher eats he has to usedrks the one on the left and the other on
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public class RaceConditiond {
public static void main (String[]
Variable variable = mew Variable

args) |

0

Thread bl = new Thread (mew Beaver (variable .
Thread b2 = new Thread (mew Beaver (variable .

bl.start(): b2.start():

(new Thread (new Observer (bl. b
}
}

class Variable {
private int wvalue:
Variable() { this.value = 0;}

2. wvariable |

4)).
4)):

8)1)). start ():

public synchronized imt getValue() { returm value: }

public synchronized void setValue

}

class Observer implements Runnable |
private Thread bl, b2;
private WVariable variable:
private int expResult:
private boolean error;

public Observer (Thread bl, Thread
this bl = bil;: this b2 = b2;
this  variable = wvariable;
this expResult = expResult;
this.error = false;

!

public void run() |
try { bl.jein():
try { b2 join():

if {(variable getValue()
/v @observable =/
error = frue:
}
}
}

class Beaver implements Runnable {
private WVariable variable;
private int limit;
public Beaver (Variable wariable |
this _ wvariable = wariable;
this _ limit = limit;

}

public veoid run() |
for (int 7 = 0; ;3 < limit; ++3)
int tmp = variable  getValue()

variable .setValue (tmp):

(int walue) {

b2,

} catch (Exception e) {}
} catch (Exception e) {}
I= expResult) {

int limit) |

{
+ 1;

this.value =

value: }

Variable variable . int expResult) {

Listing 1. Java source code of the race condition problem
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the right of his plate. A philosopher is expected to spendtrabkis time thinking, but when he feels
hungry, he goes to the dining room, sits down on his own chait,picks up the fork on his left provided
it is not used by the other philosopher. If the other phildsapuses it, he just has to wait until the fork
is available. Then the philosopher tries pick up the fork @mright. When a philosopher has finished he
puts down both his forks, exits dining-room and continuéskihg.

We have implemented a possible solution of the DPP problendbuld lead to a deadlock; one
can get the implementation by removing from Listing 2 thessleackey and all the occurrences of
instructions containing the variable The deadlock can happen, if every philosopher sits down on
his own chair at the same time and picks up his left fork. THefoeks are locked and none of the
philosophers can successfully pick up his right fork. Assulie every philosopher waits for his right
fork that is currently being locked by his right neighboundahence a deadlock occurs. The results for
the deadlock property are in Table 3.

Assume now another solution for DPP (see Listing 2), wheeeetlis a lackey who ensures that at
mostn — 1 philosophers can be present in the dining room at the sanee Tilnis lackey ensures that no
deadlock is possible (see Table 4 for the results).

Tools No. Ph sec. MB
J2TADD + BMC4TADD 5 12217 | 279.2
JPF 4 2.21 3.7
JPF 5 - -
J2TADD + Uppaal 60 1.16 41.9
Bandera 60 117.02 3.3

Table 3: Dining Philosophers. Deadlock.

Tools No. Ph sec. MB
J2TADD + Uppaal 5 52.22 | 418.7
J2TADD + Uppaal 6

JPF 4 16.47 3.7

JPF 5

Bandera 2 76.31 4.6
Bandera 3

Table 4: Dining Philosophers. Absence of deadlocks.

6.3. Single Sleeping Barber Problem

Consider a hypothetical barber shop that has one barbeasher chair, and a waiting room with several
chairs for customers. When a barber finishes cutting a custemair, he fetches another customer from
the waiting room if there is a customer, or the barber sitssrchair and sleeps if there are no customers.
A customer who needs a haircut enters the waiting room. Ifshiging room is full, the newly arrived
customer simply leaves. If the barber is busy but in the wgitbom there is a vacant chair available,
the customer takes a seat. If the waiting room is empty antbdhiger is sleeping, the customer sits in
the barber chair and wakes the barber up.
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1 public class College5L |

2 public static veoid main(String args []) {

3 Fork f0 = new Fork(false): Fork fl = new Fork(false):

4 Fork f2 = new Fork(false); Fork f3 = new Fork(false):

5 Fork f4 = new Fork(false):

6 Lackey s = new Lackev(4):

7 Phil p0 = new Phil(0.f0.fl.s): Phil pl = mew Phil(1.f1_.f2 . s):
8 Phil p2 = mew Phil(2_.f2 f3 . s); Phil p3 = mew Phil(3 {3 f4 s);
9 Phil p4 = new Phil(4.f4.{0.s);

10 (new Thread(p0)). start(): (mew Thread(pl)). start ():

11 (new Thread(p2)). start(); (mew Thread(p3)). start ():

12 (new Thread(p4)). start():

13}

14 }

15 class Fork {

16 private boelean unavailable;

17 public Fork(boolean unavailable) { this.unavailable = unavailable: }
18 public synchromnized void acquire() {

19 while (unavailable) { try {wait(): } catch (Exception e){} }
20 unavailable = true;

21}

22 public synchronized void release() { wunavailable = false: notify(): }
23}

24 class Lackey {

25 private int m: private int max:

26 public Lackey(int max) {this max = max;}

2 public synchronized veid acquire() {

28 while (m »>= max) { try {wait():} catch (Exception e) {} }

29 ++m;

30}

31 public synchronized void release() { —m: notify (): }

32

33 c¢lass Phil implements Runnable {

34 private int nr; private Lackey s;

35 private Fork left . right;

36 public Phil(int ar. Fork left . Fork right. Lackey s) {

37 this . nr = nr: this.s = s;

38 this left = left; this_ right = right;

39}

40 public void run() {

41 while (true) |

42 s acquire (): left.acquire ();

43 [/ @(.inline infinite , .annotation @@NOTIFY_THREAD)observable
44 right acquire(); right release ();

45 left.release(); s.release():

46 }

47 }

48 }

Listing 2. Java source code of the dining philosophers erabl

Implementing a wrong solution of the problem can lead eitbeleadlock. The deadlock can happen,
if the barber waits on a customer and a customer waits on tebaVe have taken a proper implemen-
tation of the problem from the Bandera website; it is based salution discussed in book [13] and we
have checked the solution for absence of deadlocks andghiisrare in Table 5.
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Tools No. Customers sec. MB
J2TADD+Uppaal 4 107 42.7
JPF 3 18.13 3.7
JPF 4 - -
Bandera 2 612 3.3
Bandera 3 - -

Table 5: Single Sleeping Barber. Absence of deadlocks.

6.4. Readers and Writers

The readers and writers problem has two types of threadssiogethe shared data. The first type, called
readers, only wants to read the shared data. The secondcslfer] writers, may want to modify the
shared data. If a writer is accessing the shared data, thetheowriter or reader can do this.

We have implemented a possible solution of the above probdem writers andn readersp < 1
(see Listing 3). These programs consist of at least 2 threausreader and one writer. To increase the
size of the problem, additional readers and writers can dechdT his solution does not admit deadlocks;
the results are in Table 6.

Tools No. of Readers and Writers sec. MB
J2TADD+Uppaal 2 0.02 15
J2TADD+Uppaal 5 36.9 138.4
J2TADD+Uppaal 6 - -

JPF 2 3.59 4.9

JPF 3 - -

Bandera 2 150.3 | 115.54
Bandera 3 - -

Table 6: Readers and writers. Absence of deadlocks.

7. Summary

The J2TADD translator is not a self—contained verification system,jitead it provides an output for a
verification system lik&ppaal or VerICS, and it can be used as a part of a modular chain of such tools.
Thus, users can reuse their knowledg&/efICS, Uppaal or other tools that as a input take a network
of TADDs to use the translator to validate various concurggngrams written in Java. The translator
performs a number of optimisations to decrease the oftdmrigmory and time requirements of model
checking.

We have provided four examples of some well-known concayrgmoblems and and the experi-
ments confirm that our approach provides a valuable aid fea daftware verification. In particular,
we have shown that our translator together with the tglaal or the SAT-based reachability mod-
ule BMCATADD of VerICS works as good as thgandera of JPF tools (see 3) or it performs better (see
Tables).
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public eclass RZW2 {

public static void main(String args []) {
ReadingRoom readingRoom = new ReadingRoom():
Reader r0 = new Reader(0, readingRoom);
Reader r1 = new Reader(1. readingRoom);
Writer w0 new Writer (0. readingRoom);
Writer wl = new Writer(1, readingRoom);
0. start(); rl_start(); w0 start(): wl_ start();

}

class ReadingRoom {

private int numberOfReaders = 0;

public synchronized void startReading() {

while (numberOfReaders < 0) { try { wait(): } catch (Exception e) {} }
++numberOfReaders;

!

public synchronized wvoid stopReading() {

—numberOfReaders ;

if (numberOfReaders == 0) { notify (): }

1

public synchronized wvoid startWriting () {

while (numberOfReaders != 0) { try { wait(): } catch (Exception e) {} }
numberOfReaders = —1;

}

public synchronized void stopWriting() {

numberOfReaders = 0; notify ():

}

class Reader extends Thread |
private int nr;
private ReadingRoom readingRoom:
public Reader(int nr. ReadingRoom readingRoom) |
this _nr = nr; this readingRoom = readingRoom:
1
public veoid run() {
while (true) { readingRoom.startReading(): readingRoom.stopReading(); }
1
}
class Writer extends Thread |
private int nr:
private ReadingRoom readingRoom;
public Writer{int nr. ReadingRoom readingRoom) |
this _nr = nr; this readingRoom = readingRoom:
1
/= [@generateHead =/
private veid writing() { }
public veoid run() {
while (true) {
fv @(.inline infinite ., .annotation @@NOTIFY_THREAD)observable +/
readingRoom . startWriting ()
/v ([@observable =/
writing (); readingRoom.stopWriting();

Listing 3. Java source code of the readers and writers proble
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