Fundamenta Informaticae 93 (2009) 45-64 45
DOI 10.3233/FI-2009-87
10S Press

Java(): The Structures and the Implementation of a Preprocessor
for Java with m _and mc_parameters

Marco Bellia and M. Eugenia Occhiutc*
Dipartimento di Informatica, Universitdi Pisa
Largo B. Pontecorvo, 3, 1-56127 Pisa, Italy
bellia@di.unipi.it; occhiuto@di.unipi.it

Abstract. M_parameters extend Java by allowing methods to have metlsquarameters. [8] fur-
nishes a semantics of parameters and applications in OO programming. In this pagepresent
an implementation of the extended language based on prgmemnocessing. We also discuss the
integration of the extended programs with ordinary Javaymms, and hence Java API. Further-
more, mcparameters are defined: they are a variant gfarameters for which the class hierarchy
of the method passed as parameter must be provided in thelfand actual parameter. Seman-
tics for mcparameters is given but, in this case, an implementatidmegitibacks [20] is proposed.
Eventually, we discuss how mgarameters deal with overloaded methods.

1. Introduction

In [8] Java is extended with mechanisms which allow methodsatve other methods as parameters. In
that paper we also argued the improvement of the expressiwerpof languages including such kind
of mechanisms, in particular code reusability and as a cuesee code correctness. The extended
language semantics is defined through a meaning presef¥jpdransformation, which maps extended
programs into programs of ordinary Java (version 1.4).

In this paper, section 2, we describe an implementatio&i[§f [6]: it is designed as a one-pass
preprocessor [1], developed using Lex & Yacc [21] and GNUoBi§11]. The system is here forth
called Jav&. Section 3 shows an example of a program in the extended dgegunhere forth called
Javé&', which uses Java API in order to show how ordinary Java progrean be integrated with J&va
programs. This is possible even though standard Java ARidtdseen preprocessed by Jaydience

*Address for correspondence: Dipartimento di Informatidaiversita di Pisa, Largo B. Pontecorvo, 3, 1-56127 Pitalyl

46 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

methods there defined cannot be passed as parameters arai higher order. A comparison of our
approach with other similar approaches [23, 25, 10] can bedadn [5]. Recently a number of proposals
have been presented to add higher order features to Java,[2, 19, 15, 13, 3]: all such proposals
are concerned with the closure addition. A discussion amdpewmison of the different proposals is
contained in [9] in which we also consider the inclusion afstires in Javaand consequently in Jala
Among the others [12] also considers the possibility to haethods that are values of the language,
hence can be returned by a method invocation, assigneditiles and passed as parameters, the latter
one is the same functionality addressed in this paper. I f&2] introduces two different ways to
select methodsmethod literalsexpress methods as objects jafva.lang.reflect.Method at run
time, while method referencesxpress methods as anonymous instances of single metleothoats or
abstract classes generated at compile time. Actually, thawereferences are type safe and have the
same behavior as mmarameters, while method literals are not type safe, gmrameters, but their
use constraints programs as method references do. ii) XSfartahe invocation of method references
is not transparent, since it requires the use of a specidiod@tvokeaccording to the implementation
of method references. iii) The implementation of metho@&mefices and mparameters is similar but
[12] defines a distinct interface for each method referemtgle we define only one interface which is
used for all mcparameters. iv) Method literals and method references aaven standard semantics
since they have a different meaning but share the same $signsérticture and the distinction between
the two forms depends on the context in which they occur. Theawstage of our approach, see also
[8], is that: i) it offers a restricted, disciplined, form &inction abstraction which is suitable to the
integration of higher order and object oriented prograngmii) It furnishes a neat, standard, semantics
for the new mechanisms of nand mcparameters. iii) The use of nand mcparameters is completely
transparent to implementation. iv) The syntax of the intiocaof m. and mcparameters is uniform
with ordinary Java method invocation. In addition, progsaim Jav& can be defined using all object-
oriented mechanisms of Java: that is higher order classeBecdefined as extension of classes defined
in the API, adding higher order methods and implementingrabisfirst order methods using higher
order methods. In section 4, we extend Javath mc_parameters already introduced in [8]. Syntax,
semantics and], transformation are defined to deal with rparameters. The interesting point here
is that thef[], transformation defined, generates Java programs withacki#b[20]. In section 5, a
comparison between nand mcparameters is given, showing the example of Section 3 dpedlasing
mc_parameters and the transformed program, using callbaantially, mcparameters are extended to
deal with overloaded methods.

2. Implementation

2.1. Language extensions

The main extensions to Java are concerned with formal andlagarameters to include methods as
parameters and with the modifigtinctional for classes whose methods may be passed as parameters
in the program. If a class is declarédnctional then Jav& transforms this class adding the code
which allows to pass its methods as parameters to higher andéhods. Otherwise, only the higher
order methods definitions and invocations, occurring inclass are transformed.

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters a7

The Java grammar rules directly affected are listed below:

FModifier ::= Modifier | functional
FType = Type
| FunOrStaticFun FTList> TypeOrVoid
FTList = [FType (FType)*]
AEXp == Argument

| Abs Identifier
FunOrStaticFun:= Fun | StaticFun
TypeOrVoid = Type|void

where,functional, Fun, StaticFun andAbs are new tokens, aridModifier, FTypeand AExpare the
new syntactic categories fiModifier, Typeand Argument respectively, defined in the Java 1.4 grammar
[17].

All these syntactic extensions are captured by the prepsocelavg as translation directives for a
source to source textual manipulation of the Japeograms that produces equivalent programs written
in ordinary Java 1.4. The nature of this equivalence is dsed in [8] where the meaning preserving
transformatior€[], is formally defined on the basis of a semantic interpretatiah associates to each:

() ArgumentAbs g, the partial function4, (s, ¢, c) below:
As:S — AT — Ae:C — M(g,s,t,¢)

that, givens, t, ¢, selects the method (g, s,t,c), i.e. the method nameg in classe, with
signatures and result type, if any.

(i) Parametep in Fun s — t p, together with the argumenbs ¢ supplied for it, the partial function
P,4(c) below:

Ae:C — M(g,s,t,c)
that, given a class, selects method\ (g, s, t, c).

(iii) Occurrencee.pey,...£,) in the body of a method invoked with argumets g supplied for param-
eterFun s — ¢ p, the invocation of method\ (g, s, t, c), if any, wherec is the most specific class
of the object computed hy(or, the computed class,dfcomputes a class: in this casé(g, s, ¢, ¢)
is a class method), andis a correct signature for the typesaf ..., e,. If M(g, s,t,c) does not
exist then the evaluation efpey,...,,) abrupts and 8ethodNotFoundException is thrown.

2.2. Preprocessing structures

The preprocessor Jéds a plan implementation &[], [8]. It provides for a complete traversal of the
source program in order to locate 1) the program classebg2jeclarations of the higher order methods
and 3) the invocations of marameters.

48 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

2.2.1. The class modifiefunctional.

From a syntactic point of view, the t&ginctional is a modifier that is reserved for class declaration. It
has been introduced, in J&vato explicitly declare the classes containing methodsdhatbe passed, as
parameters. This means that only the methods of a functalasé are mparameters and hence, need a
double mechanism of method invocation. In effect, they aamzoked through the use of a parameter
invocation, in addition to the ordinary method invocatidine modifierfunctional avoids the useless
overhead of adding code, for such kind of double invocattorall the methods of the classes in the
source program, confining it to the methods of the classdamefunctional.

When Jav& encounters a class declar®thctional:

(1) it extends the source class header with the clanp@ements ApplyClass.

(2) ittraverses all the class members, collects, in théVisthodHeader, the header of each (class and
object) method of the class, and produces a source to saxitekt manipulation of the body of
the methods as described in 2.2.2.2 and 2.2.3.3.

(3) it adds code to the class in order to allow each method dahttiHeader to be invoked as para-
meter. Following&(], [8], this code consists of the definition of the methods of ititerface
ApplyClass. They areStaticApply and StaticApplyS for non void and void class meth-
ods, respectively, anfipply andApplysS for non void and void object methods. These methods
share great part of the syntactic structure of the bodyeiiffy for the kind (class void, class non
void, object void, object non void) of the methods they deshwThe common part consists of
a switch statement mapping the method internal names into invatatid the corresponding
method with the right list of parameters. The preprocessodures the code for the definition
of the private metho®ispatcher that maps the strings, naming the methods, into their inter-
nal names: the internal name is assigned according to thtioposf the method within the list
MethodHeader. Eventually, the preprocessor splits Metleadier into four sublists one for each
of the four kinds of methods. If one of the sublist is an empiy the body of the corresponding
method ofApplyClass iS: throw new MethodNotFoundException().Once the common part
has been produced, the preprocessor completes the code of:

— StaticApply andApply, by enclosing the invocation previously generated, in ezade
statement okwitch, within a return statement;

— StaticApplyS and ApplyS, with a break statement at the end of each case statement of
switch.

2.2.2. The mparameter: Fun and StaticFun declarations.

From a syntactic point of view, the tagan andStaticFun are keywords that prefix a pair of items,
andt, that are separated by an arrow, and an identifieFhe preprocessor can find a structure of this
kind only when it is traversing the parameter list of a metldedlaration. The declared method is a
higher ordermethod: The two items declare the method signatiard the returned typg if any, of the
m_parameters that can be passed to the higher order methoddéridier p is the name of the formal
m_parameter. Eventually, the_parameter invocations gf, in the body of the higher order method,

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 49

behave as invocations of object, resp. class, methodsdingdo the tagrun, resp.StaticFun, in the
parameter list declaration and are preprocessed as desanil2.2.3.3.
When Jav& encounters the declaration of aparameteFunOrStaticFun TList» TypeOrVoid par

(1) it adds to the list MParameter a record for the identjfier. The record contains one entry for the
value ofFunOrStaticFunanother forF'T" List, and a last one fofypeOrVoid The list implements
the enviromenp of £[] , [8] and it maintains the scope of parameters in the body of higher order
methods.

(2) it replaces the declaratidrunOrStaticFun FTList— TypeOrVoid parof the mpara-meter with
String par

2.2.3. Invocation of mparameters.

From a syntactic point of view, the invocation of aparameter involves two distinct structures: one to
express the actual parameter which is bound to the formalparameter, and another for the invocation
of the formal mparameter. The tagbs prefixes an identifiefnet Name which specifies the name of
the method that can be passed to the higher order method. répmpessor can find a structure of this
kind only when it is traversing the list of the actual paraenetof a method invocation and the invoked
method is a higher order method whose formal parameterdsstin correspondence s metName

an mparameter as in 2.2.2.2. The invocation of a formgbanameter has a syntax which is not different
from ordinary method invocation, namedxp sel argdor an expressioexp an identifierseland a list

of actualsargs but the invocation is in the scope of a formalgarameter that has the same identi§ielr
that occurs in the invocation.

When Jav& encounters an expression defining an actugdarameteibs metNameit simply re-
moves the tadibs and it checks the declaration of the invoked higher ordehoukfor the correspon-
dence of the parameter with a formalparameter.

When Jav& encounters an invocatioexp sel argsit checks the current list MParameter for the
occurrence of a nparameter of namsel and in the affirmative case it extracts from the list the rdco
[FunOrStaticFun, FT List, TypeOrV oid], then:

(1) it produces a tex$elector=A(sel,arg)for the method invocatiom, where:

- Ais ApplysS, resp. Apply, if TypeOrVoid is void, resp. a type, an&unOrStaticFunis
Fun, otherwiseA is StaticApplyS, resp.StaticApply, if TypeOrVoid is void, resp. a
type, and~unOrStaticFunis StaticFun;

- sel is the name of the invoked 1parameter
- arg is the text for the array of arguments described in (3) below.
(2) it preprocesses the expressions in thedigfs of the invocation arguments by obtaining the list
args'={(t1)exps, ..., (tn)expy } for n > 0 (args’={} for n = 0), where each expression in the list

args’ is cast to the corresponding type of the &t List of the types expected for the arguments
of the mparameter invocation;

(3) it produces a texirg=new Object[1{(t1)exp1, ..., (t,)exp,}, where the members af-gs’' be-
come elements of an array of arguments.

50 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

(4) it preprocesses expressienp by obtaining expressiorxp’: if exp is the empty text then
exp’=this. Then it produces the texPrimary="((ApplyClass)exp’).” if either FunOrStat-
icFunis Fun or exp is not a class nameérimary="exp’.” otherwise.

(5) eventually, it replaces the invocatiemp sel argsith the invocation which results from the con-
catenation ofPrimary with Selector.

The preprocessor Jaas completely implemented in Lex&Yacc [21] and in GNU Bisdil]. It
consists of one file Lex for generating a lexer of 3gwaf one file Bison for generating a parser of Java
and of auxiliary files for the language C procedures that @mant the source to source translation
described in the previous three sections, and for the caatipntprocess documentation. In defining
the syntax of Javg for documentation sake, we choose to start from the offgrainmar of Java 1.4,
distributed in [17]. The grammar has been suitably extend#dthe grammar rules of Section 2.1 and it
results a LR(2) grammar [1]. Jakdhas been designed as an attribute grammar for one-paseq&egpor.
Hence it produces the object code as it parses the sourceimdeevaluates the semantic rules during
the parsing. These rules furnish also an integrated pratitep that shows the object code in a structured
and quite readable form.

3. Example with Java APIs

The example presented in this section, shows how higher oné¢hods can be integrated with Java
APls, defining higher order classes (that are classes wgtiehiorder methods), which extend classes of
Java APIs, in the same way as ordinary first order classesbjdct-oriented mechanisms are available
including overloading and overriding.

The example defines an extensiorLahkedList namelyFList and an implementation @fompa-
rable, namelyHighComparable. Such classes define higher order methods, in partililgtiCompa-
rable, Fig.1, is an abstract class which implements interfaggarable adding a higher order method
compareTo: It compares objects invoking the method, passed as paggmetboth the objects, to eval-
uate a value on which the objects are effectively comparethd example shown, geometric shapes can
be compared considering either their areas or their pegirmetThis is obtained passing methacka
or methodperimeter as parameter to the higher order methkodpareTo. Higher ordercompareTo,
overloads first ordetompareTo, which is still undefined iflighComparable. It is implemented as an
invocation of method parameteion boththis andx, the values returned are subtracted in order to eval-
uate 0 if such values are equal, a negative value if the valale@ed forthis is minor than the value
evaluated fok, positive otherwiseFList is defined in Fig.2 as an extensionlafnkedList, in which
the methodaddOrd is defined using higher order. Methadd0Ord, adds elements to the list suppos-
ing they are ordered and preserves such ordering. It usétethtor (istIterator) of LinkedList.
The arguments passed ate:the element to be inserted amda method which is to be used to com-
pare the elements in the list. The method invoked to comprerelements is the higher order method
compareTo, defined in the abstract claB$ghComparable. The method parameterpassed tadd0rd
is passed to higher ordebmpareTo. The structure of the methagid0rd is quite usual, it considers
the case in which the list is empty, otherwise the iteratiants, atry-catch clause is necessary to trap
NoSuchElementException. At each step an element in the list is compared (by meansmgfareTo)
to x (the element to insert) when a greater element is fauigdinserted before the current element. To

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 51

complete the example the abstract claésspe, Circle andRectangle subclasses dhape, and the
main method must be defined. Such definitions are shown in Fig. tB, thé exception of main where
only the list construction cycle is shown.The abstractchimpe type of the elements to be inserted
in the list, is defined as extendint ghComparable, inherits higher ordetompareTo and defines first
ordercompareTo (in the example it calls higher ordebmpareTo passingarea as method parameter).

4. Mc_parameters

In this section we extend Javavith mc_parameters with the aim to avoid generating a runtime eiaept
in case the method passed does not exist, and because itdiats/erloaded methods (see Sections
5.1)

4.1. Syntax and semantics of mparameters

Differently from m_parameters, mparameters require the specification of the root of the ¢leesarchy
of all the classes to which the mparameter can apply. The syntax f6fypeis extended with the
following productions, wheré&entifieris the root class name:

FType::= Fun Identifier: FTList — TypeOrVoid

As a matter of fact, the root class name is specified also irath@al mcparameter. This is done
extendingAExpwith the following production, where the second identifethe root class name:

AEzp::= Abs Identifier from Identifier

All these syntactic extensions yield the extended Java igi@nof Fig. 10. The mgarameter se-
mantics is different from nparameter semantics. In this case the semantics inteipre@ssociates
to:

() ArgumentAbs g from C,, the partial functiond,., (cy, s, t, c) below:
Aep:C — As:S — AT — Ae:C — M(g,s,t,¢) if c 2 cp 2 ca AN M(g,s,t,¢q) # L

that, givency, s, t, ¢, selects the method1 (g, s,t,c), i.e. the method nameglin classc, with
signatures and result type: if M(g,s,t,c) # M(g,s,t,c,) then methodM(g, s, t,c) is an
overriding of methodM(g, s, t, ¢,) of classc,. If M(g,s,t,c,) does not exist then the program
is not legal.

(i) ParametefFun cs: s — t p, together with the argumenbs g from ¢, supplied for it, the partial
function P,,(c) below:

Ae:C — M(g,s,t,¢)if ¢ 2 cp 2 ca AM(g,8,t,¢0) # L

that, given a class, subclass of:, selects method\ (g, s, ¢, c), provided that the class; is
a subclass of the class.

52 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

(iii) Occurrencee.pey,...£,) in the body of a method invoked with argumeits g from c, supplied
for parameteFun c;: s — t p, the invocation of method1(g, s, ¢, c) wherec is the most specific
class of the object computed ly(or, the computed class, # computes a class: in this case
M(g, s, t,c) is a class method), andis a correct signature for the typeseaf ..., e,,.

The semantics states that, analogously tparameters, the invoked method belongs to aaxfghe
object on which the method is invoked. The additional caad# specified for mgparameters, force)
the classc to be a subclass afy which must be a subclass af; ii) classc, to contain a method with
nameg, sighatures and result typé. These two conditions can be checked at compile time. Subbekc
guarantees that the evaluationeof(ey,...,£,) can never abrupt, at run time, because of a failure due to
the fact that the selected methad(g, s, ¢, ¢) does not exist.

The transformation defined in this paper for Jparameters is based on computational structures
which are different from those in [8], since nparameters are implemented using callback [16].

Callback is a way to pass executable code to procedurese lierdefine higher order programs.
In OO languages callback is implemented through functigeatb [22, 20]. The idea comes from the
observation that everything can be modeled using objecéncel classes are defined to use objects as
they were functions. In Section 4.2 we show a methodologyclwhllows to write, in Java, higher order
methods using callback. The transformation defined in 8eeti3 is based on such a methodology.

4.2. Callback methodology

The methodology is based on the constructioriuoiction objectsi.e. objects to be invoked as if they
where functions. The callback methodology is here desgnitlgen the functions are actually methods.
It can be summarized in four points:

1. Aninterface representing (non void object) methods ie lcalledApplyClass. It has only one
methodApply whose first parameter is an object, namely the function oljeapping the method
to be invoked, while the second parameter is the array aintathe method parameters, i.e. the
parameters on which the method, to be invoked, applies.

public interface ApplyClass { //for non void object methods
public abstract Object Apply(Object o, Object [1 Pars) ;}

2. For each method which is to be passed as parameter a chasgtdn objects, which implements
ApplyClass and consequently the methagdply, must be definedApply invokes the wrapped
method on the object passed to it as first parameter with therents passed as second parameter.
Let C be thedefinition classof methods namedy,...,m;, i.e. the class in which such methods
are declared. Suppose those methods have to be passed metpesao other methods in the
program. Therk classes must be defined: For each method named classm; is defined as
implementation ofipplyClass, as follows:

static class m; implements ApplyClass{
public Object Apply(Object o, Object [l Pars){
return ((0) o) .m(Pars[0],Pars[1],...Pars[h]);}}

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 53

3. Every higher order methoa” is defined having at least ongplyClass parameter that is the
object function that contains the method to invoke by mednisply.

public T m* (...ApplyClass o...)
{... o.Apply(obj, new Object[l{ag,ai,..,ap,});...}

whereobj is the object on whichm; must be invoked and;, for j € [0..h;], are theh; + 1
arguments ofn;.

4. The invocation ofm" requires the construction of the function object contajrtime method
E.n(...new C.m;()...)

assuming that the class; is defined as an inner class of its definition cl&ss

The methodology, described insofar, considers only nod,wabject, methods. For class methods
and/or void object methods, we have to consider, in pointdag different interface for each of such
kinds of methods, for instance:

public interface ApplyClassS { //for void object methods
public abstract void Apply(Object o, Object [1 Pars) ;}

public interface ApplyClassStatic { //for non void class methods
public abstract Object Apply(Object [] Pars) ;}

public interface ApplyClassStaticS { //for void class methods
public abstract void Apply(Object [] Pars) ;}

All these interfaces differ one another for the signatur@/@nthe returned value of the methapply.

Eventually, different solutions can be considered for teénition, in point (2), of the classes of
function objects. In the presentation given above we userialasses but each of the following solutions
could be right:

Inner classes of classC. This is the solution we have shown above, in exemplifyingiso(1)-(4). In
this case, for each method, the definition of the class (oftfan objects) is inserted in class
It has the advantage of maintaining the definition of thesdaqof function objects) local to the
definition class. It allows, among others, to look only atdtass definition of the method in order
to check if it can be used as a parameter anywhere else indlyeapn.

Anonymous inner classesdefined in the invocation of higher order methods. In thisecawint (2) is
suppressed while invocation in point (4) becomes:

E.n'(...new ApplyClass(){
public Object Apply (Object o, Object [] Pars)
{return ((C)o).m;(Pars[0],Pars[1],...Pars[h]l);}}...)

54 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

It is a compact solution but the resulting program is verbarse: awkward (reading and writing).
Moreover, it leads to code duplication, if a given methoddssed twice.

Stand alone classeutside clas€. In this case, classes in point (2) are somewhere in the amognd
invocation in point (4) becomes:

E.m(...new #()...)

wheref; is the reserved name for the class (of function objects) eéfimpoint (2), for the method
namedm;. In fact, because of the unicity property of class namesn@espaces management [1]
would be required in this case, defining reserved identif@rsuch classes to eliminate class name
clashes in the program. A strategy similar to the one usedzizaH24], [23], could be used. The
drawback of this solution is that locality property is 108{ L4] and we have to check the entire
program in order to detect which methods are wrapped inpipe@y method of a class (of function
objects) and as a consequence, can be passed as a parameter.

4.3. &[], transformation with callback

The transformation defined, Figg.11-12, can be considemezkgension of the one defined in [8], but it
is here presented in a self contained way. However the partiations that the semantics associates to
mc_parameters, and the computational structures changealcthe functions:

¢ differ one another for) the method that must be selected once the object to applydtthartypes
of the arguments of the invocation are known, a@ij)dhe computational structure to apply the
function to the object and to the argument values, while

¢ they share the computational structiyeo find the most specific method with that name and
types of the argumentsdi) to apply the selected method to the object with the argumefnise
invocation, that is the invocation of methagdply (of interfaceApplyClass).

The computational structures of those functions are a $attretime support which is included in
the classes of the transformed program and is used througtblsumethods. In Figg.11-12 the rules
of the transformation are given defining the classes of fanabbjects as inner classes. Moreover, we
discuss how the rules implement the callback methodologratsform programs in Javanto ordinary
Java code:

e ArgumentAbs g from C, is transformed (second rule 8fExp replacing it withnew ¢,.g(). In
this way, the partial functiom,, (¢4, s, t,), see(i) in Section 4.1, is implemented constructing
a function object (of the clasgwhich is defined as an inner class@j that contains a method
Apply that wraps methodM (g, s, ¢, ¢), i.e. methodipply, given an objecb, with most specific
classc, and an array of argumenfa, ..., a,, }, invokes method\(g, s, t, ¢) ono with arguments
ai,...,an. The cast, introduced in the rule GtassDef(lines 10 and 14 - definitions of the classes
of function objects in Fig. 11) guarantees that the exigtefenethodM (g, s, ¢, ¢,) in classe, is
checked at compile time on the program transformed [dy.

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 55

e ParameteFun c;:s—t pis transformed (second rule féiTypg replacing it withApplyClass p.
In this way, the partial functiorP,¢(c), see(ii) in Section 4.1, is implemented by bindipgto
the function object resulting from the transformation ofaagumentAbs g from c,, as described
above.

e The occurrence.fa,...a,) in the body of a method with a paramefam cy: s — tp, is trans-
formed (first rule forExp) replacing it with (t) (p. Apply ((cs)€, new Object[] {ay,...,8,})).
In this way, the invocation of methat(g, s, t, ¢), see(éii) in Section 4.1, is implemented invok-
ing methodApply of the function object bound tp which, actually, results into the invocation of
the wrapped methodA(g, s, t, c) on e, with most specific class, and arguments,, ..., a,,. The
cast, introduced in the first rule of the transformatioreap, guarantees that the object resulting
from the evaluation ot is of a class: which is subclass ofy, specified in the formal parameter.
This is concerned with the subclass relationshig c¢; < ¢, required in (i)-(ii) of the semantics
of mc_parameters which guarantees that every tnpéa ,...a,) is executed methodA(g, s, ¢, ¢)
exists.

The transformatior£[], for the case in which the classes of function objects are el@fais anonymous
inner classes is given in Fig. 13. In this case, it is not neargsto declare the classesfamctional,
see Section 2.2.1.1, to use their methods as parameters prdgram. As a matter of fact, the class
definition (of function objects) is given at the invocatiohtlee higher order method. Hence the benefit
of the implementation using anonymous inner classes, facwdélso methods already defined and not
preprocessed, for instance APl methods, can be passedaasqtars.

5. Mc_parameters vs mparameters: example

From a syntactic point of view marameters differ from mparameters since the latter specify, in ad-
dition to signature and return type, the class hierarchychvitiie passed method belongs to. This fact
has as consequence that programs that invoke a method wéttt@al argumenibs g from c,, must
have that method declared with an iparametefFun c;: s — t p wherecy =< ¢,. In this section we
show the example described in section 3 usingpaametersFList is still defined as an extension of
LinkedList with the higher order methoalddOrd. The two classeHighComparable andFList are
defined in Fig. 4 and 5. Clashape is defined in Fig. 6, together with classesrcle andRectangle
and the sketch of methathin. Comparing it with listings in Figg. 1-2-3, which use parameters, we
note that both methodsdd0rd and compareTo have an m@arametefun Shape: — Double m. In
particular, since invoked with argumettis area from Shape (fourth line of listing in Fig. 6), method
compareTo can be invoked only with methods namertka and defined in subclasses $Hape. As a
consequence, programming with this definitioncefipareTo is much more constraining than it would
be with the one in Fig. 1 which uses_parameter. On the other hand, with such definition it cannot
happen that invocations ebmpareTo turn out to throw exceptions trying to invoke methods (botod
the mcparameter) that do not exist. In Fig. 7, 8 and 9 the previotine® example is transformed by
the £]], transformation with callback defined in Section 4C3rcle andRectangle class definitions
are the same as those in Fig. 3.

56 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun -> Double m, Object s){
Double a=(this.m(O-(s.m0)) ;
if (a>0) return 1;
else if (a==0) return 0; else return -1;}}

Figure 1. HighComparable definition

public class FList extends LinkedList{
public void addOrd(Fun -> Double m, HighComparable x){
if (!this.isEmpty()) {ListIterator i= this.listIterator(0);

int j=0;

try {
while(i.hasNext()&&((((HighComparable)i.next()).compareTo(m,x))<= 0))j++;
add(j,x); }

catch (NoSuchElementException e){System.out.println(...);} }
else add(0,x);}}

Figure 2. FList definition

5.1. Method overloading

Introducing mcparameters, in Section 4, we mentioned the problem of passiarloaded methods.
In fact, to deal with overloaded methods, in addition to nand to the belonging class, a signature
must be specified in order to determine, univocally, a metaoabng those sharing such a name in the
class). Moreover, on the basis of the signatures that therelift overloaded methods have in the class,
Java resolves overloading at compile time, selecting, @ éavocation, the method to be invoked and
leaves to method dispatch (see Section 15.12.4.4 in [18dolve, at run time, possibly overridden
implementations of the selected method. This way of dealiitiy methods allows overloaded methods
to be passed as parameters on the following conditionstugabparameters must specify the class and the
signature of the passed method#i{) , must transform actual parameters in such a way that the é@mpi
can univocally select the overloaded method that must bekéd. Hence in order to pass overloaded
methods, mgarameters must be extended to specify the method sigriattine actual parameter, as
follows:

AEzp::= Abs Identifier(FTList) from Identtifier

As far as ii) is concerned a solution f6{], is shown in Fig. 14, where the invocation of the wrapped
methodlde,, constraints the type of the argument casting it to the tygeifipd in the signature. The
solution given for mgparameters is based on anonymous inner classes. The oyetordefine classes
for function objects, Section 4.2, require a specific nameespnanagement to assign to each class of
object functions, created for the methods to be passed ampters, a unique name which depends on
the name, signature and belonging class of the method.

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

public functional abstract class Shape extends HighComparable {
public abstract Double area();
public abstract Double perimeter();
public int compareTo(Object s){return compareTo(Abs area ,s);} }
public class Circle extends Shape {
private double radius;
public Circle(double r){radius=r;}
public Double area() {return new Double(radius*radius*Math.PI);}
public Double perimeter() {return new Double(radius*2*Math.PI);}}
public class Rectangle extends Shape {
private double base;
private double height;
public Rectangle(double b, double h){base=b; height=h;}
public Double area() {return new Double(basexheight);}
public Double perimeter () {return new Double(2#(base+height));}}
public static void main(Stringl] args){
...for (i=0; i<n;i++){...
Shape sh=readShape(in,x);
L.add0rd(Abs area,sh);

1

Figure 3. Shape, Circle, Rectangle andmain definition

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun Shape: -> Double m, Object s){
Double a=(this.m(O-(s.m()) ;
if (a>0) return 1;
else if (a==0) return 0; else return -1;}}

Figure 4. HighComparable definition for mcparameter example

public class FList extends LinkedList{
public void addOrd(Fun Shape: -> Double m, HighComparable x){
if (!this.isEmpty()) {ListIterator i= this.listIterator(0);
int j=0;
try {

while(i.hasNext ()&&((((HighComparable)i.next()).compareTo(m,x))<= 0))j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println(...);} }
else add(0,x);}}

Figure 5. FList definition for mcparameter example

57

58 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

public functional abstract class Shape extends HighComparable {
public abstract Double area();
public abstract Double perimeter();
public int compareTo(Object s){return compareTo(Abs area from Shape ,s);} }
public class Circle extends Shape {
private double radius;
public Circle(double r){radius=r;}
public Double area() {return new Double(radius*radius*Math.PI);}
public Double perimeter() {return new Double(radius*2*Math.PI);}}
public class Rectangle extends Shape {
private double base;
private double height;
public Rectangle(double b, double h){base=b; height=h;}
public Double area() {return new Double(base*height);}
public Double perimeter() {return new Double(2+*(base+height));}}
public static void main(Stringl] args){
...for (i=0; i<n;i++){...
Shape sh=readShape(in,x);
L.add0rd (Abs area from Shape,sh);

H

Figure 6. Shape, Circle, Rectangle andmain definition for mcparameter example

public abstract class HighComparable implements Comparable{
public int compareTo(ApplyClass m, Object s){
Double a=(Double) (m.Apply((Shape)this, new Object[1{}))-
(Double)m.Apply((Shape)s, new Object[1{}));
if (a>0) return 1;
else if (a==0) return O; else return -1 ;} }

Figure 7. Transformed program fat ghComparable definition

public class FList extends LinkedList {
public void addOrd(ApplyClass m, HighComparable x){
if (!(this.isEmpty())) {ListIterator i= this.listIterator(0);

int j=0;
try {while ((i.hasNext()) && (((HighComparable)i.next()).compareTo(m,x)<=0)) j++;
add(j,x); }

catch (NoSuchElementException e){System.out.println(...);}}
else add(0,x) ;}}

Figure 8. Transformed program fBList definition

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 59

public abstract class Shape extends HighComparable {
public abstract Double area();
public abstract Double perimeter();
public abstract String toString();
public int compareTo(Object s){return compareTo(new area(),s);}
static class area implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).area();}}
static class perimeter implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).perimeter();}}}

public static void main(Stringl] args){
...for (i=0; i<n;i++){...
Shape sh=readShape(in,x);
L.add0rd(new Shape.area(),sh);...} ...}

Figure 9. Transformed program fBhape andmain definition

ClassDeclaration:= public class ldentifier [extends Type] [implements TypeList]{(MemberDecl)*}
MemberDect=;
|ModifiersOpt FieldDeclarator
|ModifiersOpt Identifier FParametershrows QualifiedldentifierList] Block
|ModifiersOpt Type Identifier FParametersirows QualifiedldentifierList] Block
|[ModifiersOptvoid Identifier FParameterstfhrows QualifiedldentifierList] Block
|[ModifiersOpt ClassOrInterfaceDeclaration
[[static] Block
FParameters= ([FParameter (,FParameter)¥)
FParameter:=[final] FType VariableDeclaratorld

FType:= Type |Fun FTList— Type |Fun FTList— void
FTList:=[FType(, FType)*]
Selector:= .ldentifier [Arguments] |.Par Arguments |.this

| . super SuperSuffix | .new InnerCreator|[Expressioh

Arguments= ([AExp (, AExp)*)
AExp:= Expression Abs Identifierfrom Identifier

Figure 10. Extended syntax [17]

60 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

Let ClassDef= public class ldea {
ModifiersOpt Typgldey [=EXpo]; . . .ModifiersOpt Typg Idey, [=Exp];
ModifiersOpt AType-, Idec,)Block, ...ModifiersOpt AType-, |dec,)Block:,
ModifiersOpt Typgy, ldex, (FTypq:pMOIderMo) Blockyy,
...ModifiersOpt Typgy, Idey, (FTypq:pMk |derMk) Blockyy,
ModifiersOptvoid Ideyys, ., (FTypq:pMk+1 IderMM) Blockyy, , ,
..-ModifiersOptvoid Idey;, (FTypg=p,, ldepp,,) Blocky,}
E[ClassDef, = public class ldey {
ModifiersOpt Typgldey[=E[Expo],]; . . -ModifiersOpt Typg Ide,[=E[Expy]],
ModifiersOpt A(Type:, Idec,)E[Blockc,], - - -ModifiersOpt AType-, ldec,)E[Blocke,],
ModifiersOpt Typey, Idens, (€[FTypeep,, Idepp,, 1,)E[Blocky,],
...ModifiersOpt Typg, Idexy, (8[[FTypq:pMk Ide,:pMk]]p)E[[BlockMk]]p/k
ModifiersOptvoid ldeyy, ., (f‘,’[[FType;:pMk+1 Ide,:pMk+1 1,)€[Blockay, .,]
...ModifiersOptvoid Ideys, (E[FTypgep,, ldegp, [,)E[Blocky, [, }
/I inner classes of function objects Wrappingrfhe methodise in the class
static clasdde,,, implements ApplyClass
public Object Apply(Objeco, Object [] Parg){
return ((de,) o).ldey,, (Parq0]) } }

/
Pl

static clasdde,,, implements ApplyClass
public Object Apply(Object o, Object Rars){
return ((dey) o0).Ideys, (Parq0])} }

Figure 11. Transformatioi[], - part 1

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

E[BlocK, = £[S1,; £[StLisi, with Block = St; StList
E[Argument}, = (E[AEX,(, E[AEXd,)")

E[AEXd, = E[Expressiofy, with AExp= Expression
| new Ides.lde() with AExp=Abs IdefromIde,

Type with FType= Type
E[FTypd, = { ApplyClass with FType= Fun FType— Type
ApplyClassS with FType= Fun FType— void

(Par.ApplyS((Ides)E[Exp], new Object [1{(FType&[Exp,],}),
with St= Exp,.Par(Exp,) A
p(Par) = Fun ldes: FType— void
£lst, E[EXp,],-1de(E[EXp,],), with St= Exp,.lde(Exp,) A
P p(lde) = L
if (E[ExP],)E[St], else E[St],; with St= if Exp St else St
while(E[EXP],)E[ST, with St= while Exp St
| etc
[((Type)(Par.Apply ((Ides) E[Exp],,new Object[}{ (FType E[EXp,],}),
with Exp = Exp,.Par(Exp) A
p(Par) = Fun ldey: FType— Type
E[Expl, = { E[Exp],-1de(E[Exm,), with Exp= Exp,.lde(Exp), A
p(lde) = L
E[Exp], Op E[EXxp], with Exp= Exp, Op Exp

ete.

where:p; = R[FType,, Idex, |,
R[FType Idé,(x) =FType if Ide=x
R[FType 1dg,(x) =p(X) if Ide #x

and Exp, St StList FParameterslde stand forExpressionStatemeniStatementList
FormalParametersldentifierrespectively;

Figure 12. Transformatioi[], - part 2

61

62 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

E[Expressiof, withAExp= Expression
£IAEXd, = new ApplyClass{ withAExp=Abs Ide,, from Idey
L public Object Apply(Object o, Object [IParsy
return ((Idea)o).Ide,,(Pars[0])}}
Figure 13. £]], using anonymous inner classes
E[Expressioff, withAExp= Expression
E[AEXH, — new ApplyClass{ withAEXp=Abs Ide,,(Typ8 from Idey

public Object Apply(Object o, Object [1Pars)
return ((Ideas)o).Ide,,((Type) Parg0])}}

Figure 14. £]], for overloaded methods

6. Conclusions

In this paper we presented the implementation of the extefaleguage Javafirstly defined in [8]
through the rules systedi[],. The system is a set of source to source translation rulésta the
meaning of the new constructs in terms of compositions of kvedwn ordinary Java structures and pro-
vide a one pass translation process of the programs of tleeded language back into ordinary Java
programs. Hence, the implementation is obtained througbuece to source, one pass, preprocessor
[6, 7], easy to write using standard development tools [1,12]. Then, we discussed the integration of
programs written in Javawith programs written in ordinary Java. We showed that higitder classes
can be defined as extension of classes defined in the APIsigalidiher order methods and implement-
ing abstract first order methods using higher order methblden, we applied the same approch used in
[8] to further extend the language with nparameters, as a variant of parameters, which specify the
belonging class and the name of the passed method. We defintek,ssemantics of mparameters.
Then, we showed a four steps callback methodology for wrappiethods into function objects and
we extended transformatidfy] , with rules translating programs with nparameters into ordinary Java
programs using callback. It is worth noting that a transfation using callback cannot be defined for
m_parameters, since callback requires the knowledge of #ms ¢he wrapped method belongs to. As
a matter of fact, the contrary would be possible that ispatameters could be implemented using the
same technique of the transformation given in [8] faparameters. Eventually, we compared program-
ming with m. and mcparameters and we showed that parameters are much more constraining than
m_parameters but they allow (i) a static checking on existaridbe passed method and (i), extended
with method signature, the use of overloaded methods ame#ess.

M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters 63

References
[1] A.V. Aho, M.S. Lam, R. Sethi, and J.D. UllmarCompilers: Principles, Tecniques, and Taokddison-
Wesley, 2007.

[2] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Qlestor java, 2006.
/Iblogs.sun.com/ahe/resource/closures.pdf.

[3] G. Bracha, N. Gatfter, J. Gosling, and P. von der Ahe. Qlesdor the java programming language (aka
bgga), 2008. www.javac.info.

[4] D. Lea B. Lee and J. Bloch. Concise instance creationesgions: Closure without complexity, 2006.
crazybob.org/2006/10/java-closure-spectrum.html.

[5] M. Belliaand M.E. Occhiuto. Higher order programmingdhgh Java reflection. I8S&P’2004 volume 3,
pages 447-459, 2004.

[6] M. Bellia and M.E. Occhiuto. JH-preprocessor, 2007. wdiwnipi.it/~occhiuto.

[7]1 M. Bellia and M.E. Occhiuto.Jave2: The Structures and the Implementation of a Preprocessoldea
with mparameters Technical Report TR-08-22, Dipartimento Informatica j\émsity of Pisa, 2008.

[8] M. Bellia and M.E. Occhiuto. Methods as parameters: Appoeessing approach to higher order in java.
Fundamenta Informatica®5(1):35-50, 2008.

[9] M. Bellia and M.E. OcchiutoJav&?: Preprocessing Closures in Javaechnical Report TR-09-03, Dipar-
timento Informatica, University of Pisa, 2009.

[10] B. Bringert. HOJ - higher-order Java, 2005. cs.chabrserbringert/ho;.

[11] C.Donnely and R. Stallman. Bison: The yacc-compatilaleser generator, 2006.
www.gnu.org/software/bison/manual.

[12] S. Colebourne and S. Shulz. Fidass methods: Java style closures, 2006.
docs.google.com/view?docid=ddhp95stag3ghc.

[13] S. Colebourne, S. Shulz, and R. Clarkson. Fcm+jca, 2008
docs.google.com/ View?docid=ddhp950f¥mcns.

[14] R. Dyer, H. Narayanappa, and H. Rajan. Nu: Preservisgpdemodularity in object codeACM SIGSOFT
Software Engeneering Note&l, 2006.

[15] N.M. Gafter. Jsr proposal: Closures for java, 2007.afaasmmunity Process, www.javac.info/consensus-
closure-jsr.html.

[16] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissid&esign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, 2005.

[17] J. Gosling, B. Joy, G. Steele, and G. Brachae JavdgM Language Specification - Second Editiéwadi-
son-Wesley, 2000.

[18] J. Gosling, B. Joy, G. Steele, and G. Brachhe JavdM Language Specification - Third EditioAddison-
Wesley, 2005.

[19] B. Goetz. The closures debate: Should closures be addbd java language, and if so, how?, 2007. Java
Theory and Practice, IBM Technical Library, www.ibm.coreveloperworks/java/library/j-jtp04247.html.

[20] C. HorstmannBig Java ,3¢ ed. Wiley Computing, 2007.
[21] J.R. Levine, T. Mason, and D. Browhex & Yacc ORelly, 1995.

64 M. Bellia and M.E. Occhiuto/A Preprocessor for Java withand mcparameters

[22] B. Meyer. The power of abstraction, reuse and simplicin object-oriented library for event-driven
design. InEssay in Memory of Ole-Johan Dahl 2Q0&4lume 2635 ofLNCS pages 236-271. Springer,
2004.

[23] M. Odersky, E. Runne, and P. Wadler. Two ways to bake ypmra - translating parameterised types into
Java. InGeneric Programming 1998, Proceedings of a Dagstuhl SerhiN&€S 1766. pages 114-132,
1998.

[24] M. Odersky and P. Wadler. Pizza into Java: translativepty into practice. IfProc. 24th Symposium on
Principles of Programming Languaggsages 146-159, 1997.

[25] A. Setzer. Java as a functional programming languag&YPES 2002,LNCS 264fages 279-298, 2003.

Copyright of Fundamenta Informaticae is the property of IOS Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's express
written permission. However, users may print, download, or email articles for individual use.

Copyright of Fundamenta Informaticae is the property of 10S Press and its content may not be copied or
emailed to multiple sites or posted to alistserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

