
Fundamenta Informaticae 93 (2009) 45–64 45

DOI 10.3233/FI-2009-87

IOS Press

JavaΩ: The Structures and the Implementation of a Preprocessor
for Java with m and mc parameters

Marco Bellia and M. Eugenia Occhiuto∗

Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

bellia@di.unipi.it; occhiuto@di.unipi.it

Abstract. M parameters extend Java by allowing methods to have methods as parameters. [8] fur-
nishes a semantics of mparameters and applications in OO programming. In this paper, we present
an implementation of the extended language based on programpreprocessing. We also discuss the
integration of the extended programs with ordinary Java programs, and hence Java API. Further-
more, mcparameters are defined: they are a variant of mparameters for which the class hierarchy
of the method passed as parameter must be provided in the formal and actual parameter. Seman-
tics for mcparameters is given but, in this case, an implementation with callbacks [20] is proposed.
Eventually, we discuss how mcparameters deal with overloaded methods.

1. Introduction

In [8] Java is extended with mechanisms which allow methods to have other methods as parameters. In
that paper we also argued the improvement of the expressive power of languages including such kind
of mechanisms, in particular code reusability and as a consequence code correctness. The extended
language semantics is defined through a meaning preservingE [[]]ρ transformation, which maps extended
programs into programs of ordinary Java (version 1.4).

In this paper, section 2, we describe an implementation ofE [[]]ρ [6]: it is designed as a one-pass
preprocessor [1], developed using Lex & Yacc [21] and GNU Bison [11]. The system is here forth
called JavaΩ. Section 3 shows an example of a program in the extended language, here forth called
Javaω, which uses Java API in order to show how ordinary Java programs can be integrated with Javaω

programs. This is possible even though standard Java API hasnot been preprocessed by JavaΩ, hence

∗Address for correspondence: Dipartimento di Informatica,Università di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa, Italy



46 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

methods there defined cannot be passed as parameters and are not higher order. A comparison of our
approach with other similar approaches [23, 25, 10] can be found in [5]. Recently a number of proposals
have been presented to add higher order features to Java [4, 12, 2, 19, 15, 13, 3]: all such proposals
are concerned with the closure addition. A discussion and comparison of the different proposals is
contained in [9] in which we also consider the inclusion of closures in Javaω and consequently in JavaΩ.
Among the others [12] also considers the possibility to havemethods that are values of the language,
hence can be returned by a method invocation, assigned to variables and passed as parameters, the latter
one is the same functionality addressed in this paper. In fact, [12] introduces two different ways to
select methods:method literalsexpress methods as objects ofjava.lang.reflect.Method at run
time, whilemethod referencesexpress methods as anonymous instances of single method interfaces or
abstract classes generated at compile time. Actually, i) method references are type safe and have the
same behavior as mcparameters, while method literals are not type safe, as mparameters, but their
use constraints programs as method references do. ii) Syntax for the invocation of method references
is not transparent, since it requires the use of a special method invokeaccording to the implementation
of method references. iii) The implementation of method references and mcparameters is similar but
[12] defines a distinct interface for each method reference,while we define only one interface which is
used for all mcparameters. iv) Method literals and method references havea non standard semantics
since they have a different meaning but share the same syntactic structure and the distinction between
the two forms depends on the context in which they occur. The advantage of our approach, see also
[8], is that: i) it offers a restricted, disciplined, form offunction abstraction which is suitable to the
integration of higher order and object oriented programming. ii) It furnishes a neat, standard, semantics
for the new mechanisms of mand mcparameters. iii) The use of mand mcparameters is completely
transparent to implementation. iv) The syntax of the invocation of m and mcparameters is uniform
with ordinary Java method invocation. In addition, programs in Javaω can be defined using all object-
oriented mechanisms of Java: that is higher order classes can be defined as extension of classes defined
in the API, adding higher order methods and implementing abstract first order methods using higher
order methods. In section 4, we extend Javaω with mc parameters already introduced in [8]. Syntax,
semantics andE [[]]ρ transformation are defined to deal with mcparameters. The interesting point here
is that theE [[]]ρ transformation defined, generates Java programs with callbacks [20]. In section 5, a
comparison between mand mcparameters is given, showing the example of Section 3 developed using
mc parameters and the transformed program, using callback. Eventually, mcparameters are extended to
deal with overloaded methods.

2. Implementation

2.1. Language extensions

The main extensions to Java are concerned with formal and actual parameters to include methods as
parameters and with the modifierfunctional for classes whose methods may be passed as parameters
in the program. If a class is declaredfunctional then JavaΩ transforms this class adding the code
which allows to pass its methods as parameters to higher order methods. Otherwise, only the higher
order methods definitions and invocations, occurring in theclass are transformed.



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 47

The Java grammar rules directly affected are listed below:

FModifier ::= Modifier | functional
FType ::= Type

| FunOrStaticFun FTList→ TypeOrVoid
FTList ::= [FType (, FType)*]
AExp ::= Argument

| Abs Identifier
FunOrStaticFun::= Fun | StaticFun
TypeOrVoid ::= Type| void

where,functional, Fun, StaticFun andAbs are new tokens, andFModifier, FTypeandAExpare the
new syntactic categories forModifier, TypeandArgument, respectively, defined in the Java 1.4 grammar
[17].

All these syntactic extensions are captured by the preprocessor JavaΩ as translation directives for a
source to source textual manipulation of the Javaω programs that produces equivalent programs written
in ordinary Java 1.4. The nature of this equivalence is discussed in [8] where the meaning preserving
transformationE [[]]ρ is formally defined on the basis of a semantic interpretationthat associates to each:

(i) ArgumentAbs g, the partial functionAg(s, t, c) below:

λs :S → λt :T → λc :C → M(g, s, t, c)

that, givens, t, c, selects the methodM(g, s, t, c), i.e. the method namedg in classc, with
signatures and result typet, if any.

(ii) Parameterp in Fun s → t p, together with the argumentAbs g supplied for it, the partial function
Ppg(c) below:

λc :C → M(g, s, t, c)

that, given a classc, selects methodM(g, s, t, c).

(iii) Occurrencee.p(e1,...,en) in the body of a method invoked with argumentAbs g supplied for param-
eterFun s → t p, the invocation of methodM(g, s, t, c), if any, wherec is the most specific class
of the object computed bye (or, the computed class, ife computes a class: in this caseM(g, s, t, c)
is a class method), ands is a correct signature for the types ofe1, ..., en. If M(g, s, t, c) does not
exist then the evaluation ofe.p(e1,...,en) abrupts and aMethodNotFoundException is thrown.

2.2. Preprocessing structures

The preprocessor JavaΩ is a plan implementation ofE [[]]ρ [8]. It provides for a complete traversal of the
source program in order to locate 1) the program classes, 2) the declarations of the higher order methods
and 3) the invocations of mparameters.



48 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

2.2.1. The class modifierfunctional.

From a syntactic point of view, the tagfunctional is a modifier that is reserved for class declaration. It
has been introduced, in JavaΩ, to explicitly declare the classes containing methods thatcan be passed, as
parameters. This means that only the methods of a functionalclass are mparameters and hence, need a
double mechanism of method invocation. In effect, they can be invoked through the use of a mparameter
invocation, in addition to the ordinary method invocation.The modifierfunctional avoids the useless
overhead of adding code, for such kind of double invocation,to all the methods of the classes in the
source program, confining it to the methods of the classes declaredfunctional.

When JavaΩ encounters a class declaredfunctional:

(1) it extends the source class header with the clauseimplements ApplyClass.

(2) it traverses all the class members, collects, in the listMethodHeader, the header of each (class and
object) method of the class, and produces a source to source textual manipulation of the body of
the methods as described in 2.2.2.2 and 2.2.3.3.

(3) it adds code to the class in order to allow each method of MethodHeader to be invoked as mpara-
meter. FollowingE [[]]ρ [8], this code consists of the definition of the methods of theinterface
ApplyClass. They areStaticApply and StaticApplyS for non void and void class meth-
ods, respectively, andApply andApplyS for non void and void object methods. These methods
share great part of the syntactic structure of the body, differing for the kind (class void, class non
void, object void, object non void) of the methods they deal with. The common part consists of
a switch statement mapping the method internal names into invocations of the corresponding
method with the right list of parameters. The preprocessor produces the code for the definition
of the private methodDispatcher that maps the strings, naming the methods, into their inter-
nal names: the internal name is assigned according to the position of the method within the list
MethodHeader. Eventually, the preprocessor splits MethodHeader into four sublists one for each
of the four kinds of methods. If one of the sublist is an empty list, the body of the corresponding
method ofApplyClass is: throw new MethodNotFoundException(). Once the common part
has been produced, the preprocessor completes the code of:

– StaticApply andApply, by enclosing the invocation previously generated, in eachcase
statement ofswitch, within a return statement;

– StaticApplyS andApplyS, with a break statement at the end of each case statement of
switch.

2.2.2. The mparameter: Fun and StaticFun declarations.

From a syntactic point of view, the tagsFun andStaticFun are keywords that prefix a pair of items,s

andt, that are separated by an arrow, and an identifierp. The preprocessor can find a structure of this
kind only when it is traversing the parameter list of a methoddeclaration. The declared method is a
higher ordermethod: The two items declare the method signatures and the returned typet, if any, of the
m parameters that can be passed to the higher order method. Theidentifierp is the name of the formal
m parameter. Eventually, the mparameter invocations ofp, in the body of the higher order method,



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 49

behave as invocations of object, resp. class, methods according to the tagFun, resp.StaticFun, in the
parameter list declaration and are preprocessed as described in 2.2.3.3.

When JavaΩ encounters the declaration of a mparameterFunOrStaticFun TList→ TypeOrVoid par:

(1) it adds to the list MParameter a record for the identifierpar. The record contains one entry for the
value ofFunOrStaticFun, another forFTList, and a last one forTypeOrVoid. The list implements
the enviromentρ of E [[]]ρ [8] and it maintains the scope of mparameters in the body of higher order
methods.

(2) it replaces the declarationFunOrStaticFun FTList→ TypeOrVoid parof the m para-meter with
String par

2.2.3. Invocation of mparameters.

From a syntactic point of view, the invocation of a mparameter involves two distinct structures: one to
express the actual mparameter which is bound to the formal mparameter, and another for the invocation
of the formal mparameter. The tagAbs prefixes an identifiermetName which specifies the name of
the method that can be passed to the higher order method. The preprocessor can find a structure of this
kind only when it is traversing the list of the actual parameters of a method invocation and the invoked
method is a higher order method whose formal parameter list has, in correspondence toAbs metName,
an mparameter as in 2.2.2.2. The invocation of a formal mparameter has a syntax which is not different
from ordinary method invocation, namelyexp sel argsfor an expressionexp, an identifierseland a list
of actualsargs, but the invocation is in the scope of a formal mparameter that has the same identifiersel
that occurs in the invocation.

When JavaΩ encounters an expression defining an actual mparameterAbs metName, it simply re-
moves the tagAbs and it checks the declaration of the invoked higher order method for the correspon-
dence of the parameter with a formal mparameter.

When JavaΩ encounters an invocationexp sel args, it checks the current list MParameter for the
occurrence of a mparameter of namesel, and in the affirmative case it extracts from the list the record
[FunOrStaticFun, FTList, TypeOrV oid], then:

(1) it produces a textSelector=A(sel,arg)for the method invocationA, where:

- A is ApplyS, resp. Apply, if TypeOrV oid is void, resp. a type, andFunOrStaticFunis
Fun, otherwiseA is StaticApplyS, resp.StaticApply, if TypeOrV oid is void, resp. a
type, andFunOrStaticFun is StaticFun;

- sel is the name of the invoked mparameter

- arg is the text for the array of arguments described in (3) below.

(2) it preprocesses the expressions in the listargs of the invocation arguments by obtaining the list
args′={(t1)exp1, ..., (tn)expn} for n ≥ 0 (args′={} for n = 0), where each expression in the list
args′ is cast to the corresponding type of the listFTList of the types expected for the arguments
of the m parameter invocation;

(3) it produces a textarg=new Object[]{(t1)exp1, ..., (tn)expn}, where the members ofargs′ be-
come elements of an array of arguments.



50 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

(4) it preprocesses expressionexp by obtaining expressionexp′: if exp is the empty text then
exp′=this. Then it produces the textPrimary=“((ApplyClass)exp′).” if either FunOrStat-
icFun is Fun or exp is not a class name,Primary=“exp′.” otherwise.

(5) eventually, it replaces the invocationexp sel argswith the invocation which results from the con-
catenation ofPrimary with Selector.

The preprocessor JavaΩ is completely implemented in Lex&Yacc [21] and in GNU Bison [11]. It
consists of one file Lex for generating a lexer of Javaω , of one file Bison for generating a parser of Javaω

and of auxiliary files for the language C procedures that implement the source to source translation
described in the previous three sections, and for the computation process documentation. In defining
the syntax of Javaω , for documentation sake, we choose to start from the officialgrammar of Java 1.4,
distributed in [17]. The grammar has been suitably extendedwith the grammar rules of Section 2.1 and it
results a LR(2) grammar [1]. JavaΩ has been designed as an attribute grammar for one-pass preprocessor.
Hence it produces the object code as it parses the source code, i.e. it evaluates the semantic rules during
the parsing. These rules furnish also an integrated pretty printer that shows the object code in a structured
and quite readable form.

3. Example with Java APIs

The example presented in this section, shows how higher order methods can be integrated with Java
APIs, defining higher order classes (that are classes with higher order methods), which extend classes of
Java APIs, in the same way as ordinary first order classes. Allobject-oriented mechanisms are available
including overloading and overriding.

The example defines an extension ofLinkedList namelyFList and an implementation ofCompa-
rable, namelyHighComparable. Such classes define higher order methods, in particularHighCompa-

rable, Fig.1, is an abstract class which implements interfaceComparable adding a higher order method
compareTo: It compares objects invoking the method, passed as parameter, on both the objects, to eval-
uate a value on which the objects are effectively compared. In the example shown, geometric shapes can
be compared considering either their areas or their perimeters. This is obtained passing methodarea
or methodperimeter as parameter to the higher order methodcompareTo. Higher ordercompareTo,
overloads first ordercompareTo, which is still undefined inHighComparable. It is implemented as an
invocation of method parameterm on boththis andx, the values returned are subtracted in order to eval-
uate 0 if such values are equal, a negative value if the value evaluated forthis is minor than the value
evaluated forx, positive otherwise.FList is defined in Fig.2 as an extension ofLinkedList, in which
the methodaddOrd is defined using higher order. MethodaddOrd, adds elements to the list suppos-
ing they are ordered and preserves such ordering. It uses theiterator (listIterator) of LinkedList.
The arguments passed are:x, the element to be inserted andm, a method which is to be used to com-
pare the elements in the list. The method invoked to compare the elements is the higher order method
compareTo, defined in the abstract classHighComparable. The method parameterm passed toaddOrd
is passed to higher ordercompareTo. The structure of the methodaddOrd is quite usual, it considers
the case in which the list is empty, otherwise the iteration starts, atry-catch clause is necessary to trap
NoSuchElementException. At each step an element in the list is compared (by means ofcompareTo)
to x (the element to insert) when a greater element is foundx is inserted before the current element. To



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 51

complete the example the abstract classShape, Circle andRectangle subclasses ofShape, and the
main method must be defined. Such definitions are shown in Fig. 3, with the exception of main where
only the list construction cycle is shown.The abstract class Shape type of the elements to be inserted
in the list, is defined as extendingHighComparable, inherits higher ordercompareTo and defines first
ordercompareTo (in the example it calls higher ordercompareTo passingarea as method parameter).

4. Mc parameters

In this section we extend Javaω with mc parameters with the aim to avoid generating a runtime exception
in case the method passed does not exist, and because it dealswith overloaded methods (see Sections
5.1)

4.1. Syntax and semantics of mcparameters

Differently from m parameters, mcparameters require the specification of the root of the classhierarchy
of all the classes to which the mcparameter can apply. The syntax forFType is extended with the
following productions, whereIdentifier is the root class name:

FType::= Fun Identifier: FTList → TypeOrVoid

As a matter of fact, the root class name is specified also in theactual mcparameter. This is done
extendingAExpwith the following production, where the second identifier is the root class name:

AExp::= Abs Identifier from Identifier

All these syntactic extensions yield the extended Java grammar of Fig. 10. The mcparameter se-
mantics is different from mparameter semantics. In this case the semantics interpretation associates
to:

(i) ArgumentAbs g from ca, the partial functionAgca
(cf , s, t, c) below:

λcf :C → λs:S → λt:T → λc:C → M(g, s, t, c) if c � cf � ca ∧M(g, s, t, ca) 6= ⊥

that, givencf , s, t, c, selects the methodM(g, s, t, c), i.e. the method namedg in classc, with
signatures and result typet: if M(g, s, t, c) 6= M(g, s, t, ca) then methodM(g, s, t, c) is an
overriding of methodM(g, s, t, ca) of classca. If M(g, s, t, ca) does not exist then the program
is not legal.

(ii) ParameterFun cf : s→ t p, together with the argumentAbs g from ca supplied for it, the partial
functionPpg(c) below:

λc:C → M(g, s, t, c) if c � cf � ca ∧M(g, s, t, ca) 6= ⊥

that, given a classc, subclass ofcf , selects methodM(g, s, t, c), provided that the classcf is
a subclass of the classca.



52 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

(iii) Occurrencee.p(e1,...,en) in the body of a method invoked with argumentAbs g from ca supplied
for parameterFun cf : s→ t p, the invocation of methodM(g, s, t, c) wherec is the most specific
class of the object computed bye (or, the computed class, ife computes a class: in this case
M(g, s, t, c) is a class method), ands is a correct signature for the types ofe1, ..., en.

The semantics states that, analogously to mparameters, the invoked method belongs to classc of the
object on which the method is invoked. The additional conditions specified for mcparameters, force:i)
the classc to be a subclass ofcf which must be a subclass ofca; ii) classca to contain a method with
nameg, signaturesand result typet. These two conditions can be checked at compile time. Such a check
guarantees that the evaluation ofe.p(e1,...,en) can never abrupt, at run time, because of a failure due to
the fact that the selected methodM(g, s, t, c) does not exist.

The transformation defined in this paper for mcparameters is based on computational structures
which are different from those in [8], since mcparameters are implemented using callback [16].

Callback is a way to pass executable code to procedures, hence to define higher order programs.
In OO languages callback is implemented through function objects [22, 20]. The idea comes from the
observation that everything can be modeled using objects. Hence classes are defined to use objects as
they were functions. In Section 4.2 we show a methodology which allows to write, in Java, higher order
methods using callback. The transformation defined in Section 4.3 is based on such a methodology.

4.2. Callback methodology

The methodology is based on the construction offunction objects, i.e. objects to be invoked as if they
where functions. The callback methodology is here described when the functions are actually methods.
It can be summarized in four points:

1. An interface representing (non void object) methods is here calledApplyClass. It has only one
methodApply whose first parameter is an object, namely the function object wrapping the method
to be invoked, while the second parameter is the array containing the method parameters, i.e. the
parameters on which the method, to be invoked, applies.

public interface ApplyClass { //for non void object methods

public abstract Object Apply(Object o, Object [] Pars) ;}

2. For each method which is to be passed as parameter a class offunction objects, which implements
ApplyClass and consequently the methodApply, must be defined.Apply invokes the wrapped
method on the object passed to it as first parameter with the arguments passed as second parameter.
Let C be thedefinition classof methods namedm1,...,mk, i.e. the class in which such methods
are declared. Suppose those methods have to be passed as parameters to other methods in the
program. Thenk classes must be defined: For each method namedmi, a classmi is defined as
implementation ofApplyClass, as follows:

static class mi implements ApplyClass{
public Object Apply(Object o, Object [] Pars){
return ((C) o).mi(Pars[0],Pars[1],...Pars[hi]);}}



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 53

3. Every higher order methodmh is defined having at least oneApplyClass parameter that is the
object function that contains the method to invoke by means of Apply.

public T mh (...ApplyClass o...)

{... o.Apply(obj, new Object[]{a0, a1, .., ahi
});...}

whereobj is the object on whichmi must be invoked andaj , for j ∈ [0..hi], are thehi + 1
arguments ofmi.

4. The invocation ofmh requires the construction of the function object containing the method

... E.mh(...new C.mi()...)

assuming that the classmi is defined as an inner class of its definition classC.

The methodology, described insofar, considers only non void, object, methods. For class methods
and/or void object methods, we have to consider, in point (1), one different interface for each of such
kinds of methods, for instance:

public interface ApplyClassS { //for void object methods

public abstract void Apply(Object o, Object [] Pars) ;}

public interface ApplyClassStatic { //for non void class methods

public abstract Object Apply(Object [] Pars) ;}

public interface ApplyClassStaticS { //for void class methods

public abstract void Apply(Object [] Pars) ;}

All these interfaces differ one another for the signature and/or the returned value of the methodApply.
Eventually, different solutions can be considered for the definition, in point (2), of the classes of

function objects. In the presentation given above we use inner classes but each of the following solutions
could be right:

Inner classesof classC. This is the solution we have shown above, in exemplifying points (1)-(4). In
this case, for each method, the definition of the class (of function objects) is inserted in classC.
It has the advantage of maintaining the definition of the classes (of function objects) local to the
definition class. It allows, among others, to look only at theclass definition of the method in order
to check if it can be used as a parameter anywhere else in the program.

Anonymous inner classesdefined in the invocation of higher order methods. In this case, point (2) is
suppressed while invocation in point (4) becomes:

... E.mh(...new ApplyClass(){
public Object Apply (Object o, Object [] Pars)

{return ((C)o).mi(Pars[0],Pars[1],...Pars[h]);}}...)



54 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

It is a compact solution but the resulting program is verboseand awkward (reading and writing).
Moreover, it leads to code duplication, if a given method is passed twice.

Stand alone classesoutside classC. In this case, classes in point (2) are somewhere in the program and
invocation in point (4) becomes:

... E.mh(...new ~mi()...)

wherem̃i is the reserved name for the class (of function objects) defined in point (2), for the method
namedmi. In fact, because of the unicity property of class names, a namespaces management [1]
would be required in this case, defining reserved identifiersfor such classes to eliminate class name
clashes in the program. A strategy similar to the one used in Pizza [24], [23], could be used. The
drawback of this solution is that locality property is lost [8, 14] and we have to check the entire
program in order to detect which methods are wrapped in theApply method of a class (of function
objects) and as a consequence, can be passed as a parameter.

4.3. E [[]]ρ transformation with callback

The transformation defined, Figg.11-12, can be considered an extension of the one defined in [8], but it
is here presented in a self contained way. However the partial functions that the semantics associates to
mc parameters, and the computational structures change. Actually the functions:

• differ one another fori) the method that must be selected once the object to apply to and the types
of the arguments of the invocation are known, andii) the computational structure to apply the
function to the object and to the argument values, while

• they share the computational structurei) to find the most specific method with that name and
types of the arguments,ii) to apply the selected method to the object with the argumentsof the
invocation, that is the invocation of methodApply (of interfaceApplyClass).

The computational structures of those functions are a sort of run-time support which is included in
the classes of the transformed program and is used through suitable methods. In Figg.11-12 the rules
of the transformation are given defining the classes of function objects as inner classes. Moreover, we
discuss how the rules implement the callback methodology totransform programs in Javaω into ordinary
Java code:

• ArgumentAbs g from ca is transformed (second rule ofAExp) replacing it withnew ca.g(). In
this way, the partial functionAgca

(cg, s, t, c), see(i) in Section 4.1, is implemented constructing
a function object (of the classg which is defined as an inner class ofca) that contains a method
Apply that wraps methodM(g, s, t, c), i.e. methodApply, given an objecto, with most specific
classc, and an array of arguments{a1, ..., an}, invokes methodM(g, s, t, c) ono with arguments
a1, ..., an. The cast, introduced in the rule ofClassDef(lines 10 and 14 - definitions of the classes
of function objects in Fig. 11) guarantees that the existence of methodM(g, s, t, ca) in classca is
checked at compile time on the program transformed byE [[]]ρ.



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 55

• ParameterFun cf :s→t p is transformed (second rule forFType) replacing it withApplyClass p.
In this way, the partial functionPpf (c), see(ii) in Section 4.1, is implemented by bindingp to
the function object resulting from the transformation of anargumentAbs g from ca, as described
above.

• The occurrencee.p(a1,...,an) in the body of a method with a parameterFun cf : s→ t p, is trans-
formed (first rule forExp) replacing it with(t)(p.Apply((cf)e, new Object[] {a1,...,an})).
In this way, the invocation of methodM(g, s, t, c), see(iii) in Section 4.1, is implemented invok-
ing methodApply of the function object bound top which, actually, results into the invocation of
the wrapped methodM(g, s, t, c) on e, with most specific classc, and argumentsa1, ..., an. The
cast, introduced in the first rule of the transformation ofExp, guarantees that the object resulting
from the evaluation ofe is of a classc which is subclass ofcf , specified in the formal parameter.
This is concerned with the subclass relationshipc � cf � ca required in (i)-(ii) of the semantics
of mc parameters which guarantees that every timee.p(a1,...,an) is executed methodM(g, s, t, c)
exists.

The transformationE [[]]ρ for the case in which the classes of function objects are defined as anonymous
inner classes is given in Fig. 13. In this case, it is not necessary to declare the classes asfunctional,
see Section 2.2.1.1, to use their methods as parameters in the program. As a matter of fact, the class
definition (of function objects) is given at the invocation of the higher order method. Hence the benefit
of the implementation using anonymous inner classes, for which also methods already defined and not
preprocessed, for instance API methods, can be passed as parameters.

5. Mc parameters vs mparameters: example

From a syntactic point of view mparameters differ from mcparameters since the latter specify, in ad-
dition to signature and return type, the class hierarchy which the passed method belongs to. This fact
has as consequence that programs that invoke a method with anactual argumentAbs g from ca, must
have that method declared with an mcparameterFun cf : s → t p wherecf � ca. In this section we
show the example described in section 3 using mcparameters.FList is still defined as an extension of
LinkedList with the higher order methodaddOrd. The two classesHighComparable andFList are
defined in Fig. 4 and 5. ClassShape is defined in Fig. 6, together with classesCircle andRectangle
and the sketch of methodmain. Comparing it with listings in Figg. 1-2-3, which use mparameters, we
note that both methodsaddOrd andcompareTo have an mcparameterFun Shape: → Double m. In
particular, since invoked with argumentAbs area from Shape (fourth line of listing in Fig. 6), method
compareTo can be invoked only with methods namedarea and defined in subclasses ofShape. As a
consequence, programming with this definition ofcompareTo is much more constraining than it would
be with the one in Fig. 1 which uses mparameter. On the other hand, with such definition it cannot
happen that invocations ofcompareTo turn out to throw exceptions trying to invoke methods (boundto
the mcparameter) that do not exist. In Fig. 7, 8 and 9 the previous defined example is transformed by
theE [[]]ρ transformation with callback defined in Section 4.3.Circle andRectangle class definitions
are the same as those in Fig. 3.



56 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun -> Double m, Object s){

Double a=(this.m()-(s.m())) ;

if (a>0) return 1;

else if (a==0) return 0; else return -1;}}

Figure 1. HighComparable definition

public class FList extends LinkedList{
public void addOrd(Fun -> Double m, HighComparable x){
if (!this.isEmpty()) {ListIterator i= this.listIterator(0);

int j=0;

try {
while(i.hasNext()&&((((HighComparable)i.next()).compareTo(m,x))<= 0))j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println(...);} }

else add(0,x);}}

Figure 2. FList definition

5.1. Method overloading

Introducing mcparameters, in Section 4, we mentioned the problem of passing overloaded methods.
In fact, to deal with overloaded methods, in addition to nameand to the belonging class, a signature
must be specified in order to determine, univocally, a method(among those sharing such a name in the
class). Moreover, on the basis of the signatures that the different overloaded methods have in the class,
Java resolves overloading at compile time, selecting, in each invocation, the method to be invoked and
leaves to method dispatch (see Section 15.12.4.4 in [18]) toresolve, at run time, possibly overridden
implementations of the selected method. This way of dealingwith methods allows overloaded methods
to be passed as parameters on the following conditions: i) actual parameters must specify the class and the
signature of the passed method; ii)E [[]]ρ must transform actual parameters in such a way that the compiler
can univocally select the overloaded method that must be invoked. Hence in order to pass overloaded
methods, mcparameters must be extended to specify the method signaturein the actual parameter, as
follows:

AExp::= Abs Identifier(FTList) from Identifier

As far as ii) is concerned a solution forE [[]]ρ is shown in Fig. 14, where the invocation of the wrapped
methodIdem constraints the type of the argument casting it to the type specified in the signature. The
solution given for mcparameters is based on anonymous inner classes. The other ways to define classes
for function objects, Section 4.2, require a specific name space management to assign to each class of
object functions, created for the methods to be passed as parameters, a unique name which depends on
the name, signature and belonging class of the method.



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 57

public functional abstract class Shape extends HighComparable {
public abstract Double area();

public abstract Double perimeter();

public int compareTo(Object s){return compareTo(Abs area ,s);} }
public class Circle extends Shape {

private double radius;

public Circle(double r){radius=r;}
public Double area() {return new Double(radius*radius*Math.PI);}
public Double perimeter() {return new Double(radius*2*Math.PI);}}

public class Rectangle extends Shape {
private double base;

private double height;

public Rectangle(double b, double h){base=b; height=h;}
public Double area() {return new Double(base*height);}
public Double perimeter() {return new Double(2*(base+height));}}

public static void main(String[] args){
...for (i=0; i<n;i++){...

Shape sh=readShape(in,x);

L.addOrd(Abs area,sh);

... }}

Figure 3. Shape, Circle, Rectangle andmain definition

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun Shape: -> Double m, Object s){

Double a=(this.m()-(s.m())) ;

if (a>0) return 1;

else if (a==0) return 0; else return -1;}}

Figure 4. HighComparable definition for mcparameter example

public class FList extends LinkedList{
public void addOrd(Fun Shape: -> Double m, HighComparable x){
if (!this.isEmpty()) {ListIterator i= this.listIterator(0);

int j=0;

try {
while(i.hasNext()&&((((HighComparable)i.next()).compareTo(m,x))<= 0))j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println(...);} }

else add(0,x);}}

Figure 5. FList definition for mcparameter example



58 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

public functional abstract class Shape extends HighComparable {
public abstract Double area();

public abstract Double perimeter();

public int compareTo(Object s){return compareTo(Abs area from Shape ,s);} }
public class Circle extends Shape {

private double radius;

public Circle(double r){radius=r;}
public Double area() {return new Double(radius*radius*Math.PI);}
public Double perimeter() {return new Double(radius*2*Math.PI);}}

public class Rectangle extends Shape {
private double base;

private double height;

public Rectangle(double b, double h){base=b; height=h;}
public Double area() {return new Double(base*height);}
public Double perimeter() {return new Double(2*(base+height));}}

public static void main(String[] args){
...for (i=0; i<n;i++){...

Shape sh=readShape(in,x);

L.addOrd(Abs area from Shape,sh);

... }}

Figure 6. Shape, Circle, Rectangle andmain definition for mcparameter example

public abstract class HighComparable implements Comparable{
public int compareTo(ApplyClass m, Object s){
Double a=(Double)(m.Apply((Shape)this, new Object[]{}))-

(Double)m.Apply((Shape)s, new Object[]{}));
if (a>0) return 1;

else if (a==0) return 0; else return -1 ;} }

Figure 7. Transformed program forHighComparable definition

public class FList extends LinkedList {
public void addOrd(ApplyClass m, HighComparable x){
if (!(this.isEmpty())) {ListIterator i= this.listIterator(0);

int j=0;

try {while ((i.hasNext()) && (((HighComparable)i.next()).compareTo(m,x)<=0)) j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println(...);}}

else add(0,x) ;}}

Figure 8. Transformed program forFList definition



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 59

public abstract class Shape extends HighComparable {
public abstract Double area();

public abstract Double perimeter();

public abstract String toString();

public int compareTo(Object s){return compareTo(new area(),s);}
static class area implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).area();}}

static class perimeter implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).perimeter();}}}

public static void main(String[] args){
...for (i=0; i<n;i++){...

Shape sh=readShape(in,x);

L.addOrd(new Shape.area(),sh);...} ...}

Figure 9. Transformed program forShape andmain definition

ClassDeclaration::= public class Identifier [extends Type] [implements TypeList]{(MemberDecl)*}
MemberDecl::= ;

|ModifiersOpt FieldDeclarator
|ModifiersOpt Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt Type Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOptvoid Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt ClassOrInterfaceDeclaration
|[static] Block

FParameters::= ([FParameter (,FParameter)*])
FParameter::= [ final ] FType VariableDeclaratorId
FType::= Type |Fun FTList→ Type |Fun FTList→ void

FTList::=[FType(, FType)*]
Selector::= .Identifier [Arguments] |.Par Arguments |.this

|.super SuperSuffix |.new InnerCreator|[Expression]
Arguments::= ([AExp (, AExp)*])
AExp::= Expression| Abs Identifierfrom Identifier

Figure 10. Extended syntax [17]



60 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

Let ClassDef≡ public class IdeA {
ModifiersOpt Type0 Ide0 [=Exp0] ; . . .ModifiersOpt Typeh Ideh [=Exph] ;
ModifiersOpt A(TypeC0

IdeC0
)BlockC0

. . .ModifiersOpt A(TypeCk
IdeCk

)BlockCk

ModifiersOpt TypeM0
IdeM0

(FTypeFPM0

IdeFPM0

) BlockM0

. . .ModifiersOpt TypeMk
IdeMk

(FTypeFPM
k

IdeFPM
k

) BlockMk

ModifiersOptvoid IdeMk+1
(FTypeFPM

k+1

IdeFPM
k+1

) BlockMk+1

. . .ModifiersOptvoid IdeMn
(FTypeFPMn

IdeFPMn

) BlockMn
}

E [[ClassDef]]ρ = public class IdeA {
ModifiersOpt Type0 Ide0[=E [[Exp0]]ρ] ; . . .ModifiersOpt Typeh Ideh[=E [[Exph]]ρ] ;
ModifiersOpt A(TypeC0

IdeC0
)E [[BlockC0

]]ρ . . .ModifiersOpt A(TypeCk
IdeCk

)E [[BlockCk
]]ρ

ModifiersOpt TypeM0
IdeM0

(E [[FTypeFPM0

IdeFPM0

]]ρ)E [[BlockM0
]]ρ′

0

. . .ModifiersOpt TypeMk
IdeMk

(E [[FTypeFPM
k

IdeFPM
k

]]ρ)E [[BlockMk
]]ρ′

k

ModifiersOptvoid IdeMk+1
(E [[FTypeFPM

k+1

IdeFPM
k+1

]]ρ)E [[BlockMk+1
]]ρ′

k+1

. . .ModifiersOptvoid IdeMn
(E [[FTypeFPMn

IdeFPMn

]]ρ)E [[BlockMn
]]ρ′

n
}

// inner classes of function objects wrapping the methods defined in the class
static classIdeM0

implements ApplyClass{
public Object Apply(Objecto, Object []Pars){

return ((IdeA) o).IdeM0
(Pars[0])}}

...
static classIdeMk

implements ApplyClass{
public Object Apply(Object o, Object []Pars){

return ((IdeA) o).IdeMk
(Pars[0])}}

}

Figure 11. TransformationE [[]]ρ - part 1



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 61

E [[Block]]ρ = E [[St]]ρ; E [[StList]]ρ with Block = St; StList

E [[Arguments]]ρ = (E [[AExp]]ρ(, E [[AExp]]ρ)∗)

E [[AExp]]ρ =

{

E [[Expression]]ρ with AExp= Expression

new IdeA.Ide() with AExp=Abs Idefrom IdeA

E [[FType]]ρ =











Type with FType= Type

ApplyClass with FType= Fun FType→ Type

ApplyClassS with FType= Fun FType→ void

E [[St]]ρ =































































Par.ApplyS((IdeA)E [[Exp
1
]]ρ, new Object []{(FType)E [[Exp

2
]]ρ}),

with St= Exp
1
.Par(Exp

2
) ∧

ρ(Par) = Fun IdeA: FType→ void

E [[Exp
1
]]ρ.Ide(E [[Exp

2
]]ρ), with St= Exp

1
.Ide(Exp

2
) ∧

ρ(Ide) = ⊥

if(E [[Exp]]ρ)E [[St1]]ρ else E [[St2]]ρ; with St= if Exp St
1
else St2

while(E [[Exp]]ρ)E [[St]]ρ with St= while Exp St

etc.

E [[Exp]]ρ =



















































((Type)(Par.Apply((IdeA)E [[Exp1]]ρ, new Object[]{(FType)E [[Exp2]]ρ}),

with Exp= Exp1.Par(Exp2) ∧

ρ(Par) = Fun IdeA: FType→ Type

E [[Exp
1
]]ρ.Ide(E2[[Exp]]ρ), with Exp= Exp

1
.Ide(Exp)

2
∧

ρ(Ide) = ⊥

E [[Exp
1
]]ρ Op E [[Exp

1
]]ρ with Exp= Exp

1
Op Exp

1

etc.

where:ρ′i = R[[FTypeMk
IdeMk

]]ρ
R[[FType Ide]]ρ(x) =FType if Ide= x
R[[FType Ide]]ρ(x) =ρ(x) if Ide 6=x

and Exp, St, StList, FParameters, Idestand forExpression, Statement, StatementList,
FormalParameters, Identifierrespectively;

Figure 12. TransformationE [[]]ρ - part 2



62 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

E [[AExp]]ρ =



















E [[Expression]]ρ withAExp= Expression

new ApplyClass{ withAExp=Abs Idem from IdeA

public Object Apply(Object o, Object []Pars){

return ((IdeA)o).Idem(Pars[0])}}

Figure 13. E [[]]ρ using anonymous inner classes

E [[AExp]]ρ =



















E [[Expression]]ρ withAExp= Expression

new ApplyClass{ withAExp=Abs Idem(Type) from IdeA

public Object Apply(Object o, Object []Pars){

return ((IdeA)o).Idem((Type) Pars[0])}}

Figure 14. E [[]]ρ for overloaded methods

6. Conclusions

In this paper we presented the implementation of the extended language Javaω firstly defined in [8]
through the rules systemE [[]]ρ. The system is a set of source to source translation rules that state the
meaning of the new constructs in terms of compositions of well known ordinary Java structures and pro-
vide a one pass translation process of the programs of the extended language back into ordinary Java
programs. Hence, the implementation is obtained through a source to source, one pass, preprocessor
[6, 7], easy to write using standard development tools [1, 21, 11]. Then, we discussed the integration of
programs written in Javaω with programs written in ordinary Java. We showed that higher order classes
can be defined as extension of classes defined in the APIs, adding higher order methods and implement-
ing abstract first order methods using higher order methods.Then, we applied the same approch used in
[8] to further extend the language with mcparameters, as a variant of mparameters, which specify the
belonging class and the name of the passed method. We defined syntax, semantics of mcparameters.
Then, we showed a four steps callback methodology for wrapping methods into function objects and
we extended transformationE [[]]ρ with rules translating programs with mcparameters into ordinary Java
programs using callback. It is worth noting that a transformation using callback cannot be defined for
m parameters, since callback requires the knowledge of the class the wrapped method belongs to. As
a matter of fact, the contrary would be possible that is mcparameters could be implemented using the
same technique of the transformation given in [8] for mparameters. Eventually, we compared program-
ming with m and mcparameters and we showed that mcparameters are much more constraining than
m parameters but they allow (i) a static checking on existenceof the passed method and (ii), extended
with method signature, the use of overloaded methods as parameters.



M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters 63

References

[1] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman.Compilers: Principles, Tecniques, and Tools. Addison-
Wesley, 2007.

[2] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Closures for java, 2006.
//blogs.sun.com/ahe/resource/closures.pdf.

[3] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Closures for the java programming language (aka
bgga), 2008. www.javac.info.

[4] D. Lea B. Lee and J. Bloch. Concise instance creation expressions: Closure without complexity, 2006.
crazybob.org/2006/10/java-closure-spectrum.html.

[5] M. Bellia and M.E. Occhiuto. Higher order programming through Java reflection. InCS&P’2004, volume 3,
pages 447–459, 2004.

[6] M. Bellia and M.E. Occhiuto. JH-preprocessor, 2007. www.di.unipi.it/∼occhiuto.

[7] M. Bellia and M.E. Occhiuto.JavaΩ: The Structures and the Implementation of a Preprocessor for Java
with m parameters. Technical Report TR-08-22, Dipartimento Informatica, University of Pisa, 2008.

[8] M. Bellia and M.E. Occhiuto. Methods as parameters: A preprocessing approach to higher order in java.
Fundamenta Informaticae, 85(1):35–50, 2008.

[9] M. Bellia and M.E. Occhiuto.JavaΩ: Preprocessing Closures in Java. Technical Report TR-09-03, Dipar-
timento Informatica, University of Pisa, 2009.

[10] B. Bringert. HOJ - higher-order Java, 2005. cs.chalmers.se/bringert/hoj.

[11] C.Donnely and R. Stallman. Bison: The yacc-compatibleparser generator, 2006.
www.gnu.org/software/bison/manual.

[12] S. Colebourne and S. Shulz. Firstclass methods: Java style closures, 2006.
docs.google.com/view?docid=ddhp95vd6hg3qhc.

[13] S. Colebourne, S. Shulz, and R. Clarkson. Fcm+jca, 2008.
docs.google.com/ View?docid=ddhp95vd0f7mcns.

[14] R. Dyer, H. Narayanappa, and H. Rajan. Nu: Preserving design modularity in object code.ACM SIGSOFT
Software Engeneering Notes, 31, 2006.

[15] N.M. Gafter. Jsr proposal: Closures for java, 2007. JavaCommunity Process, www.javac.info/consensus-
closure-jsr.html.

[16] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 2005.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha.The JavaTM Language Specification - Second Edition. Addi-
son-Wesley, 2000.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha.The JavaTM Language Specification - Third Edition. Addison-
Wesley, 2005.

[19] B. Goetz. The closures debate: Should closures be addedto the java language, and if so, how?, 2007. Java
Theory and Practice, IBM Technical Library, www.ibm.com/developerworks/java/library/j-jtp04247.html.

[20] C. Horstmann.Big Java ,3rd ed. Wiley Computing, 2007.

[21] J.R. Levine, T. Mason, and D. Brown.Lex & Yacc. OŔelly, 1995.



64 M. Bellia and M.E. Occhiuto / A Preprocessor for Java with mand mcparameters

[22] B. Meyer. The power of abstraction, reuse and simplicity: An object-oriented library for event-driven
design. InEssay in Memory of Ole-Johan Dahl 2004, volume 2635 ofLNCS, pages 236–271. Springer,
2004.

[23] M. Odersky, E. Runne, and P. Wadler. Two ways to bake yourpizza - translating parameterised types into
Java. InGeneric Programming 1998, Proceedings of a Dagstuhl Seminar,LNCS 1766., pages 114–132,
1998.

[24] M. Odersky and P. Wadler. Pizza into Java: translating theory into practice. InProc. 24th Symposium on
Principles of Programming Languages, pages 146–159, 1997.

[25] A. Setzer. Java as a functional programming language. In TYPES 2002,LNCS 2646., pages 279–298, 2003.





Copyright of Fundamenta Informaticae is the property of IOS Press and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


