
Published in IET Software
Received on 14th August 2011
Revised on 10th February 2012
doi: 10.1049/iet-sen.2011.0144

ISSN 1751-8806

Heuristic optimisation algorithm for Java
dynamic compilation
Y. Liu1 A.S. Fong2

1Faculty of Computer, Guangdong University of Technology, University Mega Center, Guangzhou 51006,
People’s Republic of China
2Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
E-mail: yjliu2002@163.com

Abstract: Dynamic compilation increases Java virtual machine (JVM) performance because running compiled codes is faster
than interpreting Java bytecodes. However, inappropriate decision on dynamic compilation may degrade performance owing
to compilation overhead. A good heuristic algorithm for dynamic compilation should achieve an appropriate balance between
compilation overhead and performance gain in each method invocation sequence. A method-size and execution-time heuristic
algorithm is proposed in the study. The key principle of the algorithm is that different method-sizes necessitate different
compile thresholds for optimal performance. A parameter search mechanism using a genetic algorithm for dynamic
compilation is proposed to find optimised multi-thresholds in the algorithm. This heuristic algorithm is evaluated in an
openJDK Java Server JVM using SPEC JVM98 benchmark suite. The algorithm shows an overall advantage in performance
speedup when testing benchmarks and gain speedup by 19.1% on average. The algorithm also increases the performance of
original openJDK by 10.2% when extended to the whole benchmark suite.

1 Introduction

A traditional Java virtual machine (JVM) executes Java
bytecodes as an interpreter, which emulates and decodes
bytecodes into native computer machine code through
software at runtime. Since interpreting bytec odes into machine
codes is rather straightforward, a Java interpreter is simpler in
design and requires less resource of CPU and memory, than
conventional compilers. However, the performance of
interpretation is slow, compared with compiling with native
machine code. To improve the performance of a JVM, a just-
in-time (JIT) compiler is included which compiles bytecodes
to underlying machine codes. During compiling, some
instruction-level optimisations can be made to increase
performance. Moreover, the compiled machine codes of the
executed program segments are saved, so that if a program
segment needs to be executed again, the respective saved
machine codes are used for direct execution, saving the time of
interpreting. Compiling bytecodes costs considerable time
overhead, while executing machine code rather than
interpreting bytecodes saves time in each invocation. Therefore
the selection of interpreting and compiling should be based on
appropriate profiling of the attributes of program segments
[1, 2]. Decisions on whether to compile bytecodes are usually
made on a per-method basis. Intuitively, frequently executed
methods should be compiled. Investigation must be made to
determine if there are any other attributes of a method to be
used as heuristics to make such a decision.

In this paper, a heuristic optimisation algorithm is proposed
for Java dynamic compilation. We use method-size and

execution-time as heuristic parameters to decide whether to
compile a method or not. In the algorithm, method-sizes
will determine their respective execution-time thresholds.
Only if the execution-time of a method exceeds the
respective threshold is the method compiled. Otherwise, it
executes in an interpreting way. The threshold parameters
of method-sizes and thresholds are searched by analysing
Java benchmark programs. A genetic algorithm (GA) is
used to minimise the search space of parameter numbers
and parameter values during the process of finding
optimised thresholds.

The remainder of the paper is organised as follows: Section
2 reviews related works. Section 3 discusses which method
attributes should be considered when making a decision of
dynamic compilation, and proposes a method-size and
execution-time heuristic algorithm for optimisation. Section
4 proposes an optimised heuristic parameter search
mechanism using a genetic algorithm. Section 5 describes
the experiment set-up and methodology and the experiment
results. Finally, Section 6 summarises the work and the
findings.

2 Related works

JIT compilers, such as Caffeine compiler [3] and native
executable translation (NET) compiler [4], compile Java
methods when they are invoked at the first time. JIT
compilers outperform the interpreters in speed when there
are a large amount of reuses of methods. However,
compiling consumes extra time overhead. If programs

IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312 307
doi: 10.1049/iet-sen.2011.0144 & The Institution of Engineering and Technology 2012

www.ietdl.org



contain lots of method codes rarely reused, the overall
performance may be degraded. Dynamic or hotspot
compilers, such as IBM’s Jalapeno JVM [5] and Sun’s
HotSpot JVM [6], are designed to increase overall
performance of Java execution. Java dynamic compilers use
different heuristic approaches and different profiling
techniques to identify frequently used methods and compile
them on the fly. Good detection and profiling techniques
balance the trade-off between compilation time and running
time. Some heuristics were proposed to identify the most
suitable heuristics for dynamic compilation.

It is important to estimate which methods are often being
executed, which are called ‘hot’ or frequently used
methods. The most accurate estimation is the accumulated
execution-time of each method by summing the execution
time from start to exit of every invocation, but accurate
measurement during run-time Java execution imposes a big
overhead. To minimise overhead, some profiling
information is used to estimate each method’s execution
time to justify whether it is likely to be called again
subsequently. Some compilation heuristics are used to
identify these hot spots and to trigger JIT compiler. The
most popular heuristics are:

† Call stack sampling
† Counters

IBM JVM and Jikes RVM [7] use call stack sampling to
select compile candidate. A sampling-based profiler [8]
gathers information about program thread execution through
keeping track of methods where the application threads are
consuming the most CPU time by periodically sneaking the
program counters of all the threads to identify which
methods are currently being executed. The profiler then
increments a hotness counter associated with each method
[9, 10].

Counters are simple to implement and are commonly used
by JVMs. The estimated execution time of a method is
described by a number of counters. The estimated
execution-time of each method is predicted by the current
number of invocations on the corresponding method. The
invocation number is profiled by a counter associated with
each method. Compared to the sampling method, method
invocation counter provides a simpler method for
comparable estimation but it has the disadvantage of
overhead increases proportionally with the invocation
number during interpretation. The algorithm by counter
uses a basic inequality to determine hot methods that are to
be compiled. It is a simple heuristic algorithm and most
JVMs use it as a fundamental mechanism to trigger the
dynamic compiler. The most popular one is HotSpot JVM
[6] developed by Longview Technologies, which was
acquired by Sun Microsystems. We also adapt a similar
counter-based heuristic in the proposed algorithm.

Sun HotSpot JVM uses software counters as the heuristic.
Methods identified as hot methods when the values of the
corresponding counters are larger than the compile
threshold. HotSpot JVM also uses backward branch count
as a metric to capture frequently executed methods
since backward branch count mimics the number of loops
a method executed. The compile threshold value is a
static number. HotSpot JVM can be used in a server or
a client computer, where the original server JVM has a
predefined compile threshold of 10 000 and the client JVM
has a compile threshold of 1500. HotSpot JVM uses
the following equation to estimate the execution time of

a method

Execution time (method) = Invocation count (method)

+ backward branch count (method)

The decision-making algorithm of Sun hotspot JVM is
illustrated by Fig. 1. If the execution time of a method
exceeds a previously defined threshold, it is to be compiled.
This is a time-only heuristic.

Simple heuristic proposed by Jonathan L. Schilling
includes method-size as a heuristic metric [11]. Method-size
and method invocation count are used as a heuristic which
is implemented in SCO JDK 1.1.7B. Simple heuristic does
not consider backward branch count as a metric since it is
difficult to implement in the SCO/Caldera JIT. The heuristic
mechanism is characterised by Fig. 2. Schilling believes
that if the size of a method or its execution-time exceeds a
certain number, the method should be compiled. The
boundary points shown in Fig. 2 are labelled as
JIT_MIN_SIZE and JIT_MIN_TIMES. The slope between
these points is a dividing line of decision-making. If a
method is categorised within the area below the line, it
should not be compiled; otherwise, it should be compiled.
Schilling picked some arbitrary numbers by trial to define
the values of JIT_MIN_SIZE and JIT_MIN_TIMES
(JIT_MIN_SIZE ¼ 150 and JIT_MIN_TIMES ¼ 40).

Fig. 1 Time-only heuristic used in Sun HotSpot JVM

Fig. 2 Simple heuristic used in SCO JDK

308 IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-sen.2011.0144

www.ietdl.org



Through the experiment on SPEC JVM98 benchmarks
[12], the simple heuristic outperforms the ‘No-JIT’ heuristic
and ‘Size-only’ heuristic. However, it is slower than the
unconditional compilation – ‘Always-JIT’ at the tests of all
benchmarks and slower than ‘Time-only’ heuristic for some
benchmarks in JVM98 benchmark suite.

3 Heuristic algorithm for dynamic
compilation

Dynamic compilation should be done with appropriate trade-
off between compilation time overhead and performance gain
in each cycle of method invocation using compiled native
machine codes. A decision is made by comparing the time
difference between the two scenarios of interpreting and
compiling as defined in (1)

DTbenefit = Titp − Tcpl (1)

In the equation, DTbenefit is the time benefit obtained from
compiling bytecodes rather than interpreting them; Titp is
the time used in executing a program method by
interpreting; Tcpl is the time used in executing the method
by compiling. Assuming the method is executed for n
times, then Titp ¼ n(Ti + Tmio1), where Ti is the execution-
time to run the method for one time by interpreting, Tmio1 is
the time overhead of each method evocation.
Tcpl ¼ Tc + n(Tn + Tmio2) + Toverhead, where Tc is the time
used to compile the method to native code; Tn is the
execution-time to run native machine code of the method
for one time; Tmio2 is the time overhead of each method
call; Toverhead is the time overhead used by making decision
whether to compile the method, including the overheads of
method profiling and selecting, or not. Then (1) becomes (2)

DTbenefit = n(Ti + Tmio1) − [Tc + n(Tn + Tmio2) + Toverhead]

(2)

Let us assume Tmio1 ¼ Tmio2, (2) becomes (3)

DTbenefit = n(Ti − Tn) − Tc − Toverhead (3)

Therefore there is a reasonable linear relationship between the
size of a method (l ) and its compiling time (Tc) through
investigating SPEC JVM98 benchmarks. However, there is
no apparent linear relationship between method-size and its
interpreted execution-time (or compiled code execution-
time) [11]. Intuitively, execution-time of a method has a
relationship with its size (s) and the number of internal
loops (l ). Toverhead is mainly caused by profiling mechanism
and selection algorithm used by a JVM. Toverhead normally
has no relationship with method-size (s), but has a
relationship with n and l since these parameters should be
counted during run time. Through this analysis, DTbenefit is
a function of at least three parameters, namely n, l and s.
Maybe some other parameters also affect DTbenefit, but we
want to keep the algorithm simple.

From the analysis, we conclude that decision of dynamic
compilation can be made by profiling execution-time (or
frequency) of a method (influenced by n and l ) and its
bytecode size (defined as s). For a given method, the
bytecode size is fixed, we need to find a threshold of
execution frequency to make DTbenefit positive. Methods
with different sizes have different thresholds. If the
execution-time of a method exceeds a corresponding

threshold, it will be compiled, else it will be interpreted. In
practice, we put method-sizes into several categories. Each
category has a corresponding compile threshold. A
purposed heuristic algorithm is illustrated in Fig. 3. The
figure shows that method-sizes are classified into four
categories. The grey part in the coordinate system indicates
those methods that do not need to compile, and the white
part represents the methods need to compile. MSTH[i]
represents a method-size threshold. MSTH[i-1] and
MSTH[i] define method category i. ETTH[i] means the
execution-time threshold of category i. A method falls in
category i based on its method-size. For example if a
method has a method-size (ms) greater than MSTH[1] and
less than MSTH[2] and its execution-time (et) greater than
ETTH[2], it is to be compiled. Since there are four
execution-time threshold parameters for comparison in the
figure, we call the algorithm ‘4-level heuristic algorithm’.
Consequently, a two-level heuristic algorithm has three
threshold parameters (ETTH[0, MSTH[0], ETTH[1]); a
three-level algorithm has five parameters (ETTH[0],
MSTH[0], ETTH[1], MSTH[1], ETTH[2]); a four-level
algorithm has seven parameters as shown in Fig. 3.

4 Optimised heuristic parameter search
using genetic algorithm

The heuristic algorithm proposed in the preceding section
creates a problem which needs to be solved critically. Since
we need more metric combinations for compile decision,
increase of parameter count causes the search space of
finding parameter values expand exponentially. Compared
to both HotSpot and the simple heuristic in which the
numbers of static parameters are only one (compile
threshold) and two (JIT_MIN_TIME and JIT_MIN_SIZE),
respectively, the proposed algorithm has at least three
threshold parameters for two-level comparison, including
ETTH[0], MSTH[0] and ETTH[1]. The parameter number
expands to five for three-level comparison, seven for four-
level and more when the level of decision increases. It is
hard to find optimised threshold parameters simply by
picking up some static values arbitrarily by trial, since it
has a huge set of values with so many combinations to be
selected for optimal decisions. An evolutionary heuristics
optimisation algorithm is proposed to encounter the
problem and search the optimised threshold parameter values.

Fig. 3 Proposed four-level heuristic algorithm for dynamic
compilation

IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312 309
doi: 10.1049/iet-sen.2011.0144 & The Institution of Engineering and Technology 2012

www.ietdl.org



The evolutionary algorithm [13] does an iterative process
to generate a population of candidacy, and then uses search
techniques to find the optimised solutions. In this work, a
GA [14] is used to solve the problem of huge search space
during the process of searching optimised threshold
parameters.

Two issues should be defined in the genetic algorithm:

1. a genetic representation (chromosome) of the solution
domain;
2. a fitness function to evaluate the solution domain.

For the first issue, a chromosome refers to a candidate
solution and we encode it in a bit string. A chromosome is a
block of bits that encodes several parameters. We choose a
one-dimensional genome array (GAArray) with 16-bit
unsigned integers to represent threshold values. Each
extendable array consists of at least three elements for the
heuristic using two-level comparison. The entire array format
represents the feasible solution as shown in Fig. 4. Since
each threshold has its constrained value, we further define
the constraints for different thresholds. For examples
execution-time thresholds (ETTH[i]) are bounded in values
between 0 and 50 000, and method-size thresholds
(MSTH[i]) are bounded in values between 0 and 5000, and
also with another constraint of
MSTH[0] , MSTH[1] , MSTH[2] , . . . , etc. Fig. 4
illustrates the chromosome format for three-level heuristic
algorithm with three thresholds.

For the second issue, a fitness function is defined to
evaluate the solution domain. GA is a method to optimise a
particular function, where the goal is to pick the optimised
parameter values that maximise or minimise the multi-
parameter fitness function. An appropriate fitness function
is crucial to capture the best candidate. Our objective is to
calculate the best heuristic metrics for dynamic compilation
in JVM in order to minimise the overall application
execution-time. We include Java benchmarks in the fitness
function to estimate the total execution-time. The fitness
function for an individual benchmark (pi) is defined by (4).

f (pi) = execution time (pi) (4)

The fitness function for an individual benchmark is the
execution time of the benchmark program under the tests
using different chromosomes. The optimised parameters can
be decoded from the chromosome making the fitness
function (execution time) minimal.

However, when trying to find the optimised threshold
parameters using a benchmark suite (p) containing several
benchmark programs (pi), the sum of the execution-time of
different benchmarks, defined by (5), is not suitable because
it may have partiality for the programs having long
execution time.

f (p) =
∑

pi[p

execution time (pi) (5)

The execution time of different benchmarks should be
normalised. The normalised fitness function for a suite
including several benchmarks is defined by (6).

f (p) =
∑

pi[p

execution time (pi)

norm time (pi)
(6)

The norm_time (pi) is calculated in order to obtain the
optimised threshold parameters of individual benchmark
(pi). We store the smallest 100 execution-time values of
benchmark pi and the mean value of the100 minimal 100
execution-time values is used as norm_time (pi).

A system may mainly be utilised to perform some
particular functions and the corresponding benchmarks
should have more weight to the fitness function. For this,
we add a weight metric to (6) and it becomes (7).

f (p) =
∑

pi[p

wi

execution time (pi)

norm time (pi)
(7)

where wi is the weight of benchmark pi. For example if a JVM
runs on a database server in which approximately 70% of the
time is used to execute database operations, we will set wi to
0.7 for database benchmark. In our experiment, all
benchmarks have the same weight (wi ¼ 1/n, where n is the
benchmark program count in the suite).

5 Experiment set-up and result

5.1 Experiment set-up

The objective of the experiment is to measure the
performance with various thresholds to achieve optimised
results, with different benchmarks under a popular platform.

The proposed heuristic algorithm is implemented in
OpenJDK [15] for testing purpose. A modified OpenJDK is
invoked from the fitness function of the GA program to
test and verify the proposed heuristic optimisation
algorithm. We choose OpenJDK as an implementation
basis because among the available open-source JVMs in
the market, Sun HotSpot JVM is a popular one and it is
open-source. OpenJDK is promising for the free software
community. The hardware and software environment is
listed as follows

Hardware:

† Processor: Intelw Pentiumw Dual CPU 3.00 GHz
† Memory: 3.0 GB
† Available disk space: 19.3 GB

Software:

1. Operating System:
† Fedora Release 9 (Sulphur)
† Kernel Linux 2.6.25-14.fc9.i686
† GNOME 2.22.1

2. C/C++ compiler: GNU g++ (GCC) 4.3.0
3. IDE: NetBeans IDE 6.5

We choose Server JVM rather than Client JVM in the
experiment. To minimise overheads of background
operating processes such as networking, graphical user
interfaces, multithreading, input–output drivers etc. the
whole evaluation process of the proposed algorithm is

Fig. 4 Chromosome representation of the proposed genetic
algorithm

310 IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-sen.2011.0144

www.ietdl.org



executed in single user and single CPU mode. The GNOME
is not started. Moreover, the clock speed of CPU is tuned
down to 1.5 GHz to avoid the sudden throttle of the CPU
clock in case of getting overheated for the long period of
iterative execution during optimisation. The actual
implementation of the experiment method involves
relationships among different components shown in Fig. 5.

According to the figure, the proposed heuristic algorithm is
implemented in OpenJDK. We choose SPEC JVM98 as the
benchmark suite to integrate in the heuristic optimisation
algorithm. The benchmark suite is used in the tuning of
best combination of heuristic in the JVM system. The GA
is designed and implemented using the GAlib libraries [16]
of version 2.4.7. The proposed objective fitness function
and the genome (chromosome) representation are discussed
previously. In every GA iteration process, the objective
fitness function is invoked. It passes the generated genome
array to the modified OpenJDK. The JDK runs the
benchmarks with the heuristic algorithm proposed in
Section 3. The execution-time values of the benchmarks are
fed back to the GA for further evaluation. The iterative
process keeps on running till the optimised parameters are
found.

5.2 Experiment results

The SPEC JVM98 [12] are chosen as the benchmark suite,
including seven benchmarks – _201_compress, _202_jess,
_209_db, _213_javac, _222_mpegaudio, _227_mtrt and

_228_jack. First, we search the optimised threshold
parameters using individual benchmarks. The performance
of the original openJDK with a system-predefined compile
threshold of 10 000 (server) is used as a standard for
comparisons. Three levels of comparison algorithms are
used in the experiment. One-level comparison is a time-
only heuristic, where when execution-time of a method
exceeds the defined compile threshold it is compiled. Two-
level comparison has three thresholds – (ETTH[0],
MSTH[0], ETTH[1]). 3-level comparison has five
thresholds – (ETTH[0], MSTH[0], ETTH[1], MSTH[2],
ETTH[2]). The optimised threshold parameters searched by
the GA are listed in Table 1. The performance speedup
using the proposed heuristic algorithm with the optimised
threshold parameters is shown in Fig. 6. As shown, the GA
identifies the optimised threshold parameters and the
proposed heuristic algorithm using the searched optimised
thresholds speedups original openJDK by an average of
15.7%.

We then use the GA to find the optimised parameters on the
whole JVM98 benchmark suite. The optimised parameters in
different levels are (6773), (7191, 1375, 28 708), (2490,
1316, 18 132, 4098) and (6282, 1918, 19 725, 2061,
12 674, 3005, 29 449). Fig. 7 shows the speedup results
compared to the original openJDK with a predefined
compileThreshold of 10 000 for Server JVM. The one-level
optimisation with optimised compile threshold of (6773)
achieves 4.3% speedup; the 2-level heuristic algorithm
using optimised parameters (7191, 1375, 28 708) achieves a
speedup of 10.2%; the three-level algorithm using
parameters (2490, 1316, 18 132, 4098) achieves a speedup
of 6.1%; the four-level algorithm using parameters (6282,
1918, 19 725, 2061, 12 674, 3005, 29 449) achieves a
speedup of 6.3%. From the experiment results, the

Fig. 5 Relationships among related components on genetic
algorithm

Table 1 Optimised threshold parameter found by GA under different scenario

Benchmark

program

Optimised thresholds,

Time only

Optimised thresholds,

2-level comparison

Optimised thresholds,

3-level comparison

_201_compress 14 021 (3538, 503, 13 519) (3856, 12, 7400, 481, 3851)

_202_jess 6284 (5883, 1439, 16 429) (7642, 1689, 17 116, 4877, 8439)

_209_db 4348 (6477, 3705, 24 836) (29 266, 2171, 29 185, 3304, 25 685)

_213_javac 2341 (2723, 1366, 9561) (2897, 2463, 16 458, 2669, 19 987)

_222_mpegaudio 24 908 (22 318, 274, 5866) (24 702, 326, 1157, 4306, 21 794)

_227_mtrt 2676 (2839, 40, 2080) (2210, 2980, 16 068, 3605, 18 678)

_228_jack 2842 (1368, 1132, 24 869) (3875, 519, 9030, 3871, 29 992)

Fig. 6 Speedup using the proposed heuristic algorithm on
individual benchmarks

IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312 311
doi: 10.1049/iet-sen.2011.0144 & The Institution of Engineering and Technology 2012

www.ietdl.org



two-level comparison heuristic algorithm is shown to perform
the best in the whole benchmark suite analysis.

5.3 Experiment result analysis

From the analysis of the experiment results on individual
benchmarks and the whole JVM98 benchmark suite, it
is shown that a significant speedup can be achieved using
the proposed adaptive heuristic algorithm with the
optimised threshold parameters searched through the genetic
algorithm. Moreover, the heuristic algorithm in two-level
scenario with three thresholds (ETTH[0], MSTH[0],
ETTH[1] – 7191, 1375, 28 708) performs better than in
other scenarios. Implemented in Server openJDK JVM, the
two-level algorithm increases the performance of original
JVM by 19.1% using individual benchmarks and 10.2%
using the whole benchmark suite.

6 Conclusion

Dynamic compilation in Java should be done after
considering trade-off between compiling overhead and
performance gain using compiling machine code. In this
paper, a method-size and execution-time heuristic algorithm
is proposed to make decisions on dynamic compilation.
Methods are put in different categories based on their
bytecode sizes. Different categories have different compile
thresholds. Only if the execution-time of a method exceeds
the corresponding thresholds is it compiled. This is a
multiple-parameter heuristic algorithm and search space of
finding optimised thresholds is huge. A GA method is
proposed to reduce the search space of multiple parameter
combinations in finding the optimised threshold values. The

proposed two-level heuristic algorithm using the searched
optimised threshold parameters speeds up the openJDK
Server averagely by 19.1% for individual benchmarks, and
10.2% for a whole SPEC JVM98 suite.

7 Acknowledgments

The authors would like to thank the members of Project HISC
team, in particular, C. H. Yau. The work described in this
paper was partially supported by Strategic Research Grant
(no. 7002602) from the City University of Hong Kong and
was also supported by National Natural Science Foundation
of China (no. 61106019).

8 References

1 Sundaresan, V., Maier, D., Ramarao, P., Stoodley, M.: ‘Experiences
with multi-threading and dynamic class loading in a Java just-in-time
compiler’. Int. Symp. on Code Generation and Optimization, CGO
2006, March 2006, pp. 26–29

2 Goetz, B.: ‘Java theory and practice: garbage collection in the 1.4.1
JVM’, DeveloperWorks, IBM, available at http://www.ibm.com/
developerworks/library/j-jtp12214/, December 2004

3 Hsieh, C.-H.A., Gyllenhaal, J.C., Hwu, W.W.: ‘Java bytecode to native
code translation: the Caffeine prototype and preliminary results’. Proc.
29th Annual IEEE/ACM Int. Symp. on Microarchitecture 1996,
MICRO-29, 2–4 December 1996, pp. 90–97

4 Hsieh, C.-H.A., Conte, M.T., Johnson, T.L., Gyllenhaal, J.C., Hwu,
W.-M.W.: ‘Compilers for improved Java performance’, Computer,
1997, 30, (6), pp. 67–75

5 Michael, G., Jong-Deok, C., Stephen, F., et al.: ‘The Jalapeño dynamic
optimizing compiler for Java’. ACM 1999 Java Grande Conf., June
1999, pp. 129–141

6 Sun Microsystems, Inc.: ‘The Java HotSpot performance engine
architecture’, available at http://java.sun.com/products/hotspot/docs/
whitepaper/, April 1999

7 Jikes RVM, available at http://jikesrvm.org/, Feb. 2012
8 Whaley, J.: ‘A portable sampling-based profiler for java virtual

machines’. Proc. ACM 2000 Java Grande Conf., June 2000, pp. 78–87
9 Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H., Nakatani, T.:

‘Design and evaluation of dynamic optimizations for a java just-in-
time compiler’, ACM Trans. Program. Lang. Syst., 2005, 27, (4),
pp. 732–785

10 Toshio, S., Toshiaki, Y., Toshio, N.: ‘A region-based compilation
technique for dynamic compilers’, ACM Trans. Program. Lang. Syst.
(TOPLAS), 2006, 28, (1), pp. 134–174

11 Schilling, J.L.: ‘The simplest heuristics may be the best in java JIT
compilers’, SIGPLAN Not., 2003, 38, (2), pp. 36–46

12 SPEC.: ‘JVM98 Benchmark suits’, available at http://www.spec.org/
jvm98, Aug. 1998

13 Michalewicz, Z.: ‘Genetic algorithm + data structure ¼ evolution
program’ (Springer-Verlag, 1996, 3rd edn.)

14 Man, K.F., Tang, K.S., Kwong, S.: ‘Genetic algorithms’ (Springer-
Verlag, 1999)

15 OpenJDK, available at http://openjdk.java.net/, Jul. 2011
16 Wall, M.: ‘GALib: A C++ library for genetic algorithm components’,

version 2.4, Documentation Revision B, MIT, 1996

Fig. 7 Speedup using the proposed heuristic algorithm on JVM98
suite

312 IET Softw., 2012, Vol. 6, Iss. 4, pp. 307–312

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-sen.2011.0144

www.ietdl.org

http://www.ibm.com/developerworks/library/j-jtp12214/
http://www.ibm.com/developerworks/library/j-jtp12214/
http://java.sun.com/products/hotspot/docs/whitepaper/
http://java.sun.com/products/hotspot/docs/whitepaper/
http://jikesrvm.org/
http://www.spec.org/jvm98
http://www.spec.org/jvm98
http://openjdk.java.net/


Copyright of IET Software is the property of Institution of Engineering & Technology and its content may not

be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


