
doi:10.1145/1839676.1839698

november 2010 | vol. 53 | no. 11 | communications of the acm 85

Goldilocks:
A Race-Aware Java Runtime
By Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran

Abstract
We present Goldilocks, a Java runtime that monitors
program executions and throws a DataRaceException
when a data race is about to occur. This prevents racy
accesses from taking place, and allows race conditions to
be handled before they cause errors that may be difficult
to diagnose later. The DataRaceException is a valuable
debugging tool, and, if supported with reasonable compu-
tational overhead, can be an important safety feature for
deployed programs. Experiments by us and others on race-
aware Java runtimes indicate that the DataRaceException
may be a viable mechanism to enforce the safety of execu-
tions of multithreaded Java programs.

An important benefit of DataRaceException is that
executions in our runtime are guaranteed to be race free
and thus sequentially consistent as per the Java Memory
Model. This strong guarantee provides an easy-to-use, clean
semantics to programmers, and helps to rule out many
concurrency-related possibilities as the cause of errors. To
support the DataRaceException, our runtime incorpo-
rates the novel Goldilocks algorithm for precise dynamic race
detection. The Goldilocks algorithm is general, intuitive, and
can handle different synchronization patterns uniformly.

1. INTRODUCTION
When two accesses by two different threads to a shared
variable are enabled simultaneously, i.e., at the same pro-
gram state, a race condition is said to occur. An equiva-
lent definition involves an execution in which two threads
make conflicting accesses to a variable without proper
synchronization actions being executed between the two
accesses. A common way to ensure race freedom is to asso-
ciate a lock with every shared variable, and to ensure that
threads hold this lock when accessing the shared variable.
The lock release by one thread and the lock acquire by the
next establish the required synchronization between the
two threads.

Data races are undesirable for two key reasons. First, a
race condition is often a symptom of a higher-level logical
error such as an atomicity violation. Thus, race detectors
serve as a proxy for more general concurrency-error detec-
tion when higher-level specifications such as atomicity
annotations do not exist. Second, a race condition makes
the outcome of certain shared variable accesses nondeter-
ministic. For this and other reasons, both the Java Memory
Model (JMM)10 and the C++ Memory Model (C++MM)2 define
well-synchronized programs to be programs whose execu-
tions are free of race conditions. For race-free executions,
these models guarantee sequentially consistent semantics;

in particular, every read deterministically returns the value
of the “last” write. This semantics is widely considered to
be the only simple-enough model with which writing useful
concurrent programs is practical. For executions containing
race conditions, the semantics is either completely unde-
fined (as is the case for C++MM2) or is complicated enough
that writing a useful and correct program with “benign
races” is a challenge.

Detection and/or elimination of race conditions has been
an area of intense research activity. The work presented in
this paper (and initially presented in Elmas et al.6) makes
two important contributions to this area.

First, for the first time in the literature, we propose that
race conditions should be language-level exceptions just
like null pointer dereferences and indexing an array out of
its bounds. The Goldilocks runtime for Java provides a
new exception, DataRaceException,a that is thrown pre-
cisely when an access that causes an actual race condition is
about to be executed. Since a racy execution is never allowed
to take place, this guarantees that the execution remains
sequentially consistent.

The DataRaceException brings races to the program-
mer’s attention explicitly. When this exception is caught, the
recommended course of action is to terminate the program
gracefully. This is because, for racy Java programs, a wide
range of compiler optimizations are allowed by the JMM,
and this makes it complicated to relate program executions
to source code. If the exception is not caught, the Goldilocks
runtime terminates the thread that threw the exception.
While not recommended, the programmer could also
choose to make optimistic use of a DataRaceException
by, for instance, retrying the code block that led to the race,
hoping that the conflicting thread has performed the syn-
chronization necessary to avoid a race in the meantime.
Since the first paper on the Goldilocks runtime,6 the idea
that certain concurrency errors, especially ones that result
in sequential consistency violations, should result in excep-
tions has gained significant support and several implemen-
tations of the idea have been investigated.9, 11

To support a DataRaceException, a runtime must

The original version of this paper was published in the
Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation (PLDI),
June 2007.

a  We define DataRaceException as a subclass of the Runtime
Exception class in Java.

86 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

but they cannot handle concurrency patterns implemented
using volatile variables such as barrier synchronization.

There is a significant body of research on dynamic data-
race detection based on computing the happens-before
relation4, 7, 14, 15, 17 using vector clocks.12 Hybrid techniques14, 20

combine lockset and happens-before analysis. For exam-
ple, RaceTrack20 uses a basic vector clock algorithm to
capture thread-local accesses to objects thereby eliminat-
ing unnecessary and imprecise applications of the Eraser
algorithm. Similarly, MultiRace14 presents djit+, a vector
clock algorithm with several optimizations to reduce the
number of checks at an access, including keeping distinct
vector clocks for reads and writes and using a lockset algo-
rithm as a fast-path check. To the best of our knowledge,
FastTrack,7 which builds on djit+, is the best-performing
vector clock-based algorithm in the literature. By exploit-
ing some access patterns, FastTrack reduces the cost of
vector clock updates to O(1) on average. We provide a quali-
tative comparison of the Goldilocks and FastTrack algo-
rithms in Section 4.3. Vector clock and Goldilocks are
both precise, but the generalized locksets in Goldilocks
provide an intuitive representation of how shared variables
are protected at each point the execution.
Concurrency-Related Exceptions: Since proposed first by
the authors in Elmas et al.,6 the idea that programming plat-
forms should be able to guarantee sequential consistency
for all programs has gained significant support. Marino
et.al.11 and Lucia et.al.9 provide platforms with explicit mem-
ory model exceptions. Both platforms define stronger but
simpler contracts than JMM and C++MM, which enable effi-
cient hardware implementations that support the memory
model exceptions.

2. A GENERIC MEMORY MODEL
In this section, we present a generic memory model and
express the JMM as a special case of it. This generic model
allows a uniform treatment of the various synchronization
constructs in Java. We also believe that memory models at
different levels (e.g., the hardware level) and for different
languages (e.g., C++MM) can be expressed as instances of
this model. This allows Goldilocks to be applied in these
settings directly.
Variables and Actions: Program variables are separated into
two categories: data variables (Data) and synchronization
variables (Sync). We use x, and o to refer to data and syn-
chronization variables, respectively. Threads in a program
execute actions from the following categories:

•	 Data variable accesses: read(t, x, v) by thread t reads the
current value v of a data variable x, and write(t, x, v) by
thread t writes the value v to x.

•	 Synchronization operations: When threads synchronize
using a synchronization mechanism, a thread ti executes
a notification action, which is then observed by other
threads tj. Such a notification–observation pair defines a
“synchronizes-with” edge from the former action to the
latter. We classify actions that serve as sources and sinks
of a synchronizes-with edge as synchronization source
and sink actions, respectively.

incorporate a precise yet efficient race detection mecha-
nism. In this context, false positives in race detection can-
not be tolerated. The second contribution of our work is the
Goldilocks algorithm, a novel, precise, and general algo-
rithm for detecting data races at runtime. In Elmas et al.,6
we presented an implementation of the Goldilocks algo-
rithm in a Java Virtual Machine (JVM) called Kaffe.19 Our
experiments with Goldilocks on benchmarks brought up
the new possibility that the overhead of post-deployment
precise race detection in a runtime may be tolerable. There
has been significant progress in the efficiency of precise race
detection since the Goldilocks runtime was first published
(see Flanagan and Freund, and Pozmiansky and Schuster,7, 14
for example) and this idea appears viable today.

The Goldilocks algorithm is based on an intuitive, gen-
eral representation for the happens-before relationship as
a generalized lockset (Goldilockset) for each variable. In
the traditional use of the term, a lockset for a shared vari-
able x at a point in an execution contains a set of locks. A
thread can perform a race-free access to x at that point by
first acquiring a lock in this lockset. A Goldilockset is a gen-
eralization of a lockset. In Java, locks and volatile variables
are synchronization objects, and acquiring and releasing a
lock, as well as reading from and writing to a volatile vari-
able, are synchronization operations. To reflect this, at each
point in an execution, the Goldilockset for a shared variable
x may contain thread ids, locks, and volatile variables. A
thread can perform a race-free access to x iff its thread id
is in the Goldilockset, or if it first acquires a lock that is in
the Goldilockset, or reads a volatile variable that is in the
Goldilockset. In other words, the Goldilockset indicates
the threads that have the ownership of x and the synchro-
nization objects that protect access to x at that point. The
Goldilockset is updated during the execution as synchroni-
zation operations are performed. As a result, Goldilocksets
are a compact, intuitive way to precisely represent the
happens-before relationship. Thread-local variables, vari-
ables protected by different locks at different points of the
execution, and event-based synchronization with condi-
tion variables are all uniformly handled by Goldilocks.
Furthermore, Goldilocksets can easily be generalized to
handle other synchronization primitives such as software
transactions18 and adapted to handle memory models of
languages other than Java, such as C++MM. To facilitate
this, in this paper (differently from Elmas et al.6) we present
Goldilocks on a generic memory model and then show
how the algorithm can be specialized to JMM.

1.1. Related work
Dynamic Race Detection: There are two approaches to
dynamic data-race detection, one based on locksets and the
other based on the happens-before relation. Eraser16 is a
well-known lockset-based algorithm for detecting race con-
ditions dynamically by enforcing the locking discipline that
every shared variable is protected by a unique lock. In spite
of the numerous papers that refined the Eraser algorithm to
reduce the number of false alarms, there are still cases, such
as dynamically changing locksets, that cannot be handled
precisely. Precise lockset algorithms exist for Cilk programs,3

november 2010 | vol. 53 | no. 11 | communications of the acm 87

•	 The union of the program orders for all t ∈ Tid and the
synchronization orders for all variables o ∈ Sync is a valid
partial order. During an execution, our data-race detec-
tion algorithm examines a linearization of this partial
order and identifies the happens-before edges between
data accesses.

Sequential Consistency: Sequential consistency is a prop-
erty that allows programmers to use an interleaving model
of execution where accesses from different threads are inter-
leaved into a total order, and every read sees the value of the
most recent write. Sequential consistency is widely consid-
ered to be the only simple-enough model with which writing
useful concurrent programs is practical. Formally, an execu-
tion E  Tid, A, W, →po ., →so . is sequentially consistent if there
exists a total order →SC over Act satisfying the following:

•	 For every thread t ∈ Tid, →SC respects the program order
→po

t, i.e., →p  o
t ⊆ →

SC .
•	 Every read a  = read(x) sees the most recent write to x in →SC ,

i.e., there is no other b = write(x) such that W(a) →SC b →SC  a.

Data Races: Two data variable accesses are called conflicting
if they refer to the same shared data variable and at least one
of them is a write access.

One frequently used definition of a race condition involves
a program state in which two conflicting accesses by two dif-
ferent threads to a shared data variable are simultaneously
enabled. To distinguish this definition from others, let us refer
to this condition as a simultaneity race. The definition of a race
condition used in most work on dynamic race detection is
what we call a happens-before race and involves two conflicting
accesses not ordered by the happens before relationship, i.e.,
not separated by proper synchronization operations. For C++,
these two definitions of a race condition have been shown to
be equivalent.2 This proof also generalizes to Java executions.
Formally, an execution E  Tid, Act, W, →po , →so . contains a
happens-before race if there are two conflicting actions,
a, b ∈ Act|x accessing a data variable x, such that neither
a →hb  b nor b →hb a holds. Conversely, the execution is race free
if every pair of conflicting accesses to a data variable are
ordered by happens-before.

The well-formedness of an execution guarantees that if
the execution has no race conditions, then it is sequentially
consistent. The Goldilocks runtime makes use of this and
the DataRaceException to guarantee for all programs
(whether racy or not) that every concurrent execution is
sequentially consistent at the byte-code level. This does not
restrict the Goldilocks runtime’s use as a debugging tool,
because, for the Java and C++ memory models, it has been
proven2, 10 that if a program has a racy execution, then it is
guaranteed to have at least one execution that is sequentially
consistent and racy. Thus, it is sufficient to restrict one’s
attention to looking for races in sequentially consistent exe-
cutions only.

3. THE GOLDILOCKS ALGORITHM
In this section, we describe our algorithm for detecting data
races in an execution E  Tid, Act, W, →po ., →so .. For simplicity

–	 Synchronization source actions: sync-source(t, o) by
thread t creates a synchronizes-with source by writing
to a synchronization variable o. Lock releases and vola-
tile variable writes in Java are synchronization source
actions.

–	 Synchronization sink actions: sync-sink(t, o) by thread
t creates a synchronizes-with sink by reading from a
synchronization variable o. Lock acquires and vola-
tile variable reads in Java are synchronization sink
actions.

Multithreaded Executions: An execution E is represented by
a tuple E  Tid, Act, W, →po .,→so ..

•	 Tid is the set of identifiers for threads involved in the
execution. Each newly forked thread is given a new
unique id from Tid.

•	 Act is the set of actions that occur in this execution. Act|t
is the set of actions performed by t ∈ Tid, and Act|x (resp.
Act|o) are the sets of actions performed on data variable x
(resp. synchronization variable o).

•	 W is a total function that maps each read(t, x, v) in Act to
a write(u, x, v) in Act. W is used to model the write-seen
relationship between a read of x and the write to x it
sees. In a race-free, sequentially consistent execution,
this is the last write before read(t, x, v). In order to make
the function W total, we assume an initial write for each
variable before any reads.

•	 →p            o
t is the program order per thread t. For each thread t,

→p    o
t is a total order over Act|t and gives in which order the

actions were issued to execute. This order is sometimes
referred to as the observed execution order.

•	 →s      o
o is the synchronization order per synchronization

variable o ∈ Sync. For each o ∈ Sync, →s   o
o is a total order

over Act|o.

Synchronizes-With and Happens-Before: Given an execu-
tion with program and synchronization orders, we extract
two additional orders called the synchronizes-with (→sw) and
happens-before (→hb) orders. Data races are defined using
these orders.

A synchronization operation a1 by thread t1 syn-
chronizes with a2 by thread t2, denoted a1 →

sw a2, if a1 is a
sync-source on some synchronization variable o, a2 is a
sync-sink on o, and a1 →

so
o a2.

The happens-before partial order →hb on the execution E is
defined as the transitive closure of the program orders →po

t for
all t ∈ Tid and the synchronizes-with order →sw .

In this paper, we focus only on well-formed executions,10
which respect (i) the intra-thread semantics and (ii) the
semantics of the synchronization variables and operations.
In addition, well-formed executions satisfy two essential
requirements for data-race detection:

•	 Happens-before consistency: This property makes use of
the happens-before order to restrict the write-seen rela-
tionship. For example, for a read action a, a →hb W(a)
cannot happen, and W(a) cannot be overwritten by
another write action b such that W(a) →hb b →hb a.

88 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

of exposition, we initially do not distinguish between read
and write accesses.

The Goldilocks algorithm processes the actions in Act
one at a time, as a sequence. Before a thread t performs an
action a in Act, t notifies the Goldilocks algorithm that
a is about to occur. The order in which these notifications
from different threads are interleaved and processed by
Goldilocks is represented mathematically by p, where p(i) is
the i-th action in the sequence. This linear order, by construc-
tion, respects the program order for each thread, and the syn-
chronization total order for each synchronization variable.b

The Goldilocks algorithm maintains for each data vari-
able a “Goldilockset”: a map GLS such that, for every data vari-
able x, its Goldlilockset is a set GLS(x)  Tid  Sync. Roughly
speaking, GLSi(x), the Goldilockset of x immediately before
processing action p(i), consists of (i) the id’s of threads that can
access x in a race-free way at that point in the execution, and (ii)
the synchronization variables on which a thread can perform a
sync-sink access in order to gain race-free access to x.

As Goldilocks processes each action p (i) from E,
it updates the Goldilocksets of variables. Initially, the
Goldilockset GLS(x) is empty for all data variables, including
static ones. When a new object is created, the Goldilockset
for all of its instance fields is initialized to the empty set.
After every action, the Goldilockset of every data variable x
is potentially updated. For every data variable x, three sim-
ple rules specify how GLS(x) is updated after p (i) based on
whether p (i) is (1) a synchronization source, (2) a synchroni-
zation sink, or (3) a read or write access to x, as shown in the
procedure ApplyLocksetRules in Figure 2.

If the action p (i) is a synchronization operation on a vari-
able o, we update the lockset GLS(x) for every data variable
x in Data. If p (i) is a sync-source operation, rule 1 adds o to
GLS(x) if it contains the id t of the current accessor thread.
Intuitively, this represents that a later sync-sink operation by
a thread u on synchronization variable o will be sufficient for
u to gain race-free access to x. This is formalized by rule 2.
If p (i) is a sync-sink(o) operation, rule 2 checks whether the
synchronization variable o is in GLS(x). If this is the case,
then t is added to the Goldilockset.

If the action p (i) is an access to a data variable x, rule 3
checks the Goldilockset of the variable GLS(x) to decide
whether this access is race free. If GLS(x) is empty, it indi-
cates that x is a fresh variable which has not been accessed
so far and any access to x at this point is race free. If GLS(x)
is not empty, only threads whose id’s are in GLS(x) can per-
form race-free accesses to x. If the accessing thread’s id t is
not in GLS(x) then we throw a DataRaceException on x.
Otherwise, the access to x is race free and GLS(x) becomes
the singleton {t}, indicating that, without further synchroni-
zation operations, only t can access x in a race free manner.

Figure 1 shows two cases where the ownership of a
data variable x is transferred from a thread ti to another
thread tj, and indicates how the Goldilocksets evolve in
each case. Program order (→po) and synchronizes-with (→sw)

edges between consecutive actions are indicated in the
figure. Figure 1a illustrates direct ownership transfer from
ti to tj. After accessing x, ti performs a sync-source opera-
tion (lock release) on synchronization variable Lx. Later,
tj obtains ownership of x by executing a sync-sink operation
(lock acquire) on synchronization variable Lx. Figure 1b illus-
trates transitive ownership transfer. Threads ti and tj do not
synchronize on the same synchronization variable. Instead,
the synchronization involves a chain of synchronizes-with
edges between other threads and synchronization variables.
ti synchronizes with tk via synchronization variable o1 and,
later tk synchronizes with tj via synchronization variable o2.

Rules 1 and 2 in Figure 2 require updating the lockset
of each data variable. A naive implementation of this algo-
rithm would be too expensive for programs that manipu-
late large heaps. In Section 4, we present an efficient way
of implement our algorithm by representing Goldilocksets
implicitly and by applying update rules lazily.

b  A racy read may appear earlier in p than the write that it sees. If an execu-
tion contains a data race between a pair of accesses, Goldilocks declares a
race at one of these accesses regardless of which linearization p is picked.

acquire(Lx)

acquire(Lx)

access(x)

access(x)

access(x)

volwrite(o1)

volread(o1)

{ ti, o1, tk } { ti, o1, tk, o2 }

{ ti, o1, tk, o2, tj }volwrite(o2)

volwrite(o2)

(a) Direct ownership transfer using lock Lx

(b) Transitive ownership transfer using volatiles o1 and o2

access(x)

release(Lx)

release(Lx)

{ ti, Lx, tj } { tj }

{ tj }

{ tj, Lx }

{ Lx, ti } { ti }

{ ti }

{ ti, Lx }

{ ti, o1 }

ti

ti

tj

tj

tk

po

po

po

po

po

po po
sw

sw

sw

p

p

p (j)

(i)

(i)

(j)p

Figure 1. Transferring ownership of x, and GLS(x).

Figure 2. The core lockset update rules.

ApplyLocksetRules(p(i)):

1.  if p(i) = sync-source(t, o)

	 foreach x ∈ Data:

     if t ∈ GLS(x)

	 GLS(x) := GLS(x)  {o}

2.  if p(i) = sync-sink(t, o)

	 foreach x ∈ Data:

     if o ∈ GLS(x)

       GLS(x) := GLS(x)  {t}

3.  if p(i) = write(t, x) or p(i) = read(t, x)

	 if t ∈ GLS(x) or GLS(x) = 0/

        GLS(x) := {t}

	 else

     throw a DataRaceException on x

november 2010 | vol. 53 | no. 11 | communications of the acm 89

Correctness: The following theorem expresses the fact
that the Goldilocks algorithm is both sound, i.e.,
detects all actual races in a given execution, and pre-
cise, i.e., never reports false alarms. The full proof of the
original Goldilocks algorithm for Java can be found in
Elmas et al.5

Theorem 1 (Correctness). Let E  Tid, Act, W, →po .,→so .
be a well-formed execution, x a data variable, and p a linear
order on Act as described earlier. Let i < j, and let p(i) and p(j)
be two accesses to x performed by threads ti and tj, with no other
action p(k) in between (i < k < j) accessing x. Then tj ∈ GLSj(x),
i.e., the access p(j) is declared to be race free by the Goldilocks
algorithm iff p(i) →hb p(j).

3.1. Example: precise data-race detection
In this section, we illustrate on an example the Goldilocks
algorithm and how Goldilocksets capture the synchroniza-
tion mechanism protecting access to a variable at each point
in an execution. In this example, earlier lockset algorithms
would have erroneously declared a race condition.

Consider the execution shown in Figure 3 in which all
actions of T1 happen first, followed by all actions of T2 and
then of T3. This example mimics a scenario in which an
object is created and initialized and then made visible glob-
ally by T1. This Int object (referred to as o from now on) is
a container object for its data field (referred to as x from
now on). The object o is referred to by different global vari-
ables (a and b) and local variables (tmp1,tmp2,and tmp3)

at different points in this execution. The contained variable
x is protected by synchronization on the container object o,
and during the execution, the lock (La or Lb) protecting o
and x changes depending on which variable (a or b) points
to o. Notice that, T2 changes the protecting lock of the con-
tainer object o from La to Lb, without accessing x. Figure 3
shows the Goldilocks update rules applied on GLS(x) for
each action and the resulting value of GLS(x).

Observe that the update rules allow a variable’s
Goldilockset to grow during the execution. This enables
them to represent threads transfering ownership using
different synchronization variables during the execution.
In this example, this ownership transfer takes place with-
out the variable itself being accessed. For example, after
T2 finishes in Figure 2, GLS(x) has the value {T1, La, T2,
Lb}, meaning that a thread can access x without data race
by locking either La or Lb. Then T3 makes Lb the only pro-
tecter lock by acquiring Lb and accesses x.

3.2. Distinguishing read and write accesses
The basic Goldilocks algorithm in Figure 2 tracks the
happens-before relationship between any two accesses to a
variable x. In order to perform race detection, we must check
the happens-before relationship only between conflicting
actions, i.e., at least one action in the pair must be a write
access. We extend the basic Goldilocks algorithm by keep-
ing track of (i) GLSW (x), the “write Goldilockset of x”, and (ii)
GLSR(t, x), the “read Goldilockset of t and x” for each thread t.
The update rules in ApplyLocksetRules are adapted to main-
tain these Goldilocksets, but have essentially the same form
as the rules in Figure 2. In the extended algorithm, it is suf-
ficient to check happens-before between the current access
to x and the most recent accesses (in the linear order p) to
x. How this extension is performed for Java can be found in
Elmas et al.6

3.3. Specializing Goldilocks to the JMM
The JMM requires that all synchronization operations be
ordered by a total order →so , whereas in our execution model,
a separate total order →so

o per synchronization variable is
sufficient.
Data Variables and Operations: In Java, every data variable is
in the form of (o, d) where o is an object and d is a nonvola-
tile field. The byte-code instructions x load and xstore access
memory to read from and write to fields of objects, respec-
tively (x changes depending on the type of the field).

The JMM specifies three synchronization mechanisms:
monitors, volatile fields, and fork/join operations.
Monitors: In Java, a monitor per object (denoted by mo) pro-
vides a reentrant lock for each object o. Acquiring the lock
of an object o (acquire(o) ) corresponds to a sync-sink opera-
tion on mo, while releasing the lock of o (release(o) ) corre-
sponds to a sync-source operation on mo. Nested acquires
and releases of the same lock are treated as no-ops. In the
JMM, each release(o) synchronizes with the next acquire(o)
operation in →so mo.
Volatile Variables: Each volatile variable is denoted (o, v)
where o is an object, and v is a volatile field. Each read
volread(o, v) from a volatile variable (o, v), and each write

Figure 3. Precise data-race detection example.

Class Int { int data; }

Int a, b; // Global variables

Execution	 Goldilockset update rule applied	 GLS(x)

Thread 1 (T1):

tmp1 = new Int;	 Initialize lockset	 0/

tmp1.data = 0;	 First access	 {T1}

acquire(La);	 La ∈ GLS(x) → add T1 to GLS(x)	 {T1}

a = tmp1;	 No access to x	 {T1}

release (La);	 T1 ∈ GLS(x) → add La to GLS(x)	 {T1,La}

Thread 2 (T2):

acquire(La); 	 La ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

tmp2 = a; 	 No access to x	 {T1,La,T2}

release(La); 	 T2 ∈ GLS(x) → add La to GLS(x)	 {T1,La,T2}

acquire(Lb); 	 Lb ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

b = tmp2; 	 No acces s to x	 {T1,La,T2}

release(Lb); 	 T2 ∈ GLS(x) → add Lb to GLS(x)	 {T1,La,T2,Lb}

Thread 3 (T3):

acquire(Lb); 	 Lb ∈ GLS(x) → add T3 to GLS(x)	

{T1,La,T2,Lb,T3}

b.data = 2;	 T3 ∈ GLS(x) → Race-free access	 {T3}

tmp3 = b;	 No access to x	 {T3}

release(Lb);	 T3 ∈ GLS(x) → add Lb to GLS(x)	 {T3,Lb}

tmp3.data = 3;	 T3 ∈ GLS(x) → Race-free access	 {T3}

90 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

volwrite(o, v) to (o, v) is implemented by the xload and xstore
byte-code instructions, respectively. While volread(o, v)
corresponds to a sync-sink, volwrite(o, v) corresponds to
sync-source operation on (o, v). In the JMM, there is a syn-
chronizes-with relationship between each volread(o, v) and
the volwrite(o, v) that it sees.
Fork/Join: Creating a new thread with id t (fork(t) ) syn-
chronizes with the first action of thread t, denoted start(t).
The last action of thread t, denoted end(t) synchronizes
with the join operation on t, denoted join(t). For each
thead t, fork(t) and end(t) correspond to sync-source
operations on a (fictitious) synchronization variable t–,
and start(t) and join(t) correspond to sync-sink opera-
tions on t–. The JMM guarantees that for each thread t,
there exists an order →so

t– such that: fork(t) →so
t– start(t) →so

t–

end(t) →so
t– join(t).

Handling other Synchronization Mechanisms: Using the
lockset update rules above, Goldilocks is able to uni-
formly handle various approaches to synchronization such
as dynamically changing locksets, permanent or temporary
thread-locality of objects, container-protected objects, own-
ership transfer of variable without accessing the variable (as
in the example in Section 3.1). Furthermore, Goldilocks
can also handle the synchronization idioms in the java.
util.concurrent package such as semaphores and bar-
riers, since these primitives are built using locks and volatile
variables. The happens-before edges induced by the wait/
notify(All) construct are computed by simply applying the
Goldilockset update rules to the acquire and release opera-
tions invoked inside wait.

3.4. Race detection and sequential consistency
The Java and C++ memory models provide the data-race free-
dom (DRF) property.2, 10 The DRF property guarantees that if
all sequentially consistent executions of a source program
are race free, then the compiled program only exhibits these
sequentially consistent executions of the source program,
after any compiler and hardware optimizations permitted by
the memory model. The Goldilocks algorithm check races
by monitoring the executions of the compiled program, and
assumes that the compiler and the runtime it is built on
(hardware or virtual machine) conform to the language and
the memory model specifications. Therefore, if the source
program is race free, then any execution of the compiled
program corresponds to a sequentially consistent execu-
tion of the source program, and no DataRaceException
is thrown.

If the source program has a race, the Goldilocks run-
time still ensures that all executions of the compiled pro-
gram will run under the sequential consistency semantics,
i.e., sequential consistency is guaranteed at the byte-code
level. This is accomplished by preventing accesses that will
cause a data race and throwing a DataRaceException
right before that access. However, in the case of a racy
program, the JMM permits compiler optimizations that
result in executions that are not sequentially consistent
behaviors of the original source code. In this case, the JMM
and the DRF property are not strong enough to allow the
Goldilocks runtime to relate byte-code level executions

to executions of the source-level program, which makes
debugging hard.

To use Goldilocks for debugging purposes, this diffi-
culty can be remedied by disabling compiler optimizations.
For post-deployment use, a stronger memory model9, 11 that
is able to relate each (racy and race-free) execution of the
compiled program to a sequentially consistent execution of
the source program is needed.

4. IMPLEMENTING GOLDILOCKS
There are two published implementation of the Goldilocks
algorithm, both of which monitor the execution at the Java
byte-code level. At this level, each variable access or syn-
chronization operation corresponds to a single byte-code
instruction, and each byte-code instruction can be associ-
ated with a source code line and/or variable.

The first Goldilocks implementation, by the authors of
this paper, was carried out in Kaffe,19 a clean-room imple-
mentation of the Java virtual machine (JVM) in C. In Kaffe,
we integrated Goldilocks into the interpreting mode of
Kaffe’s runtime engine. Implementing the algorithm in the
JVM enables fast access to internal data structures of the
JVM that manage the layout of object in the memory and
using the efficient mechanisms that exist in the JVM inter-
nally, such as fast mutex locks.

The second implementation of Goldilocks is by Flanagan
and Freund and was carried out using the RoadRunner dy
namic program analysis tool.8 In RoadRunner, Goldilocks
is implemented in Java and injected by byte-code instrumen-
tation at load-time of the program. This allows the algorithm
to benefit from Java compiler optimizations and just-in-time
compilation and to be portable to any JVM. Flanagan and
Freund showed that this implementation is competitive with
ours in Kaffe for most of the common benchmarks.7

In the following, we present the most important imple-
mentation features and optimizations. The implementation
is described based on the core algorithm presented in Figure
2. The extension of the implementation that distinguishes
read and write accesses can be found in Elmas et al.6

4.1. Implicit representation and lazy evaluation
of Goldilocksets
For programs with a large number of data variables, repre-
senting Goldilocksets explicitly for each data variable and
implementing the Goldilocks algorithm as described in
Figure 2 may have high memory and computational cost.
We avoid the memory cost by representing the Goldilocksets
implicitly and the computational cost by evaluating
Goldilocksets lazily as described below.

Instead of keeping a separate Goldilockset GLS(x) for each
variable x, we represent GLS(x) implicitly as long as no access
to x happens and is computed temporarily when an access
happens. At this point, the Goldilockset is a singleton, and we
continue to represent it implicitly until the next access. For
this, we keep the synchronization events in a single, global
linked list called the synchronization-event list and repre-
sent by its head and tail pointers in Figure 4. The ordering of
these events in the list is consistent with the program order
→p    o

t for each thread t and the synchronization orders →so
o for

november 2010 | vol. 53 | no. 11 | communications of the acm 91

each synchronization variable o.c When a thread performs a
synchronization action a, it must append a corresponding
event to the synchronization-event list atomically with the
event. In Kaffe, we make sure this is the case by modifying
the implementations of the Java synchronization actions.

In order to represent GLS(x), each variable x in the pro-
gram is associated with two bits of information regarding
the most recent access to x: owner(x) stores the id of the
thread that most recently accessed x, and pos(x) points to
the last synchronization event in the list that was taken into
account when GLS(x) was last computed.

Figure 4 shows four variables pointing to entries in
the synchronization-event list. Figure 5 shows how the
Goldilockset GLS(x) is computed when x is accessed.

5(a): After each access to x by a thread ti, owner(x) is set to ti, and
pos(x) is set to point the tail of the synchronization event list.
5(b): Right before an access to x by thread tj, temporarily,
we represent GLS(x) explicitly. GLS(x) is initially {owner(x)}
and is updated by processing the synchronization events
between pos(x) (denoted by a1, …, an) and tail according to
the rules 1 and 2 of Figure 2. This process stops either when

tj is added to GLS(x) or the last event (an) is processed. In the
former case, no race is reported according to the rule 3 of
Figure 2. In the latter case, a race is reported since tj ∉ GLS(x)
after the evaluation.
5(c): After the check, owner(x) is set to tj and pos(x) is set to
the tail of the synchronization event list.

The implementation does not use any extra threads for
race detection. The algorithm is performed in a decentral-
ized manner by instrumented threads of the program being
checked. For each data variable x, we use a unique lock to
make atomic the Goldilockset update and the race-freedom
check for each access to x and to serialize all the race-freedom
checks for x.

4.2. Performance optimizations
Short-Circuit Checks: A cheap-to-evaluate sufficient con-
dition for a happens-before edge between the last two
accesses to a variable can reduce race-detection overhead.
We make use of two such conditions, called short-circuit
checks, and bypass the traversal of the synchronization
event list when these checks succeed. In this case, the final
Goldilockset of the variable consists of the id of the thread
that accessed it last.

We employ two constant-time short-circuit checks. First,
when the last two accesses to a shared variable are per-
formed by the same thread t, the happens-before relation-
ship is guaranteed by the program order of t. This is detected
by checking whether owner(t), the last accessor thread, is the
same as the thread performing the current access.

In the second short-circuit check, we determine whether
the variable x is protected by the same lock during the last
two accesses to x. For this, we associate with each variable x
a lock alock(x), which is randomly selected among the locks
held by the most recent accessor thread. When a thread t
accesses x and if alock(x) is held by t, then that access is race
free.
Direct Ownership Transfer: A sound but imprecise third
optimization is to consider only the subset of synchroni-
zation events executed by the current and last accessing
thread when examining the portion of the synchronization
event list between pos(x) and tail. This check is not constant
time, but we found that it succeeds often enough to improve
Goldilocks overhead.
Garbage Collection: The synchronization events list is peri-
odically garbage-collected when there are entries in the
beginning of the list that are not relevant for the Goldilockset
computation of any variable. This is the case when an entry
in the list is not reachable from pos(x) for any data variable x,
and is tracked by maintaining incremental reference counts
for each list entry.
Partially Eager Evaluation: Sometimes the synchronization
event list gets too long and it is not possible to garbage-
collect the event list when variable x is accessed early in
an execution but is not used afterwards. We address this
problem by “partially eager” Goldilockset evaluation. We
move pos(x) forward towards the tail to a new position
poś (x), and partially evaluate a Goldilockset GLS(x) of x by
processing events (i.e., running ApplyLocksetRules on them)

head
pos(y)

pos(x) pos(w)

pos(z)
tail

Figure 4. The synchronization event list.

head

head

head

pos(x)

pos(x)

tail

tail

tail

pos(x)

owner(x) = ti

owner(x) = ti

owner(x) = ti

(a) After ti accesses x

(b) Before ti accesses x

(c) After ti accesses x

Events to consider
in lockset evaluation

a1 a2

a2a1

an

an

Figure 5. Lazy evaluation of Goldilockset GLS(x).

c  For Java, there is a total order on all synchronization operations, and the en-
tries in the list are in this order.

92 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

Tayfun Elmas (telmas@ku.edu.tr), Koç
University, Istanbul, Turkey.

Shaz Qadeer (qadeer@microsoft.com),
Microsoft Research, Redmond, WA.

Serdar Tasiran (stasiran@ku.edu.tr), Koç
University, Istanbul, Turkey.

	 1.	A badi, M, Flanagan, C., Freund, S.N.
Types for safe locking: Static race
detection for Java. ACM Trans.
Program. Lang. Syst. (2006).

	 2.	 Boehm, H.-J., Adve, S.V. Foundations
of the C++ concurrency memory
model. In Proceedings of the 2008
ACM SIGPLAN Conf. on Programming
Language Design and Implementation
(PLDI 2008)

	 3.	C heng, G.-I., Feng, M., Leiserson, C.E.,
Randall, K.H., Stark, A.F. Detecting
data races in Cilk programs that use
locks. In ACM Symposium on Parallel
Algorithms and Architectures (SPAA
1998).

	 4.	C hristiaens, M. De Bosschere, K.
TRaDe: Data race detection for
Java. Proc. Intl. Conference on
Computational Science. V. Alexandrov,
J. Dongarra, B. Juliano, R. Renner, and
C. Tan, eds. (ICCS 2001).

	 5.	E lmas, T., Qadeer, S., Tasiran, S.
Goldilocks: Efficiently computing
the happens-before relation using
locksets. Technical Report MSR-
TR-2006–163, Microsoft Research
(2006).

	 6.	E lmas, T., Qadeer, S., Tasiran, S.
Goldilocks: A race and transaction-
aware java runtime. In Proceedings of
the 2007 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI 2007).

	 7.	F lanagan, C., Freund, S.N. FastTrack:
Efficient and precise dynamic race
detection. In Proceedings of the
2009 ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 2009).

	 8.	F lanagan, C., Freund, S.N. The
RoadRunner dynamic analysis
framework for concurrent programs,
In ACM Workshop on Program
Analysis for Software Tools and
Engineering (PASTE 2010).

	 9.	 Lucia, B., Ceze, L., Strauss, K., Qadeer,
S., Boehm H.-J. Conflict exceptions:
Simplifying concurrent language
semantics with precise hardware
exceptions for data-races. In
Proceedings of the 37th International
Symposium on Computer Architecture
(ISCA 2010).

	10.	M anson, J., Pugh, W., Adve, S.V. The
Java memory model. In Proceedings

of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles
of Programming Languages (POPL
2005).

	11.	M arino, D., Singh, A., Millstein, T.,
Musuvathi, M., Narayanasamy, S.
DRFx: A simple and efficient memory
model for concurrent programming
languages. In Proceedings of the
2010 ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 2010).

	12.	M attern, F. Virtual time and global
states of distributed systems. In
Proceedings of the International
Workshop on Parallel and Distributed
Algorithms (1988).

	13.	N aik, M., Aiken, A., Whaley, J. Effective
static race detection for Java. In
Proceedings 2006 ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI
2006).

	14.	P ozniansky, E., Schuster, A. Multirace:
Efficient on-the-fly data race detection
in multithreaded C++ programs:
Research articles. Concurr. Comput.
Pract. Exp. (2007).

	15.	R onsse, M., Bosschere, K.D. RecPlay:
A fully integrated practical record/
replay system. ACM Trans. Comput.
Syst. (1999).

	16.	S avage, S., Burrows, M., Nelson, G.,
Sobalvarro, P., Anderson, T. Eraser:
A dynamic data race detector for
multithreaded programs. ACM Trans.
Comput. Syst. (1997).

	17.	S chonberg, E. On-the-fly detection
of access anomalies. In Proceedings
of the ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 1989).

	18.	S havit, N., Touitou, D. Software
transactional memory. In Symposium
on Principles of Distributed Computing
(1995).

	19.	 Wilkinson, T. Kaffe: A JIT and
interpreting virtual machine to run
Java code. http://www.transvirtual.
com (1998).

	20.	Y u, Y., Rodeheffer, T., Chen, W.
RaceTrack: Efficient detection of data
race conditions via adaptive tracking.
In Proceedings of the 20th ACM
Symposium on Operating Systems
Principles (SOSP 2005).

References

remain sequentially consistent at the byte-code level.
Experiments with Goldilocks have demonstrated that the
runtime overhead of supporting a DataRaceException
can be made reasonable.

Acknowledgments
We would like to thank Hans Boehm, Cormac Flanagan,
Steve Freund, and Madan Musuvathi for their critique of
this paper. This research was supported by the Software
Reliability Research Group at Microsoft Research,
Redmond, WA, by the Scientific and Technical Research
Council of Turkey (TUBITAK) under grant 104E058, and by
the Turkish Academy of Sciences (TUBA).�

between pos(x) and poś (x). During the next access the evalu-
tion of GLS(x) starts from the stored Goldilockset, not from
{owner(x)}.
Sound Static Race Analysis: The runtime overhead of race
detection is directly related to the number of data variable
accesses checked and synchronization events that occur.
To reduce the number of accesses checked at runtime, we
use static analysis at compile time to determine accesses
that are guaranteed to be race free. While implementing
Goldilocks in Kaffe, we worked with two static analysis
tools for this purpose: Chord13 and RccJava.1

4.3. Race-detection overhead
At the time of the original Goldilocks work, the vector clock
algorithm12 was the only precise dynamic-race-detection
algorithm in the literature. The vector clock algorithm, for
an execution with n threads, requires for every thread and
synchronization variable a separate vector clock (VC) of
size n and performs O(n) operations (merging or compar-
ing two VCs) whenever a synchronization operation or data
access happens. In preliminary research, compared to a
straightforward implementation of vector clocks, we found
Goldilocks overhead to be significantly less.6

In Elmas et al.,6 we measured the overhead of the
Goldilocks implementation inside Kaffe on a set of widely
used Java benchmarks. This implementation required us to
run all programs in interpreted (not just-in-time compiled)
mode. We found that, with powerful static analysis tools
eliminating much of the monitoring, we were able to obtain
a slowdown of within approximately 2 for all benchmarks.
Without static elimination of some checks, overheads
remained high; some benchmarks experienced slowdowns
of over 15. The overhead results with static pre-elimination
were encouraging in that they showed precise race detection
to be a practical debugging tool, and they indicated that,
with further optimizations, post-deployment runtime race
detection to support DataRaceDetection could be viable.

Later work on FastTrack,7 a dynamic race detector
based on vector clocks, is able to avoid worst-case perfor-
mance of vector clocks much of the time using optimiza-
tions for common cases. Flanagan and Freund7 compare
a number of race-detection algorithms, including just-
in-time compiled implementations of FastTrack and
Goldilocks in RoadRunner. FastTrack achieves
significantly better overheads than both implementa-
tions of Goldilocks. The low overheads achieved by
FastTrack provide further support that a practical
race-aware runtime for deployed programs supporting
a DataRaceException can be built. It is reported in
Flanagan and Freund7 that additional short-circuit checks
similar to ones we discussed above dramatically reduce the
runtime of FastTrack. Most of these checks can be incor-
porated into Goldilocks implementations as well.

5. CONCLUSION
We have presented a race-aware runtime for Java incor-
porating a novel algorithm, Goldilocks, for pre-
cise dynamic race detection. The runtime provides a
DataRaceException, and thus ensures that executions © 2010 ACM 0001-0782/10/1100 $10.00

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

