www.ietdl.org

Published in IET Software
Received on 7th April 2008
Revised on 3rd August 2009
doi: 10.1049/iet-sen.2009.0010

ISSN 1751-8806

Evaluation of the ‘replace constructors with
creation methods’ refactoring in Java systems
S. Counsell* G. Loizou®> R. Najjar?

1School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
2School of Computer Science and Information Systems, University of London, Birkbeck, London WC1E 7HX, UK
3Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

E-mail: Steve.Counsell@brunel.ac.uk

Abstract: Class constructors play an indispensable role in the Java language as a mechanism for object creation.
However, little empirical evidence exists on constructors, trends in their composition and how a class with too
many constructors might influence its understandability by developers. Herein, the authors investigate the
applicability of the ‘replace constructors with creation methods’ (RCwCM) refactoring of Kerievsky in five Java
systems. The RCwCM was manually applied to a set of classes from each of the five systems in classes
containing three or more constructors. The benefits of this refactoring include improved code readability and
encapsulation, program understanding and to a lesser extent possible elimination of code duplication. Within
each of the five systems, evidence of scope for applying the RCwCM refactoring based on the number of
classes with multiple constructors was found. However, problems were encountered that limited its
application. These are the nature of inheritance and the different styles of accessing class constructors. In the
former, account has to be taken of multiple dependencies if the class is not a leaf class; in the latter, the
‘super’ construct requires careful handling. When considered against the benefits that the RCwCM provides,
care needs to be exercised. As with any refactoring effort, the short and long-term benefits need to be
compared with the expense outlay (developer time and effort) as well as the opportunity cost.

which they are defined. While in a procedural language like
C [11], faults often arise because a developer forgets to

1 Introduction

The term ‘refactoring’ refers to the technique that seeks to
improve code quality through the process of making one
change or a series of changes to the internal structure of
the software without necessarily changing its external
behaviour [1-9]. Refactoring can be used to improve
software design by tidying up code, moving code to the
right place or removing code. We could say that refactoring
requires the programmer to work more deeply on
understanding what the code does and is therefore a
potential aid to maintenance and reuse [2, 10]. Fowler [2]
claims that refactoring is the reversal of software decay and,
in this sense, any refactoring effort is worthwhile.

In the Java language, constructors are functions that assign
the initial values of the data elements of an object being
created. In contrast to normal methods, constructors have
no return type and share the same name as the class in

initialise a variable, this problem is partially averted in Java
through the requirement of at least one constructor. There
is often a trade-off; however, in a class with many
constructors, it is often difficult to tell the purpose of each
constructor when they differ in only minor ways. In this
study, we explore the scope for refactoring classes with a
relatively large number of constructors in their body. Five
Java systems were empirically investigated with respect to
the RCwCM refactoring proposed by Kerievsky [10]. The
principle underlying this refactoring is that transformation
of constructors into non-constructor methods improves a
developer’s ability to understand a class, saves lines of code
(LOC) which would otherwise be duplicated across
the multiple constructors and improves encapsulation by
the creation of a single private catchall constructor (since
all constructors were previously defined as public). The
potential for improved class understandability (and, in

318

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

theory, its maintainability) by the creation of non-constructor
methods should make the task of developers easier, since they
do not necessarily need to understand what each of a large set
of constructors does. Finally, since in general the non-
constructor methods created by transforming constructors
will be named according to their function, it should
be much easier for the developer to identify the appropriate
method which invokes the constructor. While the RCwCM
refactoring may offer many benefits, in a practical, empirical
sense and where, for such a refactoring, human intervention
is a fundamental aspect, we also need to consider possible
limiting factors in its application.

In this paper, we describe the mechanics of the RCwCM
refactoring and empirically explore both its benefits and
factors limiting its applicability. In essence, we pose the
question: when is applicability of RCwCM desirable, from
a developer’s perspective?

The remainder of this paper is organised as follows. In the
following section, the motivation for the research and related
works are presented. In Section 3, we give details of the five
Java systems investigated, the RCwCM refactoring and the
data collected from the sample of classes in each system. In
Section 4, we present the data of our empirical study and
then in Section 5 we show how features and nuances
of the Java language can limit the scope of the RCwCM
refactoring; we also describe the limited quantitative
benefits that would be obtained from applying this
refactoring to the five systems. A discussion of the issues
arising from this research is given in Section 6 and, finally,
some conclusions are made and further work outlined in
Section 7.

2 Motivation and related works

The motivation for the work described in this paper arises
from two sources. First, many claims about the benefits of
refactoring have been suggested; these include making it
easier to add code to existing systems, improving the design
of existing systems, improving the understandability of code
and making coding ‘less annoying’ [10] for current and
future developers. While these are perfectly reasonable
claims to make, the practicalities of a specific refactoring
and empirical evidence from systems might limit the extent
to which each (or any) of these benefits is realised; the
research in this paper explores the applicability in this sense

of the RCwCM refactoring.

Second, stated benefits of RCwCM are many (Section 3).
The main benefit is that it seeks to eliminate the potential
confusion arising from having large (and excessive)
numbers of constructors and achieves this by converting
them to ‘regular’ methods; in this sense, it is an aid to
program understanding. However, it is only by empirically
exploring the mechanics of the RCwCM refactoring that
we can appreciate its scope, limitations and the likely
benefits from its application.

www.ietdl.org

The work described herein can be cast in the context of a
number of other empirical and related studies. The study
described supports earlier findings in Counsell ez al [12],
where a set of library classes were empirically investigated.
In that study, the ‘substitute algorithm’ refactoring [2]
(i.e. modification of the body of a method to improve the
way it functions) was found to be the most popular type
of change identified. Here, we consider five Java systems
in order to provide empirical evidence for the theme under
consideration; one of these systems is the bean scripting
framework (BSF) system. The stability of frameworks
in terms of encapsulation trends is also highlighted in
Counsell e a4/ [13], where it was shown that from five
industrial-sized systems empirically studied, only one system
(a framework) conformed to appropriate encapsulation
principles in terms of private, protected and public attributes
and methods. One feature of the remaining four systems was
the existence of protected attributes and methods in classes
with no inheritance links whatsoever. We would thus expect
a framework system to require less refactoring because of its
architectural stability and, where it is needed, for it to be a
relatively easy task.

In terms of seminal refactoring literature, the work of
Opdyke [14] describes a number of refactorings which
should be applied to software. Johnson and Opdyke [4]
presented a study in which they describe how to create
abstract superclasses from other classes by refactoring. They
decomposed the operation into a set of refactoring steps,
and provided examples. They also discussed a technique
that can automate these steps making the process of
refactoring much easier. In [3], some common refactorings
based on aggregation and how to convert from inheritance
to aggregation are reported. An in-depth analysis of the
refactoring trends in open-source systems is provided in
[15]. Results showed the most common refactorings of the
15 studied therein to be generally those with a high in-
degree and low out-degree when mapped on a dependency
graph; the same refactorings also featured strongly in the
remedying of bad code smells [2, 16]. Remarkably,
inheritance and encapsulation-based refactorings were
applied relatively infrequently. The paper thus identified
‘core’ refactorings central to many of the changes made by
developers of open-source systems. A ‘peak’ and ‘trough’
effect in the pattern of refactorings was observed across all,
but one of the systems studied suggests that refactoring is
done in effort ‘bursts’. Developing heuristics for deciding
on different refactorings, based on system change data, was
earlier investigated by Demeyer ez al. [17]; a full survey of
relevant refactoring work can be found in [7]. Recent work
on the automation of refactoring can be found in Tokuda
and Batory [18], where 14 000 LOC were transformed
automatically that would otherwise have had to be carried
out by hand. The problems and pitfalls of undertaking
even a simple refactoring are described in [19] — the
‘encapsulate field’ refactoring [2] was used as a basis. The
possibility that refactorings are linked in a composite form
is considered in [7]. Furthermore, issues associated with

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

319

© The Institution of Engineering and Technology 2010

www.ietdl.org

poor architectural design and the implication this has for
refactoring are discussed extensively in Brown ez al. [20].

In this paper, we focus predominantly on the opportunity
for refactoring class constructors. Several papers have
recognised constructors as a confusing factor in the
definition of object-oriented (OO) metrics. Briand ez al
[21] identified constructors as a contributing factor to the
problems of measuring cohesion, and in Bansiya ez al. [22]
cohesion metrics were empirically evaluated with and
without constructors because of the significant effect they
had on metrics values. We note that the work presented
herein builds on a preliminary study of constructor
refactoring [23]. Hereafter, we extend that work and
analyse the role that inheritance plays in the refactoring
process, factors limiting the applicability of RCwCM and
to a lesser extent the potential for the elimination of code
duplication. A number of quantitative analyses have been
useful in recent years for uncovering traits in OO software
that can inform a developer when modifying software, both
at the code and design levels [8, 24—29]. The contents of
this paper can be viewed in this spirit.

3 Refactoring the ‘Loan’ class

The motivation for refactoring constructors and, in
particular, for employing the RCwCM refactoring stems
from the fact that constructors do not communicate
developer intentions efficiently or effectively. OO languages
like Java and C++ insist that the name of the constructor
be the same as the class name. This means that first, in the
case of a class with many constructors, it is confusing for a
developer to appreciate what each constructor does and
then decide which of those constructors are amenable to
RCwCM. Second, duplicated code in the body of a
constructor also obscures the real intention of the
constructor, since it becomes more difficult to spot any
differences, and it is also possible that some constructors
are no longer in use and are hence redundant. Furthermore,
mature software systems are filled with duplicated
constructor code, because it is simply easier to add another
constructor to a class than to invest time and effort finding
out invocations of specific constructors. Resulting code
‘bloat’ poses a danger in terms of both software
comprehension and future maintenance. The potential
benefits of applying the RCwCM refactoring therefore
include a greater focus on a minimum number of
constructors, the potential for improved code understanding
and to a lesser extent reduction of code bloat around
constructors.

We use an example of a Loan class [10], in order to
demonstrate the principles of the RCwCM refactoring and
another example from the Swing system (see Section 3.4),
in order to demonstrate that constructors do not always
communicate their intention (and therefore their semantics)
clearly. To effect the transition from a class containing

duplicate code in the constructors to a refactored class, the
following steps need to be undertaken. First, the catchall
constructor has to be identified. Second, an associated
refactoring, the chain constructors (CC) refactoring [10]
has to be applied and, finally, the resulting constructors
have to be converted to creation methods.

3.1 Identifying the catchall constructor

The following identification of the catchall constructor
(Fig. 1) is based on the Loan class example taken from
Kerievsky [10]. We begin with an original class containing
three constructors for a Loan class; the constructors,
emphasising different types of loan, differ in only minor
ways. The original class definition is as per Fig. 1 and

public class Loan {
public Loan(float notional, float outstanding,
int rating, Date expiry){
*this.notional = notional;
*this.outstanding = outstanding;
“this.rating = rating;
*this.expiry = expiry;
}
public Loan(float notional, float outstanding,
int rating, Date expiry, Date maturity){
*this.notional = notional;
*this.outstanding = outstanding;
*this.rating = rating;
*this.expiry = expiry;

this.maturity = maturity;

public Loan(CapitalStrategy strategy,
float notional,
float outstanding, int rating,
Date expiry, Date maturity){
this.strategy = strategy;
*this.notional = notional;
*this.outstanding = outstanding;
*this.rating = rating;
*this.expiry = expiry;
this.maturity = maturity;

}

Figure 1 Original Loan class with duplication

320
© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

contains four lines of duplicated code in each constructor
(the duplicated LOC have been asterisked (*’) in each
constructor). The catchall constructor incorporates all
parameters and possible assignments of the set of
constructors. By definition, it will have at least as many
parameters as the largest constructor, since its signature is
the set of all constructor parameters (Fig. 2).

3.2 Applying the CC

The CC refactoring requires constructors with significant
levels of duplication to be amalgamated into one
constructor, with the remaining constructors using the ‘this’
self-referencing feature of Java to implement the different
constructor calls. After applying the CC refactoring to the
above class and carrying out the required testing to ensure
no side-effects, the Loan class takes the form of a single
catchall constructor with two further self-referencing calls
(i.e. using ‘this’ to the constructor) (Fig. 3).

3.3 Converting constructors to creation
methods

The next step of the refactoring is to replace the existing
constructors with creation methods (i.e. non-constructor
methods), which invoke the single catchall constructor with
relevant parameters and null parameters whichever are
appropriate. This gives us the following refactored class
definition for Loan, in accordance with the RCwCM
refactoring (Fig. 4).

We note that the catchall constructor has been declared as
private, thus aiding encapsulation by only being accessible
from the creation methods. We observe that in the case
where the Loan class has subclasses, the constructor should
be declared as protected in accordance with appropriate
Java encapsulation principles. By reducing the duplication
of assignment statements where possible, developers only
have to use the method specific to that object, and that
method should be more easily identifiable.

public Loan(CapitalStrategy strategy, float notional,
float outstanding, int rating,

Date expiry, Date maturity){
this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;

this.maturity = maturity;

Figure 2 Catchall constructor for Loan

www.ietdl.org

public class Loan {
public Loan(float notional, float outstanding,
int rating, Date expiry){
this(null, notional, outstanding,
rating, expiry, null);
}
public Loan(float notional, float outstanding,
int rating, Date expiry, Date maturity){
this(null, notional,
outstanding, rating, expiry, maturity);
}
public Loan(CapitalStrategy strategy, float notional,
float outstanding, int rating,
Date expiry, Date maturity){
this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

Figure 3 Loan class with a single catchall constructor

3.4 JPanel class of Swing

The example of the Loan class in the previous sections describes
the principles upon which the RCwCM refactoring is based.
One criticism that could be levelled at the Loan example is
that it is unlikely that we would find such an ideal example in
any real system. In such systems, we have to accept that code
is unlikely to conform to an expected ‘Gdeal’ template even
though it might start its life in such a template in version one
of a system. It is also plausible that there would be few classes
in any of the systems studied for which the entire mechanics
of the RCwCM refactoring, as described for the Loan class,
could be applied.

Fig. 5 shows the JPanel class taken from the Swing system
(see Section 3.5). JPanel is a lightweight container class that
we imagine would be used on a frequent basis by developers
as part of any graphic user interface (GUI) application. It has
six constructors in total. According to the associated
documentation for this class, two pairs of constructors share
the same description of what they do. Fig. 5 also shows
that the same set of parameters is also shared by those two
pairs. Fig. 6 shows the code for each of the constructors.

While developers who regularly use the class are probably

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

321

© The Institution of Engineering and Technology 2010

www.ietdl.org

public class Loan {
'\ the catchall constructor here

'\ the new creation methods

public static Loan Create_Loan_MissingStrategyAndMaturityParams(float notional,
float outstanding,
int rating,
Date expiry){
return new Loan(null, notional, outstanding,
rating, expiry, null);
}
public static Loan Create_Loan_MissingStrategyParam(float notional,
float outstanding,
int rating,
Date expiry,
Date maturity){
return new Loan(null, notional, outstanding,
rating, expiry, maturity);
}
public static Loan Create_Loan_MissingZeroParams(CapitalStrategy strategy,
float notional,
float outstanding,
int rating,
Date expiry,
Date maturity){
return new Loan(strategy, notional, outstanding, rating,

expiry, maturity);

Figure 4 Refactored class

familiar both with the function of the constructor code and
with its effect, this might be problematic for developers
who use the class for the first time.

Although we would not suggest that this class is necessarily
an obvious candidate for the RCwCM refactoring, we could
claim that it is not entirely clear under what circumstances
each of the two pairs of constructors (3 and 5 and 4 and 6)
should be wused. They differ only in their use of
LayoutManager2 rather than LayoutManager. Scrutiny of
the comments associated with the constructors provides no
further insight into the nature of the difference between the
two pairs of constructors. In fact, investigation of the

1. JPanel()

// Creates a new JPanel

2. JPanel(boolean isDoubleBuffered)

/I Creates a new JPanel with the specified buffering scheme

3. JPanel(LayoutManager layout)

// Creates a new JPanel with the specified layout

4. JPanel(LayoutManager2 layout)

// Creates a new JPanel with the specified layout

5. JPanel(LayoutManager2 layout, boolean isDoubleBuffered)

/l Creates a new JPanel with the specified layout and buffering scheme

6. JPanel(LayoutManager layout, boolean isDoubleBuffered)

// Creates a new JPanel with the specified layout and buffering scheme
Figure 5 JPanel constructors and their descriptions

associated documentation revealed that LayoutManager2 is
an interface which extends the LayoutManager interface.
(Both interfaces provide mechanisms for describing the
layout of a GUI panel.) We thus suggest that if these four
constructors were to be refactored along the lines of the
RCwWCM refactoring, and the names of the methods
changed accordingly, then they would convey the meaning
of what they do more clearly, because there are only minor
differences between the methods that the two interfaces
implement. This is, in essence, the chief goal of RCwCM
refactoring. The mechanics of undertaking such a
refactoring, in this case, would also require a relatively low
amount of work on creating the catchall constructor.

The example of the Loan class demonstrates that, ideally,
the method names and parameters of the class constructors
clearly communicate their intention and hence their
semantics. On the other hand, this is not the case with the
JPanel class, whose method names and parameters do not

322

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

1. public JPanel() { this(false); }

www.ietdl.org

2. public JPanel(boolean isDoubleBuffered) { this(new swingwt.awt.FlowLayout(), false); }

3. public JPanel(swingwt.awt.LayoutManager layout) { setLayout(layout); }

4. public JPanel(swingwt.awt.LayoutManager layout, boolean isDoubleBuffered) { setLayout(layout); }

5. public JPanel(swingwt.awt.LayoutManager2 layout) { setLayout(layout); }

6. public JPanel(swingwt.awt.LayoutManager2 layout, boolean isDoubleBuffered) { setLayout(layout); }

Figure 6 Code for the JPanel constructors

convey their intention; for example, constructors 3 and 5 and
4 and 6. (In addition, the comments in Fig. 5 are far from
illuminating.)

The JPanel class example illustrates that a developer should
apply the RCwCM on a case-by-case basis rather than on
any class with a sufficiently large number of constructors. It is
also reasonable to suggest that the benefits of applying the
RCwCM refactoring are likely to be directly proportional to
the difficulty of unpicking what the constructors of a class
currently do and how they do it. In the ensuing subsection,
the application domains upon which we empirically
investigated the RCwCM refactoring are presented.

3.5 Java systems

The five software systems were chosen according to the
following criteria: the software systems are real, not toy
systems, differ in their sizes (in terms of the number of
classes) and belong to a wide range of application domains
(two library packages, compiler, graph-editor and
framework). The diversity of application domains and wide
spectrum of sizes help to identify important common
trends or differences in terms of those criteria across these
applications. The five software systems could have been
based on one type of application domain only; however, our
decision is justified on the basis that we want to obtain
more in-depth information about open-source systems across
different application domains. The choice of the five systems
provides a reasonable basis for comparison of different
application domains. The benefit of choosing a wide variety
of systems was that trends (if any) were more likely to be as
generalisable as possible. The five Java systems were

o Swing Java package library: This provides a set of Java
components that, to the maximum degree possible, perform
the same on all platforms; 1248 classes were identified in

this system. This system has 113 294 LOC.

e BSF: This is an architecture for incorporating scripting
into Java applications and applets; 65 classes were identified

in this system. It has 8870 LOC.

e GraphDraw: It is a tool for graph drawing and graph
layout. Graphs can be input into visualising graph through

Java in two ways: with textual descriptions or through a
drawing the user creates using the graph editor; 52 classes
were identified in this system. It has 11 009 LOC.

o Libjava: This language sub-library set has 89 Java classes
available from the public domain at the Gnu gec website
(www.gnu.org). It has 6018 LOC.

® Barat: It is a compiler front-end for Java. Barat is a
framework that supports static analysis of Java programs. It
parses Java source code files and class files and builds a
complete abstract syntax tree from Java source code files,
enriched with name and type analysis information; 407
classes were identified in this system. It has 28 262 LOC.

We view the systems described as small sized in the case of
the BSF, GraphDraw and Libjava systems and medium sized
in the case of the Swing and Barat systems. We accept that
there is no strict definition on what actually defines a large
system and, for that matter, what constitutes a medium or
small system. However, irrespective of system size, we see it
as important to explore features of any industrial system
that enjoys a wide user base and particularly it is freely
available for download and subsequent use. We note that
size of a system in the context of this study is determined
by the number of classes (and not LOC).

3.6 Data collection

Wherever possible, data from the five Java systems were
collected automatically using software written by the
authors. Data collection was undertaken manually when it
was clearly impractical to write appropriate data collection
software [30]. We collected the number of classes
containing three or automatically.
Gathering classes with three or more constructors ensures
that, after excluding the default constructor (which rarely
has associated code and always has zero parameters), there
are at least two constructors remaining. The following
data items were collected manually from each of the five
systems:

more constructors

1. The duplicated LOC between each pair of constructors in
each class. This data were collected in order to assess the

potential for the removal of duplicated LOC. The

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

© The Institution of Engineering and Technology 2

323
010

www.gnu.org

www.ietdl.org

underlying hypothesis is that duplicated LOC between any
two constructors is unnecessary; such LOC arise out of
poor maintenance and should be removed using an
appropriate refactoring technique.

2. The number of comment lines surrounding each of the
constructors in classes where there were three or more
constructors. Very little work has been done on the
potential for eliminating comment lines as part of
refactoring. Yet, comment line bloat may be a great
impediment to effective refactoring as poorly written code
leads to code bloat [10]. In the presence of continuous
maintenance, a comment may become inaccurate when a
developer forgets to change the appropriate comment after
changing the code. Removal of such comment lines is a
possible by-product of refactoring effort.

We note that the data that identified which sample of
classes had three or more constructors had already been
collected automatically as part of a range of previous studies
[19, 23, 31] and was therefore already in an automated
form (as an Excel spreadsheet). This automatic data were
originally verified by the authors of those previous studies
through a manual checking process. In other words, it is
unlikely that any classes falling into the category of
containing three or more classes were missed in the data
collection process. We also emphasise that the actual
refactorings using RCwCM were not implemented by a
tool as such — only the effect of undertaking those
refactorings was empirically evaluated, quantified and
presented in this paper. To date, we know of no software
tool that can implement the RCwCM refactoring;
however, since we could see the significant benefits in
refactoring to patterns, as a future work we plan to develop
a tool suite that will explore the properties and
quantifiable benefits of a range of Kerievsky’s refactorings.
Some research by the authors has already been carried
out on the former, and more specifically, the number and
type of composite refactorings generated by Kerievsky’s
patterns [32].

3.7 lIdentical lines between constructors
Counting LOC is a process normally fraught with difficulty

[33]. However, in order to assess the benefits of constructor
refactoring, LOC would seem to be a good indicator of
the inefficiencies found in constructors, particularly as
constructors tend to comprise simple assignment statements
whose comparison with other statements is relatively easy.
However, we still need to be clear on first, what a LOC is
and, more importantly, what a duplicated LOC is. Hereafter,
we consider two LOC common if they are syntactically
identical. (We have already seen an example of duplicated
LOC in Section 3.2 with four duplicated LOC between all
constructors.) We also insist that the types of the parameters
being assigned in a constructor must also be identical for two
LOC to be considered identical. Finally, we note that in the
case of ‘it” conditions within constructors, only each line of

the ‘if” condition is considered for a match with other
constructors (i.e. not the entire if”).

4 Data presentation

In this section, ‘cons’ stands for ‘constructors’ and ‘max’ for the
‘maximum’ value in the sample. Table 1 gives the breakdown of
maximum, mean and median number of constructors found for
classes with three or more constructors (here ‘nc’ stands for not
computable, since the sample size in this case was only two; as
well as in the sample size, we also include the total number of
classes in brackets).

From Table 1 we can see that the Swing and Barat systems
contain the highest number of classes with three or more
constructors. However, in terms of the proportion of such
classes to the total number of classes in each Java system, BSF
contains the lowest percentage (3.08%) compared with the
highest percentage for Barat (11.79%). In addition, we
mention that the Barat system also contained the highest
proportion of abstract classes (30) among the 407 investigated
for this system. This compares with 38 abstract classes for
Swing, one for BSF, one for GraphDraw and three for Libjava.

Table 2 shows the frequencies for each of the constructors
in those classes that have three or more constructors. For

Table 1 Number of classes with three or more constructors
for the five Java systems

System Occurrences | Cons | Max | Mean | Median
Swing 73 (1248) | 333 9 | 4.56 4
BSF 2 (65) 7 4 |35 nc
GraphDraw 6 (52) 19 4 | 3.17 3
Libjava 9 (89) 41 | 12 | 455 3
Barat 48 (407) 158 7 | 3.29 3

Table 2 Frequencies for each of the constructors in classes
with three or more constructors

Number of | Swing | BSF | GraphDraw | Libjava | Barat
cons
3 26 1 5 7 39
4 18 1 1 0 7
5 9 0 0 0 0
6 10 0 0 0 1
7 4 0 0 0 1
8 4 0 0 1 0
9 2 0 0 0 0
12 0 0 0 1 0

324

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

example, the Swing system contains nine classes with five
constructors and the Barat system contains 39 classes with
three constructors. The Libjava system is the only system
containing a class with 12 constructors. From this
distribution, it would appear that in both Swing and Barat,
the potential for RCwCM refactoring is greater than in the
other three systems.

5 Factors limiting the RCWCM
refactoring

At the inception of the empirical study described, it seemed
that refactoring constructors according to the RCwCM
refactoring would be a straightforward task and that most
classes would conform to theory. The example of the Loan
class (Section 3) portrays a model example of how the
RCwCM works. However, there were a number of factors
that limited the scope for application of the RCwCM
refactoring. In the next two sections we look at the two
facets of Java (and OO in general) encountered during the
course of the empirical study (Sections 5.1 and 5.2). The
first of these is the role that inheritance plays in the five
systems. When viewed from the perspective of subclass
dependencies, inheritance could be seen as a factor limiting
the opportunity for undertaking RCwCM. Thereafter, we
investigate the different styles used for accessing class
constructors that complicate the said refactoring; in
particular, use of the ‘super’ construct and variations thereof.

Aside from the limiting factors outlined, we also consider
some quantifiable benefits of RCwCM. This falls into two
categories: removed duplicated LOC (i.e. ‘bloat’) between
constructors and removal of comment from
constructors. We note that the purpose of the study is to
provide a critique of the RCwCM refactoring in terms of
its practicalities.

lines

The ensuing four sections, therefore, provide two possible
reasons why undertaking RCwCM refactoring might be
problematic in some cases followed by two specific, minor
benefits, in addition to some of the general benefits
referred to in Section 2.

5.1 Role of inheritance

Of the many in-built features that OO provides, inheritance
has probably caused the most controversy. The problem that
inheritance brings is that while it promotes and encourages
code reuse through its natural structure, inheritance also
causes potential dependencies between all subclasses of an
inheritance tree. Consequently, from a maintenance
viewpoint, any change to a superclass could affect any
number of other subclasses which potentially use the
constructors of the superclass.

The problem with applying the RCwCM refactoring to a
system with deep inheritance structures is that there is both
direct coupling (with the immediate subclasses) and

www.ietdl.org

indirect coupling (with classes below the immediate
subclasses) and the class under review for refactoring. This
complicates the mechanics of the refactoring since each
dependent subclass needs to be considered for potential
side-effects that might result from superclass constructor
invocation. We note that the example in Kerievsky's text
does not use classes that extend any other classes and, in
that sense, the example is relatively straightforward.

While in the context of the Java language, constructors are
not inherited like regular methods, the constructor of any
subclass can nonetheless invoke the constructor of a
superclass. In other words, refactoring constructors in any
class must take account of behaviour that may be affected
in all subclasses. The implication of this feature of OO
(and Java) is that if subclassing to deep levels of the
inheritance hierarchy is common, then applying the
RCwCM refactoring will, on average, be more problematic
and time-consuming than if only shallow (or zero) levels of
subclassing is a feature. There is also the ever-present
possibility of faults being introduced [34] when greater
numbers of dependencies (i.e. coupling) need to be
considered. Briand ez al [25] have shown that the friend
facility used in C++ (a form of coupling [35] often used
in conjunction with inheritance) can be the cause of faults.
Inheritance and the extent of its use can therefore have a
significant effect on the scope (and more specifically the
likely time and effort) for carrying out the RCwCM

refactoring.

With reference to the above, Table 3 shows the frequencies
of subclasses for those classes which have three or more
constructors. For example, the Swing system has 17 classes
each of which has one subclass, and in total those 17
classes have 77 constructors. On the other hand, 45 classes
have no subclasses. For Barat, there are two classes with
one subclass each and 42 classes with no subclasses.

From Table 3, we can see that Swing, and to a lesser extent
Barat, have the widest spread in terms of the number of
subclasses of a class, whereas GraphDraw has only one
class with one subclass. The general trend observable from
Table 3 is that most of the candidate classes for RCwCM
have no subclasses. In the Swing system, 61.6% of the
classes fall into this category and in Barat 87.5%. The other
two systems, BSF and Libjava, have two and nine classes,
respectively, with three or more constructors; none of those
classes have any subclasses. The large number of classes
with three or more constructors, which have no subclasses,
simplifies the process of RCwCM refactoring, since
complications associated with treating subclasses are
eliminated. If a class has a large number of subclasses, every
change made to that class may cause a ripple effect on its
subclasses. Refactoring the constructors of classes towards
the root of the inheritance hierarchy is therefore more
problematic, because of the potential for large numbers of
dependent subclasses.

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

© The Institution of Engineering and Technology 2

325
010

www.ietdl.org

Table 3 Frequencies of classes with three or more constructors in three Java systems

Number of | Swing | Total number | GraphDraw | Total number | Barat | Total number
subclasses of cons of cons of cons

0 45 207 5 16 42 135

1 17 77 1 3 2 10

2 3 14 0 0 3 9

3 3 12 0 0 1 4

4 2 10 0 0 0 0

5 1 4 0 0 0 0

8 1 6 0 0 0 0

65 1 3 0 0 0 0

We can thus qualify our earlier statement with respect to
the role that inheritance plays in RCwCM by stating that
the mechanics of the RCwCM refactoring will tend to be
simplified (in terms of time and effort spent on refactoring)
if the class under consideration has no subclasses (i.e. the
class is a leaf class). Although there is no ‘silver bullet’ to
solve the issue of coupling dependencies, hence to avoid
the complications of applying RCwCM where there are
many subclasses, one potential strategy for solving this
problem of application in deep inheritance hierarchies is to
apply the refactoring to systems where there is a low
median depth of inheritance and to avoid application of
RCwCM to systems where there are deep levels of
inheritance. Alternatively, we can apply the refactoring to
only classes located at deep levels of the inheritance
hierarchy and hence avoid the issue of many subclasses. In
other words, from a developer’s perspective, we could
speculate that the RCwCM is a refactoring that should be
applied with care and only under specific conditions that
are conducive to, and simplify its application.

5.2 Alternative constructor formats

Java classes tend to call the constructor of their superclasses
using the super construct with the appropriate parameter
list rather than to explicitly declare a constructor of their
own. For example, Fig. 7 illustrates this feature for a class
called JFrame (and two constructors therein) taken from
the Swing system. Table 4 shows the breakdown of classes
in each of the five systems which contained a call to at least
one super construct and the number of classes with no calls
to super. A striking feature of Table 4 is the relatively low
frequency of the use of super in the BSE system. This
conforms with the earlier observation about the stability of

a framework (Section 2, end of paragraph 3).

It is clear from Table 4 that the super feature is a frequently
used construct in Java constructors — about half of the classes
considered in Swing and nearly all in Barat. One difficulty

that arises with the use of the super feature is the case

public JFrame() {
super();
framelnit();
}
public JFrame(GraphicsConfiguration gc) {
super(gc);
framelnit();

Figure 7 Example of call to the superclass constructor

Table 4 Number of classes with and without at least one
‘super’ construct

System Occurrences | With super | Without
Swing 73 34 39
BSF 2 2 0
GraphDraw 6 0 6
Libjava 9 4 5
Barat 48 44 4

when we have an invocation of a superclass constructor
which contains conditions; the following example (Fig. 8),
again taken from the Swing system, illustrates this point.

This last example would make the construction of a
catchall constructor difficult. The mechanics of splitting the

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

public JWindow(Frame owner) {
super(owner == null?
SwingUtilities.getSharedOwnerFrame() : owner);

windowlnit();

Figure 8 Constructor with embedded condition

condition into two is relatively complex and may also detract
from the overall comprehensibility of the class — a major
motivation for constructor refactoring being undertaken in
the first place. There is also the case of declaring an
anonymous class in a constructor (an inner class with no
name), again making the search for a catchall constructor
difficult. To illustrate the use of the super construct, Fig. 9
shows the set of constructors for the JDialog class of the
Swing system.

With reference to the difficulty of forming a catchall
constructor, Fig. 9 poses a particularly problematic case, with
frequent reference to ‘super’ and with different combinations
and numbers of parameter types. While (as per the use of
inheritance generally) there is no obvious solution to the
problem of the use of the ‘super’ construct in the mechanics of
the RCwCM refactoring as it is defined, there are a number
of guidelines that a developer could adopt to ameliorate the
issues raised as a result of its use. First, and perhaps most
obvious, avoid applying the refactoring in parts of the
inheritance hierarchy where there is frequent use of ‘super

and/or where there is a deep inheritance hierarchy. The
RCwCM should be used selectively. Second, refactor each of

public JDialog() { super(); }

www.ietdl.org

the superclasses using RCwCM (to eliminate ‘super’ from the
relevant classes) and thus permit application of the RCwCM
refactoring as defined in the target class. The problem with
this last guideline is that the overall added effort required
might be prohibitive. Third, considering the previous
guidelines, there are a number of Fowler defined refactorings
that could also assist in the process of applying the RCwCM,;
for example, use of the ‘Collapse Hierarchy [2] to render the
inheritance hierarchy more shallow and malleable for the
RCwCM. Finally, there is empirical and anecdotal evidence to
suggest that GUI-based systems tend to have a deeper
inheritance hierarchy than other ‘types’ of system [31]. If that
is the case, then it might be prudent to avoid applying the
RCwCM refactoring in systems or sub-systems which have
GUI-based components. In the next two sections, we present
two features of RCwCM that provide specific, minor benefits.

5.3 Duplicated LOC

Table 5 gives the breakdown in terms of the number of
duplicated LOC found for each pair of constructors in each
class. For example, in the Swing system, one line of common
code was found between pairs of class constructors 39 times;
two lines of common code were found to exist between pairs
of class constructors 22 times, and so on. From Table 5, it is
seen that Swing and Barat systems contain the widest spread
in terms of duplicated LOC as well as having the largest
number of classes with three or more constructors as stated
earlier. However, it is Barat that provides the greatest
opportunity for eliminating LOC during refactoring. The
Swing system, although containing large numbers of classes
with three or more constructors, tends to have relatively low
numbers of duplicated LOC. In terms of refactoring,

public JDialog(swingwt.awt.Dialog owner) { super(owner); }

public JDialog(swingwt.awt.Dialog owner, boolean modal) { super(owner, modal); }

public JDialog(swingwt.awt.Dialog owner, String title) { super(owner, title); }

public JDialog(swingwt.awt.Dialog owner, String title, boolean modal) { super(owner, title, modal); }

public JDialog(swingwt.awt.Dialog owner, String title, boolean modal, GraphicsConfiguration gc) {

super(owner, title, modal, gc); }

public JDialog(Frame owner) { super(owner); }

public JDialog(Frame owner, boolean modal) { super(owner, modal); }

public JDialog(Frame owner, String title) { super(owner, title); }

public JDialog(Frame owner, String title, boolean modal) { super(owner, title, modal); }

public JDialog(Frame owner, String title, boolean modal, GraphicsConfiguration gc) { super(owner, title,

modal, ge); }

Figure 9 Code for the JDialog constructors

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

© The Institution of Engineering and Technology 2

327
010

www.ietdl.org

Table 5 Frequency of duplicated LOC in each Java system

Duplicated BSF Barat

LocC

Swing GraphDraw | Libjava

one 39

ul
N

N
N

two

three

four

five

six

seven

eight

ten

eleven

oO|J]o]j]oj]o]|j]Oo]|r]|O|lU]|W
oOj]o|]o|J]o]jJ]o]j]o]|]o]|]o]j]o]|]o|o
oO|J]ojoj]o]|jlo]|]lo|lr|lwWwW]lwWw]PH]F
oOj]o]|]o]|J]o]jJ]o]j]o]|]o]|]o]jo]|lo]®r
Rl NIRRT W

eighteen

therefore, the Barat system in particular would seem to have
evolved with code bloat to its constructors. In fact, one class
in the Barat system has no less than 18 lines of duplicated
LOC between two of its constructors.

In practical terms, after refactoring these constructors using
the CC and then the creation methods template, we would
eliminate 222 LOC from the Barat system (0.8%), 118 from
the Swing system (0.1%), 35 from GraphDraw (0.32%), just
a single line of code from Libjava (0.02%) and none from
BSF (0%). Once again, the BSF system appears to be the
system where perhaps evolution (however long that may be)
has not caused deterioration in its constructors such that they
need refactoring [36]. The same can be said (but to a lesser
extent) for the Libjava and GraphDraw systems. In terms of
all five systems, this is only a small reduction in LOC, and
questions the viability and effort investment in RCwCM
with respect to this minor benefit.

5.4 Reduction in comment lines

When any refactoring is undertaken, it is likely that some
reduction in, or modification of, comment lines is possible.

According to Fowler [2], large numbers of comments
around code suggest that the code is a bad smell. Fowler
also suggests that comments are often superfluous after a
refactoring has taken place. As part of our empirical study,
the number of comment lines associated with constructors
was collected. Table 6 shows the total number of comment
lines that surrounded, or embedded within,
constructors for classes with three or more constructors in
each of the five Java systems. For example, in Libjava
there are nine classes with 41 such constructors and 102
comment lines in total.

were

From Table 6, we observe that there are varying patterns in
the number of comment lines for each of the Java systems
under consideration. In general, developers do not tend to
follow any particular strategy in writing comment lines related
to constructors. The Swing system appears to have the widest
range in terms of the number of comment lines surrounding
its constructors. In terms of the RCwCM refactoring, an
opportunity arises for reducing the number of comment lines
when a constructor is replaced by a creation method. The
basis of this claim is that the new method should be self-
explanatory and does not need as many (if any) comment
lines. The only comment lines which would remain would
be those surrounding the catchall constructor. Other things
remaining equal, allowing comment lines for the catchall
constructor and for each of the creation methods, we would
expect to eliminate the majority of the 2469 comment lines
across the five Java systems. Thus, the RCwCM refactoring
employed in this empirical study would provide us with the
opportunity to reduce very few LOC but many comment
lines. Of course, this saving has to be considered against the
possibility that the creation methods themselves will have
comment lines, so the net quantitative saving might be less
than the figures provided.

5.4.1 Statistical analysis of comment lines: The
following null and alternative hypotheses were investigated
to test if a difference existed in the trends of comment lines
among the five Java systems.

e Hj (null hypothesis): There is no variation in the number
of comment lines that surrounded, or are embedded within,
constructors in Java software systems.

Table 6 Breakdown of comment lines across constructors

System Sample size | Total number | Total number of | Min. | Max. | Std. deviation
of cons comment lines
Swing 73 333 2270 0 115 23.83
BSF 2 7 16 0 16 nc
GraphDraw 6 19 27 0 14 5.58
Libjava 9 41 102 4 22 4.90
Barat 48 158 54 0 21 3.58

328
© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

Table 7 Mean rank values of the comment lines for
constructors in the five Java systems

System (group, | Occurrences Median Mean

see [14]) (comment rank

lines)

Swing (5) 73 29 93.5
BSF (2) 2 8 52.3
Graphdraw (1) 6 2.5 50.3
Libjava (3) 9 11 73.3
Barat (4) 48 0 35.4

e Hp (alternative hypothesis): There is variation in the
number of comment lines that surround, or are embedded
within, constructors in Java software systems.

The non-parametric Kruskal—Wallis test [37] was used for
testing differences between the five Java systems. Table 7
shows a summary of the ranked data, the median and the
mean rank values of the comment lines in each system; the
test statistic / is a function of these ranks.

Table 8 shows the Kruskal—Wallis H-statistic, its associated
degrees of freedom (DF) (in this case we have five groups, hence
DF = 4) and the significance (p-value). We can conclude that
the Java software systems under consideration significantly
vary (p-value is 0.00 < 0.01) in terms of the number of
comment lines that surrounded, or were embedded within,
constructors. Therefore we accept the alternative hypothesis.
That is, developers do not tend to follow any particular
strategy in writing comment lines related to constructors, and
there are varying patterns in the number of comment lines for
each system under consideration.

From the preceding analysis, a number of conclusions can
be drawn about the nature of comment lines. A previous
study by the authors [38] found that one of the main
causes of manual data collection errors in the same systems,
as studied herein, was the haphazard means with which
comment lines had been arranged around methods. Fig. 10
shows a code snippet taken verbatim from the class
InnerClassVisitor of Barat. No less than three different
styles of commenting are used for four lines of the body
of the method. We would suggest that from a readability
point of view, mixing comment lines might detract from
the effectiveness with which a developer can understand the

Table 8 Kruskal—Wallis test statistic for comment lines

Statistic Value
H 65.20
DF 4
p-value 0.00

www.ietdl.org

code and then possibly make changes to that class. In the
context of the RCwCM refactoring, appropriately worded
comments can help the developer choose the most
applicable constructor. In theory, if all the comments were
written appropriately, then there would be less need
for RCwCM. If the comments are out of date, then this
poses an even greater risk of misinterpretation. One of the
benefits of RCwCM (albeit qualitative in nature) is that the
intention of the ‘regular’ methods created by the refactoring
is, in theory, conveyed more effectively. We could then
postulate that comments play less of a role in describing
what a method does. In other words, there is less
dependence on comment lines if a developer is given a free
rein with respect to method naming.

While we could, in theory, suggest that the more the
comments are there in code, the better the aid to code
comprehension by a developer; an alternative viewpoint is
that comments can clutter up the code.

6 Discussion

A number of caveats to the validity of the study need to
be considered. The first is that we chose only classes with
three or more constructors to consider for the RCwCM
refactoring. We accept that a class with two constructors
may be appropriate for refactoring effort. However, on the
basis that the two constructors would include a default
constructor, we feel it inappropriate to consider for
refactoring any class with less than three constructors. The
second is that we chose five Java systems of largely differing
application domains; systems of identical application
domain may have provided more relevant results. In
defence of such a criticism, we would claim that for the
results described in this paper to be generalisable, we would
prefer systems of different application domains. Finally, we
feel that the study is repeatable for other Java systems and
for other languages, for example C++, but due to the
different emphasis of the language different problems will
arise; for example, the different emphasis of inheritance in
C++, combined with the presence of the friend feature [39].

One practical reality that we need to consider is that some
classes may have large numbers of constructors; this presents
a problem in deciding which constructors to refactor. In
Kerievsky [10] it is accepted that a compromise could be
reached in such circumstances; the developer is at liberty to
be selective in their choice of which constructors should
be transformed into creation methods. It is also suggested
that the creation methods themselves should be subject to
parameterisation, that is, amalgamating the parameter lists
of certain methods where there is ample scope for doing
this. In this sense, selective refactoring is more appropriate.
The point that we make is that not all refactorings are
simple in practice when real systems are being analysed.
Equally, the way that Java features are used by developers
(i.e. inheritance and use of comment lines) can influence
the decision as to what to refactor. We also remark that

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

329

© The Institution of Engineering and Technology 2010

www.ietdl.org

// Converted to String,

String flags =

will be reconverted below

Integer.toString(Conversion.getAccessFlags (inner));

String[] attr =

anon? null

anon?

CollectionAttribute.add(outer,

CollectionAttribute.add(inner,

null

attr) ;

attr) ;

{ inner_class_name,

ocuter_class_name,

: name, flags };

[////// Define some commonly used Code suspensions /////////

/** When the class has been traversed add an InnerClasses attribute to it if

necessary.

*/
Figure 10 Code snippet from the Barat system

any refactoring will take time and resources, both of which
are in short supply. What is not clear from our study is
whether classes with large numbers of constructors have
acquired them over time, or had that many constructors
from the start; this is an intriguing topic for further work.

In his refactoring text, Fowler suggests a number of reasons
why developers do not tend to refactor. One suggestion is
that they do not have the time. We therefore accept that
refactoring ‘everything’ in sight is not always feasible or
desirable. In certain circumstances, we have suggested that
refactoring of constructors is a more difficult process than
theory suggests. This is related specifically to situations
where the super construct was invoked inconsistently. We
are not suggesting that these constructors should be
ignored, because they do not fit in with the template for
refactoring suggested in Kerievsky; instead, extra time and
resources should be allocated for refactoring classes with
this format of constructor call if appropriate.

Herein, we have assumed that developers would apply
RCwCM as they would like any other refactoring.
However, we have to appreciate that there are practical
considerations that guide the choice of refactorings that a
developer will undertake. First, there is the possibility
that there are some code ‘smells’ [16, 38] which would

receive preferential treatment over RCwCM; second, the
implications for testing also need to be considered, since
different refactorings have mechanics of different
complexities and may require different levels of testing
[38]. More research needs to be undertaken into the
relative trade-offs between refactorings before we can
understand the rationale behind developer decisions.
Finally, it is important in a paper, where creation methods
are featured, to mention their differences with factory
methods. The distinction is often a source of confusion
among developers and academics alike. Both are methods
that create classes and in that sense they are identical.
However, Kerievsky [10] makes an important distinction
between the two. A factory method may not be static and a
factory method ‘...must be implemented by at least two
classes, typically a superclass and a subclass’. In other
words, every factory method is a creation method but not
vice versa.

‘We have described how certain factors limit the use of the
RCwCM refactoring. These could be viewed as flaws in the
refactoring. However, from our empirical study a number of
general questions remain. The first is whether the RCwCM
refactoring could be improved to take account of these flaws?
We would suggest that simply tailoring a refactoring to the
vagaries of a particular language is a retrogressive step and

330

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

might become more trouble than it is worth. If we attempted to
modify the RCwCM refactoring to cater for deep inheritance
hierarchies, then this would render a relatively simple
refactoring (in terms of its mechanics) into an unnecessarily
complex one; similarly, with the handling of the super
construct. The more sensible route to take might be as we
suggested — to re-engineer the code prior to application of
RCwCM or to simply avoid using the refactoring where
these limiting factors apply. In Fowler’s text [2], there are,
for many of the mechanics of the 72 refactorings, a set of
conditions which could apply at any step in those mechanics.
Kerievsky provides a set of alternative ‘implementations’ of
refactorings to cater for different designs. One suggestion
therefore, rather than modify the RCwCM, would be to offer
an alternative implementation in the case of (a) large numbers
of subclasses and (b) extensive use of the super construct.
This then gives the developer the choice of which of the two
they apply and an idea of the likely effort involved.

The second question relates to whether the RCwCM is
actually worth the effort of learning and applying if the said
limitations exist? The essence of the RCwCM is the benefit
in terms of improved comprehensibility of the code; this is
a difficult benefit to quantify. We would suggest that
knowledge of the RCwCM is useful even if it is only applied
on limited occasions; when used in targeted areas of code or
areas that are becoming (or have been) problematic could
help immeasurably in saving developer time in both the short
and long-term. While we might expect many of the standard
renaming and moving refactorings to be undertaken on a
frequent basis, application on an ‘as-needed’ basis of more
complex refactorings is a sensible strategy to adopt. In
general, we would not expect the RCwCM to be as regular
a refactoring as other simple refactorings (e.g. Move Field,
Move Method [2]).

7 Conclusions and further work
In this empirical study, we have evaluated RCwCM and, in

particular, the role that constructors play in the context of
this refactoring. Five Java systems from different application
domains were used as a basis for our study. Making
constructors intelligible and easy to comprehend is a key
to easy maintenance of class definitions. We have shown
that while refactoring of constructors according to specific
principles described in Section 3 is feasible, there are a
number of limiting factors that inhibit the refactoring
process for RCwCM. The role that inheritance plays in
determining which of the candidate classes to choose for
refactoring is an important consideration. The use of the
super construct and embedded conditions in signatures also
make application of RCwCM problematic. In addition, we
empirically showed that the same refactoring is capable of
saving only minimal lines of duplicated LOC. Potential
benefits in terms of comprehension and encapsulation
through use of a private constructor could be accrued.
A beneficial side-effect of removing constructors and

www.ietdl.org

replacing them with creation methods allowed us to remove
comment lines around those constructors.

One aspect of future work will be to analyse the
relationships between all 72 refactorings that Fowler
suggests [2] and other refactorings of Kerievsky [10] to
gain a greater understanding of the nature of composite
refactorings. A further aspect of future work will be to
monitor the maintenance of systems from the time they
are developed to see the changing patterns in constructor
trends. Finally, this empirical study represents only a small
part of a refactoring toolkit. We would welcome other
studies into refactoring of constructors (and other
refactorings) to support or refute the findings presented in
this paper. To that end, the data upon which this study
rests is available to other researchers upon request to the
lead author.

8 Acknowledgment
The authors appreciate the highly helpful comments of the

anonymous reviewers.

9 References

[1] rooTE B., oPDYKE W.: ‘Life cycle and refactoring patterns
that support evolution and reuse’, in COPLIEN J., SCHMIDT D.
(EDS): ‘Pattern languages of programs’ (Addison-Wesley,
1995)

[2] FrowLer m.: ‘Refactoring (improving the design of
existing code)’ (Addison-Wesley, 1999)

[3] JoHNSON R., OPDYKE W.: ‘Creating abstract superclasses
by refactoring’. Proc. ACM 1993 Computer Science Conf.
(CSC’93), Indianapolis, USA, 1993, pp. 66—73

[4] JoHNsON R., OoPDYKE W.: ‘Refactoring and aggregation.
Object technologies for advanced software’ Springer,
1993, (LNCS, 742), pp. 264-278

[5] JoHNsON R., FOOTE B.: ‘Designing reusable classes’,
J. Object-Oriented Program., 1988, 1, (2), pp. 22-35

[6] MENS T, VAN DEURSEN A.: ‘Refactoring: emerging trends
and open problems’. Proc. First Int. Workshop on
Refactoring: Achievements, Challenges, Effects (REFACE),
University of Waterloo, 2003

[7] MENs T, TOURWE T.: ‘A survey of software refactoring’,
IEEE Trans. Softw. Engng., 2004, 30, (2), pp. 126—139

[8] o'cINNEIDE M., NIXON P.: ‘Composite refactorings for Java
programs’. Proc. Workshop on Formal Techniques for Java
Programs, ECOOP Workshops, Brussels, Belgium, 1998

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—-333
doi: 10.1049/iet-sen.2009.0010

331

© The Institution of Engineering and Technology 2010

www.ietdl.org

[9] Tourwe T, MENs T.: ‘Identifying refactoring opportunities
using logic meta-programming’. Proc. European Conf. on
Software Maintenance and Reengineering (CSMR’03),
Benevento, Italy, 2003, pp. 91-100

[10] kemievsky J.: ‘Refactoring to patterns’ (Addison-Wesley,
2004), Also partially available online at: www.
industriallogic.com

[11] KERNIGHAN B., RITCHIE D.: ‘The C programming language’
(Prentice-Hall, 1978)

[12] COUNSELL S., HASSOUN Y., JOHNSON R., MANNOCK K., MENDES E.:
‘Trends in Java code changes: the key identification of
refactorings’. Proc. ACM Int. Conf. on Principles and
Practice of Programming in Java, Kilkenny, Ireland, 2003,
pp. 3-6

[13] COUNSELL S., LOIZOU G., NAJJAR R., MANNOCK K.: ‘On the
relationship between encapsulation, inheritance and
friends in C++ software’. Proc. Int. Conf. on Software
System Engineering and its Applications (ICSSEA’02), Paris,
France, 2002

[14] opbyke w.: ‘Refactoring object-oriented frameworks’.
PhD thesis, University of lllinois, 1992

[15] ADVANI D., HASSOUN Y., COUNSELL s.: ‘Extracting
refactoring trends from open-source software and a
possible solution to the “related refactoring” conundrum’.
Proc. ACM Symp. on Applied Computing, Dijon, France,
2006, pp. 1713-1720

[16] MANTYLA M., VANHANEN J., LASSENIUS C.: ‘Bad smells —
humans as code critics’. Proc. IEEE Int. Conf. on Software
Maintenance (ICSM’04), Chicago, USA, 2004, pp. 399-408

[17] DEMEYER S., DUCASSE S., NIERSTRASZ O.: ‘Finding refactorings
via change metrics’. Proc. ACM Conf. on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), Minneapolis, USA, pp. 166—-177

[18] TokuDA L., BATORY D.: ‘Evolving object-oriented designs
with refactorings’, Autom. Softw. Engng., 2001, 8,
pp. 89-120

[19] NALAR R., COUNSELL S., LOIZOU G.: ‘Encapsulation and the
vagaries of a simple refactoring: an empirical study’.
Technical Report, BBKCS-05-03-02, SCSIS-Birkbeck,
University of London, 2005

[20] BROWN W., MALVEAU R., MCCORMICK R., MOWBRAY T..
‘AntiPatterns: refactoring software, architectures, and
projects in crisis’ (Wiley, 1998)

[21] BRIAND L., DALY J.,, WuUST J.: ‘A unified framework for
cohesion measurement in object-oriented systems’, Empir.
Softw. Engng., 1998, 3, (1), pp. 65-117

[22] BANSIYA J., ETZKORN L., DAVIS C., LI W.: ‘A class cohesion
metric for object-oriented designs’, J. Object-Oriented
Program., 1999, 11, (8), pp. 47-52

[23] NAIAR R., COUNSELL S., LOIZOU G., MANNOCK K.: ‘The role
of constructors in the context of refactoring object-
oriented software’. Proc. European Conf. on Software
Maintenance and Reengineering (CSMR’03), Benevento, Italy,
2003, pp. 111-120

[24] BRIAND L., BUNSE C., DALY J.: ‘A controlled experiment for
evaluating quality guidelines on the maintainability of
object-oriented designs’, IEEE Trans. Softw. Engng., 2001,
27, (6), pp. 513-530

[25] BRIANDL., DEVANBU P, MELOW.: ‘An investigation into coupling
measures for C++4". Proc. Int. Conf. on Software Engineering
(ICSE’97), Boston, USA, 1997, pp. 412—-421

[26] ELEMAMK., BENLARBIS., GOELN., RAIS.: “The confounding effect
of class size on the validity of object-oriented metrics’, IEEE
Trans. Softw. Engng., 2001, 27, (7), pp. 630—650

[27] HARRISON R., COUNSELL S., NITHI R.: ‘Experimental
assessment of the effect of inheritance on the
maintainability of object-oriented systems’, J. Syst. Softw.,
2000, 52, (1), pp. 173-179

[28] HARRISON R., COUNSELL S., NITHI R.: ‘Coupling metrics for
0O design’. Proc. IEEE Int. Symp. on Software Metrics,
Bethesda, Maryland, USA, 1998, pp. 150-157

[29] RUMBAUGH J., JACOBSON 1., BOOCH G.: ‘The unified modeling
language reference manual’ (Addison-Wesley, 1998)

[30] COUNSELL s., LOIZOU G., NAJAR R.: ‘Quality of manual data
collection in Java software: an empirical investigation’,
Empir. Softw. Engng., 2007, 12, (3), pp. 275-293

[31] NanARR.: ‘An empirical study on encapsulation and
refactoring in the object-oriented paradigm’. PhD thesis
Birkbeck, University of London, UK, 2008

[32] HAMZA H., COUNSELL S., HALL T, Lolzou G.: ‘Code
smell eradication and associated refactoring’. Proc.
European Computing Conf., Malta, September 2008,
pp. 102-107

[33] ROSENBERG J.: ‘Some misconceptions about lines of
code’. Proc. Int. Software Metrics Symp., Albuquerque,
New Mexico, USA, 1997, pp. 137-142

[34] OSTRAND T., WEYUKER E., BELLR.: “Where the bugs are’. Proc.
ACM SIGSOFT Int. Symp. on Software Testing and Analysis,
Boston, MA, USA, 2004, pp. 86—96

[35] HENDERSON-SELLERS B., CONSTANTINE L., GRAHAM I.: ‘Coupling
and cohesion (towards a valid metrics suite for object-

332

© The Institution of Engineering and Technology 2010

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333
doi: 10.1049/iet-sen.2009.0010

www.industriallogic.com
www.industriallogic.com

www.ietdl.org

oriented analysis and design)’, Object-Oriented Syst., 1996, [38] COUNSELL S., HASSOUN Y., LOIZOU G., NAJIAR R.: ‘Common
3, (3), pp. 143-158 refactorings, a dependency graph and some code smells:

an empirical study of Java OSS’. Proc. ACM/IEEE Int.
[36] perry D.: ‘Laws and principles of evolution, Panel Symp. on Empirical Software Engineering, Rio de Janeiro,
Paper’. Proc. Int. Conf. on Software Maintenance, Brazil, 2006, pp. 288—296
Montreal, Canada, 2002, pp. 70-71

[39] counskLLs., NEwsON P.: ‘Use of friends in C++ software:
[37] FIELD A.: ‘Discovering statistics using SPSS’ (Sage an empirical investigation’, J. Syst. Softw., 2000, 53, (1),
Publications, 2005) pp. 15-21

IET Softw., 2010, Vol. 4, Iss. 5, pp. 318—333 333

doi: 10.1049/iet-sen.2009.0010 © The Institution of Engineering and Technology 2010

Copyright of IET Software is the property of Institution of Engineering & Technology and its content may not
be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

