
A study of library migrations in Java

Cédric Teyton*,†, Jean-Rémy Falleri, Marc Palyart and Xavier Blanc

LaBRI, Bordeaux University, UMR 5800, F-33400 Talence, France

ABSTRACT

Software intensively depends on external libraries whose relevance may change during its life cycle. As a
consequence, software developers must periodically reconsider the libraries they depend on, and must
think about replacing them for more relevant ones. We refer to this practice as library migration. To find
the best replacement for their library, they can rely on information over the Web, but they get quickly
overwhelmed by the amount of data they gather. Making the right choice in this context constitutes the
topic of our work. The solution we propose is to exhibit and mine the library migrations trends computed
by performing a study of a large set of software projects. To perform this analysis, we have defined an
automatic approach to compute library dependencies and a semi-automatic approach that identifies library
migrations. Then, we propose a deep analysis of the library migration phenomena by performing a
descriptive study of a large set of software projects stored on the Githubplatform. Second, based on our
descriptive study, we propose a support to developers who want to migrate their libraries. The main result
of our study is that recommendations of libraries can be inferred from the analysis of the migration trends.
Copyright © 2014 John Wiley & Sons, Ltd.

Received 19 April 2013; Revised 20 May 2014; Accepted 10 June 2014

KEY WORDS: software evolution; software repositories; API analysis

1. INTRODUCTION

The use of software libraries for reusing code is a widespread approach [1]. Examples of such libraries
are junit for unit testing or log4j for logging. The relevance of a particular library for a software project
may change during the project life cycle. This change might be motivated by the fact that the library is
no longer updated, that a competing library with better features is available or that the library is the
cause of compilation issues. As a consequence, software developers must periodically reconsider the
libraries they use. We refer to the task of replacing a given library by a different one having
equivalent features as a library migration.

To the best of our knowledge, no existing study has been performed to deeply understand the library
migration phenomenon. To what extent software projects perform third-party library migration? Are
library migrations frequent? For which kinds of libraries are they performed and when? For what
reasons? And so on. This paper aims to uncover these interrogations.

Furthermore, the migration of a library is well known to be a complex task because of the
differences between the structure, the protocol and the terminology of the library in use, and
the one chosen as a replacement. Existing research approaches tackle this issue by providing
support for the update of the source code [2–4]. However, they do not provide any help for the
developer that do not know to which library she should migrate to. In such situation, developers
have to cope with the large amount of information they can gather by using web search

*Correspondence to: Cédric Teyton, LaBRI, Bordeaux University, UMR 5800, F-33400 Talence, France.
†E-mail: cteyton@labri.fr

Copyright © 2014 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 26:1030–1052
Published online 31 July 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1660

engine. This potentially results in an information overload and thus the replacement of a library can
be overwhelming.

The purpose of this paper is then threefold. First, we propose a generic approach to extract and
identify library migration trends. Second, we design a deep analysis of the library migration
phenomenon by performing a descriptive study of a large set of software projects. The intent of this
analysis is to measure the number of dependencies between well-known third-party libraries and
existing software projects as well as the frequency of their migrations. Third, based on our
descriptive study, we propose a support to developers who want to replace a library they use by a
new equivalent one. Rather than providing a set of recommendations, we exhibit the library
migration trends depending on two main factors: the technical domain covered by the library and
the date of the migrations.

In order to perform our analysis, we have designed an approach that identifies automatically library
dependencies and semi-automatically library migrations. Regarding the identification of library
dependencies, our approach is based on a static analysis of the source code. Regarding the
identification of library migrations, it relies on the version control system (VCS) and requires a
manual review to clean wrong observations. Our approach has been completely prototyped and
currently only supports Java software projects.

This paper extends our previous work [5] in several directions. First of all, we have drastically
improved our approach for identifying library dependencies and library migrations. Our past
approach was based on Maven, a tool used to manage dependencies between software projects. Our
past approach was therefore only able to analyze software projects managed with Maven. Our new
approach is generic as it is based on a static analysis of source code (currently only Java) and on an
observation of VCSs. It now supports any Java project. Secondly, we provide a deep analysis of the
library migration phenomena that was not present in our previous paper. Such analysis shows the
dependencies between well-known libraries and existing projects and measures how frequent are
their migrations. Third, we have improved our migration trends by taking into account a second
important factor that is the time of library migrations. In our past paper, migration trends were only
computed according to the technical domain covered by the libraries. Now, they also exhibit the
temporal aspect of migrations. Even though it is not statistically significant, we also present an
analysis performed on VCSs and bug trackers to better understand the reasons behind library
migrations.

The remainder of this paper is structured as follows. Section 2 first explains our approach for
identifying library use and migrations. Then, Section 3 presents the descriptive study we performed
on projects stored on GitHub hosting platform. Section 4 then introduces the migration trends we
computed. Section 5 discusses the limitations of our approach. Section 6 presents the related work
while Section 7 presents the future work and concludes.

2. IDENTIFYING LIBRARY DEPENDENCIES AND MIGRATIONS

In this section, we present the approach we propose to automatically identify library dependencies and
semi automatically identify migrations. To that extent, we first introduce our model to represent
software libraries, projects, library dependencies and library migrations. We finally present the static
analysis process that identifies library dependencies and the algorithm that identifies library migrations.

2.1. Dependency model

The model we use to identify library dependencies and migrations is straightforward as it only contains
the set of libraries taken into consideration, the set of analyzed software projects, their list of versions
and, for each version, the associated set of library dependencies.

We assume that a library is an entity that has a unique name and that exports a set of symbols. The
symbols of a library are syntactic elements that can be used by software projects that depend on it. We
consider that a software project that uses a library must include at least one of the symbols of the library
in its source code.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1031

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

Definition 1 (Third-party library)
Let L be the set of well known libraries. A library l ∈ L has a name (unique in L) and a set of associated
string symbols Sl. The symbols of a library correspond to the fully qualified names of the syntactic
elements exported by the library. For the sake of simplicity, we consider that the intersection of two
sets of symbols of two distinct libraries is empty (More formally,∀l1; l2∈L; l1≠l2→Sl1∩S12 ¼ ∅). More-
over, we do not consider the versions of a library. The set of symbols of a library therefore includes all
the syntactic elements that are defined in any version of that library. Finally, associated to L, we define
the libraryL function that inputs a symbol s and that returns the library l in which it is defined. More
formally, libraryL : String→ L ∪∅ such as libraryL(s) = l if and only if s ∈ Sl. libraryL(s) =∅ if and only
if s is not defined by any of the libraries of L.

Let us illustrate our model with an example. We consider four libraries (junit, testng, log4j, and
slf4j). Table I presents the symbols of these libraries. For the sake of simplicity, as it is a naming
conventionin Java, we use the ‘*’ char as a joker character. As a consequence, the symbols of a
Java library correspond to names of the packages defined by the library.

Definition 2 (Software projects and Libraries)
Let P be the set of software projects. For the sake of simplicity, we consider that each project p ∈P has
an associated totally ordered set Vp ⊂ of versions. Versions are sorted chronologically according to
their date. We consider that a project may depend on a library at one of its version if it makes use of at
least one of the symbols of the library at that version. For a project p ∈P at version i ∈Vp, we then de-
fine depp(i) :Vp→P(L) the set of its library dependencies.
Figure 1 provides an example of such evolution of dependencies within a project p. This project

depends on two libraries, junit and testng.
A library migration occurs when a project replaces one of its library by a similar one. As the

definition of similarity between libraries cannot be rigorously defined and will always stay unclear,
we choose to consider that a candidate library migration is observed when a project stops to use one
of its library and in the meantime starts to use another one.

Definition 3 (Candidate library migration)
We state that a project p ∈P may migrate from a library s ∈ L to another library t ∈ L during a period
defined between two versions i, j ∈Vp if and only if (1) it depends on s and not on t at version i ∈Vp

Table I. Example of symbols for a set of four well known
libraries.

Library Symbol

junit org.junit.*
testng org.testng.*
log4j org.apache.log4j.*
slf4j org.apache.slf4j.*

Figure 1. Example of a migration within a project p.

1032 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

(i.e. s ∈ depp(i) and t ∉ depp(i)), and (2) it depends on t and not on s at version j (i.e. s ∉ depp(j) and t ∈
depp(j)), and (3) it depends on both libraries during the migration (i.e. ∀ v∈]i, j[, s ∈ depp(v) and t ∈ depp
(v)). A candidate library migration is therefore a tuple (p, i, j, s, t) ∈P× × × L× L. Finally, given a
set of projects P and a set of libraries L, we noteM all the candidate migrations observed for all projects
in P.

Regarding the example of the project p presented in the Figure 1, we identify one candidate
migration: (p, 18, 23, junit, testng). When observing a large set of projects, many candidate library
migrations are observed. To better analyze which libraries are the targets or the sources of candidate
migrations, we introduce the concept of a migration rule that identifies only the source and target
library of a migration without any attention to the project or to the period.

Definition 4 (Candidate library migration rule)
A migration rule is a couple (s, t) ∈ L2 such that there exists at least one project p ∈P that migrates from
s to t during its life cycle. We note R the set of all library migration rules.

Regarding our example from the Figure 1, we have only one migration rule, R= {(junit, testng)}.

2.2. Automatic computation of library dependencies

The idea is now to extract the set of libraries used by a project regardless of its configuration
management system (i.e., whether it uses systems like Maven or Gradle or none of them) with the
intent to be as generic as possible. We first need to describe how the set of symbols Sl defined by a
library l can be computed. We introduce a lightweight approach that is based on a static analysis of
the source code of a library. To that extent, we consider that a library is at least defined by its
unique name and by its set of source code files. For Java, this information is obtained from the jar
files of well-known third-party libraries (by well-known we mean that the libraries are largely used
by software projects and that their jar files are freely available).

Our approach then sequentially analyzes all the files of a library l and creates the corresponding set
of symbols Sl. For Java, this consists of identifying all packages defined by the library and then
returning their simplified representations that make use of the ‘*’ char. For instance, the static
analysis of the testng library will identify three packages (org. testng, org. testng. annotations, and
org. testng. xml) and will therefore return only org. testng. * as a simplified representation. Note that
when several versions of a library exists, the operation is performed for each version and the results
are finally merged in a single set.

Once all the symbols of the analyzed libraries are computed, our approach looks for symbol
conflicts between each pair of distinct libraries. A symbol conflict occurs when two libraries define
the same symbol. In Java, such a situation occurs in the two following cases:

• library inclusion When a library is deployed in several jar files and when one of these jar files
corresponds to the full version of the library (lfull), whereas the others correspond to some smaller
components (lcomp). As a consequence, all the symbols defined by the components are all included
in the full version of the library. We then argue that only the full version should be considered as a
library. The components should not be considered at all. As a consequence, when all the symbols
of a library lcomp are included in another library lfull (i.e. Slcomp⊂Slfull), then we remove lcomp from the
set of libraries taken into consideration. This is the case for instance with the batik library that
provides the batik-all jar file that contains the full version and several other jar files that represent
smaller parts of the batik library. We therefore consider only one batik library with all the defined
symbols.

• library reuse When a library la uses another library lb and modifies some of its parts. As a con-
sequence, the jar file of the la library exports symbols that were initially defined by lb. For the sake
of simplicity, we choose to remove all the symbols that are redefined by a library. This is the case
for example with the junit library that contains the symbol org. hamcrest. core, which was initially
defined by the hamcrest library. We then choose to remove this symbol from junit.

It should be noted that symbol conflicts are resolved manually as the resolution strategy mainly
depends on the programming language and on the habits of the developers of the libraries.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1033

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

Finally, once all the symbols of all the libraries have been identified and once all the conflicts have
been resolved, the library extraction step can be applied on the source code of the analyzed software
projects at any given version i. It assumes the existence of a search text program that can analyze
the source code files of the software projects in order to detect the presence of symbols defined by
any library. The library extraction maintains a set depp(i) of dependent libraries for each software
projects at each version i. This parser is applied sequentially on every files of the software projects
and tries to match them with all the symbols defined by the libraries. Whenever a match occurs, the
corresponding library is identified (using the function libraryL(s)) and is added within the depp(i) of
the software project. At the end of the process, all depp(i) of all software projects contain the
dependent libraries used in the source code of the software projects.

2.3. Semi automatic identification of library migrations

To identify candidate migration rules, we propose an algorithm that detects if there are two libraries
(s and t) that have been added and removed in a same period of time. Our algorithm (Algorithm 3)
iterates through the versions of a project and, each time a dependency is removed, it creates a
candidate migration for each target library that can be identified as a replacement (i.e. the ones that
are added in the meantime).

The automatic identification of candidate migrations returns a large quantity of migrations in which
there are many false positives. In our previous article, we proposed to use a data mining process to filter
out false positive [5]. This process was not perfect even though we reached a reasonable precision, but
the recall was significantly impacted. As our objective is to make a deep analysis of the migration
phenomena and hence to identify all true migrations whatever the cost of the analysis. We therefore
claim that it is worthwhile to dedicate efforts to manually rate the migrations in order to identify all
the true migration rules.

Performing the manual analysis consists of looking at all the candidate migration rules that have
been identified and to check whether they identify true or false migrations. We therefore ask to an
expert developer to evaluate migration rules according to the similarity of their target and source
libraries. If the expert considers that the source and target libraries of a candidate migration rule are
similar (i.e. they offer similar services such as unit testing or XML parsing facilities), then we
consider that the candidate migration rule is a true migration.

1034 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

3. DESCRIPTIVE STUDY

To better understand the phenomena of library dependency and migration, we conducted a descriptive
study on Java open source software projects stored on the GitHub hosting platform. We have focused
our study on the Java programming language for two reasons. First, it is a mature and widely used
language, in which there exists thousands of libraries. Therefore, it is a perfect substrate to find library
migrations. Second, there are many existing tools that make easy the static analysis of Java code,
making the implementation of our approach easier. We chose software projects stored on GitHub for
two reasons. First, GitHub stores a huge set of projects of different nature (small or large, young or old,
etc.). Second, it relies on Git, a fast and distributed VCS that makes our implementation easier to
design and faster to run.

In this section, we first introduce the data set of our study that is composed of a set of well-known
libraries L and a large set of software projects P. Second, we describe the results of the extraction of
library dependencies we performed on these projects. Third, we describe the results of the extraction of
library migration.

3.1. Data set

Our descriptive study is based on a predefined set of libraries L. However, to the best of our
knowledge, no such a set is currently defined. Moreover, as libraries are developed like any classical
software projects, it is sometimes hard to distinguish a software library from a classical software
system. We then arbitrarily decided to reuse a set of Java libraries we have computed in our
previous work [5]. This set has been built by downloading the Jar files of libraries stored in the
Maven Central repository. It is composed of 8795 jar files.

We then grouped these files according to the similarity of their names to discard any version
information. For instance, we consider that junit-4.8.1.jar and junit-4.8.2.jar are part of the same junit
library. After this operation, we obtained 3326 libraries. We then apply the process described in
Section 2.2 and extracted the symbols from the 3326 jar files. Then, one person spent about 14 h to
manually resolve the symbol conflicts. After this operation, we obtained a set L of 1189 libraries with
their associated symbols.

To build our corpus of projects P, we decided to exclusive rely on the GitHub open-source platform.
We used the data provided by the Github Archive‡ in addition to the Google BigQuery service to
gather a set of 20 000 software projects. Our goal was to have a large set of software projects to be
able to observe library migrations.

Figure 2 presents the query we executed on Google BigQuery. We designed it to return us
repositories that have at least 10 commits, that are not private and that are not forked repositories.
Our intent was to have no empty projects and no duplicated projects that would clearly bias the
results of our study. Note that the query was executed in October 2013.

In a second step, we discarded all the projects that have less than 100 Java LOC, less than 30 days of
activity and use no library. Note that this last filter cannot be expressed with BigQuery. Our claim is
that these projects are not interesting for our concern. During this step, we also removed repositories
that URL did not respond any-more, probably because they were deleted from GitHub. Thanks to this

‡Http://www.githubarchive.org/

Figure 2. The query used to gather a set of 20 000 software projects.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1035

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

Http://www.githubarchive.org/

second step, we obtained a set of 15 168 projects. It means that that 24% of the projects returned by Google
BigQuery were either almost empty, or did not use any library, or were removed from GitHub.

We computed some statistics to better understand our corpus. In particular, we have made three
measures to analyze the size of the projects in terms of number of versions, KLOC, and number of
developers. Table II shows the deciles for these three measures. It shows that their distributions roughly
follow a power law.

To better observe the influence of the size of a project on the library dependency and migration, we then
decided to partition our corpus in two groups. One group gathers the biggest projects (named Biggest in
the rest of this paper). It is composed of the union of 20% biggest projects respectively in term of
number of versions, KLOC, and number of developers. In total, it is composed of 5959 projects (39.3
% of the corpus). The other projects compose the group of medium and small projects (named Smallest
in the rest of this paper). It is composed of 9209 projects (60.7 % of the corpus).

4. LIBRARY DEPENDENCIES

To implement the approach of library dependency identification presented in the Section 2, we
developed a prototype based on the Harmony framework [6]. Harmony is an infrastructure designed
to ease the development of tools for software evolution analysis. Further, the computation of library
dependencies is performed by a tool named SCANLIB we implemented for this study .§ For each
version of each project, the tool will be executed to textually search for any library symbol used by
the project. This operation is quite fast as it only requires few seconds for each version.

Running our analysis on our corpus, we observed that 1018 of the 1189 libraries were used by the
projects (85% of L). Such a result gives a high confidence to L, our arbitrarily chosen set of well-known
libraries. Even though this is certainly not perfect because we are likely to miss some libraries, at least
L includes most of the well-known used third party libraries (thanks to the nature of its construction).

We then analyzed the distribution of the used libraries among the projects. Table III shows the
deciles of the number of used libraries for our two groups of projects (Biggest and Smallest). The
Smallest projects use few libraries as 70% of them use five or less libraries. In the contrary,
the Biggest projects use much more libraries as 40% use five or less libraries, meaning that 60% of
them use more than six libraries. Further, 30% of them use more than 10 libraries.

Further, Table IV shows the deciles for the usage of libraries regarding our two groups of projects.
The two distributions are quite similar. They show that 80% of the libraries are used by few projects

§Https://code.google.com/p/scanlib-java/

Table II. Corpus description.

Deciles

Metrics 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Versions 19 27 37 49 65 87 123 188 360 13 130
Java KLOC 0.7 1.2 1.8 2.6 3.8 5.6 8.6 15.2 35.9 31 611
Developers 1 1 1 2 2 3 3 5 8 855

Table III. Deciles of the population of projects according to the number of libraries they use.

Deciles

Population 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Smallest 1 1 2 2 3 4 5 6 8 27
Biggest 2 3 4 5 6 8 10 13 19 109
Total 1 2 2 3 4 5 6 8 13 109

1036 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

Https://code.google.com/p/scanlib-java/

(less than 59.8%, i.e. 0.4% of the projects P) whatever the size of the projects. Inversely, 10% of the
libraries are used by more than 149 projects from our corpus. In other words, even though Biggest
projects use more libraries, still few libraries are famous and widely used.

Further, to better understand which of the libraries are the most popular, Table V shows the 15 most
used libraries in our corpus with their technical domain. In particular, we can observe the substantial
popularity of junit, which appears in almost 50% of the projects. This library is a very mature
framework for writing unit tests in Java software projects. Additionally, we notice that a set of 10
domains is covered in this ranking.

4.1. Extraction of library migrations

To implement the approach of library migrations identification presented in the Section 2, we developed a
prototype based once again on the Harmony framework [6]. This prototype inputs a set of projects P and a
set of libraries L and returns a set of candidate migrations grouped by migration rules.

We obtained a total of 28 052migrations grouped in a set of 17 113migration rules. As we described in 2,
this set contains a large quantity of false positive migration rules that have to be manually eliminated. In our
experiment, one Java expert (one of the authors) spent 2 days to manually check the 17113 candidate
migration rules and rated them either as correct or wrong. The process consisted of searching on the web
to compare the description of libraries of each rule to check whether they have a similar purpose. At the
end of the validation process, we obtained a total of 1198 migrations performed by 866 projects. One
hundred sixty-four libraries were involved in these migrations. The 1198 migrations have been grouped
into 329 migration rules.

Our manual step reveals that our approach has performed with a precision of 2%. Even if precision was
clearly not part of our requirements for this study, such a bad result clearly shows that the automatic
identification of library migrations is hard and that there is clearly a room for improvement. Further, it
also shows that many libraries are added and removed during the life cycle of a software projects.
However, only few cases of these additions and removal are library migrations.

Table IV. Deciles of the population of libraries according to the number of client projects.

Deciles

Population 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Smallest 0.0 0.0 1.0 2.0 3.0 5.0 9.0 19.8 52.0 3566.0
Biggest 1.0 2.0 3.0 5.0 7.0 13.0 22.0 42.0 103.4 3610.0
Total 1.0 3.0 4.0 6.0 10.0 17.0 31.0 59.8 149.0 7176.0

Table V. The 15 most used libraries in our corpus.

Library Clients Biggest Smallest Category

junit 7176 3610 3566 Unit Testing
android 3672 1239 2433 Mobile Applications
xmlParserAPIs 3088 1968 1120 XML Processing
commons-lang 2558 1514 1044 Helper Utilities
slf4j 2248 1182 1066 Logging
spring 2064 1041 1023 J2EE
guava 1998 1134 864 Helper Utilities
httpclient 1940 963 977 Http Resources
httpcore 1905 942 963 Http Resources
log4j 1843 1084 759 Logging
commons-io 1794 1134 660 Input/Output Helper Utilities
org.json 1596 762 834 JSON Processing
mockito 1360 797 563 Testing
jackson 1287 732 555 JSON Processing
hamcrest 1287 772 505 Testing

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1037

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

As a first result, our analysis shows that 866 projects on the 15 168 of P have performed a migration
(5.57% of P). In particular, 593 belong to the Biggest projects (68.5%). This means that 9.95% of the
Biggest projects have performed a migration. This confirmed one of the result of our previous paper
that was that the practice of library migration is real but quite occasional.

To better understand the migrations, Table VI displays the 10 most observed rules in terms of
number of migrations (whatever the size of the projects in which the migration have been
performed). It is interesting to observe that the most observed migrations involve many of the most
popular libraries as seen just earlier. The full list of migration rules is available on-line.¶

Finally, to better exhibit the categories of libraries, we decided to group together libraries that are
connected by migration rules (directly or transitively). We reuse the concept of migration graph
presented in the earlier version of our work [5]. The nodes of such graph are libraries that have been
either source or target of at least one migration. A directed arc exists between two nodes if there is
at least a migration between the two corresponding libraries. Connected components of the
migration graphs represent categories of libraries. A category therefore identifies a set of libraries
that address a same domain and where migrations have been observed between them. We call the
size of a category the number of libraries it contains.

With our corpus, we obtained 32 categories of libraries. The distribution of the size, the number of
migrations, and client projects for each category is shown in Figure 3. We can see that nine categories
contain more than five libraries. Further, we can observe that 19 categories contain less than 10
migrations, which represents a small number of migrations. However, there are 10 categories where
more than 10 migrations happened. Finally, we also note that 11 categories are used by more than
1000 projects from our corpus. By looking at Table VII, which displays the top 10 categories in
terms of migrations, we observe that nine out of 10 are used by more than 2000 projects. Here, we
find once again the domain of libraries introduced previously in Table V and in Table VI.

¶http://se.labri.fr/migrations/rules.html

Table VI. Ten most performed migration rules.

Source Target Score Category

log4j slf4j 95 Logging
commons-logging slf4j 61 Logging
junit testng 45 Unit testing
commons-httpclient httpclient 33 Http resources
commons-httpclient httpcore 32 Http resources
org.json gson 28 JSON processing
testng junit 27 Unit testing
org.json jackson 26 JSON processing
hamcrest fest 25 Testing
easymock mockito 23 Testing
gson jackson 22 JSON processing

Figure 3. Distribution of the categories size (left), migrations (center) and client projects (right).

1038 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

http://se.labri.fr/migrations/rules.html

4.2. Synthesis

This descriptive study helps to better understand the phenomena of library dependency and migration.
First, it shows that Biggest projects use more libraries than Smallest ones. Second, few libraries are
widely used by all projects, whatever their size, while most of the libraries are seldom used.
Regarding library migration, our descriptive study clearly shows that such a phenomena does exist.
We report that Biggest projects are more prone to have performed a library migration than Smallest
ones. Still, migrations occur within both categories of projects. Our study also shows that libraries
can be gathered into categories. The study of these categories is therefore very useful to support the
developers that want to migrate and who do not know to which library to migrate to, which is the
intent of the next section.

5. MIGRATION TRENDS

In this section, we conduct a thorough analysis of the categories of migrations produced in Section 3.
The goal is to highlight migration trends to help developers in a context of library migration. We first
introduce the objectives for this analysis. Second, we present so-called library migration graphs. Third,
we study the temporal evolution of the migration trends and demonstrate that they can be used as a
complement of the migration graphs. We finally try to provide a taxonomy of the motivations that
led developers to migrate.

5.1. Objectives

Our purpose is to help developers to choose a relevant target library when they consider to migrate one
of their dependent library. In this context, the questions they certainly ask and we aim to answer are the
following: is there a library that is massively adopted? Are there emerging libraries that start to be
adopted? Are there libraries that are massively abandoned?

To rigorously answer these questions, we introduce two main instruments that aim to identify trends
regarding library migration. The first instrument is what we call a migration graph. It shows the
libraries of a category and highlights the migrations that did occur between them. The second
instrument is what we call a migration evolution graph. It shows when migrations have been
performed with the intent to quickly evaluate when migrations were performed.

Those two instruments are based on a quantitative measure of library migrations. In particular, we
propose to measure what we call the migration degree as the difference between the in-degree
migrations and the out-degree for each library in a category. The in-degree is the sum of the
incoming migration flows, whereas the out-degree indicates the sum of the outgoing migration
flows. A positive degree indicates that the library has undergone more arrivals than departures,
whereas a negative degree indicates the opposite situation.

Moreover, we propose to categorize libraries depending on their migration degree. In particular, we
propose the following patterns:

Table VII. Top 10 categories in terms of migrations.

Category Migrations Size Clients

Logging 238 4 4113
JSON 210 13 4116
Collections 128 14 4235
Testing utilities 106 8 2527
Http 100 5 2372
XML parsing 90 17 3726
Database 83 15 2259
Unit testing 72 2 7382
Reflection 43 8 2731
GUI 24 11 584

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1039

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

• Best Challenger is the library having the highest migration degree in a category
• Challenger is a library having a positive migration degree in a category
• Breaking Bad is a library having a negative migration degree in a category
• Worst Breaking Bad is the library having the lowest migration degree in a category

Our claim is that challenger libraries should be recommended as a target to migrate to, with a
particular attention to pay to the best challenger. Inversely, the breaking bad libraries should not be
recommended, especially the worst breaking bad.

Finally, associated with our two instruments, we attempt to extract the reasons and motivations
behind the library migrations we observed. Our intent is to provide feedbacks from real projects to
the developers who intend to replace their libraries.

The two first following sections describe the two instruments we propose along with some
examples. The third section presents our approach to extract feedbacks related to migrations.

5.2. Library migration graph

5.2.1. Motivation. Our purpose is to highlight in a single visualization all the migrations of a category as
well as the migration degree of each library. Using this, it becomes easy to identify all the breaking bad
and challenger libraries of the category, and also the best challenger and worst breaking bad if they exist.

5.2.2. Methodology. We extended the migration graph proposed in the earlier version of our work
[5]. In such graph, the nodes are libraries that have been either source or target of at least one
migration rule. A directed arc exists between two nodes if there is at least a migration between the
two nodes. The arcs are labeled with the score of the migration, that is, the number of times it has
been observed. The width of the arcs also indicates this characteristic. Nodes with a positive degree
are represented by a circle, the ones with a negative degree by a square. A round square is used to
represent libraries having a migration degree of zero.

In addition, nodes are colored to represent the intensity of their migration degree. A strong red
indicates the worst breaking bad of the category, whereas a strong green stands for the best
challenger. The size of the nodes also reflects this parameter. Finally, the nodes are labeled with the
name of the libraries as well as their overall migration degree.

We consider a Sample category containing three libraries, X, Y, and Z. The associated library
migration graph is exposed in Figure 4. In this case, the library X appears as the only challenger,
whereas Y is the breaking bad of the category and Z is neutral. We thus observe that the sizes of
both nodes X and Y are higher than Z.

6. RESULTS

We now present three library migration graphs with the intent to characterize the libraries in a context
of recommendation. We introduce three distinct categories where such characterization is possible.
Note that for the sake of readability, the migration flows lesser than 3 are not displayed.

Figure 4. Migration graph for the Sample category.

1040 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

The first category is Logging and contains four libraries used for the logging services. The associated
migration graph is shown in Figure 5. We can observe that slf4j is clearly the best challenger from the
category with a significant migration degree of 130, whereas logback is a promising challenger with a
degree of 19. On the contrary, the two libraries commons-logging and log4j have both a substantial
negative migration degree, consequently, they are strong breaking bad and would not be suggested as
candidates for migrations.

The second category displays the 13 Json libraries that are used to process documents in Json format.
We can report from the migration graph of this category in Figure 6 that jackson and org.json are,
respectively, the best challenger and the worst breaking bad. Indeed, their degrees are, respectively, 53
and �50, which is significant. We then observe that gson, fastjson, and flexjson are the three next most
important challenger libraries, and also that their gap with jackson is rather pronounced. Inversely,
json-lib and json-simple should be discarded from the recommendation because of their negative
degree. To conclude, we suggest four main challenger libraries for the Json category, with a particular
attention to pay to jackson.

The last category is called Testing and gathers a list of libraries used during software testing.We expose
the related migration graph in Figure 7.We distinguish out of the eight libraries of this category two strong
challenger libraries and two breaking bad ones. The best challenger library ismockitowith a degree of 33,
whereas the other challenger is fest having a degree of 24. Thus, these two libraries are strongly

Figure 6. Migration graph for the JSON category.

Figure 5. Migration graph for the Logging category.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1041

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

recommended. This is not the case for easymock, which is the worst breaking bad and hamcrest. Indeed,
they have an important negative migration degree of �33 and �21, respectively.

We claim the library migration graphs deliver relevant indicators to exhibit the migration flows
within a category. In particular, it indicates the pronounced challengers and breaking bad. However,
it should be noted that in categories that contain few migrations (less than 10), the characterization
of libraries can be far from obvious.

7. MIGRATION EVOLUTION GRAPH

7.0.1. Motivation. In our opinion, library migration graphs may exhibit biased information about the
current state of a library in terms of migrations. Such scenario is due to the time factor. For instance, if
a library X has a migration degree of 5 and if we observe that it was the target of 15 migrations between
2010 and 2011, but since has been the departure of 10 migrations, we claim that the recommendation
of this library is jeopardized. But the opposite situation may also happen. Consider a library Y with a
migration degree of �5. If Y has been departed 10 times before 2011 but selected for migration five
times since 2011, we think this recent trend is to its advantage. Consequently, studying the dates
and the evolution of the trends is necessary to provide accurate recommendations.

The two questions we are interested to answer here are the following:

• Can we identify challenger libraries that have become breaking bad recently? (collapsing libraries)
• Can we identify breaking bad libraries that have become challenger recently? (hopeful libraries)

Finally, we also measure the impact of the time window for a study of library migration targeting
developers recommendations. The idea is to evaluate how different are the recommendations performed
using both a large time window and a small one (the current year) for a study of migrations. Similarly,
we want to figure out whether studying a recent and small time window can be representative of the
trends computed for several past few years. The question we are interested to answer here is

• Does the time window impact the library migration recommendations?

7.0.2. Methodology. We propose a so-called migration evolution graph that is computed as follows.
First, it divides the period from 2010 until October 2013 into 4 years. We thus do not consider all the
migrations found in our study, but still exclude only a minority of the rules as most of the migrations
happened after 2010 (around 94%). For each year, it generates the migration degree for all the libraries
of the categories. A black upper triangle indicates a positive degree, whereas a lower down triangle
stands for a negative degree. Nothing is displayed in case the degree is equal to zero.

An illustration for the category Sample is displayed in Figure 8. Thanks to this chart, we report that the
library X is collapsing because it has current degree of �3 in 2013, despite being a challenger on the

Figure 7. Migration graph for the Testing category.

1042 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

overall period of the study. Inversely, Y is hopeful because of its positive degree of 2 compared with its
overall degree of �3. Finally, Z is also an hopeful library with a positive degree of 1 over the year 2013.

In a second step, to evaluate the impact of the time window, we simply compute the top-3
challengers for a sample of categories and for the two following time windows: the period from
2010 until October 2013, and the year 2013 representing 10months of data to analyze (and roughly
37% of the migrations from our corpus). In case the ranking highly differs, we will provide
explanations to figure out the reasons of the divergence. In they are quite similar, we will say the
trends of the current year are representative enough to generate recommendations.

7.0.3. Results 1: collapsing and hopeful patterns. We start by looking for collapsing and hopeful
libraries at the current time of the study. We have reviewed each category and have collected three
collapsing libraries and one hopeful scattered in four different categories. The four related migration
evolution graphs are shown in Figure 9.

We report that sqlite, json-smart, and jsoup are the three collapsing libraries, whereas finally
reflections is the hopeful library. We observe in Figure 9a that sqlite is currently a challenger but its
recent trend on 2013 indicates a negative degree of �2, which is not to its advantage. In Figure 9b,
we can see that json-smart has a degree of zero but can be considered as breaking bad because of
its degree of �2 in 2013. Similarly, Figure 9c reports that the jsoup library features a degree �1
while having a positive degree of 4 during 2012. The collapse is rather low for this library but still
exists. Finally, we show in Figure 9d that the reflections library records a degree of 3 in 2013,
whereas it had a degree of �5 until this period. The trend is thus positive for this library.

Thus, these two patterns of libraries are not frequent in practice but we claim their semantic provide
indicators of interest for developers.

7.0.4. Results 2: understand the time window impact. To further evaluate the impact of the time
window, we use the migration evolution graphs of five categories to compute the top three
challenger in terms of migration degree for two following periods. First, a large time window from
2010 to October 2013, and second a window reduced to the year 2013. The comparison of the
computed results is displayed in Table VIII.

We report the following observations. For the Json category, the results are entirely similar, so 2013
is a fair representation of the overall trends for this category. We notice a minor change for the Testing
category, where in 2013, the obvious best challenger is fest with a migration degree of 17 compared
with a degree of 8 for mockito. This is explained by the recent increase of this library, which may
become the best challenger very soon for this category.

The rankings for theDatabase libraries are also similar, because the only difference is the appearance of
hazelcast in third position, with an equal score compared withmongo. The variation is more important for

Figure 8. Evolution migration graph for the sample category.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 104~3

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

the Reflect category where we observe the hopeful reflections previously introduced. It enters to the second
position while being a breaking bad during the first period. Finally, it is interesting to observe that only one
challenger is computed for the Html category for the year 2013.

2010 2011 2012 2013

sqlite
infinispan

hsqldb
postgresql

mysql
derby

h2
neo4j

hbase
db4o

mongo
cassandra

sqljet
hazelcast

leveldb

-1

1

1
-1

1

-2

1

1

-1

2

-3
3
2
-5
3
-2

1
-1

-2
-1
-4
2
-3
-3
7

1
-2
2

2
1

Li
br

ar
y

(a) Migration evolution graph for the Database category
2010 2011 2012 2013

org.json

gson

json-lib

json-simple

jettison

jackson

fastjson

svenson

xstream

json-smart

flexjson

json-path

jsonic

2

-4

-1

3

-3

-1

-3

1

3

1

1

1

-27

14

-4

-6

16

5

-1

-1

1

3

-1

1

-21

7

-11

-3

-3

32

3

-4

-2

2Li
br

ar
y

(b) Migration evolution graph for the Json category

2010 2011 2012 2013

htmlparser

htmlcleaner

jsoup

htmlunit

nekohtml

jericho-html

tagsoup

1

-1

-2

1

1

-2

-1

4

-1

-1

-1

2

Li
br

ar
y

(c) Migration evolution graph for the Html category
2010 2011 2012 2013

spring

groovy

guice

reflectasm

reflections

scannotation

objenesis

iogi

-1

3

-5

1

2

-2

3

-3

5

1

-7

-1

3

-1

Li
br

ar
y

1

1

(d) Migration evolution graph for the Reflect category

Figure 9. Migration evolution graphs to identify collapsing and hopeful libraries.

Table VIII. Measure of the top three challenger libraries according to different time windows of analysis.

Period

(2010–2013) 2013

Category Rank Library M. degree Library M. degree

#1 jackson 54 jackson 32
Json #2 gson 15 gson 7

#3 fastjson 8 fastjson 3
#1 mockito 29 fest 17

Testing #2 fest 24 mockito 8
#3 powermock 8 powermock 1
#1 h2 11 h2 7

Database #2 postgresql 5 postgresql 2
#3 mongo 4 mongo/hazelcast 2
#1 spring 9 spring 5

Reflect #2 iogi/objenesis 1 reflections 3
#3 — — groovy 1
#1 jsoup 3 htmlunit 2

Html #2 htmlunit 1 — —
#3 tagsoup/jericho 1 — —

1044 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

As a conclusion, we remark that the time window chosen to observe the migrations has a small impact
on the recommendations that are produced. A reduced time window has the benefit to highlight the most
trendy libraries such as fest, which has been considerably a target of migration in 2013 compared with
mockito. However, as library migration is rare, a too small time window can diminish the amount of
information computed. Moreover, it can be valuable for developers to understand how the evolution of
migration trends over last years. Indeed, it may strengthen or tamper significant trends identified on a
recent period (i.e., is this migration constant for 4 years or only over the current year). Therefore, we
advocate the need to compute migrations on a medium-to-large time window in order to later tune it
according to the developers wishes.

The migration graph, as well as the migration evolution graph, can certainly be improved because they
display some redundant information, such as the migration degree. Thus, we could merge temporal
information such as the current trend market of each library within the migration graph. However, these
enhancements are let for future work.

7.1. Understand developers motivations

7.1.1. Motivation. We think that understanding why developers have migrated their libraries
constitutes a relevant source of feedbacks. Thanks to such data, a developer may learn that a
library X is not efficient for a given task, and Y should be preferred as it is more powerful for this
task. Similarly, she could also learn that a library X is not well compatible with some
environments such as modern mobile platforms. It could be also a problem related with the license
of the library. Therefore, developers may consider seriously some of these messages if they are in
a similar situation.

7.1.2. Methodology. To extract developers motivations, we adopted the following process. For all
projects that performed any library migration X→ Y from our corpus of 329 rules, we queried their
commit logs containing either the keywords X or Y from their Git repositories and within their
respective migration period. In addition, we textually searched in their issue trackers on GitHub any
bug description or comment containing either the keywords X or Y. We then manually reviewed the
collected messages for each category of libraries. We discarded so-called ‘mood’ messages, such as
‘X was awful. Y is great.’ or ‘Switched to a nicer library’, that we observed in practice and that are
not meaningful.

7.1.3. Results. We now examine whether developers can better understand the migration trends if
people who completed the migration gave explanations about their choice. We collected a total of
1488 candidate messages that we manually reviewed and finally retained 26 messages. It turned out
that 19 out of the 26 relevant messages belonged either to the Loggers or Json categories.

For the first category, the six collected messages are shown in Table IX. We classified two
comments with a tag Configuration that is not related to the features but the configuration of the
library. In two situations, developers mention issues related to dependencies and compilation on
systems like Apache Maven. The remaining messages were classified as Feature, that is, it targets

Table IX. Reasons of migrations for the Logging category.

Migration Message Reason

slf4j → commons-logging ‘üse commons-logging instead of slf4j to minimize dependencies’ Configuration
log4j → slf4j ‘With slf4j you can use the following syntax, which I find easier to

read: LOGGER.debug(“TRUE : {} {}= {}≥ {}”, test, o1, o2, tol)’
Feature

log4j → slf4j ‘This removes all compile-time dependencies on log4j’ Configuration
log4j → slf4j ‘Migrate to slf4j so users can decide for themselves what kind of

logger they are using’
Feature

log4j → slf4j ‘It’s good practice to use slf4j so people can use whatever logging
implementation they like instead of forcing log4j’

Feature

log4j → slf4j ‘The whole point of slf4j is to depend on the API only and let the
user of the library choose which logging library to use’

Feature

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1045

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

the core features of the libraries. The significant adoption of slf4j is partly explained by its design,
because it stands as a facade for several implementations of Java loggers such as log4j or logback,
as mentioned by 3 messages. This library success owes a lot to this concept.

For the Json category, 13 messages were collected during our extraction and are exposed in Table X.
We observe that opinions are sometimes divergent when it comes to compare efficiency and
performances of some libraries. However, we can observe that gson and jackson are seen as the most
powerful libraries with efficient features. However, some developers would rather prefer a smaller
library to be embedded in their software. The standard org.json library faces some performance
issues, which may explain its high rate of departures. We also notice a developer complaining of
json-lib, which has been also observed as an important source of migrations. Finally, it is interesting
to observe that one developer had issues jackson library on the Android platform. We would thus
advice developers to check if there exists known problems of compatibility between this library and
the Android platform.

To conclude, we claim that it is worth to understand the motivations of developers that completed a
migration. However, only 26 messages were retained from the 1488 messages initially collected,
meaning that developers are very cheap on explanations when they complete a migration, and thus
tracking this information is far from trivial. We therefore claim it is difficult to extract patterns or trends
of motivations for library migrations. Also, we suggest to developers to provide such information when
they perform a recommendation as it would be valuable for other software developers.

8. THREATS TO VALIDITY

8.1. Rules correctness

One person manually rated each migration rule as either correct or wrong. However, we cannot ensure
that all the results were actual, and thus the reviewer may have been wrong. However, if such scenario
happened, we think it has a negligible impact on the final data presented in this paper.

Table X. Reasons of migrations for the Json category.

Migration Message Reason

gson → json-simple ‘now using json-simple instead of gson, since I couldn’t get
gson to serialize UUID. Not a perfect library, but it works’

Feature

org.json → jackson ‘örg.json was just way too slow’ Performance
org.json → gson ‘Considering use to parse json files, since it is very simple and

it will improve the code readability’
Feature

org.json → gson ‘Move from json.org to gson for conversion of java objects to
json’

Feature

org.json → jackson ‘Üsing jackson as json interpreter for dealing with maps’ Feature
org.json → jackson ‘Jackson is 3x as fast, especially on larger lists’ Performance
org.json → jackson ‘Replaced jackson with org.json library for compatibility with

android apps’
Feature

org.json → jackson ‘Üsing jackson streaming api for efficiency and scalability’ Feature
jackson → gson ‘Switched to gson. Much, much faster and more stable now’ Performance
gson → jackson ‘gson does not support generic dictionaries like iPhone

library, whereas Jackson does’
Feature

json-lib → jackson ‘Replaced json-lib with jackson. jackson is much more
flexible and under active development, and json-lib contains
some serious issues’

Environment + bug

jackson → json-simple ‘Replace jackson by a json-simple in order to have a small
library for Json usage ’

Configuration

json-simple → jackson ‘Even if json-simple doesn’t support streams, there are
libraries that are really efficient when it comes to serialize
and stream Json (jackson for example)’

Feature

1046 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

8.2. Library set

Even though the list of libraries L used to perform this study has a reasonable size, it only contains
libraries that are managed by Maven. Moreover, this set does not take into account the versions of
the libraries. Our approach therefore does not consider migrations across versions. Supporting such
migrations would first require to identify all the versions of a library and second would require to be
able to detect which version of a library a project depends on. These two issues are known to be
still open [7].

8.3. Corpus construction

The corpus of projects selected for this case study has been built exclusively by querying the GitHub
platform. Even though Section 3 presents the different characteristics of the projects, we did not use
any rigorous sampling approach to establish the corpus. Thus, the results of our case study cannot be
generalized to any existing Java software project. Also, the GitHub platform has been significantly
used since 2010.** We could have considered platforms like Sourceforge or GoogleCode that
contain older projects.

8.4. Multiple migrations

The approach proposed in this paper only computes migration rules of cardinality 1 : 1. We argue that
rules of cardinality n : m may exist. For instance, when a new project takes over from a no longer
maintained library and split the old one into two new ones. This scenario happened in practice.
Indeed, the outdated commons-httpclient has been separated into two distinct but compatible
elements, httpcore, and httpclient. Our algorithm is in theory extensible to handle such situations;
however, it drastically increases the number of candidate migration rules generated.

8.5. Categories construction

In our approach, we form categories of libraries using connected components generated by the library
migrations. Thus, we claim that each library can be replaced by another one from the same category.
However, this technique has a limit that we encountered in this study. There exists libraries offering
various set of features, like the Google guava library. The problem is that we can migrate from
guava to libraries like Apache commons-lang and commons-collections. But in practice, it is not
possible to migrate from commons-lang to commons-collections. The problem comes from guava
which has been designed to include several domains of services within one library. To that purpose,
we will have in a future work to improve how categories are built.

8.6. Loopbacks and bounces

Our study does not natively consider loopbacks and bounces. A loopback is a two-steps migration
observed toward the life of a project. The project first switches from a library source to a library target,
and later in time moves back to source. A bounce is a migration of type x to y, then y to z, with x, y, z
belonging to a same category of libraries.

However, we performed a post analysis of our results to identify loopbacks and bounces. We identified
16 loopbacks distributed in eight different categories. In addition, 10 bounces through seven categories
have been observed. Unfortunately, we could not find any reason that explained these choices,
especially for loopbacks. We therefore estimate it is not worth to investigate further this aspect of
library migrations as it happens very seldom.

The presentation of both our approach and study is henceforth completed. Section 6 next presents
the related work before Section 7 concludes and opens the future perspectives.

**http://en.wikipedia.org/wiki/GitHub

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1047

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

http://en.wikipedia.org/wiki/GitHub

9. RELATED WORK

We divide the related work in four parts. We first describe existing research on the library migration
problem and then discuss on the library update problem. Third, we present related work on general
usage of libraries in software projects. We finally conclude by presenting existing work on the
software categorization problem.

9.1. Library migration

During a library migration, the API-level challenge is to transform the source code so that it becomes
compliant with the new library. Bartolomei et al. have addressed this problem and studied the design
of Application Programming Interface (API) Wrappers, which are objects that adapt and delegate the
previous source code instructions towards the new API [2, 3]. The mappings are manually identified
and their concern is to design such wrapper in order to obtain a compliant version of the new source
code. Our approach is useful for such a problem as it identifies which libraries are source and target
of migrations. In a previous work, we proposed an approach to automatically extract similar
functions from two independent libraries in a context of migration [4].

Library migration has also been used in the context where a library is available in two different
programming language. In that direction, Zhong et al. proposed a Mining API Mapping approach
that detects relations between two versions of such APIs [8]. The idea is to get client-code from the
two versions and to build a transformation graph that represents the API-usage migration from one
language to another. Zheng et al. propose a cross-library recommendation tool based on Web
queries [9]. The idea is to inquire Web search engines and to mine results proposed from the query.
One example of query could be ‘HashMap C#’ when looking for the equivalent for standard Java
HashMap for C#. The results are computed one by one and candidates are ranked by relevance,
mainly according to their frequency of appearance. For the moment, this work provides only
preliminary results and queries proposed are coarse grained. Also, it strongly relies on Web search
engines such as Google, and requires manual query writing, which can highly influence the results.

The library migration problem has also been studied in a context where the system used differs.
Winter et al. shown that Java Libraries that run on the standard Java Virtual Machine (JVM) may be
incompatible on JVM running on embedded systems [10]. They propose program transformation to
eliminate parts of the API that are incompatible on such systems, like floating points operations or
multi-threading. This approach is nonetheless not enough related to our context to provide elements
of comparison.

9.2. Library update

The problem of updating a library has also been studied in the literature. A challenge with regard to
library update is to provide relevant snippets of code source according to the programmer’s context.
We distinguish two main techniques to that extent. The first one mines code that already performed
an update. For instance, Schafer et al. [11] examined code instantiations of two versions of a
framework. This code is included with the release as test or example code. Also, SemDiff [12] is a
client–server connected to a framework source code repository that mines the changes and
recommends modifications for a client migration.

The second variety of approach requires only internal code of two API versions and applies origin
analysis techniques. Some promising results have been achieved in this area [13] [14]. Whatever the
technique, our approach can be used as a massive source of data to get real library migrations and to
get references of real projects that do have performed migrations. Such quantity of data could be
used to validate the proposed approaches.

It should be noted that a recent study from Cossette performs a retroactive study on several library
changes performed manually [15]. They listed the different changes and adaptations they had to make.
They argue that existing automatic approaches such as the ones presented earlier are not satisfying
enough to cover all the case of the library update problem. We claim that if the library update still
faces challenges to be accomplished fully automatically, completing a library migration is even
more difficult, therefore automatizing this operation is even more complex.

1048 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

9.3. General use of third-party libraries

Mileva et al. have observed the evolution over 2 years of the dependencies of 250 Apache projects
managed with the build automation tool Maven [16]. They analyzed the Maven configuration files of
these projects to mine usage of API and their versions. The study shows the usage trends of different
versions of several libraries. This work points out interesting cases where clients switched back to a
previous version of a library they are using. Little work has been done on third-party library
recommendation. To our knowledge, only Thung et al. addressed this problem and built a
recommendation system using data mining over a large set of existing Java projects managed under
Maven [17]. It inputs a set of libraries and outputs the ones that are the most commonly used along
them from the observation of the initial corpus of projects. Lämmel et al. propose a large-scale study of
AST-based API-usage over a large set of open-source projects [18]. Their work provides an insight on
how a specific API is globally used by client projects. In particular, they categorize whether a client
calls the API (library-like usage) or extends it (framework-like usage). It may be interesting to integrate
such information in our library migration graphs as some libraries may be more appropriate than others,
depending on client usage requirements. Robillard et al. investigate the obstacles met by developers
when learning an API [19]. Their study points out the lack of documentation or learning resources,
which in our opinion can intervene in a migration context.

9.4. Software categorization

An orthogonal research area to our problem is the software categorization problem that aims to identify
similar software. This problem is usually solved by computing similarity score based on specific
attributes, such as keyword identifiers as MudaBlue [20] does, or API calls [21, 22]. Those techniques
require either the source code or the binaries versions of a set of libraries to compute similarity scores
among them. Thung et al. suggest to use collaborative tagging on platforms such as SourceForge in
order to improve precision of existing approaches [23]. More recently, Wang et al. proposed an
approach to assign tags to software projects using mining of existing projects tags and descriptions
[24]. These approaches can be used in our context to create groups of equivalent libraries but without
any guarantee on the fact that a library of a group can be replaced by any other equivalent library of the
group. We therefore choose to use migration graphs to create categories of similar libraries.

10. CONCLUSION

As software systems intensively depend on external libraries, software developers must think about migrating
libraries when they are not updated, or when competing ones appear with more features or better
performance, for instance. In this paper, our purpose is to help software developers who are thinking
about replacing their dependent libraries and who do not know which are the best libraries to migrate to.

We then provide recommendations to help developers to choose among a set of candidate libraries
to migrate to. To that extent, we first present a generic approach to identify library migration trends
from a corpus of software projects. Second, we have made a complete analysis of the library
dependency and migration phenomena. Third, based on this complete analysis, we provided
recommendations to highlight best challenger libraries to migrate to as well as worst candidates.

To realize our analysis and to provide our recommendations, we have designed an approach that
automatically identifies library dependencies and semi-automatically library migrations. Our approach
relies on a static analysis of the source code to identify library dependencies. To extract library
migrations, it mines VCSs to observe migrations and requires a manual review to clean wrong
observations. Our approach has been completely prototyped and currently only supports Java software
projects. We applied our approach over 20 000 Java projects from the GitHub platform and have
identified 329 migration rules and classified the 164 involved libraries within 32 distinct categories.

By analyzing this large set of projects, our intent was to better understand what are the software projects
that do depend on libraries and what are the ones that do perform migrations. Our analysis has shown that
Biggest projects depend on more libraries than Smallest projects. It also appears that several libraries are
only used by Biggest projects. Further, only a small set of libraries are very famous and widely used by

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1049

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

most of the projects (whatever their size). Regarding migrations, our analysis shows that projects do
migrate but it is occasional. Further, Biggest projects perform more migrations than Smallest projects.
Finally, our analysis has shown that libraries can be grouped into categories of similar libraries in order
to exhibit trends of migration.

The recommendations we propose are based on categories of libraries and focus on two main
factors: the technical domain covered by the libraries of a category and the date of the migrations.
These two factors are used to identify challenger libraries to migrate to as well as libraries that
should be avoided. The results of our study show that our approach is exploitable for software
developers who are looking for library recommendations.

Currently, the major limitation of our approach is its lack of precision. The main purpose of our
work on detecting library migrations should be replicable to compute periodically the migration
trends, that is why we plan to design an automatic verification of the correctness of a migration rule,
using for instance a classifier. The main purpose is to remove the current burden of the necessary
manual analysis required to clean the rules. Another limitation of our approach is the fact that it
does not support versions of library. As a consequence, an update of a library is not considered to
be a migration in this study. Supporting versions is highly complex as software projects almost
never define which versions of the libraries they depend on. To obtain such an information, an
analysis of the runtime dependencies must be performed, which is still an open issue.

As a future work, we would be interested in performing a controlled experiment with developers that
want to perform a migration to check whether their decision is influenced when possessing migration
trends data and the charts we introduced. For instance, we would want to check that our library
migration graphs can be used to identify libraries to migrate to. Also, we would be interested to
identify what time window of migration trends developers are more interested in.

We also plan to extend our approach to assist developers while they migrate their code to become
compliant with a new library. As our approach identifies software projects that already performed
migrations, we plan to analyze the source code of these projects before and after the migration in
order to detect migration patterns. Such patterns abstract refactoring actions that must be performed
to be compliant with the new library. The goal is then to automatically apply them in software
projects that want to perform the same migration.

REFERENCES

1. Baldassarre MT, Bianchi A, Caivano D, Visaggio G. The question we are interested to answer here is. An industrial case
study on reuse oriented development. Proceedings of the 21st IEEE International Conference on Software Maintenance.
ICSM ’05, IEEE Computer Society: Washington, DC, USA, 2005; 283–292, doi:10.1109/ICSM.2005.20.

2. Tonelli Bartolomei T, Czarnecki K, Lämmel R, Storm Tvd. Study of an API migration for two XML APIs. 2nd
International Conference on Software Language Engineering (SLE), vol. 5969/2010, Denver, USA, 2009; 42–61,
doi:10.1007/978-3-642-12107-45.

3. Tonelli Bartolomei T, Czarnecki K, Lämmel R. Swing to SWT and back: Patterns for API migration by wrapping.
26th IEEE International Conference on Software Maintenance (ICSM), Timisoara, Romania, 2010.

4. Teyton C, Falleri JR, Blanc X. Automatic discovery of function mappings between similar libraries. 20th Working
Conference on Reverse Engineering 2013, 14th-17th October 2013, Koblenz, Germany, IEEE, 2013; 192–201.

5. Teyton C, Falleri JR, Blanc X.Mining librarymigration graphs. 19thWorking Conference on Reverse Engineering 2012,
15th-18th October 2012, Kingston, Ontario, Canada, IEEE (ed.), Kingston, Ontario, Canada, 2012; 289–298,
doi:10.1109/WCRE.2012.38.

6. Falleri JR, Teyton C, Foucault M, Palyart M, Morandat F, Blanc X. The harmony platform. Technical Report, Univ.
Bordeaux, LaBRI, UMR 5800 Sep 2013.

7. Davies J, Germán DM, Godfrey MW, Hindle A. Software bertillonage: finding the provenance of an entity.
Proceedings of the 8th International Working Conference on Mining Software Repositories, MSR 2011 (Co-located
with ICSE), Waikiki, Honolulu, HI, USA, May 21–28, 2011, Proceedings, IEEE, 2011; 183–192.

8. Zhong H, Thummalapenta S, Xie T, Zhang L, Wang Q. Mining API mapping for language migration. Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10 2010; 1:195, doi:10.1145/
1806799.1806831.

9. Zheng W, Zhang Q, Lyu M. Cross-library API recommendation using web search engines. Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering.
ESEC/FSE ’11, ACM: New York, NY, USA, 2011; 480–483, doi:10.1145/2025113.2025197.

10. Winter VL, Mametjanov A. Generative programming techniques for java library migration. Proceedings of the 6th
international conference on Generative programming and component engineering. GPCE ’07, ACM: New York,
NY, USA, 2007; 185–196, doi:10.1145/1289971.1290001.

1050 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

11. Schäfer T, Jonas J, Mezini M. Mining framework usage changes from instantiation code. Proceedings of the 13th
international conference on Software engineering - ICSE ’08, 2008; 471, doi:10.1145/1368088.1368153.

12. Dagenais B, Robillard M. SemDiff: analysis and recommendation support for API evolution. IEEE 31st International
Conference on Software Engineering, 2009. ICSE 2009, 2009; 599–602, doi:10.1109/ICSE.2009.5070565.

13. WuW, Guéhéneuc YG, Antoniol G, KimM. AURA: a hybrid approach to identify framework evolution. Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1. ICSE ’10, ACM: New York, NY,
USA, 2010; 325–334, doi:http://doi.acm.org/10.1145/1806799.1806848.

14. Nguyen HA, Nguyen TT, Wilson Jr G, Nguyen AT, Kim M, Nguyen TN. A graph-based approach to API usage
adaptation. Proceedings of the ACM international conference on Object oriented programming systems languages
and applications. OOPSLA ’10, ACM: New York, NY, USA, 2010; 302–321, doi:10.1145/1869459.1869486.

15. Cossette BE, Walker RJ. Seeking the ground truth: a retroactive study on the evolution and migration of software
libraries. Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. FSE ’12, ACM: New York, NY, USA, 2012; 55:1–55:11, doi:10.1145/2393596.2393661.

16. Mileva YM, Dallmeier V, Burger M, Zeller A. Mining trends of library usage. Proceedings of the joint international
and annual ERCIM workshops on Principles of software evolution (IWPSE) and software evolution (Evol)
workshops. IWPSE-Evol ’09, ACM: New York, NY, USA, 2009; 57–62.

17. Thung F, Lo D, Lawall J. Automated library recommendation. 2013 20th Working Conference on Reverse Engineering
(WCRE), 2013; 182–191, doi:10.1109/WCRE.2013.6671293.

18. Lämmel R, Pek E, Starek J. Large-scale, AST-based API-usage analysis of open-source java projects. Proceedings of
the 2011 ACM Symposium on Applied Computing - SAC ’11, 2011; 1317, doi:10.1145/1982185.1982471.

19. Robillard MP, Deline R. A field study of API learning obstacles. Empirical Softw. Engg 2011; 16(6):703–732,
doi:10.1007/s10664-010-9150-8.

20. Kawaguchi S, Garg P, Matsushita M, Inoue K. MUDABlue: an automatic categorization system for open source
repositories. Software Engineering Conference, 2004. 11th Asia-Pacific, 2004; 184–193, doi:10.1109/APSEC.2004.69.

21. McMillan C, Linares-Vasquez M, Poshyvanyk D, Grechanik M. Categorizing software applications for maintenance.
2011 27th IEEE International Conference on Software Maintenance (ICSM), 2011; 343–352, doi:10.1109/
ICSM.2011.6080801.

22. McMillan C, Grechanik M, Poshyvanyk D. Detecting similar software applications. Proceedings of the 34th Interna-
tional Conference on Software Engineering. ICSE ’12, IEEE Press: Piscataway, NJ, USA, 2012; 364–374.

23. Thung F, Lo D, Jiang L. Detecting similar applications with collaborative tagging. 2012 28th IEEE International
Conference on Software Maintenance (ICSM), 2012; 600–603, doi:10.1109/ICSM.2012.6405331.

24. Wang T, Yin G, Li X, Wang H. Labeled topic detection of open source software from mining mass textual project
profiles. Proceedings of the First International Workshop on Software Mining. SoftwareMining ’12, ACM:
New York, NY, USA, 2012; 17–24, doi:10.1145/2384416.2384419.

AUTHORS’ BIOGRAPHIES

Cedric Teyton is currently a Phd student in the LaBRI Software Engineering research
group and supervised by Xavier Blanc. He received his master’s degree from the University
of Bordeaux and worked in his master thesis on the language VPraxis designed to query a
software history. His research interests include software maintenance, API evolution and
software repositories mining.

Jean-Rémy Falleri is currently an associate professor at the Bordeaux Institute of
Technology and a member of the LaBRI Software Engineering research group. He
received his PhD degree in 2009 from the University of Montpellier 2. He has also worked
in the RMoD research group of Inria Lille led by Stéphane Ducasse. His research interests
include software engineering, software maintenance and model driven engineering.

A STUDY OF LIBRARY MIGRATIONS IN JAVA 1051

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

http://doi.acm.org/10.1145/1806799.1806848

Marc Palyart is a research assistant in the LaBRI Software Engineering research group.
He holds a BSc (Hons) from the Dundalk Institute of Technology and an MSc and PhD
from the University of Toulouse. His research interests include software engineering,
model-driven engineering, high-performance computing and smart environment.

Xavier Blanc is currently full professor at the Bordeaux 1 University. His current re-
search is about software evolution and repository mining. Since 2011, he is deputy
director of the computer science laboratory (LaBRI) of the Bordeaux 1 University.

1052 C. TEYTON ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:1030–1052

Copyright of New Directions for Student Leadership is the property of John Wiley & Sons,
Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

