
Published in IET Software
Received on 27th January 2009
Revised on 24th April 2010
doi: 10.1049/iet-sen.2009.0009

ISSN 1751-8806

UML interaction model-driven runtime verification
of Java programs
X. Li X. Qiu L. Wang X. Chen Z. Zhou L. Yu J. Zhao
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, Jiangsu, People’s Republic of China,
Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
E-mail: lxd@nju.edu.cn

Abstract: The authors use unified modelling language (UML) 2.0 interaction overview diagrams (IODs) and sequence diagrams
to construct simple and expressive scenario-based specifications, and present an approach to runtime verification of Java programs
for exceptional consistency and mandatory consistency. The exceptional consistency requires that any forbidden scenario
described by a given IOD never happens during the execution of a program, and the mandatory consistency requires that if a
reference scenario described by a given sequence diagram occurs during the execution of a program, it must immediately
adhere to a scenario described by a given IOD. In the approach, the authors first instrument a program under verification so
as to gather the program execution traces related to a given scenario-based specification; then they drive the instrumented
program to execute for generating the program execution traces; finally they check if the collected program execution traces
satisfy the given specification. The approach leads to a supporting tool for testing in which UML interaction models are used
as automatic test oracles to detect the wrong temporal ordering of message interaction in programs.

1 Introduction

Runtime verification [1–4] is a lightweight approach to
program reliability. Its basic idea is to gather information
during program execution and use it to conclude properties
about the program, either during testing or in operation,
which increases the confidence in whether the program
implementation conforms to its specifications.

Scenarios are widely used as a requirements technique
because they describe concrete interactions and are
therefore easy for customers and domain experts to use.
Scenario-based specifications such as message sequence
charts [5] and unified modelling language (UML)
interaction models [6, 7] offer an intuitive and visual way
of describing system requirements. For object-oriented
programs, such specifications focus on the temporal
ordering of message interactions among objects, which
forms an important aspect of system behaviour.

The program specifications used in runtime verification are
typically represented by formal languages such as temporal
logic [8], regular expressions [9] or state machines [10]. Since
UML became a standard in object management group (OMG)
in 1997, UML interaction models have become an important
class of artefacts in software development processes [11]. In
this paper, we use simple UML interaction models as scenario-
based specifications, and consider runtime verification of Java
programs.

UML sequence diagrams form a class of important UML
interaction models. Each of them describes an interaction,
which is a set of messages exchanged among objects within
a collaboration to effect a desired operation or result, and its

focus is on the temporal ordering of the message flow [6, 7].
For example, an UML sequence diagram D is depicted in
Fig. 1a, which describes a scenario about the well-known
example of the railroad crossing system in [12, 13]. This
system operates a gate at a railroad crossing, in which there
are a railroad crossing monitor and a barrier controller. When
the monitor detects that a train is arriving, it sends a message
to the controller to move down the barrier. After the train
leaves the crossing, the monitor sends a message to the
controller to open the barrier.

For facilitating the use of scenario-based specifications, in
this paper we just adopt a simplified version of UML
sequence diagrams, which describes exactly one scenario
without any alternative and loop. For describing multiple
scenarios and complete system specifications, we use a
simplified version of UML2.0 interaction overview
diagrams (IODs) [7], which focuses on the overview of the
flow of control where the nodes are sequence diagrams. For
example, Fig. 1b depicts a simple IOD G.

In this paper, we focus on checking Java programs for
message interaction consistency. In object-oriented
programs, we often need to set some restrictions on the
temporal ordering of message interaction along the program
execution flow, which form a class of safety requirements.
For describing such requirements, we introduce the
following four kinds of specifications which are depicted in
Fig. 2:

† ‘Exceptional consistency specifications’ require that any
forbidden scenario described by a given IOD D never
happens during the execution of a program.

142 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



Fig. 1 UML interaction models

a Sequence diagram D
b Interaction overview diagram G

Fig. 2 Scenario-based specifications

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 143
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



† ‘Forward mandatory consistency specifications’ require
that if a reference scenario described by a given sequence
diagram D occurs during the execution of a program, then a
scenario described by a given interaction overview diagram
G must follow immediately.
† ‘Backward mandatory consistency specifications’ require
that if a reference scenario described by a given sequence
diagram D occurs during the execution of a program, then it
must follow immediately from a scenario described by a given
IOD G.
† ‘Bidirectional mandatory consistency specifications’
require that if a reference scenario described by a given
sequence diagram D1 occurs during the execution of a
program and another reference scenario described by
another given sequence diagram D2 follows, then in
between these two scenarios, a scenario described by a
given IOD G must occur exactly.

In this paper, we present an approach to runtime
verification of Java programs for the above four kinds of
scenario-based specifications. As depicted in Fig. 3, the
runtime verification process is mainly composed of three
steps. First, guided by UML interaction models in a given
scenario-based specification we instrument a program under
verification so as to trace the corresponding events in
program execution. Then, the instrumented program is
driven to execute with given test cases, and the program
execution traces are gathered by the instrumented probes in
the program. Last, we check if the collected program
execution traces are consistent with the specification on
temporal ordering of message interaction.

Instead of checking program execution traces online, which
is mainly used in program monitoring, our approach does the
consistency checking off-line, which falls into the field of
testing. Our purpose is to develop a supporting tool for
testing in which UML interaction models are used as
automatic test oracles, and use it to detect the wrong
temporal ordering of message interaction in programs.

The paper is organised as follows. In the next section, we
introduce UML interaction models, and give their formal
definitions for runtime verification. Section 3 introduces the
scenario-based specifications considered in this paper,
which are expressed by UML interaction models. The
detailed approach is given in Section 4 to the runtime
verification of Java programs for scenario-based
specifications. The related works are discussed in Section 5,
and some conclusions are given in the last section.

2 UML interaction models

In this paper, UML interaction models are used as scenario-
based specifications for runtime verification of Java programs,
which consist of UML2.0 IODs and sequence diagrams.

2.1 Sequence diagrams

Here we just use a simplified version of sequence diagrams,
which describe exactly one scenario without any alternative
and loop. A sequence diagram considered in this paper has
two dimensions: the vertical dimension represents time and
the horizontal dimension represents different objects. Each
object is assigned a column, and the messages are shown as
horizontal, labelled arrows.

In a sequence diagram, by events we mean the message
sending and the message receiving. The semantics of a
sequence diagram essentially consists of the sequences
(traces) of the message sending (receiving) events. The
order of events (i.e. message sending or receiving) in a
trace is deduced from the visual partial order determined by
the flow of control within each object in the sequence
diagram along with a causal dependency between the events
of sending and receiving a message [5–7, 14]. In
accordance with [14], without losing generality, we assume
that for a pair of events e and e′ in a sequence diagram, e
precedes e′ (denoted by e ≺ e′) in the following cases:

† Causality: e is a sending event, and e′ is its corresponding
receiving event. For example, in the sequence diagram
depicted in Fig. 1a, e5 precedes e6.
† Controllability: The event e appears above the event e′ on
the same object column, and e′ is a sending event. This order
reflects the fact that a send event can wait for other events to
occur. On the other hand, we sometimes have less control on
the order in which receive events occur. For example, in the
sequence diagram depicted in Fig. 1a, e6 precedes e9.
† FIFO order: The receiving event e appears above the
receiving event e′ on the same object column, and the
corresponding sending events e1 and e′1 appear on a mutual
object column where e1 is above e′1. For example, in the
sequence diagram depicted in Fig. 1a, since the receiving
event e4 appears above the receiving event e10 on the
barrier object and their corresponding sending events e3 and
e9 appear together on the controller object where e3 is
above e9, e4 precedes e10.

For giving the formal definition of scenario-based
specifications, we formalise sequence diagrams as follows.

Definition 1: A sequence diagram is a tuple D =
(O, E, M , L, V ) where

† O is a finite set of objects. For each object o [ O, we use
z(o) to denote the class which o belongs to.
† E is a finite set of events corresponding to sending or
receiving a message.
† M is a finite set of messages. Each message in M is of the
form (e, g, e′) where e, e′ [ E corresponds to sending and

Fig. 3 Runtime verification process

144 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



receiving the message, respectively, and g is the message
name which is a character string.
† L : E � O is a labelling function which maps each event
e [ E to an object L(e) [ O which is the sender (receiver)
while e corresponds to sending (receiving) a message.
† V is a finite set whose elements are pairs (e, e′) (e, e′ [ E)
such that e ≺ e′, which defines a visual order.

We use ‘event sequences’ to represent the ‘traces’ of
sequence diagrams, which describes the temporal ordering
of the message flow. An event sequence is of the form
e0ˆe1ˆ · · · ˆem, which represents that ei+1 takes place after ei
for any i (0 ≤ i ≤ m − 1).

Definition 2: For any sequence diagram D = (O, E, M , L, V ),
an event sequence e0ˆe1ˆ · · · ˆem is a trace of D if and only if
the following condition holds:

† e0, e1, . . . , em is a permutation of the events in E, and
† e0, e1, . . . , em satisfy the visual order defined by V, that is,
for any ei (0 ≤ i ≤ m) and ej (0 ≤ j ≤ m), if (ei, ej) [ V , then
0 ≤ i , j ≤ m.

The formal definitions of message sequence charts and
sequence diagrams have been discussed in [14–21] for
various verification purposes, and the general formal
definitions for UML2.0 sequence diagrams have also been
given in [22–24]. Our definition here does not differ from
those definitions essentially, but are based on the simple
version of sequence diagrams and the specific verification
purpose in this paper.

2.2 Interaction overview diagrams

A sequence diagram considered in this paper just describes
one scenario. For describing multiple scenarios, we need to
use a simplified version of UML2.0 IODs [7], which
focuses on the overview of the flow of control where the
nodes are simple sequence diagrams. An IOD defines a
composition of a set of sequence diagrams, which
describes potentially iterating and branching system
behaviour.

For example, Fig. 4 depicts an IOD, which specifies the
FIPA Iterated Contract Net Iteration Protocol [25]. This
protocol implements the interaction between the agents
Initiator and Participant such that the Initiator seeks to
get better bid from the Participant by modifying the call

and requesting a new (equivalently, revised) bid. The
Initiator issues an initial call for proposals with the cfp
message (in sequence diagram cfp). If the Participant is
willing and able to do the task under the proposed
conditions (in sequence diagram propose), then it replies a
propose message, otherwise it can refuse (in sequence
diagram refuse). When receiving a propose message, the
Initiator may decide that this is the final iteration and
accept the bid (in sequence diagram inform and failure),
or reject it (in sequence diagram reject). After the Initiator
accepts the bid, once the Participant completes the task, it
sends a inform message to the Initiator (in sequence
diagram inform). However, if the Participant fails to
complete the task, a failure message is sent (in sequence
diagram failure). Alternatively the Initiator may decide to
iterate the process by issuing a revised cfp to the
Participant (in sequence diagrams propose and cfp). The
process terminates when the Initiator refuses a proposal
and does not issue a new message cfp, the Initiator
accepts a bid, or the Participant refuses to bid.

Definition 3: An IOD is a tuple

G = (U , N , succ, ref )

where

† U is a finite set of sequence diagrams;
† N = {`} < I < {⊥} is a finite set of nodes partitioned
into the three sets: the singleton-set of start node, the set of
intermediate nodes and the singleton-set of end node,
respectively;
† succ , N × N is the relation which reflects the
connectivity of the nodes in N such that any node in N is
reachable from the start node; and
† ref : I 7! U is a function that maps each intermediate node
to a sequence diagram in U.

For an IOD S = (U , N , succ, ref ), a ‘path segment’ is a
sequence of intermediate nodes v0ˆv1ˆ · · · ˆvn satisfying that
(vi−1, vi) [ succ for any i (0 , i ≤ n). A ‘path’ is a path
segment v0ˆv1ˆ · · · ˆvn such that (`, v0) [ succ and
(vn, ⊥) [ succ.

In UML2.0, IODs are defined as a specialisation of activity
diagrams in a way that promotes overview of the control flow
[7]. It follows that the concatenation of two sequence diagrams
in an IOD should be interpreted as the ‘synchronous mode’,

Fig. 4 IOD specifying the FIPA Iterated Contract Net Iteration Protocol

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 145
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



which means that when moving one node to the other, all
events in the previous sequence diagram finish before any
event in the following sequence diagram occurs, which is the
same as the synchronous interpretation in MSC
specifications [19]. Therefore, we define the ‘traces’ of an
IOD G as the event sequences, which are the concatenation
of the traces of the sequence diagrams that make up G. We
use ˆ to denote the concatenation of sequences.

Definition 4: For an IOD G = (U , N , succ, ref ), an event
sequence

s = e0ˆe1ˆ · · · ˆen

represents a trace of G if and only if there is a path
v0ˆv1ˆ · · · ˆvm in G such that s = s0ˆs1ˆ · · · ˆsm, where si is
a trace of ref (vi) for each i (0 ≤ i ≤ m).

3 Scenario-based specifications

In the above section, we have introduced the simple versions
of sequence diagrams and IODs, which are used to construct
the scenario-based specifications in our runtime verification
approach. In UML 2.0 [7], sequence diagrams support the
notations of branch, iteration and parallel themselves, which
can be used to describe the compositions of simple
scenarios. Instead of using those notations in sequence
diagrams to compose simple scenarios, we use simple
sequence diagrams to describe exactly one scenario without
any alternative and loop, and simple IODs to construct
scenario compositions. Such a hierarchical way is beneficial
to construct large-scale and complex specifications and
facilitate the use of specifications. As the IODs can
compose simple scenarios through alternatives, parallel and
loops, our specifications can express any scenarios
described using common sequence diagrams.

As we will discuss below, UML interaction models
considered in this paper are used to construct expressive
scenario-based specifications, which are the exceptional

consistency specifications and mandatory consistency
specifications (including forward, backward and bidirectional
mandatory consistency specifications), and these consistency
specifications can express many important properties
frequently concerned in safety critical systems. An exceptional
consistency specification consists of one IOD G, denoted by
SS(G), and requires that any forbidden scenario described by
G never happens during the execution of a program. For
example, there are two interaction models depicted in Fig. 5,
which are about the railway crossing system. The left one is a
sequence diagram D that describes a normal scenario for the
preparation for the train crossing, which should occur during
the program execution. The right one is an IOD G specifying
an exceptional scenario in which the message
Crossing_secured is sent to the monitor before the barrier
is put down, which is forbidden to occur during the program
execution, and forms an exceptional consistency specification.
The forbidden scenarios represent the negative requirements
derived during requirement analysis.

A forward mandatory consistency specification consists of
a sequence diagrams D and an IOD G, denoted by SF(D, G),
and requires that if a reference scenario described by D occurs
during the execution of a program, then a scenario described
by G must follow immediately. For example, a forward
mandatory consistency specification for the railway crossing
system is depicted in Fig. 6, which requires that from the
scenario for the preparation for the train crossing, the
scenario for raising the barrier after the train passes must
follow immediately. Such kind of specifications can specify
that the system under verification must leave dangerous
states in time.

A backward mandatory consistency specification consists
of a sequence diagram D and an IOD G, denoted by
SB(D, G), and requires that if a reference scenario described
by D occurs during the execution of a program, then it
must follow immediately from a scenario described by G.
For example, a backward mandatory consistency
specification for the railway crossing system is depicted in
Fig. 7, which requires that the scenario for raising the
barrier after the train passes must follow immediately from

Fig. 6 Forward mandatory consistency specification for the railway crossing system

Fig. 5 UML interaction models for the railway crossing system

146 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



the scenario for the preparation for the train crossing. Such
kind of specifications can specify that a critical action can
only take place after a premises action occurs.

A bidirectional mandatory consistency specification
consists of two sequence diagrams D1 and D2, and an IOD
G, denoted by SD(D1, D2, G), and requires that if a
reference scenario described by D1 occurs during the
execution of a program and a reference scenario described
by D2 follows, then in between these two scenarios, a
scenario described by G must occur exactly. For example, a
bidirectional mandatory consistency specification for the
railway crossing system is depicted in Fig. 8, which
requires that between the scenarios for confirming the train
arriving and for permitting the train crossing, the scenario
for lowering the barrier must exist exactly.

The UML interaction models in requirements and design
given by customers or experts could be directly reused as
scenario-based specifications, and they could be incomplete
provided they describe a complete concerned property. But
sometimes it is necessary to give an elaborate design for
the specifications. For example, we often need to construct
a mandatory consistency specification for testing and
verification purpose. Suppose that we attempt to detect
some errors in a program related to a given scenario, which
means that the scenario is not implemented correctly in the
program. Since the scenario will not occur during the
program execution if it is not implemented correctly, it is
difficult for us to decide where and when the scenario
should occur in order to find the related errors further. In
this case, we can decompose the scenario into two parts
that constitute a mandatory consistency specification, and

use one part as a reference scenario, and test or verify if
there is any error in the other part, which is depicted in Fig. 9.

Since an IOD defines a composition of a set of sequence
diagrams, the scenario-based specifications we present here
are essentially composed of sequence diagrams. For a
scenario-based specification, we define its ‘object set’ as the
union of the object sets of all the sequence diagrams
occurring in the specification. Furthermore, we can extend
each sequence diagram occurring in a scenario-based
specification such that its object set is just the object set of
the scenario-based specification. Therefore, without losing
generality, we assume that all sequence diagrams occurring
in a scenario-based specification focus on the same set of
objects, that is, they describe the interaction scenarios on
the same set of objects.

In our runtime verification approach, since the scenario-
based specifications are used for checking program
execution traces, we need to map the objects in a scenario-
based specification to the ones in a program under
verification. Notice that in many cases an object in a
sequence diagram has no name (the object is just assigned
with its class name), and that since during the execution of
a program there are multiple objects belonging to the same
class, there may be multiple object compositions
corresponding to the object set of a given scenario-based
specification. Therefore for a scenario-based specification S
and a program P, we map one object of class A in the
object set of S to all objects of class A in P, and the object
set of S to all corresponding object compositions in P
(illustrated in Fig. 10), which means that S is enforced on
all the corresponding object compositions in P.

Fig. 7 Backward mandatory consistency specification for the railway crossing system

Fig. 8 Bidirectional mandatory consistency specification for the railway crossing system

Fig. 9 Decomposing scenarios under verification into mandatory consistency specifications

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 147
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



4 Runtime verification of Java programs for
scenario-based specifications

In this section, we give the details of the approach to runtime
verification of Java programs for the scenario-based
specifications expressed by UML interaction models. The
verification process consists of three main steps: program
instrumentation, program execution and consistency
checking, which is depicted in Fig. 3.

4.1 Program instrumentation

The purpose of program instrumentation is to trace all the
events involved in a given scenario-based specification. For
a Java program under verification, we insert some
instructions into its bytecode. Compared with source code
instrumentation, bytecodes instrumentation brings more
flexibility, since it is impossible to obtain applications’
source codes in many cases.

For a Java program under verification, all the sending or
receiving events of a concerned message in a given
scenario-based specification must be logged for the runtime
verification purpose. For each event, the logged information
should include the message type, the message sender or
receiver, and the class of the sender or receiver.

In a Java program, a method call corresponds to a message
sending event, and the beginning of a method execution
corresponds to a message receiving event. Thus we insert
instructions for information gathering before each relevant
invoke instruction and at the beginning of each relevant
method body. For our verification purpose, we still need to
pair each sending event and its corresponding receiving event.
This task is not a trivial one because in parallel Java
programs, the sending events and receiving events of several
messages may interleave with each other. We solve this
problem based on the fact that in one process a sending event
and its corresponding receiving event are always executed in
the same thread and they must happen continuously in that
thread [26]. So we log also the ID of the thread in which the
method (and also the inserted instructions) is executed. Thus,
we can pair each logged sending event with the next receiving
event with the same thread ID.

The instrumentation algorithm is depicted in Fig. 11a. Let
D = (O, E, M , L, V ) be a sequence diagram in a given
scenario-based specification. For a message m = (e, g, e′) in
M, we use m.method to denote the corresponding method in a
program under verification. This method is defined in z(L(e′))
(the class of the receiver of m) or in an ancestor of z(L(e′)) (if

it is an inherited one). We can statically find the method
definition based on the class hierarchy. This method begins its
execution when a receiving event e′ of m happens. To log the
receiving events, our instrumentation algorithm inserts some
instructions at the beginning of m.method. These inserted
instructions invoke the method ‘Logger.logEvent’ using ‘this’
(the receiver), the string ‘meth_exec’, and the method name as
the real parameters. Fig. 11b shows an example of such
instructions. These instructions first push the real parameters
into the stack, then invoke the method Logger.logEvent. For
each sending event e of m, it is triggered in a method of z(L(e))
(the class of the sender of m) and corresponds to an invoke
instruction in the method. This method is defined in z(L(e)) or
in an ancestor of z(L(e)). There are four kinds of JVM invoke
instructions: INVOKEVIRTUAL, INVOKEINTERFACE,
INVOKESPECIAL and INVOKESTATIC. The
INVOKESTATIC and INVOKESPECIAL instructions are
out of the scope of our consideration because they are used
to invoke class methods, instance initialisation methods,
private methods of ‘this’ and methods in a superclass of ‘this’.
The format of an INVOKEVIRTUAL instruction is

invokevirtual ,methodSpec.

where methodSpec specifies a class and a method. Such an
instruction may send the message m = (e, g, e′) only if the
specified class is z(L(e′)) or an ancestors of z(L(e′)) and the
specified method is g. The format of an
INVOKEINTERFACE instruction is

invokeinterface ,methodSpec.

where methodSpec specifies an interface and a method. Such
an instruction may send the message m = (e, g, e′) only if the
class z(L(e′)) implements the specified interface and the
specified method is g. To log the sending events, our
algorithm inserts instructions before each of these invoke
instructions. The inserted instructions are similar to those
depicted in Fig. 10b. However, they invoke the method
Logger.logEvent using ‘this’ (the sender), the string ‘meth-
call’, and the method name as the real parameters. The
instructions inserted by the instrumentation algorithm may
log some irrelevant sending/receiving events. For example,
an object of an ancestor of z(L(e′)) may also execute
m.method so that an irrelevant receiving event is logged,
and an invoke instruction may also invoke the method g of
an ancestor of z(L(e′)), which makes the instructions
inserted before it log irrelevant sending events. To solve

Fig. 10 Mapping objects between a scenario-based specification and a program

148 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



this problem, we also log the runtime class names of message
senders/receivers (see Fig. 10c) so that those irrelevant events
can be filtered out easily before the off-line consistency
checking.

The method Logger.logEvent is depicted in Fig. 11c. This
method logs all sending/receiving events. It calls
Thread.currentThread to obtain the thread ID, calls
(Object)obj.getClassName to obtain the runtime class name
of the sender/receiver and calls (Object)obj.toString to
obtain the ID string of the sender/receiver. Before running
the instrumented version of a program, the bytecode of
‘Logger’ should be put into proper directory so that this
method can be invoked by the inserted instructions.

The (Object)obj.toString method defined by the class
Object does return distinct hash codes for distinct objects,
but since this is implemented by converting the internal
address of the object into a hash code, it is still possible for
different objects that exist in different time to return the
same hash code. To determine the life cycles of these
dynamic objects, we need to instrument the finaliser of the
concerned classes. Whenever one object is finalised, its
hash code is logged so that we know what a hash code
exactly refers to at different time.

There are two assumptions for the above instrumentation
method. One is that object creation/destruction and return
messages are ignored in our scenario-based specifications so
that we do not need to instrument the corresponding codes
for tracing the corresponding events. The other assumption
is that all the objects occurring in a scenario-based

specification belong to one process in the program under
verification (no distributed object exists), which assures that
any sending event and its corresponding receiving event are
always executed in the same thread. According to the Java
virtual machine specification [26], an object created by a
process cannot be accessed by other processes. That means
one object cannot be shared among several processes. Only
threads belonging to the same process can share one object
with each other. Under such circumstances, a sending event
and its corresponding receiving event are always in the same
thread. Notice that now with the support of various
middlewares an object can be accessed by any process
distributed in a network, but this case is away from the main
verification focus in this paper. Therefore although the above
two assumptions form a light limitation of our approach, we
think they do not influence the entire verification purpose.

4.2 Program execution

For a program under verification, we gather its execution
traces by running its instrumented version. The program
executions are driven by previous prepared test inputs in a
data pool. During system-level program execution, all the
test inputs are what the users need to provide by keyboard
and/or mouse operation. We can also directly reuse the test
data pool if there exists one for the system testing.

Owing to absence of sufficient real-world data, creating
suitably test data is often a difficult task. In our approach,
test data are generated mainly by random method. Random

Fig. 11 Instrumentation algorithm and inserted code segments

a Instrumentation algorithm
b Example of the instrumented instructions
c Method LogEvent of the class logger

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 149
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



test generation is a black-box technique, and needs no
information on the internal structure of a program other
than the input type and domain. Random method is
inexpensive charge and could be implemented in an
automatic fashion. Randomness can also increase the
variety of input values so as to exercise and profile different
behaviour of a program under verification.

Having only the test inputs are not enough for the
execution of a program. How and when is the test data fed
to the program? How the program is executed? These
problems should be solved before execution. We need a
driver to ensure the program execution process in a mode
without human intervention. The driver activates a program
under verification, controls the execution, obtains test data
from the data pool and feeds the test inputs to the program
upon request.

In our approach, we provide a heuristic wizard in
interactive mode to customise the random test data
generation. We assume that users have the knowledge of
input type and domain. Users need to specify the input
sequence, type, domain and sample number. This allows us
to take advantage of randomness but still have control over
test input generation for the program execution at the
system level. Here we just handle simple input type such as
integer, real, char, enumerable set and so on.

4.3 Consistency checking

According to the algorithm for instrumenting programs given
in Section 4.1, for an event corresponding to sending
(receiving) a message, we can obtain its sender (receiver)
and the class the sender (receiver) belongs to. We also can
pair a sending event and its corresponding receiving event
for the same message. For simplicity, from now on we
represent any program execution trace we gather by a
sequence which is of the form 10ˆ11ˆ · · · ˆ1n where each
1i (0 ≤ i ≤ n) is an event corresponding to sending
(receiving) a message, and the class which the sender
(receiver) of 1i belongs to is denoted by t(1i).

According to Section 3, the object set of a scenario-based
specification is mapped to all the corresponding object
compositions in a program under verification. In a program
execution trace, since the events may be triggered by the
different objects with the same class, there may be multiple
scenarios generated by different object compositions, and
thus during consistency checking we need to consider the
scenarios generated by those object compositions
respectively, that is, we select one object composition at a
time and check their message sending or receiving event
sequence in the program execution trace for the specification
without considering the events triggered by other objects.
Therefore for simplicity we assume that in any program
execution trace we consider, there is just one object
composition corresponding to the object set of a given
scenario-based specification, that is, any program
execution trace satisfies that there is a bijection function that
maps each object triggering the events in the trace to an
object with the same class in the object set of the given
specification.

For matching the program execution traces and the traces of
a given sequence diagram, we define the ‘trails’ of a sequence
diagram as follows. Given a sequence
diagram D = (O, E, M , L, V ), a program execution trace
10ˆ11ˆ · · · ˆ1n is a trail of D if it can be mapped into a
trace of D, that is, there is a corresponding trace of D of the
form e0ˆe1ˆ · · · ˆen such that

† for each i (0 ≤ i ≤ n), the class which the sender or
receiver of 1i belongs to is the same as the one which the
sender or receiver of ei belongs to, that is, t(1i) = z(L(ei));
† for each i (0 ≤ i ≤ n), if ei is a message sending
(receiving) event, then 1i corresponds the same message
sending (receiving) event; and
† if (ei, g, ej) is in M (0 ≤ i , j ≤ n), then 1i and 1j is a pair
of the sending and receiving events for the same message.

Similarly, we define the trails of an IOD G as a program
execution trace, which is the concatenation of the trails of
the sequence diagrams that make up G. Given an
IOD G = (U , N , succ, ref ), a program execution trace
r = 10ˆ11ˆ · · · ˆ1n is a trail of G if it can be mapped into a
trace of G, that is, there is a path v0ˆv1ˆ · · · ˆvm in G such that

† r = r0ˆr1ˆ · · · ˆrm, and
† ri is a trail of ref (vi) for each i (0 ≤ i ≤ m).

In the following, we give the solutions to exceptional
consistency checking and mandatory consistency checking.

4.3.1 Exceptional consistency checking: Let SS(G) be
an exceptional consistency specification which consists of
one IOD G. It requires that any forbidden scenario
described by G never happens during the execution of a
program. For a program execution trace r = 10ˆ11ˆ · · · ˆ1n,
if there is a subsequence 1iˆ1i+1ˆ · · · ˆ1j (0 ≤ i , j ≤ n) in r
which is a trail of G, then we say that a scenario described
by G occurs in r. Thus, we define that a program execution
trace satisfies SS(G) if no scenario described by G occurs in
the program execution trace.

Let G = (U , N , succ, ref ) be an IOD. For a program
execution trace r = 10ˆ11ˆ · · · ˆ1n, a path segment
v0ˆv1ˆ · · · vm in G such that (`, v0) [ succ is a ‘pre-left
image’ of r if there is i (0 ≤ i ≤ n) such that

10ˆ11ˆ · · · ˆ1i = r0ˆr1ˆ · · · ˆrm

where each rj (0 ≤ j ≤ m) is a trail of ref (vj). It is clear that if
there is a path in G which is a pre-left image of r, then a
scenario of G occurs in r, and we call such a path by ‘left
image’ of r. We can develop an algorithm to check if there
is a left image of r in G, which is depicted in Fig. 12. The
algorithm traverses each path in G in a depth first manner
from the start node `. The path segment we have so far
traversed is stored in a list variable ‘currentpath’. For each
successive node ‘node’ of the last node of ‘currentpath’, we
first check whether it is such that the path segment
corresponding to currentpath is a left image of r. If yes,
then return ‘true’, and we are done. If ‘node’ is such that
the path segment corresponding to ‘currentpath’ is a pre-left
image of r, then we add node to currentpath and start the
search from it, otherwise we search the other successive
nodes. The algorithm backtracks when all the successive
nodes of the last node of currentpath are explored.
Based on this algorithm, the exceptional consistency
checking of G for r is simple. We just need to check if
there is a left image in G for each subsequence
1kˆ1k+1ˆ · · · ˆ1n (0 ≤ k ≤ n). This algorithm can also be
used in the forward mandatory consistency checking, which
will described in the following subsection.

Similarly, we define the ‘pre-right images’ and ‘right
images’ of a program execution trace r = 10ˆ11ˆ · · · ˆ1n in
an IOD G = (U , N , succ, ref ). A path segment v0ˆv1ˆ · · · vm

150 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



in G such that (vm, ⊥) [ succ is a pre-right image of r if there
is i (0 ≤ i ≤ n) such that 1iˆ1i+1ˆ · · · ˆ1n = r0ˆr1ˆ · · · ˆrm
where each rj (0 ≤ j ≤ m) is a trail of ref (vj). It is clear that
if there is a path in G which is a pre-right image of r, then
a scenario of G occurs in r, and we call such a path by
right image of r. We can develop an algorithm to check if
there is a right image of r in G, which is depicted in
Fig. 13. The structure of the algorithm is the same as the
one of the algorithm for checking left images depicted in
Fig. 12. The difference from the algorithm for checking left
images is that the depth first search is reversed and starts
from the end node ⊥. Clearly, this algorithm can support
the existential consistency checking. This algorithm can
also be used in the backward mandatory consistency
checking, which will be described in Section 4.2.3.

4.3.2 Forward mandatory consistency checking: Let
SF(D, G) be a forward mandatory consistency specification,
which consists of a sequence diagrams D and an IOD G. It
requires that if a reference scenario described by D occurs
during the execution of a program, then a scenario
described by G must follow immediately. Thus, for a
program execution trace r = 10ˆ11ˆ · · · ˆ1n, r
satisfies SF(D, G) if for any subsequence 1iˆ1i+1ˆ · · · ˆ1j
(0 ≤ i ≤ j , n) of r which is a trail of D, there is a
subsequence 1j+1ˆ1j+2ˆ · · · ˆ1k (j , k ≤ n) of r which is a
trail of G (i.e. there is a left image of 1j+1ˆ1j+2ˆ · · · ˆ1n in G).

Based on the algorithm for checking left images in an IOD
depicted in Fig. 12, we can check a program execution trace
r = 10ˆ11ˆ · · · ˆ1n for a forward mandatory consistency
specification SF(D, G) as follows: finding out each
subsequence 1iˆ1i+1ˆ · · · ˆ1j (0 ≤ i ≤ j , n) of r which is a

trail of D, and checking if there is a left image of
1j+1ˆ1j+2ˆ · · · ˆ1n in G.

4.3.3 Backward mandatory consistency checking:
Let SB(D, G) be a backward mandatory consistency
specification, which consists of a sequence diagram D and
an IOD G. It requires that if a reference scenario described
by D occurs during the execution of a program, then it
must follow immediately from a scenario described by
G. Thus, for a program execution trace r = 10ˆ11ˆ · · · ˆ1n,
r satisfies SB(D, G) if for any subsequence
1iˆ1i+1ˆ · · · ˆ1j (0 ≤ i ≤ j , n) of r which is a trail of D,
there is a subsequence 1kˆ1k+1ˆ · · · ˆ1i−1 (0 ≤ k , i) of r
which is a trail of G (i.e. there is a right image of
10ˆ11ˆ · · · ˆ1i−1 in G).

Based on the algorithm for checking right images in an
IOD depicted in Fig. 13, we can check a program execution
trace r = 10ˆ11ˆ · · · ˆ1n for a backward mandatory
consistency specification SB(D, G) as follows: finding out
each subsequence 1iˆ1i+1ˆ · · · ˆ1j (0 ≤ i ≤ j , n) of r which
is a trail of D, and checking if there is a right image of
10ˆ11ˆ · · · ˆ1i−1 in G.

4.3.4 Bidirectional mandatory consistency checking:
Let SD(D1, D2, G) be a bidirectional mandatory consistency
specification which consists of two sequence diagrams D1
and D2, and an IOD G. It requires that if a reference
scenario described by D1 occurs during the execution of a
program and a reference scenario described by D2 follows,
then in between these two scenarios, a scenario described
by G must occur exactly. Thus, for a program execution
trace r = 10ˆ11ˆ · · · ˆ1n, r satisfies SD(D1, D2, G) if for any

Fig. 12 Algorithm for checking left images in an IOD

Fig. 13 Algorithm for checking right images in an IOD

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 151
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



subsequence of r of the form

1iˆ1i+1ˆ · · · ˆ1jˆ1j+1ˆ1j+2ˆ · · · ˆ1k−1ˆ1kˆ1k+1ˆ · · · ˆ1m

where

† 0 ≤ i , j , k , m ≤ n,
† the subsequence 1iˆ1i+1ˆ · · · ˆ1j is a trail of D1,
† the subsequence 1kˆ1k+1ˆ · · · ˆ1m is a trail of D2, and
† any subsequence of the form 1aˆ1a+1ˆ · · · ˆ1b (j , a ,
b , k) is not any trail of D1 or D2,

the subsequence 1j+1ˆ1j+2ˆ · · · ˆ1k−1 is a trail of G.
We can check a program execution trace r = 10ˆ11ˆ · · · ˆ1n

for a bidirectional mandatory consistency specification
SD(D1, D2, G) as follows: finding out each subsequence of
r of the form

1iˆ1i+1ˆ · · · ˆ1jˆ1j+1ˆ1j+2ˆ · · · ˆ1k−1ˆ1kˆ1k+1ˆ · · · ˆ1m

where

† 0 ≤ i , j , k , m ≤ n,
† the subsequence 1iˆ1i+1ˆ · · · ˆ1j is a trail of D1,
† the subsequence 1kˆ1k+1ˆ · · · ˆ1m is a trail of D2, and
† any subsequence of the form 1aˆ1a+1ˆ · · · ˆ1b (j , a ,
b , k) is not any trail of D1 or D2,

and checking if the subsequence 1j+1ˆ1j+2ˆ · · · ˆ1k−1 is a trail
of G by the algorithm for checking left images or right images
in an IOD.

4.4 Implementation and evaluation

We have implemented a tool prototype UIMDRIVER to
support the runtime verification approach presented above,
which can be downloaded from http://seg.nju.edu.cn/
UIMDRIVER/. It has been used to perform several case
studies for evaluating the potential and usability of our
runtime verification approach.

4.4.1 Tool prototype: UIMDRIVER is implemented in
Java as a plug-in component on the Eclipse platform [27],
and its GUI is shown in Fig. 14a. It consists of five
components as shown in Fig. 14b. The UML model editor
can help users to create or edit both sequence diagrams and
IODs, which is built on the top of the eclipse plug-in
component Topcased [28]. The test case manager sets up
test configurations, and supports users to manually establish

an object mapping from a given scenario-based specification
to a program (bytecodes) under verification. Based on this
mapping the instrumentor can automatically instrument
probe codes into the program (bytecodes) with the help of
the Byte Code Engineering Library [29]. The run manager
starts up the instrumented program and collects its execution
traces. The verifier checks if the collected program execution
traces are consistent with the specification on temporal
ordering of message interaction.

When using UIMDRIVER to check a program (bytecodes)
for a scenario-based specification, one should create the
models by using the UML model editor. Then with the help
of the test case manager, he needs to map the objects in the
models to their counterpart in the bytecodes, and set up
running configurations of test cases by hand. Once the object
mapping and test configurations are ready, the following
process is automated: the test case manager invokes the
instrumentor to generate the probe codes, the run manager
drives the execution of test cases based on their running
configurations and collects the execution traces, and the
verifier performs the conformance checking.

For a scenario-based specification and a program, once an
inconsistent case between them is detected by UIMDRIVER,
there are two causes for the case: one is the program bugs
resulting from the wrong temporal orders of method calls, the
other cause is that the UML models used as the specification
are imperfect (incorrect or incomplete) themselves. This
implies that UIMDRIVER can also be used to detect
imperfect UML interaction models. For example, in reverse
engineering of legacy systems, we often need to derive UML
models from codes. In those cases UIMDRIVER can be used
to check if the derived UML models are imperfect.

The mandatory consistency specifications in our approach
have been interpreted in a ‘tight’ view, which means that if
a reference scenario described by the given sequence
diagrams occurs during the execution of a program, then it
must ‘immediately’ adhere to a scenario described by
the given IOD. In this view, in program execution no
other scenario is allowed to occur in between the two
scenarios described in the specification. There is also a
‘loose’ view to interpret the mandatory consistency
specifications, which means that if a reference scenario
described by the given sequence diagram occurs during the
execution of a program, then it must adhere to, ‘possibly
intermittently’, a scenario described by the given IOD.
According to this view, in program execution the other
scenarios are allowed to occur in between the two scenarios
described in the specification. UIMDRIVER implements
both the interpretations for the mandatory consistency
specifications.

Fig. 14 GUI and architecture of tool prototype

152 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

http://seg.nju.edu.cn/UIMDRIVER/
http://seg.nju.edu.cn/UIMDRIVER/


4.4.2 Case studies: UIMDRIVER has been uesd to
perform several case studies for evaluating the potential and
usability of our runtime verification approach.

Experiments on an ATM system: One experiment is taken on an
automated teller machine simulation system [30], which is a
complete example of object-oriented analysis, design and
programming applied to a moderate size problem. In [30], the
detailed documentations about analysis, design and
implementation are given. As depicted in Fig. 15, a sequence
diagram derived from transaction use case is selected to
construct specifications, which describes the event flow that
all the individual types of transaction (withdrawal, deposit,
transfer, inquiry) must conform to. It includes two successive
scenarios: the first is the business logic of one transaction
in which the messages getSpecificsFromCustomer,
selectTransaction and getMenuChoice occur in the
proper order, which corresponds to ask the customer to select
the transaction type and the menu choice; the second is the
transaction tracing process which consists of receipt printing
and information logging. This sequence diagram is used to
construct an exceptional consistency specification and a
backward mandatory consistency specification, respectively,

which are depicted in Fig. 15. The exceptional consistency
specification is constructed by exchanging the positions of
message logSend and logResponse in the sequence
diagram, which violates the requirement that messages sent to
the bank should be logged first and then messages got from
the bank are logged, and forms a forbidden scenario in the
program. The mandatory consistency specification is
constructed by splitting the sequence diagram, which
indicates that a transaction cannot enter the tracing process
until its corresponding business process has been completed.
We conduct the following experiments. First, UIMDRIVER
drives the system execution 20 times with random test cases
to check if the program execution traces are consistent with
the specifications. The experiment is conducted 30 times, and
UIMDRIVER reports no inconsistent case. Then, we embed
manually a bug in the program by changing the order of the
events corresponding to message logSend and
logResponse. The experiment conducts 30 times again, and
each time UIMDRIVER drives the program execution 20
times with random test cases. Although UIMDRIVER finds
out the inconsistent case in each experiment, the first
occurrences of the inconsistent case in the experiments are
different because of using random test cases. Fig. 16 depicts

Fig. 15 Sequence diagrams and specifications in the ATM system

Fig. 16 Experimental results of the ATM system

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 153
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org



how many times the program has been executed in each
experiment when the first occurrence of the inconsistent case
is detected.

Experiments on FIPA Iterated Contract Net Iteration
Protocol: Another case study is about the FIPA Iterated
Contract Net Iteration Protocol (FIPA-ICNIP)[25], which is
specified in Section 2.2 by an IOD shown in Fig. 4. We
check if the FIPA-ICNIP protocol is implemented soundly
by the FIPA-OS v2.2.0 [31] which is an open source
system. The first step is splitting the specification in Fig. 4
into a forward mandatory consistency specification, as
depicted in Fig. 17. Then using FIPA-OS v2.2.0, we
implement several agents that interact with each other for
bidding. UIMDRIVER instruments its byte code and
generated 5000 tasks for those agents randomly as inputs,
and get 5000 execution traces accordingly. The result of
consistency checking shows that of the total 5000 execution
traces, 259 traces violate the forward mandatory
specification. All of them do not reach the end node of the
IOD in the specification, and terminate in the sequence
diagram propose. After a deeper inspection, we
discovered that all these violations are caused by the same
deficiency. In FIPA-OS 2.2.0, after receiving the message
propose, the Initiator is not allowed to send the message
cfp to Participant, which is inconsistent with the FIPA-
ICNIP specification [25].

In addition to the above case studies, we also conduct
experiments which are derived from a bridge toll station
system with 21 classes and 193 methods totally and an
official retirement insurance system with 17 classes and 241
methods totally. All the experiments have considerably
supported our approach that UML interaction models are
used as automatic test oracles to detect the wrong temporal
ordering of message interaction in programs.

5 Related work

The runtime verification techniques have been used for Java
programs [8, 9, 32–36] to monitor temporal properties and
detect program errors such as deadlocks, data races and
memory leak. In those works, the specification languages
are based on formal notations or event-based programming
notations. In general, the advantage of our runtime
verification approach is to use UML interaction models to
construct simple and expressive scenario-based
specifications so as to facilitate the runtime verification
application in industry.

Some works on runtime verification of Java programs are
based on the idea of Design by Contract [37], and support
to represent the design assertions directly in programs
which are used for monitoring and verification. Jass [34]
allows Java classes to be annotated with specifications
based on CSP, which is a pre-compiler and supports
assertion monitoring. JML [32] is a notation for specifying
the detailed design of Java classes and interfaces using a
slight extension of Java’s expression syntax, and its tools
support runtime debugging of Java code. The literature [8]
and [9] extend JML with temporal logic and regular
expressions, respectively. In those works, the specifications
need to be elaborated based on programs, and it is difficult
to reuse design or other specifications directly. Relatively,
in our approach, a program under verification could be
regarded as a black box, and the specifications in
requirements and design could be directly reused.

To our knowledge, there has been few literature on runtime
verification of Java programs for scenario-based
specifications expressed by UML interaction models which
focus on the temporal ordering of message interactions
among objects. A scenario-based testing approach is
presented in [38] based on a simple subset of live sequence

Fig. 17 Forward mandatory consistency specification for the FIPA Iterated Contract Net Iteration Protocol

154 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org



charts [39]. In that work, no implementation technique is
given, and the specification language cannot be used to
describe the backward and bidirectional mandatory
consistency specifications considered in this paper. A
preliminary work [21] has been given by us for runtime
verification of Java programs for scenario-based
specifications. But in that work, we just used simple
sequence diagrams to construct the scenario-based
specifications, which cannot describe potentially iterating
and branching system behaviour, and instrument programs
on their source codes. The idea of using UML models as
specifications in runtime verification has been extended by
us to UML state machine diagrams [40]. In that work,
UML state machine diagrams are used as specifications to
runtime verification of Java programs for the consistency
on object message receiving temporal ordering, and the
techniques of program instrumentation and consistency
checking are simple. There are also several works [41–43]
on verifying Java programs based on model checking
techniques [44] whose capacity is restricted by the huge
program state spaces.

The field of runtime verification overlaps with the field of
testing from the perspective of test oracles. Our runtime
verification approach does the consistency checking off-
line, which essentially leads to a supporting tool for testing
in which the scenario-based specifications are used as
automatic test oracles. There are a number of works on
UML model-based testing [45–49] whose intentions are
different from the one of our work, which are focused on
deriving test cases and constraints from UML
models. Those work could be integrated in our approach for
generating test cases to drive programs under verification.

The existing works on runtime verification have
typically focused on program monitoring, which interleaves
the analysis and recording program information with
program execution [50]. For this kind of online analysis, it
is necessary to improving the consistency checking
algorithms in our approach for producing the analysis
result faster. It is also promising to establish our
approach on multi-core platforms for achieving better
performance [51].

6 Conclusion

In this paper, we use UML2.0 IODs and sequence diagrams to
construct simple and expressive scenario-based
specifications, and give an approach to runtime verification
of Java programs. This approach leads to a supporting tool
for testing in which UML interaction models are used as
automatic test oracles to detect the wrong temporal ordering
of message interaction in programs.

Since UML has become widely accepted as a modelling
standard for object-oriented software development, our
work could facilitate runtime verification application in
industry. In this paper, our work focuses on the runtime
verification of Java programs, but the underlying approach
and ideas are more general and may also be applied to the
runtime verification of the other object-oriented programs.

7 Acknowledgement

Thanks to the anonymous reviewers for their valuable
comments and suggestions. This work is supported by the
National Natural Science Foundation of China (No.
90818022, No. 60721002), the National 863 High-Tech
Programme of China (No. 2009AA01Z148, No.

2007AA010302), the National Grand Fundamental Research
973 Program of China (No. 2009CB320702), and by the
National S&T Major Project (2009z01036-001-001-3).

8 References

1 Havelund, K., Rosu, G. (Eds.): Proc. First Workshop on Runtime
Verification, Electronic Notes in Theoretical Computer Science, 2001,
vol. 55, Issue 2

2 Runtime Verification: http://www.runtime-verification.org/
3 Wikipedia encyclopedia. ‘Runtime Verification’. http://en.wikipedia.

org/wiki/Runtime_verification
4 Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: ‘Collecting statistics

over runtime executions’, Electron. Notes Theoret. Comput. Sci.,
2002, 70, (4), pp. 36–55

5 ITU-T: ‘Recommendation Z.120. ITU – telecommunication
standardization sector’. Geneva, Switzerland, May 1996

6 Rumbaugh, J., Jacobson, I., Booch, G.: ‘The unified modeling language
reference manual’ (Addison-Wesley, 1999)

7 OMG. ‘UML2.0 superstructure specification’. http://www.uml.org,
October 2005

8 Trentelman, K., Huisman, M.: ‘Extending JML specifications with
temporal logic’. Proc. Ninth Int. Conf. on Algebraic Methodology and
Software Technology (AMAST2002), 2002, (LNCS, 2422),
pp. 334–348

9 Cheon, Y., Perumandla, A.: ‘Specifying and checking method call
sequences of Java programs’, Softw. Qual. J., 2007, 15, pp. 7–25

10 Drusinsky, D.: ‘Semantics and runtime monitoring of TLCharts:
statechart automata with temporal logic conditioned transitions’,
Electron. Notes Theoret. Comput. Sci., 2005, 113, pp. 3–21

11 Dobing, B., Parsons, J.: ‘How UML is used?’, Commun. ACM, 2006, 49,
(5), pp. 109–113

12 Kluge, O.: ‘Modelling a railway crossing with message sequence chatrs
and Petri Nets’, in Ehrig, H. (Ed.): ‘Petri technology for communication-
based systems – advance in Petri Nets’, 2003, (LNCS, 2472),
pp. 197–218

13 Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: ‘Comparing different
approaches for specifying and verifying real-time systems’. Proc. 10th
IEEE Workshop on Real-Time Operating Systems and Software,
New York, 1993, pp. 122–129

14 Peled, D.A.: ‘Software reliability methods’ (Springer, 2001)
15 Alur, R., Holzmann, G.J., Peled, D.: ‘An analyzer for message sequence

charts’, Softw. – Concepts Tools, 1996, 17, pp. 70–77
16 Ben-Abdallah, H., Leue, S.: ‘Timing constraints in message sequence

chart specifications’. Proc. FORTE/PSTV’97, 1997
17 Seemann, J., Gudenberg, J.W.: ‘Extension of UML sequence diagrams

for real-time systems’. Proc. Int. UML Workshop, 1998, (LNCS,
1618), pp. 240–252

18 Firley, T., Huhn, M., Diethers, K., Gehrke, T., Goltz, U.: ‘Timed sequence
diagrams and tool-based analysis – a case study’. Proc. Second Int. Conf.
on UML, (UML99), 1999, (LNCS, 1732), pp. 645–660

19 Alur, R., Yannakakis, M.: ‘Model checking of message sequence
charts’. Proc. 10th Int. Conf. on Concurrency Theory, 1999, (LNCS,
1664), pp. 114–129

20 Li, X., Lilius, J.: ‘Timing analysis of UML sequence diagrams’.
UML’99 – The Unified Modeling Language, 1999, (LNCS, 1723),
pp. 661–674

21 Li, X., Wang, L., Qiu, X., Lei, B., et al.: ‘Runtime verification of Java
programs for scenario-based specifications’. Proc. 11th Int. Conf. on
Reliable Software Technologies, (Ada-Europe’2006), 2006, (LNCS,
4006), pp. 94–106

22 Lund, M.S., Stolen, K.: ‘A fully general operational semantics for UML
2.0 sequence diagrams with potential and mandatory choice’. Proc. 14th
Int. Symp. on Formal Methods (FM2006), 2006, (LNCS, 4085),
pp. 380–395

23 Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.: ‘STAIRS towards
formal design with sequence diagrams’, Softw. Syst. Model., 2005, 4,
(4), pp. 355–367

24 Cengarle, M.V., Knapp, A.: ‘Operational semantics of UML 2.0
interactions’. Technical report TUM-I0505, (Technische Universitat
Munchen, 2005

25 Foundation for Intelligent Physical Agents: ‘FIPA Iterated Contract Net
Iteration Protocol specifications’. http://www.fipa.org/specs/fipa00030/,
2002

26 Lindholm, T., Yellin, F.: ‘Java virtual machine specification’ (Prentice-
Hall PTR, 1999, 2nd edn.)

27 Eclipse – an open development platform. http://www.eclipse.org/
28 Topcased. http://www.topcased.org/
29 The homepage of BCEL. http://jakarta.apache.org/bcel/index.html

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156 155
doi: 10.1049/iet-sen.2009.0009 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://www.runtime-verification.org/
http://en.wikipedia.org/wiki/Runtime_verification
http://en.wikipedia.org/wiki/Runtime_verification
http://www.uml.org
http://www.fipa.org/specs/fipa00030/
http://www.eclipse.org/
http://www.topcased.org/
http://jakarta.apache.org/bcel/index.html


30 Bjork, R.C.: ‘The simulation of an automated teller machine’. http://
www.math-cs.gordon.edu/local/courses/cs211/ATMExample/Links.html

31 Nortel Networks Corporation. ‘FIPA-OS distribution notes’. http://fipa-
os.sourceforge.net, 2002

32 Leavens, G.T., Leind, K.R.M., Poll, E., Ruby, C., Jacobs, B.: ‘JML:
notations and tools supporting detailed design in Java’. Addendum to the
2000 Proc. Conf. on Object-oriented Programming, Systems, Languages,
and Applications, ACM Press, 2000, pp. 105–106

33 d’Amorim, M., Havelund, K.: ‘Event-based runtime verification of Java
programs’. Proc. Int. Workshop on Dymaic Analysis, (WOAD2005),
2005, pp. 1–7

34 Bartetzko, D., Fischer, C., Moller, M., Wehrheim, H.: ‘Jass – Java with
assertions’, Electr. Notes Theoretical Comput. Sci., 2001, 55, (2),
pp. 103–117

35 Havelund, K., Rou, G.: ‘An overview of runtime verification tool Java
PathExplorer’, Formal Meth. Syst. Des., 2004, 24, (2), pp. 189–215

36 Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: ‘Java-
MaC: a run-time assurance tool for Java programs’, Formal Meth.
Syst. Des., 2004, 24, (2), pp. 129–155

37 Meyer, B.: ‘Applying “design by contract’’’, Computer, 1992, 25, (10),
pp. 40–51

38 Lettrai, M., Klose, J.: ‘Scenario-based monitoring and testing of real-
time UML models’. Proc. Fourth Int. Conf. on Unified Modeling
Language, (UML2001), 2001, (LNCS, 2185), pp. 317–328

39 Damm, W., Harel, D.: ‘LSCs: breathing life into message sequence
charts’, Formal Meth. Syst. Des., 2001, 19, (1), pp. 45–80

40 Li, X., Qiu, X., Wang, L., Lei, B., Wong, W.E.: ‘UML state machine
diagram driven runtime verification of Java programs for message
interaction consistency’. Proc. 23rd Annual ACM Symp. on Applied
Computing, (ACM SAC2008), 2008, pp. 384–389

41 Park, D.Y.W., Stern, U., Skakebak, J.U., Dill, D.L.: ‘Java model
checking’. Proc. First Int. Workshop on Automated Program Analysis,
Testing, and Verification, 2000

42 Holzmann, G.J., Smith, M.H.: ‘Software model checking: extracting
verification models from source code’. Proc. 12th Int. Conf. on
Formal Description Techniques FORTE/PSTV’99, Beijing, China,
October 1999

43 Havelund, K., Pressburger, T.: ‘Model checking JAVA programs using
JAVA PathFinder’, Int. J. Softw. Tools Technol. Transfer, 2000, 2,
pp. 366–381

44 Clarke, E.M., Grumberg, O., Peled, D.A.: ‘Model checking’ (The MIT
Press, 1999)

45 Offutt, J., Abdurazik, A.: ‘Generating tests from UML specifications’. Proc.
Second Int. Conf. on Unified Modeling Language, (UML1999), 1999,
(LNCS, 1723), pp. 416–429

46 Chevalley, P., Thevenod-Fosse, P.: ‘Automated generation of statistical
test cases from UML state diagrams’. Proc. Int. Computer Software and
Applications Conf., 2001, pp. 205–214

47 Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D.: ‘Test case
generation from UML state diagrams’, IEEE Proc. Softw., 1999, 146,
(4), pp. 187–192

48 Abdurazik, A., Offutt, J.: ‘Using UML collaboration diagrams for
static checking and test generation’. Proc. Third Int. Conf. on
Unified Modeling Language, (UML2000), 2000, (LNCS, 1939),
pp. 383–395

49 Ali, S., Jaffar-ur Rehman, M., Briand, L.C., Ashar, H., Zafar, Z.,
Nadeem, A.: ‘A state-based approach to integration testing for object-
oriented programs’. Technical report SCE-05–08, Department of
Systems and Computer Engineering, Carleton University, Canada, 2005

50 Dwyer, M.B., Kinneer, A., Elbaum, S.: ‘Adaptive online program
analysis’. Proc. Int. Conf. on Software Engineering, (ICSE2007),
2007, pp. 220–229

51 Yang, L., Tang, J., Zhao, J., Li, X.: ‘A case study for
monitoring-oriented programming in multi-core architecture’. Proc.
Int. Workshop on Multicore Software Engineering, (IWMSE2008),
Germany, 2008, pp. 47–52

156 IET Softw., 2011, Vol. 5, Iss. 2, pp. 142–156

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

http://<?tlsb=-0.01w>www.math-cs.gordon.edu/local/courses/cs211/ATMExample/Links.html
http://<?tlsb=-0.01w>www.math-cs.gordon.edu/local/courses/cs211/ATMExample/Links.html
http://fipa-os.sourceforge.net
http://fipa-os.sourceforge.net


Copyright of IET Software is the property of Institution of Engineering & Technology and its content may not

be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


