
Published in IET Software
Received on 28th February 2011
Revised on 18th May 2011
doi: 10.1049/iet-sen.2011.0030

ISSN 1751-8806

Investigation on performance testing and evaluation
of PReWebN: a Java technique for implementing
web application
M. Kalita1 S. Khanikar2 T. Bezboruah1

1Department of Electronics and Communication Technology, Gauhati University, Guwahati 781014, Assam, India
2En-Geo Consultancy and Research Centre, Guwahati 781001, Assam, India
E-mail: zbt@gauhati.ac.in; zbt_gu@yahoo.co.in

Abstract: Performance testing of web application is essential from the perspective of users as well as developers, since it directly
reflects the behaviour of the application. As such the authors have developed a prototype research web application based on Java
technique to study the performance and to evaluate the technique used for developing the web application. The application is
called as PReWebN (prototype research web application in netbeans platform). Load and stress testing have been carried out
on PReWebN using Mercury LoadRunner to study the performance, stability, scalability, reliability, efficiency and cost
effectiveness of the technique. The performance depends on metrics such as hits/s, response time, throughput, errors/s and
transaction summary. These metrics for the application are tested with different stress levels. The statistical testing on the
recorded data has been carried out to study the stability and quality of the application. The present study reveals that the web
application developed with Java technique is more stable, reliable, scalable and cost effective than its other counterpart such
as Microsoft .NET technology. The authors present the architecture, testing procedure, results of performance testing as well
as the results of statistical testing on recorded data of PReWebN.

1 Introduction

In its inception, web applications were static and essentially
read only hypermedia repositories of information. The
applications running nowadays on the web introduced a
number of innovative aspects. Two main process related to
traditional hypermedia repository are (i) the browsing and
(ii) the navigation. With user’s demand, these two
operations have extended to the data entry, business
transactions and communication with remote users.
Thereafter, the tight integration among different operation
paradigms arises. Thus, a web application performs various
operations chosen from the point of user’s perspective. It
has created the need for a new design paradigm.

In world-wide web (WWW), many web applications create
dynamic responses to user requests. The dynamic content
creation provides operators with various advantages, such as
access to information stored in databases, which provides the
ability to personalise web applications according to individual
user preferences. This facilitates to deliver a much more
interactive user experience than that of static web application.

The overall performance of web application depends on
components involved, particularly the clients, networks and
the servers. The explosive growth of the web results in
heavy demand on servers. The server performance has
become a critical issue for improving the quality of service
(QoS) on WWW [1]. The QoS offered to the users is
affected not only by the network bandwidth, but also by

processing power of web server [2]. The Apache is one of
such popular web servers available for deploying web
applications [3]. It is a popular web server on the Internet,
used by more than 60% of existing websites [4].

Among the various design paradigms, the model view
controller (MVC) is a well-known design pattern to
architect interactive web applications. The key idea of this
design pattern is to separate the user interfaces (UIs) from
the underlying data representation. The model is that part of
the application which contains both the information
represented by the view and the logic that changes this
information in response to user interaction. The controller is
the entry point of the application. Use of MVC makes it
easier to develop and maintain a web application, because
(a) the web application’s view can be drastically changed
without changing data structure and business logic (BL) and
(b) the web application can easily maintain different
interfaces, such as multiple languages or different sets of
user permissions. The developers can make partitioning
easily by deciding which method will run in server and
which will run in the client [5].

As such the responsibilities of developers are manifold.
While the applications should be provided with ease to use
features, at the same time these applications must also be
able to handle large number of concurrent users. In such a
situation, as most of the businesses are conducted through
web, it is very important and crucial to obtain the
techniques involved in developing the web application to be

434 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org



tested. To perform and execute testing, one must be familiar
with the system, the inputs, the way they are combined and
the operating environment of the system [6]. In general, the
testing is performed in the following four phases: (a)
modelling the system’s environment, (b) selecting test
scenarios, (c) running and evaluating test scenarios and (d)
analysing test results.

With the massive growth of web user, it is extremely
important to verify and measure the reliability and stability
of the web application. One of the good candidates for
effective web quality assurance is statistical testing. This
technique requires collection of large data sets describing
various metrics of the application [7].

There are three models that can be used to analyse the
performance of an application, namely (i) the simulation (ii)
the analytical model and (iii) measurements of existing
system. In the analytical model, a set of algorithm is used
to analyse the system. It requires the construction of a
mathematical model which represents the real system. It
provides a quick insight into the system’s performance.
However, the analysis method tends to be less accurate
when compared with the other two techniques. In the
simulation model, a computer program is used to generate
the parameters needed to perform the test. The specialised
computer program captures only features of interest to the
study. Although the model eases the design, development
and modification, but it limits the accuracy of the result.
The measurement of existing system involves benchmarking
the system of interest without simplifying assumptions. This
method produces more accurate result when compared with
the other two techniques but is less flexible.

In view of the above we have designed, developed,
implemented and tested a prototype research web
application using Java technique (PReWebN), implementing
the JavaBeans (Managed beans) as model, Java Server
Pages (JSP) along with Hypertext Markup Language
(HTML) as view, FacesServlet as the controller and Apache
Tomcat as the web server. The PReWebN has been
implemented using NetBeans 6.5.1 Integrated Development
Environment (IDE). The use of IDE can increase the
efficiency during development, as the plug-ins can alert
coders if they introduce errors while writing codes [8]. The
application has been tested considering the number of
virtual users as the main factor with different stress levels
and the results of performance testing; statistical testing as
well as detail analysis are presented in this paper.

2 Architecture

The Java language is a natural choice for developing web
applications. Its strong security guarantees, concurrency
control and widespread deployment in both browsers and
servers make it relatively easy to create web applications.
The Java server faces (JSF) is a standard UI framework for
Java web applications. The JSF follows the MVC design
paradigm. The rapid web application development is
promoted by easily assembling UI components, plumbing
them to the back-end BL components and wiring UI
generated component events to server-side event handlers.
The JSF is a specification for a component-based web
application framework [9, 10].

2.1 MVC architecture

Fig. 1 shows the MVC architecture for JSF. The JSF
framework has a very well-defined notion of the model,

view and the controller. The model contains the BL or non-
UI code. It manages the behaviour and data of the web
application domain, responds to request for information
from the view and responds to instructions from the
controller. In event-driven systems, the model notifies view
when the information changes, so that they can react. The
view contains all the codes necessary to present a UI to the
user. It renders the model in a suitable form such as UI
components. The controller is a front-end agent that directly
handles the user’s requests and dispatched the appropriate
view. It receives inputs from the view and instructs the
model to perform actions based on the input data [9].

2.2 Multi-tier architecture of the PReWebN

The PReWebN has been implemented using the visual web
JSF to act as the front-end interface to dynamic web
content generator. The web content generator is a
combination of web server software, the Apache Tomcat
and back-end MyStructured Query Language (MySQL)
database server. The objective of the experiments is to
measure the performance of the front-end dynamic content
generator written in JSF with the Apache Tomcat. The
architecture of the PReWebN is shown in Fig. 2. The JSF
provides a component-centric application programming
interface (API) from which web application UIs can be
assembled. The JSF specification defines a set of basic UI
components that can be extended to achieve more
specialised behaviour. The events from client-side UI
controls are dispatched to JavaBeans models which provide
server-side application behaviour. In JSF, the UI
components are loosely coupled to server-side Java plain
old Java objects (POJO) which is declared as managed
beans. The front-end controller servlet handles all faces
requests and dispatches them with the necessary application
data to the appropriate view. The database manages the
physical storage and retrieval of data. It receives the data
from the model and sends it to the database and vice versa.
The database queries have been written to access the data
from the database and to perform operations like insert,
update and delete. In our design, the MySQL acts as the
data layer (DL).

3 Design aspect of PReWebN

A web application’s design is essentially its look and feel
[11]. We have taken into account all the web elements, for
example, audience information, purpose and objective
statement, domain information, web specification and
combine them to produce an arrangement for implementing
PReWebN.

The application is developed by considering the profile of
the Department of Electronics and Communication

Fig. 1 Model-view-controller design paradigm

IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444 435
doi: 10.1049/iet-sen.2011.0030 & The Institution of Engineering and Technology 2011

www.ietdl.org



Technology (ECT), Gauhati University as sample data. The
Create, Read, Update, Delete (CRUD) operations are
performed to generate the response. The basic working
principle of PReWebN is shown in the flowchart of Fig. 3.
The flowchart is self-explanatory. When users open the web
application, the main menu will open. The users can then
click any link provided in the main menu. They can search

the site or can perform some transactions. For searching,
any user can open the site and perform the necessary
search. For other operations, for example, insert, modify or
delete, users would have to go through the registration
process, which is supervised by the administrator. A
registered user is authenticated to obtain access to pages
performing database transaction. Users can log out at the

Fig. 2 Architecture of the PReWebN

Fig. 3 Flowchart for basic working principle of PReWebN

436 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org



end of his session. The session will be automatically closed if
users do not perform any transaction for a specific time period
set in the web application. The different module of the system
design of PReWebN is shown in Fig. 3.

4 Technical specifications of hardware
and software

The detail technical specification of the hardware and the
software for the development as well as testing environment
for PReWebN is as given below.

4.1 Hardware specification

PC: Intelw Pentiumw CPU E2200
Processor speed: @ 2.20 GHz
RAM: 1 GB
Memory space: 150 GB

4.2 Software specification

Web server: Apache Tomcat 6.0.18
Data base server: MySQL 5.0
Browser: Mozilla Firefox
Operating system: Windows XP
Front-end tool: NetBeans 6.5.1

The testbed configuration is shown in Fig. 4.
The web server, database server and the workload

generator are run in the same machine. The web server, the
database server and the workload generator (client emulator
software) run on an Intel Pentium CPU E2200 machine
with processor speed of 2.20 GHz. The network bandwidth
is chosen to be of 128 kbps considering the fact that if this
bandwidth is supported by the system in a decent manner
then higher bandwidths are always acceptable.

5 Testing of PReWebN

5.1 Testing approaches

The software testing is a process to evaluate efficiency,
performance, scalability, portability, compliance, interoperability
and effectiveness of a system. In software development, testing
is used at key checkpoints in an overall process to determine
whether objectives are being met or not. The code of the web
application is tested as unit or module level by the programmer.
At the system level, the developer or independent reviewer may
subject a service to one or more performance tests [12]. A web
application’s QoS is measured in terms of response time,
throughput and availability. One of the best ways to measure an
application’s QoS is to conduct load testing.

The performance testing is a testing that is performed, from
one perspective, to determine how fast some aspects of a
system perform under a particular workload. It can serve to
validate and verify scalability, reliability and usage of
resources. It can also demonstrate whether the system meets

performance criteria or not. It can also diagnose the part of
software that contributes most to the poor performance of
the system [13, 14].

After verifying the correctness of the code, the load and
stress testing is performed to measure the performance and
scalability of the application under heavy load. After
analysing the results obtained during this phase, it is
possible to determine the bottlenecks, memory leakage or
performance problems related to the DL.

The load testing is done to have an overall insight of the
system. It models the behaviour of users in real world. The
load generator mimics browser behaviour and each
emulated browser is called a virtual user [15]. In load
testing the system is subjected through reasonable load in
terms of number of virtual users to find out the performance
of the system, mainly in terms of response time. In this case
the load is varied from zero to the maximum up to which
the system can handle in a decent manner.

The stress testing is performed to determine the stability of a
given system. It involves testing beyond the normal operational
capacity. The stress testing is performed to uncover memory
leakage, bandwidth limits, transactional problems, resource
locking, hardware limitations and synchronisation problems
that occur when an application is loaded beyond the limits
determined by the performance statistics [16–18].

5.2 Testing of PReWebN

The Mercury LoadRunner (version 8.0) is used for testing of
PReWebN. It is an automated performance and load testing
tool for studying system behaviour and performance, while
generating actual load [19]. The testing is carried out to
determine the responsiveness, throughput, reliability and
scalability of the combination of JSF with Apache Tomcat
under a given workload. The operations performed are
insertion, updation, deletion and search. The testing is
object based in a sense that the whole application has been
divided into different objects [20].

During the experiments, the stress level is gradually varied,
so that it can saturate the server. This can lead to find out the
capability of the server. Each HTTP requests causes a
standard query language (SQL) INSERT commands to
insert two text fields in the database table. After invoking
the application, users will log onto the PReWebN using a
unique username and password. Successful login will
authenticate users to perform the transaction. Real-life
values are inserted into the text fields. The values can then
be saved into the corresponding database table by pressing
the ‘SAVE’ button. User think time of approximately 10 s
is incorporated in performing each transaction. The run time
for experiments was chosen subject to two constraints:
(i) the test duration must be long enough to assess
accurately the server’s ability to support the target request
rate and (ii) the duration of each test should be as short as
possible, in order to test many request and accurately
identify the peak performance of each server. Considering
the above facts, an average steady-state period of 30 min is
fixed for all the experiments. The test case is tabulated in
Table 1.

A flow diagram of different steps involved in the testing of
PReWebN is shown in Fig. 5. The different steps involved in
performing the performance test include the following
subsections.

5.2.1 Preparation of test plan: Various test cases are
designed in this step to view performance test from user’sFig. 4 Diagrammatic representation of the testbed configuration

IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444 437
doi: 10.1049/iet-sen.2011.0030 & The Institution of Engineering and Technology 2011

www.ietdl.org



perspective which includes architectures of client PC,
browsers and network bandwidth.

5.2.2 Creation of test environment: The test environment
consists of hardware and software configuration of client
PC, operating system and number of client PC participating
in the test.

5.2.3 Set stress level: The number of virtual users
participating in the test is chosen during this step.

5.2.4 Create new scenario: The new scenario is created
in this step where the period for which the stress test will
be performed is decided. There may be three phases: (a) the
ramp up phase initialises the system until it reaches a steady
state, (b) the steady-state phase where the measurements are

taken and (c) the ramp down phase which allows the
PReWebN to cool down. User think time and the operation
to be performed are also decided.

5.2.5 Setting of performance parameters: The
performance parameters are important to measure the
performance of the application. All the parameters are not
relevant to us. The parameters which are important to our
present work are set, for example, stress level and
bandwidth are set during this step.

5.2.6 Execution of the test: After setting the performance
parameters the test is executed by deploying the applications
on Mercury LoadRunner.

5.2.7 Analysis of test results: The test responses which
are in the forms of graphs are then analysed to evaluate the
performance of the application developed by using Java
technique in this step.

6 Performance parameters and metrics
of PReWebN

The performance has been analysed from user’s as well as
developer’s point of view. The users are more concerned
with no refusal of connection having fast response at the
client end. On the other hand, at the server end, the
developer is concerned with high connection throughput
and high availability. The factors on which the web server
performance depends are (i) the hardware and software
platform, (ii) the operating system, (iii) the server software,
(iv) the network bandwidth and (v) the load on the server.

6.1 Testing parameters

There are three main parameters which are varied during the
testing procedure. They are (a) the workload intensity
measured in terms of number of virtual users, that is, stress
level, (b) the workload mix which defines what users will
do in each session and (c) the user behaviour parameter,
which is the think time.

6.2 Test responses

The metrics of the load and stress test which we have
monitored include (i) the response time in second, (ii) the

Table 1 Test case

Test case: Insert record

Description: This test case inserts a person record in a specified database table

Data requirements:

{username} – User must have insert privileges. User names must be unique

{password} – Must be valid for a given username

Step number Step description Expected result Transaction name User think time (s)

1 invoke application. Log in using username

and password. Press ‘LOGIN’ button

user is authenticated to

perform insert operation

Init_Transaction 10

2 enter User ID and User name and press

button ‘SAVE’

the values are inserted

into database table

Action_Transaction 10

3 log out pressing button ‘LOGOUT’ user is logged out and

redirected to the home page

End_Transaction 10

Fig. 5 Flowchart for testing procedure

438 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org



throughput in bytes per second, (iii) the hits per second, (iv)
the number of successful virtual users allowed for transaction,
(v) the transaction summary which includes the number of
completed and abandoned sessions and (vi) the error report.

6.3 Experimental results

The performance testing is carried out for 10, 20, 30, 40, 50,
75, 100 and 125 virtual users. All performance metrics are
measured in 128 Kilobytes/s bandwidth for the reason as
discussed in Section 4.2. We observed various metrics
provided by the LoadRunner. It is seen that up to 50 users
the application runs smoothly. All the performance tests are
conducted with ramp up schedule of 30 s. They are phased
out at the same time after the completion of the steady-state
period [21]. The delays for the users think time is included
to emulate the behaviour of real users. User think time
included is 10 s. The virtual user levels 75, 100 and 125 are
tested to force the web application to work beyond its
capacity. The results are given in Table 2.

Some sample responses of the tested metrics are shown in
Figs. 6–8, respectively. Fig. 6 shows the response for hits/s
against the number of users for 75 virtual users. In this case
56 users are allowed to perform the transaction, rest are failed.
It is observed that hits/s increases with number of virtual
users, becomes maximum at around 30 virtual users and then
decreases gradually. The recorded average hits/s is 3.681.

Fig. 7 shows the response for throughput against number of
users for 75 virtual users. It is observed that the throughput

increases with number of virtual users, becomes maximum
at around 50 virtual users and then decreases gradually. The
recorded average throughput is 129440.023 bytes per second.

Fig. 8 shows the response for response time against number
of users for 75 virtual users. It is observed that the response
time increases initially with number of virtual users, then it
reached a steady state and then shoots to a maximum level
with increasing virtual users at around 51 users. The
recorded average response time is 56.69 s.

7 Statistical analysis of PReWebN

The statistical analysis of PReWebN is performed for 10
virtual users run for 5 min in steady state. The user think
time incorporated here is 70 s. The same set of test scenario
was repeated for 30 times which is the number of samples.
The observed metrics are given in tables below to analyse
for evaluating the reliability and stability of the application.

7.1 Analysis of distribution for response time,
hits/s and throughputs with equal bin size

The difference between best case and worst case in the
performance metrics are divided into seven bins of equal
width according to our convenience. The class interval and
frequency for response time, throughput and hits/s are
shown in Tables 3–5, respectively. Our objective is to
determine the distribution of response time, hits/s and
throughputs. One of the ways of determination is to plot a

Table 2 Virtual user level results

Scenario No. of users Recorded metrics Average Connection refusal in %

insert operation 30 response time (s) 47.6 0

throughput (bytes/s) 98 806

hits/s 2.248

75 response time (s) 56.6 26

throughput (bytes/s) 129 440

hits/s 3.681

100 response time (s) 112.34 50

throughput (bytes/s) 122 645

hits/s 2.524

125 response time (s) 60.85 62

throughput (bytes/s) 103 503

hits/s 2.6

Fig. 6 Hits/s against number of users for 75 virtual users

IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444 439
doi: 10.1049/iet-sen.2011.0030 & The Institution of Engineering and Technology 2011

www.ietdl.org



histogram of the observed metrics as shown in Figs. 9a–c,
respectively. The applied distribution is normal distribution
according to the histograms. But there is a major drawback
with histograms, that is, depending on the used bin sizes; it
is possible to draw very different conclusions.

A better technique is to plot the observed quantiles against
the recorded data in a quantile plot [22]. If the distribution of
observed data is normal, the plot is close to be linear. The
resultant plots are shown in Figs. 10a–c. Based on the
observed data, the response time, throughput and hits/s do
appear to be normally distributed.

The test of normality can be verified graphically, using
the normal probability plot. If the data samples are taken
from a normal distribution, the plot will appear to be linear.
The normal probability plots of the response time, throughput
and hits/s are shown in Figs. 11a–c. The data follow a
straight line, which predicts that the distribution is a normal one.

It is difficult to manage the size of the bins in a suitable
manner. If they are big enough, they might smooth out

useful information. To avoid this problem cumulative
distribution function (CDF) of the response time is
calculated and plotted. Fig. 12 represents the plot for CDF
of response time which shows the distribution to be
continuous one.

7.2 Analysis of distribution for response time,
hits/s and throughputs with unequal bin size

The same set of data is also analysed considering unequal bin
size for the histograms. We assume the minimum interval as 3
while the maximum interval is 6 (3 × 2, i.e. twice the
minimum value). The minimum interval is taken as the base
interval and the others are based on it. Hence the frequency
in the range 127.269–133.269 is divided by 2, which gives 6.
Similarly, the frequencies for hits/s and throughput are scaled
based on the class interval. The class interval and frequency

Fig. 7 Throughput against number of users for 75 virtual users

Fig. 8 Response time against number of users for 75 virtual users

Table 4 Class interval and frequency for throughput

Throughput,

bytes/s

Observed

frequency

60 552–61 817 4

.61 817–63 082 5

.63 082–64 347 7

.64 347–65 512 6

.65 512–66 777 3

.66 777–68 042 3

.68 042 2

Table 3 Class interval and frequency for response time

Response time, s Observed

frequency

118.269–121.269 4

.121.269–124.269 4

.124.269–127.269 4

.127.269–130.269 5

.130.269–133.269 7

.133.269–136.269 4

.136.269–139.269 2

Table 5 Class interval and frequency for hits/s

Hits/s Observed

frequency

1–1.014 3

.1.014–1.028 3

.1.028–1.042 3

.1.042–1.056 8

.1.056–1.068 6

.1.068–1.082 4

.1.082–1.097 3

440 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org



for response time, throughput and hits/s are given in Tables 6–8,
respectively. The histograms for response time, hits/s and
throughput are shown in Figs. 13a–c, respectively. As in case
of considering equal bin size, the applied distribution is a
normal one when we consider unequal bin size that can be
observed from the histograms shown in Figs. 13a–c.

7.3 Confidence interval of response time,
hits/s and throughput

The 95% confidence interval for the mean values of response
time, hits/s and throughputs are estimated. The population
means m can be expressed as [23, 24]

m = �x +
tcS
���

N
√ (1)

where �x = mean value, tc(0.05,29) ¼ critical value, S ¼ standard
deviation, N ¼ no. of samples and (tcS/

p
N ) ¼ margin of

errors.
Considering different values of metrics, obtained during

load testing, we evaluate the critical value, mean and
margin of errors which are tabulated in Table 9. The
population mean m is calculated from (1). From Table 9,
we can conclude with 95% confidence, for 10 virtual users,
the range for mean response time is between 128.7858 + 2,
that is, 126.8–130.78 s, mean hits/s is between 1.043 and
1.06, and mean throughput is between 63 543 and
65 277 bytes/s.

7.4 Factors influencing the response time

To verify whether there is a relationship between response
time, hits/s and throughput, we assume that such a relation,
if exists, be a linear one. The response time is assumed as

Fig. 9 Plots of histogram of observed metrics

a Histogram for response time
b Histogram for hits/s
c Histogram for throughput

Fig. 10 Resultant quantile plots

a Quantile plot for response time
b Quantile plot for hits/s
c Quantile plot for throughput

IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444 441
doi: 10.1049/iet-sen.2011.0030 & The Institution of Engineering and Technology 2011

www.ietdl.org



criterion variable. The criterion variable is the variable being
predicted that depends on values of other variables. Hits/s and
throughput are assumed to be predictor variables. The
predictor variable is a variable that can be used to predict
the value of another variable. The scatter plots of the

response time against hit/s and against throughput are given
in Figs. 14a and b.

The two scatter plots with their respective regression line
shows linear relationship. Greater the value of hits/s, more
will be the response time. In a similar way, the greater the
value of throughput more will be the response time. To
examine the combined effect of throughput and hits/s on
response time, we performed multiple linear regression
tests. The test is carried out at 95% confidence level. We
assumed the null hypothesis (H0) which is response time
does not depend on hits/s and throughput. The alternate
hypothesis (H1) is response time is a function of hits/s and
throughput.

The multiple linear regression analysis is carried out using
MS Excel. The analysis of variance (ANOVA) provides F
ratio to be 5.416881, which is greater than the critical value.
The critical value from the F table at significance level 0.05
is (F2,27) 3.36, where 2 and 27 are regression and residual,
respectively. This concludes F ratio to be significant at 0.05.
This provides evidence of existence of linear relationship
between response time, hits/s and throughput. As such, the
null hypothesis may be rejected. This implies that the
equation has 95% chance of being true. The analysis also
suggests that our model accounts for 28.63% variance on
response time. Thus, we may infer that the hits/s and
throughput have some influence on response time.

8 Discussion and conclusion

The objective of our present investigation is to evaluate the
overall performance of the Java technique for developing

Fig. 11 Normal probability plots

a Normal probability plot for response time
b Normal probability plot for hits/s
c Normal probability plot for throughput

Fig. 12 CDF of response time

Table 6 Class interval and frequency for response time

Response time, s Observed

frequency

118.269–121.269 4

.121.269–124.269 4

.124.269–127.269 4

.127.269–133.269 12

.133.269–126.269 4

.136.269–139.269 2

Table 7 Class interval and frequency for throughput

Throughput,

bytes/s

Observed

frequency

60 552–61 817 4

.61 817–63 082 5

.63 082–65 512 13

.65 512–68 042 6

.68 042 2

Table 8 Class interval and frequency for hits/s

Hits/s Observed

frequency

1–1.014 3

.1.014–1.042 6

.1.042–1.068 14

.1.068–1.097 7

442 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org



web application. The analysis of the recorded data predicts
that up to 50 virtual users the application developed with
Java technique (PReWebN) shows ideal response without
any refusal in connectivity with an average response time of
96.72 s. As we increase the number of virtual users, the
errors per page of the application as well as connectivity
errors increase. For 40 virtual users the average response
time is 42.17 s having no refusal of connection. Similarly
for 75 virtual users the average response time is 56.6 s and
26% connection is refused. For 100 virtual users the
average response time is 112.34 s with 50% connection

refusal. Finally for 125 virtual users the average response
time is 60.85 s with 62% connection refusal.

The histograms, quantile plots and normal probability plots
of the application show linearity and normality, which shows
enough evidence for the scalability and reliability of
PReWebN with large number of virtual users. However, in
some plots histograms are right or left skew. Also, the
normal probability plots are not always perfectly straight
line but depart from it at the ends. This shows the evidence
of longer tails than the normal distribution. From the
statistical analysis, it is observed that hits/s and throughput
have individual as well as combined effect on response time.
Individually, hits/s and throughput contribute approximately
25 and 17% to the response time and together they
contribute around 28%.

From the above study and statistics we can conclude that
for PReWebN, as we increase the number of virtual users
the errors as well as connection refusal increases. The
application gets saturated at 75 virtual users. The application
almost becomes inoperable near 125 users. The PReWebN
implemented using Java techniques seems to be stable up to
50 users with no errors. With the increase in stress level the
collisions between requests may increase and hence may less
number of hit/s and throughput with increased connection
error. Although the application implemented with Java
technique complies with industry standard, however, it is
essential to test and analyse the system thoroughly to have an
in-depth idea of the factors hampering the application. It is
also found that the hits/s and throughput have some influence
on response time of the application, however is small. The
multiple regressions test on the application shows that hits/s
and throughput has 28% combined effect on response time.
As such, we can conclude that the application implemented
with Java technique is reliable and stable considering
intermediate number of users with the above-mentioned
technical specification.

Fig. 13 Different histograms with unequal bin size

a Histogram for response time with unequal bin size
b Histogram for hits/s with unequal bin size
c Histogram for throughput with unequal bin size

Table 9 Different values of metrics

N T0.05, 29 Metrics (�x ) S tcS
���

N
√

30 2.045 response time (s) 128.7858 5.34267 2

hits/s 1.052 0.024 0.009

throughput (bytes/s) 64410 2322 867

Fig. 14 Scatter plots of the response time against hit/s and against
throughput

a Hits/s against response time
b Throughput against response time

IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444 443
doi: 10.1049/iet-sen.2011.0030 & The Institution of Engineering and Technology 2011

www.ietdl.org



The refusal of connection at higher number of virtual users
may be due to garbage collected heap due to improper release
of memory. This may also be due to decrease of response at
server end due to increase in number of virtual users. The
sudden rise and fall of response time, throughput and hits/s
in various output responses may be due to unreleased or
lately released of server resources including memory for the
consecutive requests. This conclusion however requires
thorough and close monitoring and analysis of the server-
side resources. This situation occurs more often with higher
number of virtual users when the server is stressed due to
increased load.

From our overall investigations, it can be concluded that if
we consider scalability, stability, reliability and cost, then the
Java technique is better than its other counterpart such as
Microsoft’s .NET technology [25].

9 Future work

The PReWebN may be implemented with large data sets to
more accurately benchmark the technique. Recording
replica of data for each test and analysing those data may
also provide better insight of the technique. Rigorous
testing and analysis of PReWebN is necessary to have an
in-depth idea of the factors hampering the web application
developed with Java technique. A suitable method should
be implemented to remove the garbage collected heap
during the testing of the application, which may also help
for accurate benchmarking of the technique. As part of our
future work, we propose to find out the reasons behind the
errors and large number of connection refusal for higher
number of virtual users.

We also propose to carry out detailed load and stress testing
on PReWebN by deploying the web server, application server
and workloads in different machines to compare the various
responses with the present results.

10 Acknowledgments

This work is supported partially by the University Grant
Commission (UGC), Govt. of India. The authors are
thankful to the Head, Department of Electronics and
Communication Technology, (ECT), Dean Faculty of
Technology, Gauhati University for infrastructural support
towards the work. The authors are also thankful to Prof.
(Mrs.) K. Boruah, Professor and Head Department of
Physics; Prof. H.K. Boruah, Professor, Department of
Statistics and Formerly Dean, Faculty of Science, Gauhati
University for their valuable suggestions during the statistical
analysis of the data. The authors are also grateful to the
anonymous reviewers for their review and constructive
suggestions in shaping the manuscript in final form.

11 References

1 Almeida, M., Almeida, V., Yates, D.J.: ‘Measuring the behavior of a
world wide web server’. Seventh IFIP Conf. on High Performance
Networking (HPN), White Plains, NY, April 1997, pp. 57–72

2 Fujita, Y., Murata, M., Miyahara, H.: ‘Performance modeling and
evaluation of web systems’. Proc. 1998 IEEE Communication Quality
and Reliability Workshop, May 1998

3 Hu, Y., Nanda, A., Yang, Q.: ‘Measurement, analysis and performance
improvement of the apache web server’. 18th IEEE Int. Performance,
Computing and Communications Conf., (IPCCC’99), February 1999

4 Titchkosky, L., Arlitt, M., Williamson, C.: ‘A performance comparison
of dynamic web technologies’, ACM SIGMETRICS Perform. Eval. Rev.,
2003, 31, (3), pp. 2–11

5 Leff, A., Rayfield, J.T.: ‘Web-application development using the model/
view/controller design pattern’. Fifth IEEE Int. Enterprise Distributed
Object Computing Conf., Seattle, Washington, September 2004–2007

6 Whittaker, J.A.: ‘What is software testing? And why is it so hard?’
(IEEE Software, January/February 2000)

7 Kallepalli, C., Tian, J.: ‘Measuring and modeling usage and reliability
for statistical web testing’, IEEE Trans. Softw. Eng., 2001, 27, (11),
pp. 1023–1036

8 Securing web application across the software development life cycle.
White paper published by IBM (2010): http://www.findwhitepapers.
com/technology/software_development/software_testing

9 Burns, E., Schalk, C., Griffin, N.: ‘JavaServer Faces 2.0: the complete
reference’ (McGraw-Hill, 2010)

10 Dudney, B., Lehr, J., Willis, B., LeRoy, M.: ‘Mastering java server
faces’ (Wiley Publishing, Inc., 2004)

11 Kalita, M., Bezboruah, T.: ‘On HTML and XML based web design and
implementation techniques’, Far East J. Electron. Commun., 2007, 1,
(1), pp. 65–79

12 What is web testing, http://searchwindevelopment.techtarget.com/
sDefinition/0,sid8_gci534970,00.html

13 Software performance testing, http://en.wikipedia.org/wiki/Software_
performance_testing

14 Application Performance Testing. White paper, .NET Research Library
(2011): http://researchlibrary.theserverside.net/detail/RES/1300815134_825.
htmlt

15 Menascé, D.A.: ‘Load testing of websites’, IEEE Internet Comput.,
2002, 6, (4), pp. 70–74

16 Stress testing, http://www.manageengine.com/products/qengine/stress-
testing.html

17 Stress testing, http://en.wikipedia.org/wiki/Stress_testing
18 What’s the difference between load and stress testing?, http://www.faqs.

org/faqs/software-eng/testing-faq/section-15.html
19 Application-testing tool: Mercury LoadRunner 8.0, http://pcquest.ciol.

com/content/software/2004/104093002.asp
20 Subraya, B.M., Subrahmanya, S.V.: ‘Object driven performance testing

of web applications’. First Asia-Pacific Conf. on Quality Software
(APAQS’00), Hong Kong, China, 30–31 October

21 Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.:
‘Performance comparison of middleware architectures for generating
dynamic web content’ (Springer, New York, 2003), pp. 242–261

22 Bogárdi-Mészöly, Á., Szitás, Z., Levendovszky, T., Charaf, H.:
‘Investigating factors influencing the response time in ASP.NET web
applications’, (LNCS, 3746), 2004, pp. 223–233

23 Spiegel, M.R.: ‘Theory and problems of probability and statistics’
(McGraw-Hill Book Company), SI Edition, Schaum’s Outline Series,
2000

24 Pal, S.K.: ‘Statistics for geo scientists, techniques and applications’
(Concept Publishing Company, New Delhi, 1998)

25 Kalita, M., Bezboruah, T.: ‘Investigation on performance testing and
evaluation of PReWebD: A. NET technique for implementing web
application’ (IET Software, 2011), in press

444 IET Softw., 2011, Vol. 5, Iss. 5, pp. 434–444

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2011.0030

www.ietdl.org

http://www.findwhitepapers.com/technology/software_development/software_testing
http://www.findwhitepapers.com/technology/software_development/software_testing
http://searchwindevelopment.techtarget.com/sDefinition/0,sid8_gci534970,00.html
http://searchwindevelopment.techtarget.com/sDefinition/0,sid8_gci534970,00.html
http://en.wikipedia.org/wiki/Software_<?show $ >performance_testing
http://en.wikipedia.org/wiki/Software_<?show $ >performance_testing
http://researchlibrary.theserverside.net/detail/RES/1300815134_825.htmlt
http://researchlibrary.theserverside.net/detail/RES/1300815134_825.htmlt
http://www.manageengine.com/products/qengine/stress-testing.html
http://www.manageengine.com/products/qengine/stress-testing.html
http://en.wikipedia.org/wiki/Stress_testing
http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html
http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html
http://pcquest.ciol.com/content/software/2004/104093002.asp
http://pcquest.ciol.com/content/software/2004/104093002.asp


Copyright of IET Software is the property of Institution of Engineering & Technology and its content may not

be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


