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Abstract. In the last years, the Java community has been arguing about adding closures to Java in
order to improve expressivity. The debate has not yet terminated but all proposals seem to converge
towards a notion of Simple Closures which contain only the essential features of anonymous func-
tions. This paper addresses the problem of defining a rigorous semantics for Simple Closures. The
technique adopted is well known and has already been used to prove interesting properties of other
extensions of Java. A minimal calculus is defined: Featherweight Java extended with Simple Clo-
sures. Syntax and semantics of such a calculus are defined andtype safety, backward compatibility,
and the abstraction property are proved.

1. Introduction

In the last few years extensions to Java focus on higher ordermechanisms to enhance expressivity, con-
ciseness, good structuring, reusability, and factoring ofcode [22, 20, 25, 11, 21, 5, 6, 9, 14, 26]. Proposals
to add closures in Java have been discussed since 2006 [19, 12, 2]. Recent revisions [15, 10] of the pro-
posals agree on several aspects and lead to a simplified structure of closures [24] that is illustrated by
Mark Reynholds in his Straw-man proposal [23] and is at the basis of the current version of the JLS draft
for JDK7 [3, 4]. Accordingly, a closure is a value that abstracts an arbitrary Java code and makes such
a value available for assignment, parameter transmission,value returning and invocation. Although JLS
draft is rather precise as far as the syntactic structure andthe restrictions about the combination of clo-
sures with other Java constructs, it fails (together with all the above cited proposals) to provide a formal
and rigorous semantics. Furthermore, some features currently considered in the other proposals are still
under investigation for inclusion in JDK7. The lack of a formal semantics makes difficulti) to evaluate
significance and compatibility of the new features,ii) to compare different features that are sharing same
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aims, andiii) to prove that any future implementation is correct (i.e. hits correctly the design aims). Such
problems are addressed in this paper, resorting to a minimalcalculus: Featherweight Java (FJ for short),
to i) formalize semantics, andii) study properties of Simple Closures and some interesting variants of
them.

FJ was presented at the 1999 ACM Symposium [17] as a minimal core calculus for a formal model
to study design properties of Java. The idea is to omit most ofthe concrete features of the full Java to
concentrate on a small core language, fully significant, forall the relevant aspects of the properties under
investigation. Initially, it was introduced to design and formalize the generic type system of Java [8]
and prove its soundness [18]. More recently [16], it has beenusedi) to define a reduction semantics of
inner classes in Java,ii) to investigate on properties of inner classes, including abstraction features and
interaction with inheritance, andiii) to provide for compilation issues of inner classes.

In this paper, we start using the variant of FJ, called FGJ, which deals with generic types and extends
it to model all essential features of Java that are involved in the properties of closures we investigate
in this paper, namely typing and abstraction. The omitted features include side effects (sequencing,
assignments and threads) and exceptions. The new calculus Featherweight Generic Java with Closures
is here called FGCJ. The structure of closure, we consider, is the one of Simple Closure [24, 23, 3],
hereafter called closure, in the form ofExpression Lambda[15], i.e. having expressions as body, since
blocks are not allowed in FGCJ. Accordingly, closuresi) have types,function types, which extend the
Java type system,ii) are first class values which can be bound to parameters, hencepassed to methods or
other closures,iii) are invoked receiving a complete list of expressions for thearguments (n expressions
for n-arguments closure), i.e. no currying is admitted,iv) invocation always returns a value,v) use only
effectively-finalvariables, i.e. single assignable variables.

The reduction semantics is used to prove three fundamental properties which aretype soundness,
which asserts consistency between the type system and computation,backward compatibilitywhich as-
serts the consistency between old rules system and the extended one,abstraction propertywhich asserts
the semantics analog ofβ−conversion.

The paper is organized as follows: Section 2 resumes FGJ features, Section 3 defines syntax and
semantics of FGCJ, Section 4 states and prove the properties, eventually Section 5 concludes the paper
and Appendix A contains proof details.

2. Featherweight Java

A program in FJ (FGJ) [17] consists of a declaration of generic class definitions and of an expression
to be evaluated using the class definitions. The expression corresponds to the body of the 0-arguments
main method of Java. Here is a declaration for some typical class definitions in FGJ.

class Pair〈X⊳ Object, Y⊳ Object〉⊳ Object{
X fst;Y snd;

Pair(X fst, Y snd){super(); this.fst=fst; this.snd=snd;};
〈Z⊳ Object〉 Pair〈Z,Y〉 setfst(Z newfst){

return new Pair〈Z,Y〉(newfst,this.snd); }}
class A ⊳Object{A(){super();};}
class B ⊳Object{B(){super();};}
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A complete definition of the syntax of FGJ consists of the grammar rules inTable 1 that are labelled by
the defined grammatical category indexed by FGJ. Symbol⊳ is a notational shorthand for Java keyword
extends. For syntactic regularity, (a) classes always specify the super class, possiblyObject, and have
exactly one constructor definition; (b) class constructorshave one parameter for each class field with the
same name as the field, invoke the super constructor on the fields of the super class and initialize the
remaining fields to the corresponding parameters; (c) field access always specifies the receiver (object),
possiblythis. This results in the stylized form of the constructors in theexample above. Both classes
and methods may have generic type parameters. In the example, X andY are type parameters of the class
Pair, while Z is type parameter of methodsetfst. Each type parameter has abound, in the example
Object for all.

FGJ has no side effects. Hence,sequencingand assignmentare strictly confined to constructor
bodies. In particular, method bodies have always the formreturn, followed by an expression, as in the
body ofsetfst in the example. The lack of Java constructs for sequencing control and for store updating
(along with that of concurrency, and reflection) is the main advantage of the calculus in studying language
properties that are not affected by side effects. In this waythe calculus is, as much as possible, compact
and takes advantage of the referential transparency. The latter one provides a simple reduction semantics
which is crucial for rigorous, easy to derive, proofs of the language properties [13]. About compactness,
FGJ has only five forms of expressions: One forObject Creation, asnew Pair(...) in the body of
setfst in the example, another for variables (namely,parameter naming), asnewfst andthis, one
for field access, asthis.snd always in the body ofsetfst. The remaining two forms aremethod
invocationandcastas in the expression below.

(e) ((Pair) new Pair<A,B>(new A(),new B())).setfst<B>(new B())

The presence ofcastin FGJ is justified from its fundamental role in compiling generic classes and could
be ruled out of FGCJ. From a syntactic point of view,this is a keyword in Java, and is a variable in
FGJ, however, in both languages, it has the semantics ofobject self-reference, see ruleGR-Invk. We
conclude this presentation considering the twofold role ofreferential transparency: first evaluation is
entirely formalized within the syntax of FGJ (hence, the evaluation process results in a sequence of FGJ
expressions reducing the first one to the last one, if any, which represents an error or its value), second the
order in which expressions are reduced, if more than one can be selected, does not affect the final result.
The reduction semantics of FGJ consists of the first three rules that appear inTable 2: Computation
that deal with term evaluation, and of the first five rules inTable 2: Congruencethat deal with redex
selection. The remaining 18 rules of the semantics of FGJ deal with the type system and with term
well-formedness. The rules of FGJ have labels that are indexed by FGJ inTable 2, 4, 5. As an example
of computation, expressione, evaluated in the context of the declaration of the classesPair, A andB
(namely, the evaluation of the FGJ program constituted by the declaration plus expressione), results in
the sequence:

((Pair) new Pair<A,B>(new A(),new B())).setfst<B>(new B())

(new Pair<A,B>(new A(),new B())).setfst<B>(new B()) by GR-CastFGJ

new Pair<B,B>(new B(),new B()) by GR-InvkFGJ



240 M. Bellia and M.E. Occhiuto / Properties of Java Simple Closures

3. Featherweight GCJ

3.1. Notation and General Conventions

In this paper we adopt the notation used in [18]: Accordingly, f is a shorthand for a possibly empty
sequencef1, . . . , fn (and similarly forT, x, etc.) andM is a shorthand forM1 . . . Mn (with no commas)
wheren is the size|f|, respectively|M|, i.e. the number of terms of the sequence. The empty sequenceis
◦ and symbol ”,” denotes concatenation of sequences. Operations on pairs of sequences are abbreviated
in the obvious way:C f is C1 f1, . . . , Cn fn and similarlyC f; is C1 f1; . . . Cn fn; andthis.f = f;
is a shorthand forthis.f1 = f1; . . . this.fn = fn; Sequences of field declarations, parameters and
method declaration cannot contain duplications. Cast,( ) , and closure definition,# , have lower
precedence than other operators, and cast precedes closuredefinition. Hence#()(this!()) can be writ-
ten as#()this!(). The, possibly indexed and/or primed, metavariablesT, V, U, S, W range over type
expressions;X, Y, Z range over type variables;N, P, Q range over class types;C, D, E range over class
names;f, g range over field names;e, v, d range over expressions;x, y range over variable names and
M, K, L andm range respectively, over methods, constructors, classes,and method names and eventually
F ranges over closures.Moreover, we use[e/x]e (respectively,[T/X]T ), for value (res. type) substitution,
meaning the result of the simultaneous replacing ofx by e in e (res. X by T in type expressionT ).
EventuallyFV (T) denotes the set of type variables inT.

3.2. Syntax

The syntax of closures is the one of [3] and allows to define closures (lambda expressions) and closure
types (function types). Lambda expressionsconsist of closures whose body is an expression and of
closures whose body is a block. In FGCJ, since sequencing andassignment are omitted, the body of a
closure can only be an expression. The syntax for closures is#(T x)e, wherex are the formal names,
T are the formal types ande is the body. Closure invocation operator is denoted by symbol ‘!’, hence
the syntax for closure invocation ise!(e), wheree is a closure receiving the list of argumentse. This
syntax is motivated by the need for keeping, in Java, the method names separated from the variable
names (i.e. any identifier that precedes symbol ‘!’, is a nameof a variable, possibly binding a closure)
and by conciseness [23]. Other proposals [15, 10] use a more usual syntax for invocation.

Table 1

Syntax

T ::= X | N | (TFGJ)

| #T(T) (TFGCJ)

N ::= C〈T〉 (NFGJ)

L ::= class C〈X⊳ N〉⊳ N{T f; K M} (LFGJ)

K ::= C(T f){super(f); this.f = f; } (KFGJ)

M ::= 〈X⊳ N〉T m(T x){↑ e; } (MFGJ)

e ::= x | e.f | e.m〈T〉(e) | new N(e) | (N)e | (eFGJ)

| F | e ! (e) (eFGCJ)

F ::= #(T x)e (FFGCJ)
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A closure type specifies the formal types and the result type.Hence syntax for closure types is#T(T). T
may be the empty sequence. An example is#(Integer x, Integer y) (x + y) which is a closure with
two arguments, whose type is#Integer(Integer, Integer). No generic variables can be introduced
when defining a closures but of course generic variables introduced in class or method declarations can
be used inside closures. The complete syntax of the extendedlanguage is reported inTable 1. For the
reader convenience, in all tables, butTable 3, the rules for FGJ have a label which is indexed by FGJ,
while the rules for FGCJ have a label which is indexed by FGCJ.

3.3. Semantics: Reduction

The reduction semantics is given through the inference rules in Table 2, which define the reduction
relatione → e′ that says that “expressione reduces to expressione′ in one step”. The set of expressions
which cannot be further reduced is the set ofnormal formsand constitute values of the calculus. In
FGCJ values are not only objects but also closures, hence thefollowing grammatical category defines
the syntactic form of the values (of the value domain) of the calculus:

v ::= new N(v) | #(T x)e

Hence the structure of values results from the reduction rules of the calculus. In particular in FGCJ,
closure invocation needs to be considered for reduction andthis is accomplished by rule GR-INVK -CLOS

in Table 2: Computation. Such rules are those which really show how the computation is carried on.
We have added rule GR-INVK -CLOS that reduces a closure invocation replacing it by the closure body in
which the formal parameters are replaced by the corresponding actual ones, andthis is replaced by the
closure itself, thus allowingrecursive closures. The rules contained inTable 2: Congruenceare those
which reduce a sub-expression contained in the expression being evaluated. We have added two rules
GRC–CLOS-VAL and GRC-CLOS-ARG which consider the cases in which, the closure expression can
be reduced and the case, instead, in which an actual parameter in an invoking expression can be reduced.
The auxiliary functions for FGCJ are reported inTable 3. Actually they are the same as in [18]. We
only add a case (OVER-Object) for predicateoverride when the class to which it is applied isObject.
Examples 3.1,3.2 show how congruence rule GRC-CLOS-VAL contributes to define value structure and
how it works in the reduction of recursive closures.

Example 3.1. Lete ≡ #(T x)(#(T y)y)!(x). Expressione is not a value since it can be further reduced:
By rule GR-INV-CLOS, (#(T y)y)!(x) → x, and, by rule GRC-CLOS-VAL , e → #(T x)x. Expression
#(T x)x is a value. On the contrary, lete ≡ #()this!(), then expressione is a value but expressione!()
is not a value since by rule GR-INV-CLOS, e!() → e!(). Expressione!() starts an infinite sequence of
reductionse!() →∗ e!() which is the only computation fore!() and is divergent. We say thate!() does
not compute any value (i.e. it is undefined).

Example 3.2 contains an expression that yields enumerably different, finite, computations that end with
the same expression which is the computed value of the expression.

Example 3.2. Let T1 ≡ #I(I, I, I) andT2 ≡ #I(I, I) be two closure types andI be a type. Let
e ≡ #(T1u

?, T2u
∗, T2u

−, I u1, I x)u?!(x, u1, u∗(x, this!(u?, u∗, u−, u1, u−(x, u1))). Expressione is a
value. However,e(if, ∗,−, 1, n) →∗fact(n) if I is a type for integer,if is a closure that computes as
ordinary two-way conditional (0 is the true value),∗ and− are closures that compute as integer product
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Table 2

Computation

fields(N) = T f

(new N(e)).fi −→ ei
(GR-FIELDFGJ)

mbody(m〈V〉, N) = (x, e)

(new N(e)).m〈V〉(d) −→ [d/x, new N(e)/this]e
(GR-INVK FGJ)

∅ ⊢ N<:P

(P)(new N(e)) → new N(e)
(GR-CASTFGJ)

#(T x)e!(d) −→ [d/x,#(T x)e/this]e (GR-INV-CLOSFGCJ)

Congruence

e0 −→ e′0

e0.f −→ e′0.f
(GRC-FIELDFGJ)

e0 −→ e′0

e0.m〈T〉(e) −→ e′0.m〈T〉(e)
(GRC-T-INVFGJ)

ei −→ e′i

e0.m〈T〉(. . . , ei, . . . ) −→ e0.m〈T〉(. . . , e
′

i . . . )
(GRC-INV-ARGFGJ)

ei −→ e′i

new N(. . . , ei, . . . ) −→ new N(. . . , e′i, . . . )
(GRC-NEWFGJ)

e −→ e′

(N)e −→ (N)e′
(GRC-CASTFGJ)

e −→ e′

#(T x)e −→ #(T x)e′
(GRC-CLOS-VAL FGCJ)

ei −→ e′i

e!(. . . , ei, . . . ) −→ e!(. . . , e′i, . . . )
(GRC-CLOS-ARGFGCJ)
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Table 3

Subclassing

CE C
CE D DE E

CE E

class C〈X ⊳ N〉⊳ D {S f; K M}

CE D

Auxiliary functions

fields(Object) = ◦ (F-OBJECT)

class C〈X⊳ N〉⊳ N {S f; K M} fields([T/X]N) = U g

fields(C〈T〉) = U g, [T/X]S f
(F-CLASS)

class C〈X⊳ N〉⊳ N {S f; K M} 〈Y ⊳ P〉U m (U x){↑ e; } ∈ M

mtype(m, C〈T〉) = [T/X](〈Y ⊳ P〉U → U)
(MT-CLASS)

class C〈X⊳ N〉⊳ N {S f; K M} m 6∈ M

mtype(m, C〈T〉) = mtype(m, [T/X]N)
(MT-SUPER)

class C〈X⊳ N〉⊳ N {S f; K M} 〈Y ⊳ P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, C〈T〉) = x.[T/X, V/Y]e
(MB-CLASS)

class C〈X⊳ N〉⊳ N {S f; K M} m 6∈ M

mbody(m〈V〉, C〈T〉) = mbody(m〈V〉, [T/X]N)
(MB-SUPER)

Auxiliary predicates

override(m, Object, 〈Y⊳ P〉T → T0) (OVER-Object)

mtype(m, N) = 〈Z ⊳ Q〉U → U0 =⇒ (P, T) = [Y/Z](Q, U) and
Y<:P ⊢ T0<:[Y/Z]U0

override(m, N, 〈Y ⊳ P〉T → T0)
(OVER)

DCast

dcast(C, D) dcast(D, E)

dcast(C, E)

class C〈X⊳ N〉⊳ D〈T〉 {. . . } X = FV (T)

dcast(C, D)
(DCAST)
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and subtraction respectively andfact is the factorial function. In fact,e(if, ∗,−, 1, n) has enumerably
many expressionsek such that:e(if, ∗,−, 1, n) →∗ ek →∗fact(n) (index k is the number of times
expressione is replacingthis in the reduction sequence). For instance ifn = 0, we have:

e(if, ∗,−, 1, 0) → e1 ≡ if!(0, 1, ∗(0, e!(if, ∗,−, 1,−(0, 1))) → 1 for k = 1 and
e(if, ∗,−, 1, 0) → e1 → e2 ≡ if!(0, 1, ∗(0, if!(0, 1, ∗(0, e!(if, ∗,−, 1,−(−(0, 1), 1))))))

→ 1 for k = 2
e(if, ∗,−, 1, 0) → e1 → e2 →

∗ ek → 1

3.4. Semantics: Typing

The typing rules are given through inference rules that use two different kinds of environment,∆ (for
type variables) andΓ (for value variables), and five different typing judgements: one for each different
term structure of the language. A (well formed) type environment∆ is a finite mapping from type
variables to (well formed, in∆) types. It is written as a sequenceX1<:T1,...,Xn<:Tn (Xi 6= Xj , i 6= j), has
domaindom(∆) = {X1, ..., Xn} and∆(Xi) = Ti (1 ≤ i ≤ n) meaning that type variableXi is defined
and must be bound to a subtype of typeTi. An environmentΓ is defined similarly but is a finite mapping
from variables to types, is written as a sequencex1 : T1, ..., xk : Tk

1, hasdom(Γ) = {x1, ..., xn} and
Γ(xi) = Ti (1 ≤ i ≤ k) meaning thatxi must be bound to a value expression of typeTi.

The judgement for a (generic) typeT (seeTable 4) has the form∆ ⊢ T ok meaning thatT is a
well-formed type in the (well formed) type environment∆. The judgement for subtyping (seeTable
5) has the form∆ ⊢ S<:T meaning thatS is a subtype ofT in ∆. The judgement for classes (see rule
GT-CLASSFGJ in Table 4) has the formC OK meaning thatC is well typed. The typing judgements for
methods (see GT-METHODFGJ in Table 4) has the formM OK in C meaning thatM is well typed when
its declaration occurs in classC. The judgement for expressions (see the first nine rules ofTable 4) has
the form∆;Γ ⊢ e : T meaning that expressione has typeT in the typing environment∆ and in the
(variable) environmentΓ. The typing rules are contained inTable 4and extends those of FGJ. Two rules
have been added for closure construction and closure invocation. Such rules simply assert the correctness
of the involved types.

The rules for subtypes and wellformed types are reported inTable 5. Two rules are added:(WF-
CLOSURE) which states that a closure type is well-formed if the typesinvolved are well-formed and
(S-CLOSURE) which states when a closure type is a subtype of another closure type, according to the
contro-covariance rule for function types. Closures do notaffect the bounds of type variables since in
the definition of FGCJ we left unchanged the structure of theextends declaration of FGJ. A different
situation would arise if〈X ⊳ T〉 replaced〈X ⊳ N〉 in the class and method declaration. In this case,
the language would allow to express type variables that are bound to subtypes of closure types. As
a consequence, the type system would require additional rules, including a rule for thebound∆ of a
closure type, to check subtyping. The rules for subtypes andwellformed types are reported inTable
5. Two rules are added:(WF-CLOSURE) which states that a closure type is well-formed if the types
involved are well-formed and (S-CLOSURE) which states when a closure type is a subtype of another
closure type, according to the contro-covariance rule for function types. Closures do not affect the bounds
of type variables

1Variable renaming, in the program, can avoid possibly conflicts in the name of variables, without loss of generality.
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Table 4

Typing rules

∆;Γ ⊢ x : Γ(x) (GT-VARFGJ)

∆;Γ ⊢ e0 : T0 fields(bound∆(T0)) = T f

∆;Γ ⊢ e0.fi : Ti
(GT-FIELDFGJ)

mtype(m,bound∆(T0)) = 〈Y⊳ P〉U → U

∆;Γ ⊢ e0 : T0 ∆ ⊢ V ok ∆ ⊢ V<:[V/Y]P
∆;Γ ⊢ e : S ∆ ⊢ S<:[V/Y]U

∆;Γ ⊢ e0.m〈V〉(e) : [V/Y]U
(GT-INVFGJ)

∆ ⊢ N ok fields(N) = T f

∆;Γ ⊢ e : S ∆ ⊢ S<:T

∆;Γ ⊢ new N(e) : N
(GT-NEWFGJ)

∆;Γ ⊢ e0 : T0 ∆ ⊢ bound∆(T0)<:N

∆;Γ ⊢ (N)e0 : N
(GT-UCASTFGJ)

∆;Γ ⊢ e0 : T0 ∆ ⊢ N ok ∆ ⊢ N <: bound∆(T0)
N = C〈T〉 bound∆(T0) = D〈T〉 dcast(C, D)

∆; Γ ⊢ (N)e0 : N
(GT-DCASTFGJ)

∆;Γ ⊢ e0 : T0 ∆ ⊢ N ok

N = C〈T〉 bound∆(T0) = D〈U〉 C 6E D D 6E C

∆;Γ ⊢ (N)e0 : N
(GT-SCASTFGJ)

∆ ⊢ T ok ∆;Γ, x : T, this : #T(T) ⊢ e : T

∆;Γ ⊢ #(T x) e : #T(T)
(GT-CLOSUREFGCJ)

∆;Γ ⊢ e : #T(T) ∆; Γ ⊢ e : S ∆ ⊢ S<:T

∆;Γ ⊢ e!(e) : T
(GT-CLOSURE-INVFGCJ)

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok
∆; x : T, this : C〈X〉 ⊢ e0 : S ∆ ⊢ S<:T

class C〈X⊳ N〉⊳ N{...} override(m, N, 〈Y ⊳ P〉T → T)

〈Y⊳ P〉T m(T x){↑ e0; } OK IN C〈X⊳ N〉
(GT-METHODFGJ)

X <: N ⊢ N, N, T ok M OK IN C〈X⊳ N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈X⊳ N〉⊳ N{T f; K M} OK
(GT-CLASSFGJ)
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Table 5

Subtypes

bound∆(X) = ∆(X) (B-VARFGJ)

bound∆(N) = N (B-CLASSFGJ)

∆ ⊢ T <: T (S-REFLFGJ)

∆ ⊢ S <:T ∆ ⊢ T<:U

∆ ⊢ S <: U
(S-TRANSFGJ)

∆ ⊢ X <:∆(X) (S-VARFGJ)

class C〈X⊳ N〉⊳ N{. . . }

∆ ⊢ C〈T〉 <: [T/X]N
(S-CLASSFGJ)

T<:S S<:T

∆ ⊢ #T(T) <: #S(S)
(S-CLOSUREFGCJ)

Well-formed types

∆ ⊢ Objectok (WF-OBJECTFGJ)

X ∈ dom(∆)

∆ ⊢ X ok
(WF-VARFGJ)

class C〈X ⊳ N〉⊳ N{. . . } ∆ ⊢ T ok ∆ ⊢ T<:[T/X]N

∆ ⊢ C〈T〉 ok
(WF-CLASSFGJ)

∆ ⊢ T ok ∆ ⊢ T ok

∆ ⊢ #T(T) ok
(WF-CLOSUREFGCJ)

since in the definition of FGCJ we left unchanged the structure of theextends declaration of FGJ. A
different situation would arise if〈X ⊳ T〉 replaced〈X ⊳ N〉 in the class and method declaration. In this
case, the language would allow to express type variables that are bound to subtypes of closure types.
As a consequence, the type system would require additional rules, including a rule for thebound∆ of a
closure type, to check subtyping.
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Example 3.3. Let ∆ ≡ ∆1, T1<:A, T2<:B, T3<:C, T4<:D, and∆ ⊢ C<:A ∆ ⊢ B<:D for classesA,
B, C, D. Then∆ ⊢ #T1(T2) OK and ∆ ⊢ #T3(T4) OK, but #T1(T2), #T3(T4) are uncompara-
ble types under∆. Any attempt to use an expression of type#T3(T4) instead of an expression of
type #T1(T2) yields a type error, as in the statement:new N(e), wheree is an expression of type
#T3(T4) andfield(N) ≡ #T1(T2) f. On the contrary, each of the following type assignments arecor-
rect for new N(e): field(N) ≡ #A(T2) f, ande:#T1(T2); field(N) ≡ #A(T2) f, ande:#T1(B);
field(N) ≡ #D(C) f, ande:#B(T3).

4. Properties

Semantics is useful to prove language properties. In this paper we prove type soundness which states
that an expression and its normal form have compatible types, see Section 4.1. Successively we prove
backward compatibility which states that programs, in the kernel language, maintain their meaning, in
the extended language. Eventually, we prove the abstraction property which states that a closure acts as
a code abstraction.

4.1. Type Soundness

Analogously to [18] we prove subject reduction theorem and progress theorem, type soundness imme-
diately follows. Several interesting lemmas are used in theproofs. They are stated and proved in the
appendix.

Theorem 4.1. (Subject reduction)
If ∆;Γ ⊢ e : T ande → e′ then∆;Γ ⊢ e′ : T′, for someT′ such that∆ ⊢ T′<:T

Proof: See Appendix A �

Theorem 4.2. (Progress)
Supposee is a well-typed expression. Ife includes as a subexpression:

1. new N(e).f thenfields(N) = T f, for someT andf, andf ∈ f.

2. new N(e).m〈V〉(d) thenmbody(m〈V〉, N) = x.e0, for somex ande0, and|x| = |d|.

3. F!(d) thenF = #(T x) e0, for someT, x ande0, and|x| = |d|.

Proof: The proof is based on the analysis of all well typed expressions, which can be reduced to the
above 3 cases to conclude that either it is in normal form or itcan be further reduced to obtain a normal
form. As already stated in section 3.3, in FGCJ there are 2 possible normal forms i.e. values. They are:
new N(w) (Object in FGJ), and#(T x)e (closure) �

Theorem 4.3. (Type Soundness)
If ∅; ∅ ⊢ e : T ande →∗ e′ with e′ a normal form, thene′ is either (1) a valuew with ∅; ∅ ⊢ w : S and
∅ ⊢ S<:T or (2) an expression containing(P) new N(e) whereN 6<:P

Proof: Immediate from above Theorems �
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4.2. Computation properties

We prove that the extension made to the language, to add closures, preserves the meaning of the programs
of the original language FGJ.

Theorem 4.4. (Backward compatibility)
If an FGJ program is well typed under the FGJ rules it is also well typed under the FGCJ rules. Moreover,
for all FGJ programse ande′ (whether well typed or not)e →FGJe

′ ⇐⇒ e →FGCJe
′.

Proof: All FGCJ sets of rules include FGJ rules �

4.3. Abstraction Property

This property concerns the use of simple closures in code abstractions and is the analog in FGCJ of
β−conversion in Lambda Calculus.β−conversion states that(λx.e[x])e′ = e[e′] for all Lambda ex-
pressionse[e′], e′ (possibly, after variable renaming to avoid name collisions), and a fresh variable2 x

[1]. Unfortunately, this property cannot hold for closuresin FGCJ: A counterexample is the pair of ex-
pressionse andu of example 4.1. In fact, in addition to variables, the expressions of FGCJ contain four
kinds of identifiers for naming classes, fields, methods, anda special identifierthis for self-reference.

Definition 4.1. (contexte[•], type and substitution)
The set ofcontextse[•] is:

e[•] ::= • | x | e[•].f | e[•].m〈T〉(e[•]) | new N(e[•]) | (N)e[•]

| F[•] | e[•]!(e[•])

F[•] ::= #(T x)e[•]

Thesubstitutionof expressione1 in the contexte[•] is the expressione[e1] obtained replacinge1 in each
hole ofe[•].
A context of type(Γ, T) is any contextH[•], in FGCJ, such that∆;Γ, x : T ⊢ H[x] : S for some∆ ⊢ T ok

and typeS, and fresh variablex.

Free and Bound Identifiers.Contexts, as well as expressions, may contain free variables, field and
method identifiers, and occurrences ofthis as it is when they are the result of a textual extraction of
expressions from method (or closure) bodies. In FGCJ, variables are declared only in the parameter list
of either methods or closures. Hence, the free variables of acontext, or expression, are all the variables
that do not occur inside a closure (contained in the context,or expression) and all those that occur inside
a closure but not in its parameter list. Class identifiers areassumed to be unique in each program. Hence,
they are always bounds (to the corresponding class in the program class table,CT [18]). Moreover, field
(and method) identifiers may occur only in terms of the form (i) ((N)e).f or (ii) e0.

... en.f, wheref
is a field identifier,(N)e ande0.... en express the target object. Hence, they are always bound (to the
corresponding field, method, of the classN in case (i), of the class type ofe0.... en in case (ii)). On the
contrary, the self referencethis occurs bound, in a context (or an expression), only when it occurs inside
a closure defined in such a context (or expression). In all theother cases,this occurs free.

2a variable that does not occur in the expressione[e′]
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Definition 4.2. (equivalence:≈)
Two expressionse1 ande2 are equivalent if they compute in the same way3, i.e.: expressione′ exists
such thate1 →∗ e′ and e2 →

∗ e′

Theorem 4.5. (Abstraction Property)
Let ∆ ⊢ T ok, H[•] be any context,G[•] be any context of type(Γ, T) and with no free occurrences of
this. Let e2 be any expression such that its free variables4 and free occurrences ofthis are not bound
in e1 ≡ G[e2] (but possibly, inH[•]). ThenH[(#(T x)G[x])!(e2)] ≈ H[e1], for any fresh variablex.

Proof: See Appendix A �

Example 4.1. Consider expressione ≡ new Pair〈Z, Y〉(newfst, this.snd) which is the body ofsetfst,
defined in Section 2. Expressionsu, v andw are three different rearrangements ofe which generalize,
through closures, different subterms ofe

u ≡ (#(Z x) new Pair〈Z, Y〉(x, this.snd))!(newfst)

v ≡ (#(Y y) new Pair〈Z, Y〉(newfst,y))!(this.snd)

w ≡ (#(Y y)(#(Z x) new Pair〈Z, Y〉(x, y))!(newfst))!(this.snd)

According to Theorem 4.5,e ≈ v, and v ≈ w but e 6≈ u (since foru: H[•] ≡ • and G[•] ≡
new Pair〈Z, Y〉(•, this.snd) which contains a free occurrence ofthis). Hence, we can replacee with
eitherv or w, but the replacement ofe with u in the body of methodsetfst yields a different meaning
of the program.

5. Conclusion

In this paper we address the problem of defining a formal semantics to prove properties of closures in
Java, according to the Straw-man proposal. A minimal calculus is defined extending Featherweight Java,
both for syntax and semantics and three properties: type soundness, backward compatibility and the
abstraction property are proved. In [7] a translation semantics for a somewhat different proposal for
closures in Java is defined. Such translational approach defines a rigorous semantics for closures and
provides also an implementation for Java extended with closures, but is not suited to prove semantic
properties. We plan to adapt translation semantics to Simple Closures and analogously to [18] prove that
the two semantics commute. Eventually this paper is a partial result of a more complex and ambitious
project of extension and prototype implementation of Java with higher order features, besides closures,
methods passed as parameters [6].

3It includes the case in which both expressions diverge, but it excludes the case in which one or both are illegal, wrong,
untypeable terms.
4The requirement on free variables could be omitted resorting to variable renaming.
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A. Lemmas and Theorem Proofs

Lemmas A.2.1. through A.2.9. and A.2.12 in [18] remain validfor FGCJ without proof extensions and
are not reported here. Proofs of Lemma A.2.10 and A.2.11 needto be extended and are reported below.
Lemma A.2.10.If ∆1, X<:N,∆2; Γ ⊢ e : T and∆1 ⊢ U<:[U/X]N where∆1 ⊢ U ok and none ofX appears
in ∆1, then∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e : S for someS such that∆1, [U/X]∆2 ⊢ S<:[U/X]T

Proof: As in [18], the proof is given by induction and case analysis.We specify only the new cases.

CaseGT-CLOSURE

e = #(W w) e0 ∆ = ∆1, X<:N,∆2

∆;Γ ⊢ e0 : W T = #W(W)

[U/X]e = #([U/X]W w)[U/X]e0

HenceS = #[U/X]W([U/X]W) = [U/X]T.

CaseGT-CLOSURE-INV

e = e0!(e) T = W

∆;Γ ⊢ e0 : #W(W) ∆; Γ ⊢ e : S<:W

[U/X]e = [U/X]e0!([U/X]e)

By induction hypothesis∆;Γ ⊢ [U/X]e : Q such that∆ ⊢ Q<:[U/X]S. By Lemma A.2.5, since
∆ ⊢ S<:W then∆ ⊢ [U/X]S<:[U/X]W and∆ ⊢ Q<:[U/X]W by rule S-TRANS. Furthemore, by
induction hypothesis∆;Γ ⊢ [U/X]e0 : Q such that∆ ⊢ Q<:[U/X]#(W(W)) = #[U/X]W([U/X]W). By
Lemma Closure Subtyping,Q ≡ #V(V) andV<:[U/X]W and [U/X](W))<:V, and by rule S-TRANS

[U/X]S<:V. Hence, by rule GT-CLOSURE-INV ∆;Γ ⊢ [U/X]e0!([U/X]e) : [U/X]W �

Lemma A.2.11. If ∆;Γ, x : T ⊢ e : T and∆;Γ ⊢ d : S where∆ ⊢ S<:T, then∆;Γ ⊢ [d/x]e : S for
someS such that∆ ⊢ S<:T

Proof: As in [18], the proof is given by induction and case analysis.We specify only the new cases.

CaseGT-CLOSURE

e = #(W y)e0 ∆ ⊢ W, W ok

∆;Γ, y : W ⊢ e0 : W0 ∆ ⊢ W0<:W T = #W(W)

By the induction hypothesis,∆;Γ ⊢ [d/x]e0 : W1 for someW1 such that∆ ⊢ W1<:W0 and
[d/x](#(W y)e0) = #(W y)[d/x]e0, because of renaming to avoid name coalashing,x ∩ y = {}.
Hence GT-CLOSURE premises are satisfied andS = #W1(W)<:#W(W).

CaseGT-CLOSURE-INV

e = e0!(e) ∆; Γ ⊢ e0 : #W(W)

∆; Γ, e : S ∆ ⊢ S<:W T = W

By the induction hypothesis,∆;Γ ⊢ [d/x]e0 : W0 for someW0 such that∆ ⊢ W0<:#W(W) and
∆;Γ ⊢ [d/x]e : Q for someQ<:W because of subtyping on closuresW0 = #P(P)<:#W(W) andP<:W
andW<:P and for transitivityQ<:P hence, by rule GT-CLOSURE-INV, S = P �
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Lemma Closure Subtyping.If ∆ ⊢ W, T, T ok then∆ ⊢ W<:T(T) ⇐⇒ W ≡ S(S) and S<:T and T<:S

Proof: Immediate after subtyping rules �

Proof of Theorem 4.1By induction on the reductione → e′, with a case analysis on the reduction
rule used. It extends the proof, [18] (pp. 426-428), of the corresponding theorem for FGJ with the
following cases;

CaseGR-INV-CLOS e = #(T x)e0!(d) and by rule GT-CLOSUREwe have:∆;Γ ⊢ #(T x)e0 : #T(T)
and∆;Γ, x : T, this : #T(T) ⊢ e0 : T and by rule GT-CLOSURE-INV, ∆;Γ ⊢ d : S, S<:T and
∆;Γ ⊢ e : T. Furthermoree′ = [d/x,#(T x)e0/this]e0 and by the Lemma A.2.11∆;Γ ⊢ e′ =
[d/x,#(T x)e0/this]e0 : R for someR<:T.

CaseGRC-CLOS-VAL and GRC-CLOS-ARG Easy �

Lemma β-conversionLet∆ ⊢ T ok, H[•] be any context of type(Γ1, T) and with no free occurrences of
this. Lete1 be an expression of typeT (for H[•], i.e.∆;Γ1,Γ2 ⊢ e1 : T) such that all the free variables
of e1 are not bound inH[•]. Then(#(T x)H[x])!(e1) ≈ H[e1] for any fresh variablex.

Proof: By case analysis on the structure of contextH[•].

Case H[•] ≡ •. Then,(#(T x)H[x])!(e1) = (#(T x)x)!(e1) andH[e1] = e1. Moreover, by rule GR-
INVK -CLOSFGCJ, (#(T x)x)!(e1) → [e1/x, (#(T x)x)/this]x. Hence,
[e1/x, (#(T x)x)/this]x ≡ e1.

Case H[•] ≡ y, wherey 6= this andy 6= x. Then,(#(T x)H[x])!(e1) = (#(T x)y)!(e1) andH[e1] = y.
Moreover, by rule GR-INVK -CLOSFGCJ,
(#(T x)y)!(e1) → [e1/x, (#(T x)x)/this]y. Hence,[e1/x, (#(T x)x)/this]y ≡ y, since as-
sumptions ony.

Case H[•] ≡ e[•].f wherethis does not occur free ine[•]. Then,(#(T x)H[x])!(e1) =
(#(T x)e[x].f)!(e1) andH[e1] = e[e1].f. Moreover, by rule GR-INVK -CLOSFGCJ,
(#(T x)e[x].f)!(e1) → [e1/x,#(T x)x/this]e[x].f. By def. of substitution,
[e1/x, #(T x)x/this]e[x].f = ([e1/x,#(T x)x/this]e[x]).([e1/x,#(T x)x/this]f).
By assumption on the free occurrences ofthis,
([e1/x,#(T x)x/this]e[x]).([e1/x,#(T x)x/this]f) = ([e1/x]e[x]).([e1/x]f) = e[e1].f

Case H[•] ≡ e[•].m〈T〉(e[•]), H[•] ≡ new N(e[•]), H[•] ≡ (N)e[•], H[•] ≡ F[•], H[•] ≡ e[•]!(e[•]) can
be similarly proved �

Proof of Theorem 4.5By induction on the structure of contexts.

Case H[•] ≡ •. ThenH[(#(T x)G[x])!(e2)] = (#(T x)G[x])!(e2) and H[e1] = e1, and, by Lemma
β-conversion, the case holds.

Case H[•] ≡ y. ThenH[(#(T x)G[x])!(e2)] = y andH[e1] = y and the case holds.
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Case H[•] ≡ e[•].f. Assume that theorem holds for contexte[•]: (ih) e[(#(T x)G[x])!(e2)] ≈ e[e1] (i.e:
e[(#(T x)G[x])!(e2)] →

∗ e′ and e[e1] →
∗ e′ for somee′). Then,

H[(#(T x)G[x])!(e2)] = e[(#(T x)G[x])!(e2)].f andH[e1] = e[e1].f, and by GRC-FIELD FGJ the
case holds.

Case H[•] ≡ e[•].m〈T〉(e[•]), H[•] ≡ new N(e[•]), H[•] ≡ (N)e[•], H[•] ≡ F[•], H[•] ≡ e[•]!(e[•]) can
be similarly proved �
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