Fundamenta Informaticae 109 (2011) 237-253 237
DOI 10.3233/FI-2011-508
10S Press

Properties of Java Simple Closures

Marco Bellia and M. Eugenia Occhiuto
Dipartimento di Informatica

Universit di Pisa

Largo B. Pontecorvo, 3, 1-56127 Pisa, Italy
bellia@di.unipi.it ; occhiuto@di.unipi.it

Abstract. In the last years, the Java community has been arguing alldirtgaclosures to Java in
order to improve expressivity. The debate has not yet teatadhbut all proposals seem to converge
towards a notion of Simple Closures which contain only theental features of anonymous func-
tions. This paper addresses the problem of defining a rigosemantics for Simple Closures. The
technique adopted is well known and has already been usadve mteresting properties of other
extensions of Java. A minimal calculus is defined: Feathightdava extended with Simple Clo-
sures. Syntax and semantics of such a calculus are definag@nsafety, backward compatibility,
and the abstraction property are proved.

1. Introduction

In the last few years extensions to Java focus on higher onéehanisms to enhance expressivity, con-
ciseness, good structuring, reusability, and factoringpote [22, 20, 25, 11, 21,5, 6, 9, 14, 26]. Proposals
to add closures in Java have been discussed since 2006 |13, R¢ revisions [15, 10] of the pro-
posals agree on several aspects and lead to a simplifieduseéwaf closures [24] that is illustrated by
Mark Reynholds in his Straw-man proposal [23] and is at theédaf the current version of the JLS draft
for JDK7 [3, 4]. Accordingly, a closure is a value that abstsaan arbitrary Java code and makes such
a value available for assignment, parameter transmisgéne returning and invocation. Although JLS
draft is rather precise as far as the syntactic structuretamdestrictions about the combination of clo-
sures with other Java constructs, it fails (together withhad above cited proposals) to provide a formal
and rigorous semantics. Furthermore, some features tiyreemsidered in the other proposals are still
under investigation for inclusion in JDK7. The lack of a f@nsemantics makes difficulf to evaluate
significance and compatibility of the new featuri#sto compare different features that are sharing same

Address for correspondence: Dipartimento di Informatidgaiversita di Pisa, Largo B. Pontecorvo, 3, I-56127 Pitay|

238 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

aims, andii) to prove that any future implementation is correct (i.es bdrrectly the design aims). Such
problems are addressed in this paper, resorting to a mimatallus: Featherweight Java (FJ for short),
to i) formalize semantics, ang study properties of Simple Closures and some interestingnta of
them.

FJ was presented at the 1999 ACM Symposium [17] as a minimmalaaculus for a formal model
to study design properties of Java. The idea is to omit mogtetoncrete features of the full Java to
concentrate on a small core language, fully significantafiathe relevant aspects of the properties under
investigation. Initially, it was introduced to design arairhalize the generic type system of Java [8]
and prove its soundness [18]. More recently [16], it has hesmali) to define a reduction semantics of
inner classes in Javd) to investigate on properties of inner classes, includirgrabtion features and
interaction with inheritance, ariil) to provide for compilation issues of inner classes.

In this paper, we start using the variant of FJ, called FGJichmvtieals with generic types and extends
it to model all essential features of Java that are involvethé properties of closures we investigate
in this paper, namely typing and abstraction. The omitteduiees include side effects (sequencing,
assignments and threads) and exceptions. The new calcgfibdfweight Generic Java with Closures
is here called FGCJ. The structure of closure, we considdahd one of Simple Closure [24, 23, 3],
hereafter called closure, in the form Bkpression Lambdfl5], i.e. having expressions as body, since
blocks are not allowed in FGCJ. Accordingly, closuiekave typesfunction typeswhich extend the
Java type systenii) are first class values which can be bound to parameters, passed to methods or
other closuresiji) are invoked receiving a complete list of expressions forattgeiments (n expressions
for n-arguments closure), i.e. no currying is admittiedljnvocation always returns a valué), use only
effectively-finalvariables, i.e. single assignable variables.

The reduction semantics is used to prove three fundamerdpkgies which aréype soundness
which asserts consistency between the type system and tatiopybackward compatibilityvhich as-
serts the consistency between old rules system and thedexteme abstraction propertywhich asserts
the semantics analog ¢f-conversion.

The paper is organized as follows: Section 2 resumes FGUrésatSection 3 defines syntax and
semantics of FGCJ, Section 4 states and prove the propestiestually Section 5 concludes the paper
and Appendix A contains proof detalils.

2. Featherweight Java

A program in FJ (FGJ) [17] consists of a declaration of geneldss definitions and of an expression
to be evaluated using the class definitions. The expressimrsponds to the body of the 0-arguments
main method of Java. Here is a declaration for some typieaisatlefinitions in FGJ.

class Pair(X < Object,Y </ Object) < Object{
X fst;Y snd;
Pair(X fst, Y snd){super(); this.fst=fst; this.snd=snd;};
(Z<10Object)Pair(Z,Y) setfst(Z newfst){
return new Pair(Z,Y)(newfst,this.snd); }}
class A <Object{A(){superQ;};}
class B <iObject{B(){super();};}

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 239

A complete definition of the syntax of FGJ consists of the gremrules inTable 1that are labelled by
the defined grammatical category indexed by FGJ. Symtisla notational shorthand for Java keyword
extends. For syntactic regularity, (a) classes always specify theesclass, possibigbject, and have
exactly one constructor definition; (b) class construck@age one parameter for each class field with the
same name as the field, invoke the super constructor on this fiélthe super class and initialize the
remaining fields to the corresponding parameters; (c) fietgss always specifies the receiver (object),
possiblythis. This results in the stylized form of the constructors in ¢ix@ample above. Both classes
and methods may have generic type parameters. In the exahgidy are type parameters of the class
Pair, while Z is type parameter of methatktfst. Each type parameter hasaund in the example
Object for all.

FGJ has no side effects. Hena®equencingand assignmenfare strictly confined to constructor
bodies. In particular, method bodies have always the fosturn, followed by an expression, as in the
body ofsetfst in the example. The lack of Java constructs for sequencingaand for store updating
(along with that of concurrency, and reflection) is the maiveatage of the calculus in studying language
properties that are not affected by side effects. In this thaycalculus is, as much as possible, compact
and takes advantage of the referential transparency. Ttke dme provides a simple reduction semantics
which is crucial for rigorous, easy to derive, proofs of taeguage properties [13]. About compactness,
FGJ has only five forms of expressions: One @rject Creation asnew Pair(...) in the body of
setfst in the example, another for variables (namglgirameter naming asnewfst andthis, one
for field accessasthis.snd always in the body oketfst. The remaining two forms armethod
invocationandcastas in the expression below.

(e) ((Pair) new Pair<A,B>(new A(),new B())).setfst(new B())

The presence afastin FGJ is justified from its fundamental role in compiling geie classes and could
be ruled out of FGCJ. From a syntactic point of viek,is is a keyword in Java, and is a variable in
FGJ, however, in both languages, it has the semanticbjetct self-referencesee ruleGR-Invk. We
conclude this presentation considering the twofold roleedérential transparency: first evaluation is
entirely formalized within the syntax of FGJ (hence, thel@ation process results in a sequence of FGJ
expressions reducing the first one to the last one, if any;hwt@presents an error or its value), second the
order in which expressions are reduced, if more than one eaelected, does not affect the final result.
The reduction semantics of FGJ consists of the first threesrlilat appear ifiable 2;: Computation
that deal with term evaluation, and of the first five ruledable 2: Congruencethat deal with redex
selection. The remaining 18 rules of the semantics of FGDwlitha the type system and with term
well-formedness. The rules of FGJ have labels that are edlby FGJ inTable 2, 4, 5 As an example

of computation, expressios, evaluated in the context of the declaration of the cla®sas, A andB
(namely, the evaluation of the FGJ program constituted byddéclaration plus expressie, results in
the sequence:

((Pair) new Pair<A,B>(new A() ,new B())).setfst(new B())
(new Pair<A,B>(new A(Q) ,new B())).setfst(new B(Q)) by GR-CASTg,
new Pair<B,B>(new B() ,new B()) by GR-INVKg,

240 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

3. Featherweight GCJ

3.1. Notation and General Conventions

In this paper we adopt the notation used in [18]: Accordinglys a shorthand for a possibly empty
sequencety, ..., £, (and similarly forT,x, etc.) andV is a shorthand fo¥; . ..M, (with no commas)
wheren is the sizg/f|, respectivelyM|, i.e. the number of terms of the sequence. The empty seqience
o and symbol ”,” denotes concatenation of sequences. Opesatin pairs of sequences are abbreviated
in the obvious wayC f is C; f1,...,C, f, and similarlyC f; is C; f;...C, f,; andthis.f = f;

is a shorthand fothis.f1 = fy;...this.f, = f,; Sequences of field declarations, parameters and
method declaration cannot contain duplications. C@gt, and closure definition#__, have lower
precedence than other operators, and cast precedes diesinidon. Hence/()(this!()) can be writ-

ten as#()this!(). The, possibly indexed and/or primed, metavarialileg, U, S, W range over type
expressionsy, Y, Z range over type variable®, P, Q range over class types, D, E range over class
names;t, g range over field names; v, d range over expressions; y range over variable names and
M, X, L andm range respectively, over methods, constructors, claasesmethod names and eventually
F ranges over closures.Moreover, we [B&|e (respectively[T/X]T), for value (res. type) substitution,
meaning the result of the simultaneous replacing dfy € in e (res. X by T in type expressior).
Eventually F'V (T) denotes the set of type variablesTin

3.2. Syntax

The syntax of closures is the one of [3] and allows to definewries lambda expressiofsnd closure
types function types Lambda expressionsonsist of closures whose body is an expression and of
closures whose body is a block. In FGCJ, since sequencingssignment are omitted, the body of a
closure can only be an expression. The syntax for closurggTsz)e, wherex are the formal names,

T are the formal types anelis the body. Closure invocation operator is denoted by syrtbdence

the syntax for closure invocation &(g), wheree is a closure receiving the list of argumerts This
syntax is motivated by the need for keeping, in Java, the adettames separated from the variable
names (i.e. any identifier that precedes symbol ‘", is a naiffne variable, possibly binding a closure)
and by conciseness [23]. Other proposals [15, 10] use a nsoia gyntax for invocation.

Table 1
Syntax
T == X|N| (Teey)
| #T(T) (Troc)
v o= o ()
L == classC(X<N) <N{Tf;KM} (Leey)
K == C(Tf){super(f);this.f =1;} (Keay)
Moo= XANTm(TE){T e} (Mec))
e == x|ef]|em(T)(€)|newl(e)| (Ne | (erey)
Fle!(e) (erec)
F = #(TX)e (Frocy)

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 241

A closure type specifies the formal types and the result tifegice syntax for closure types#&T(T). T
may be the empty sequence. An examplé{Snteger x, Integer y) (x + y) which is a closure with
two arguments, whose type#sInteger(Integer, Integer). No generic variables can be introduced
when defining a closures but of course generic variablesdatred in class or method declarations can
be used inside closures. The complete syntax of the extdadgdage is reported ifable 1. For the
reader convenience, in all tables, Hatble 3, the rules for FGJ have a label which is indexed by FGJ,
while the rules for FGCJ have a label which is indexed by FGCJ.

3.3. Semantics: Reduction

The reduction semantics is given through the inferencesruiélfable 2, which define the reduction
relatione — ¢’ that says that “expressianreduces to expressia#i in one step”. The set of expressions
which cannot be further reduced is the sethofmal formsand constitute values of the calculus. In
FGCJ values are not only objects but also closures, henc®ltbering grammatical category defines
the syntactic form of the values (of the value domain) of talewus:

v == newN(¥)|#(TX)e

Hence the structure of values results from the reductioesrof the calculus. In particular in FGCJ,
closure invocation needs to be considered for reductiontaais accomplished by rule GR¥WK-CLOS

in Table 2: Computation. Such rules are those which really show how the computatiarairied on.
We have added rule GRuV/K -CLOS that reduces a closure invocation replacing it by the clobody in
which the formal parameters are replaced by the correspgratitual ones, anchis is replaced by the
closure itself, thus allowingecursive closuresThe rules contained ifiable 2: Congruenceare those
which reduce a sub-expression contained in the expressimg levaluated. We have added two rules
GRC-Q.0s-VAL and GRC-QCos-ARG which consider the cases in which, the closure expression ca
be reduced and the case, instead, in which an actual paramateinvoking expression can be reduced.
The auxiliary functions for FGCJ are reportedTable 3. Actually they are the same as in [18]. We
only add a case (@R-Object) for predicateverride when the class to which it is appliedds ject.
Examples 3.1,3.2 show how congruence rule GRIEVAL contributes to define value structure and
how it works in the reduction of recursive closures.

Example 3.1. Lete = #(T x)(#(T y)y)!(x). Expressiore is not a value since it can be further reduced:
By rule GR-INV-CLOS, (#(T y)y)!(x) — x, and, by rule GRC-Cos-VAL, e — #(T x)x. Expression
#(T x)x isavalue. Onthe contrary, let= #()this!(), then expressioais a value but expressias ()

is not a value since by rule GRw-CLOS, e! () — e!(). Expressiore! () starts an infinite sequence of
reductionse! () —* e! () which is the only computation fas! () and is divergent. We say that () does
not compute any value (i.e. it is undefined).

Example 3.2 contains an expression that yields enumerdfidyet, finite, computations that end with
the same expression which is the computed value of the esipres

Example 3.2. Let T; = #I(I,I,I) andTy = #I(I,I) be two closure types antl be a type. Let

e = #(Tu’, Tou*, Tou™, Tul, I x)u’! (x,ul, u*(x, this! (u’,u*,u™,u’,u=(x,u'))). Expressiore is a
value. Howeverg(if, x, —, 1,n) —*fact(n) if I is a type for integerif is a closure that computes as
ordinary two-way conditional (0 is the true value)and— are closures that compute as integer product

242

M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

Table 2

Computation

fields) = T £
(new N(é)).fi — €

mbodym(V),N) = (%, e)

(new N(e)).m(V)(d) — [d/%X,new N(€)/this|e

0+ N<P
(P)(new N(€)) — new N(e)

#(Tx)e!(d) — [d/x, #(TX)e/this]e

(GR-HELDggy)

(GR-INVKgy)

(G R'CASTFGJ)

(GR-INV-CLOSqc))

Congruence

e0—>e6

eg.f — 66.f

ey — 66
eo.m(T)(8) — e(.m(T)(e)

/
ei—>ei

eo-m(T)(...,e;...) — eom(T)(...,e;...)

/
ei—>ei

newN(...,e;,...) — newN(...,e;,...)

e —¢é
(N)e — (N)e’

e — €
#(Tx)e — #(Tx)e

/
el‘—>ei

el...,e5...) — el(...,el...)

(GRC-HELDggy)

(G RC'T' INVFGJ)

(GRC-INV-ARGgg))

(G R C - NEWFGJ)

(G RC‘CA\STFGJ)

(G RC'QOS‘VAL FGCJ)

(GRC-QLO0S-ARGgqcy)

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu

Table 3

Subclassing

cdac

C<D DJE class C(X < N) <D {S £;K M}

C<E C<D

Auxiliary functions
fieldg0bject) = o

class C(X < N) <N {S f;K M} fieldg[T/X]N) =TUg
field{C(T)) =Ug, [T/X|S £

class C(X < N) <N {S £;K M} Y<P)Um([UX){te;} M
mtypem, C(T)) = [T/X|((Y < P)U — V)

classC(X<N) <N{S£f;KM} m¢gM
mtypém, C(T)) = mtypem, [T/X]N)

class C(X <N) < N {S f;K M} (Y<P)Um (UX){te;} €M
mbodym(V), C(T)) = %.[T/X,V/Y]e

classC(X<N) <N{Sf;KM} m¢gM
mbodym(V), C(T)) = mbodym(V), [T/X|N)

(F-OBJECT)

(F-CLASS)

(MT-CLASS)

(MT-SUPER)

(MB-CLASS)

(MB-SUPER)

Auxiliary predicates
override(m,Object, (Y <P)T — Tp)
mtypém,N) = (Z <1 QU — Uy = (P,T) =[Y/Z](Q,U) and

Y<P - To<[Y/Z]U
override(m,N, (Y <P)T — Tp)

(OVER-Object)

(OVER)

DCast

dcast(C,D) dcast(D,E) classC(X<IN)<D(T){...} X=FV(T)

dcast(C,E) dcast(C,D)

(DCasT)

243

244 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

and subtraction respectively afidct is the factorial function. In fack(if, x, —, 1,n) has enumerably
many expressions;, such thatie(if,*, —,1,n) —* e, —*fact(n) (index k is the number of times
expressiore is replacingthis in the reduction sequence). For instance i 0, we have:

e(if,*,—,1,0) — €
e(if,*,—,1,0) = e; — ey

if1(0,1,%(0,e!(if,*,—,1,—(0,1))) — 1for k =1 and

i£1(0,1,%(0,1£1(0,1,%(0,e! (if, *,—,1,—(—(0,1),1))))))
— 1fork =2

e(if,*,—,1,0) = e; —ex =% e — 1

3.4. Semantics: Typing

The typing rules are given through inference rules that weedifferent kinds of environment) (for
type variables) and' (for value variables), and five different typing judgemerdse for each different
term structure of the language. A (well formed) type enuvinenmt A is a finite mapping from type
variables to (well formed, id\) types. Itis written as a sequenke<Ty,...X,<T, (X; # X;, # j), has
domaindom(A) = {Xi,...,X,} andA(X;) = T; (1 < i < n) meaning that type variablg is defined
and must be bound to a subtype of tyfhe An environment” is defined similarly but is a finite mapping
from variables to types, is written as a sequenge Ty, ...,x; : Ty 1, hasdom(T") = {x1,...,x,} and
I'(x;) = T; (1 < i < k) meaning thak; must be bound to a value expression of tffpe

The judgement for a (generic) tyfge(seeTable 4) has the formA + T ok meaning that is a
well-formed type in the (well formed) type environmefat The judgement for subtyping (s@able
5) has the formA - S<T meaning thas is a subtype off in A. The judgement for classes (see rule
GT-CLASS:, Iin Table 4) has the fornC 0K meaning that is well typed. The typing judgements for
methods (see GT-KITHOD.g; in Table 4) has the form4 0K in C meaning thaM is well typed when
its declaration occurs in clags The judgement for expressions (see the first nine ruldable 4) has
the formA;I" - e : T meaning that expressiasn has typeT in the typing environmenfA and in the
(variable) environmenk. The typing rules are contained Table 4 and extends those of FGJ. Two rules
have been added for closure construction and closure itiwac&uch rules simply assert the correctness
of the involved types.

The rules for subtypes and wellformed types are reportethbie 5. Two rules are added:(WF-
CLOSURE) which states that a closure type is well-formed if the type®lved are well-formed and
(S-CLosuRE) which states when a closure type is a subtype of anotheurddgpe, according to the
contro-covariance rule for function types. Closures doaifect the bounds of type variables since in
the definition of FGCJ we left unchanged the structure ofetheends declaration of FGJ. A different
situation would arise ifX < T) replaced(X < N) in the class and method declaration. In this case,
the language would allow to express type variables that atmd to subtypes of closure types. As
a consequence, the type system would require additiones$,rimcluding a rule for théounda of a
closure type, to check subtyping. The rules for subtypesvegitformed types are reported ifable
5. Two rules are added:(WF+©sSURE) which states that a closure type is well-formed if the types
involved are well-formed and (S+1©SURE) which states when a closure type is a subtype of another
closure type, according to the contro-covariance ruletfocfion types. Closures do not affect the bounds
of type variables

YVariable renaming, in the program, can avoid possibly caisfin the name of variables, without loss of generality.

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 245

Table 4

Typing rules
AT Ex:T(x) (GT-VARgsy)

A;T'Fey:To ﬁeldS(boundA(To)) =Tf
A;F F eo.fl‘ : Ti

(GT-FIELDgg))

mtypém, boundh (Tp)) = (Y<P)YU — U
AT Hep: Ty AFVok AFV<[V/YP
A;THe:S ARS<[VA]U
AT+ eom(V)(e) : [V/Y]U

(GT-INVegy)

A F Nok fieldgN) =T £
A;T'He:8s A S<T
A;T - newN(e) : N

(GT-NEWeg))

A;THeg: Ty A F bounda (To)<N
A;TF (N)eg: N

(G T' U CASTFGJ)

A:TFeg: Ty A F Nok A F N < bounda(Tp)
N =C(T) bounda (To) = D(T) dcast(C,D)
AT (N)eg: N

(G T' DCASTFGJ)

A;Fl—eotTo A+ N ok
N = C(T) bounda (To) = D(U) C4D DHAC
A;TF (N)eg: N

(G T‘SCA\STFGJ)

AT ok A;T,x: T,this: #T(T) e : T
A;T H#(TX) e : #T(T)

(GT-CLOSURE:c)

AT+ e: #T(T) A;THe:S AFS<T
A;Tkel(e): T

(GT-CLOSUREINVgcy)

A = X<N, Y<P AFT,T,P ok
A;x:T,this: C(X) Fep: S AFS<T
class C(X < N) < N{...} override(m,N, (Y <P)T — T)
(Y<P)T m(TX){T ep; } OKIN C(X < N)

(GT-METHODx))

FN,N,Tok M OKIN C(X<N)
K=C(Ug,Tf){supefg); thisf =£;}
< N{T £;K M} OK

X<:N
fields(N) =TUg =
class C(X < N)

(GT-CLASS))

246 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

Table 5
Subtypes

boundh (X) = A(X) (B-VARgs)
boundy (N) = N (B-CLASSG))
A l_ T <: T (S‘REFLFGJ)
AFS<T AFT<U (S-TRANS-c)
Al sS<U S
A l_ X <:A(X) (S‘VARFGJ)

class C(X<N) < N{...}
A C(T) < [T/X|N

(S-CLASS)

T<S S<T
A #T(T) < #53(S)

(S-CGLOSURE())

Well-formed types

A F Objectok (WF-OBJECTsg,)

X e dom(A)

WF-VAR
AF Xok (r)

class C(X<aN) < N{...} AFTok AFT<[T/XN
A F C(T) ok

(WF-CLASS)

AT ok A Tok
A+ #T(T) ok

(WF-CLOSUREqc))

since in the definition of FGCJ we left unchanged the strectirtheextends declaration of FGJ. A
different situation would arise ifX < T) replaced(X <1 N) in the class and method declaration. In this
case, the language would allow to express type variabldésatkabound to subtypes of closure types.
As a consequence, the type system would require additiokes,rincluding a rule for théounda of a
closure type, to check subtyping.

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 247

Example 3.3. Let A = A;,T1<¢A, To<<B,T3<¢C,T4<<D, and A + C<:A A + B<D for classesa,
B, C, D. ThenA F #Ti(T2) 0K and A F #T3(T4) OK, but #T1(T2), #T3(T4) are uncompara-
ble types underA. Any attempt to use an expression of typds(T,) instead of an expression of
type #T1(T2) yields a type error, as in the statememniw N(e), wheree is an expression of type
#T3(T4) and field(N) = #T1(T2) £. On the contrary, each of the following type assignmentsare
rect fornew N(e): field(N) = #A(T2) £, ande:#T1(T2); field(N) = #A(T2) £, ande:#T;(B);
field(N) = #D(C) £, ande: #B(T3).

4. Properties

Semantics is useful to prove language properties. In thempae prove type soundness which states
that an expression and its normal form have compatible fygees Section 4.1. Successively we prove
backward compatibility which states that programs, in tamkl language, maintain their meaning, in

the extended language. Eventually, we prove the abstraptimperty which states that a closure acts as
a code abstraction.

4.1. Type Soundness

Analogously to [18] we prove subject reduction theorem aradjpess theorem, type soundness imme-
diately follows. Several interesting lemmas are used inpttoefs. They are stated and proved in the
appendix.

Theorem 4.1. (Subject reduction)
If A;T'Fe:Tande — ¢ thenA;T' e’ : T/, for someT’ such thatA + T'<T

Proof. See Appendix A a

Theorem 4.2. (Progress)
Supposes is a well-typed expression. Hincludes as a subexpression:

1. new N(€).f then fields(N) =T £, for someT andf, andf € £.
2. new N(g).m(V)(d) thenmbody(m(V),N) = X.eq, for somexz andeq, and|x| = |d|.
3. FI(d) thenF = #(T %) ey, for someT, x andey, and|x| = |d|.

Proof: The proof is based on the analysis of all well typed expressiavhich can be reduced to the
above 3 cases to conclude that either it is in normal form cauit be further reduced to obtain a normal
form. As already stated in section 3.3, in FGCJ there are &ilplesnormal forms i.e. values. They are:
new N(w) (Object in FGJ), ang#(T X)e (closure) O

Theorem 4.3. (Type Soundness)
If ;0 - e : Tande —* ¢ with ¢’ a normal form, ther’ is either (1) a valuer with 0;0 - w : S and
() - 8<T or (2) an expression containir{g) new N(e) whereN <P

Proof: Immediate from above Theorems O

248 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

4.2. Computation properties

We prove that the extension made to the language, to addegqreserves the meaning of the programs
of the original language FGJ.

Theorem 4.4. (Backward compatibility)
If an FGJ program is well typed under the FGJ rules it is alsibtyyged under the FGCJ rules. Moreover,
for all FGJ programs ande’ (whether well typed or no® —fgje’ <= e —pgcye’-

Proof: All FGCJ sets of rules include FGJ rules O

4.3. Abstraction Property

This property concerns the use of simple closures in codgaaiions and is the analog in FGCJ of
fS—conversion in Lambda Calculugi—conversion states th@hx.e[x])e’ = e[e’] for all Lambda ex-
pressions:[e’], ¢’ (possibly, after variable renaming to avoid name collisjprand a fresh varialex
[1]. Unfortunately, this property cannot hold for closure$=GCJ: A counterexample is the pair of ex-
pressions andu of example 4.1. In fact, in addition to variables, the expi@ss of FGCJ contain four
kinds of identifiers for naming classes, fields, methods,aaspecial identifiethis for self-reference.

Definition 4.1. (contexte[o], type and substitution)
The set ofcontextse|e] is:

efo] == e|x|e[e]£e[e]n(T)(e[s]) | newN(e[e]) | (N)es]
| Fle] | e[e]!(e[e])
Fle] == #(TX)e[o]

Thesubstitutionof expressiore; in the contexk|e] is the expression|e;] obtained replacing; in each
hole ofe[e].

A context of typ€l", T) is any contexti[e], in FGCJ, such thah\;T",x : T - H[x| : S for someA + T ok
and types, and fresh variable.

Free and Bound IdentifiersContexts, as well as expressions, may contain free vasafileld and
method identifiers, and occurrencestafis as it is when they are the result of a textual extraction of
expressions from method (or closure) bodies. In FGCJ, blagaare declared only in the parameter list
of either methods or closures. Hence, the free variablescofitext, or expression, are all the variables
that do not occur inside a closure (contained in the contexxpression) and all those that occur inside
a closure but not in its parameter list. Class identifiersaaseimed to be unique in each program. Hence,
they are always bounds (to the corresponding class in trgrgmmoclass tableST [18]). Moreover, field
(and method) identifiers may occur only in terms of the forjn((N)e).f or (ii) eg." e,.f, Wheref

is a field identifier,(N)e andey. e,, express the target object. Hence, they are always bounti€to t
corresponding field, method, of the class case (i), of the class type ef). e, in case (ii)). On the
contrary, the self referenashis occurs bound, in a context (or an expression), only wherciiinside

a closure defined in such a context (or expression). In albther casesthis occurs free.

2a variable that does not occur in the expressifri]

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 249

Definition 4.2. (equivalence:x)
Two expressions; ande, are equivalent if they compute in the same Waye.: expressior’ exists
such that; —* ¢’ and ey —* &’

Theorem 4.5. (Abstraction Property)

Let A - T ok, H[e] be any contextG[e] be any context of typ€l’, T) and with no free occurrences of
this. Letey be any expression such that its free varigbkesd free occurrences ohis are not bound
in e; = Gleg] (but possibly, irH[e]). ThenH[(#(T x)G[x])!(e2)] ~ H[e1], for any fresh variable:.

Proof. See Appendix A a
Example 4.1. Consider expressiofi= new Pair(Z,Y)(newfst, this.snd) which is the body oketfst,

defined in Section 2. Expressionsv andw are three different rearrangementseoivhich generalize,
through closures, different subtermseof

u = (#(Z x) new Pair(Z, Y)(x, this.snd))! (newfst)

v = (#(Y y) new Pair(Z, Y)(newfst,y))! (this.snd)

w= (#(Yy)(#(Z x) new Pair(Z,Y)(x,y))! (newfst))! (this.snd)

According to Theorem 4.5¢ ~ v, andv ~ w bute % u (since foru: Hje] = e andGle] =

new Pair(Z,Y)(e, this.snd) which contains a free occurrencetdfis). Hence, we can replacewith
eitherv or w, but the replacement ef with u in the body of methodetfst yields a different meaning
of the program.

5. Conclusion

In this paper we address the problem of defining a formal séosato prove properties of closures in

Java, according to the Straw-man proposal. A minimal cafid defined extending Featherweight Java,
both for syntax and semantics and three properties: typedsmss, backward compatibility and the

abstraction property are proved. In [7] a translation sdiosirior a somewhat different proposal for

closures in Java is defined. Such translational approachedeéi rigorous semantics for closures and
provides also an implementation for Java extended withucdss but is not suited to prove semantic
properties. We plan to adapt translation semantics to ®iGfdsures and analogously to [18] prove that
the two semantics commute. Eventually this paper is a paetalt of a more complex and ambitious

project of extension and prototype implementation of Jaith higher order features, besides closures,
methods passed as parameters [6].

3It includes the case in which both expressions diverge, tekdludes the case in which one or both are illegal, wrong,
untypeable terms.
“The requirement on free variables could be omitted regpttirvariable renaming.

250 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

A. Lemmas and Theorem Proofs

Lemmas A.2.1. through A.2.9. and A.2.12 in [18] remain v&tid FGCJ without proof extensions and
are not reported here. Proofs of Lemma A.2.10 and A.2.11 ttebd extended and are reported below.
LemmaA.2.10.If Ay, X<N, Ao;T' e : TandA; + U<:[U/X|N whereA; + U ok and none ok appears

in Ay, thenAy, [U/X]Aq; [U/X]T I [U/X]e : S for someS such thatAq, [U/X]As - S<:[U/X]|T

Proof. As in [18], the proof is given by induction and case analy®ie. specify only the new cases.

CaseGT-CLOSURE
e = #(Wﬁ) eg A= Al, X<ZN, JAD
AT Heg: W T=#WW)
[U/X]e = #([U/X]W w)[U/X]eo
Hences = #[U/X]w([U/X]W) = [U/X]T.
CaseGT-CLOSUREINV
e=¢epl(e) T=W
AT Heg: #WW) AT He:S<W
[U/X]e = [0/X]eo ! ([U/X]e)
By induction hypothesig\;T" - [U/X]e : Q such thatA + Q<[U/X]S. By Lemma A.2.5, since
A F S<WthenA F [U/X|S<:[U/X]W and A + Q<:[U/X]W by rule S-TRANS. Furthemore, by
induction hypothesia\; I - [U/X]eq : Q such thatA + Q<:[U/X]#(W(W)) = #[U/X]W([U/X]W). By
Lemma Closure Subtypin@® = #V(V) andV<:[U/X]w and [U/X](W))<:V, and by rule S-RANS
[U/X]S<:V. Hence, by rule GT-CosSUREINV A;T I [U/X|ep! ([U/X]e) : [U/X]W O

Lemma A.2.11.1f A;T,x: Tk e: TandA;T' + d : SwhereA S<T, thenA;T + [d/Z]e : S for
somes such thatA + S<:T

Proof. As in [18], the proof is given by induction and case analy®ie. specify only the new cases.

CaseGT-CLOSURE
e=H#Wy)eg AFWWok

AT,y Wheg:Wog AFWo<W T= #W(W)
By the induction hypothesisA;T' + [d/X]ep : Wy for someW; such thatA + W;<W, and
[d/Z](#(W ¥)eg) = #(W ¥)[d/X]eq, because of renaming to avoid name coalashi#gy = {}.
Hence GT-COSURE premises are satisfied afd= #W; (W) <<#W(W).
CaseGT-CLOSUREINV

e=-¢ep!(e) A;TF ep: #W(W)

A;T,e:S AFS<W T=W
By the induction hypothesis);T' - [d/X]eq : Wy for someW, such thatA + Wy<:#W(W) and
A;T + [d/x]e : Q for someQ<:W because of subtyping on closuiés= #P(P)<:#W(W) andP<:W
andwW<:P and for transitivityQ<:P hence, by rule GT-COSUREINV, S =P O

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 251

Lemma Closure Subtyping.If A =W, T, T ok thenA - W<T(T) <= W= S(S) and S<T and T<S
Proof: Immediate after subtyping rules O
Proof of Theorem 4.1By induction on the reductioe — &', with a case analysis on the reduction

rule used. It extends the proof, [18] (pp. 426-428), of therexponding theorem for FGJ with the
following cases;

CaseGR-INV-CLOS e = #(T X)eq!(d) and by rule GT-CosUREwe have:A; T + #(T X)ep : #T(T)
andA;T',% : T,this : #T(T) - eo : T and by rule GT-COSUREINV, A;T' Fd : S, §<T nd
A;T' + e : T. Furthermores’ = [d/%, #(TX)eo/this|ep and by the Lemma A.2.1A\;T' - &' =
[d/%, #(TX)eo/this]eq : R for someR<T.

CaseGRC-Q.os-VAL and GRC-Co0s-ARG Easy O

Lemma g-conversionLet A F T ok, H[e] be any context of typd™;, T) and with no free occurrences of
this. Lete; be an expression of tyfe(for Hfe|, i.e. A;T'1, 'y - e : T) such that all the free variables
of e; are not bound ir[e]. Then(#(T x)H[x])!(e1) ~ H[e1] for any fresh variablex.

Proof: By case analysis on the structure of contiehe{.

Case H[e] = o. Then,(#(Tx)H[x])!(e1) = (#(Tx)x)!(e1) andH[e;] = e;. Moreover, by rule GR-
INVK-CLOSrecy (#(Tx)x)!(e1) — [e1/x, (#(T x)x)/this]x. Hence,
[e1/x, (#(Tx)x)/this]x = e;.

Case H[e] = y, wherey # this andy # x. Then,(#(Tx)H[x])!(e1) = (#(Tx)y)!(e1) andH[e;] = y.
Moreover, by rule GRNVK -CLOS:gc;,

(#(Tx)y)!(e1) — [e1/x,(#(Tx)x)/this]y. Hence,[e1/x, (#(Tx)x)/this]y = y, since as-
Sumptlons ony.

Case H[e] = e[e].f Wherethis does not occur free ia[e]. Then,(#(T x)H[x])!(e1) =
((Tx)e[x].f)!(e1) andH[e;] = e[e;].f. Moreover, by rule GRNVK-CLO Sk,
(#(Tx)e[x].f)!(e1) — [e1/x, #(Tx)x/this|e[x]|.f. By def. of substitution,
[e1/x, #(T x)x/this|e[x].f = ([e1/x, #(T x)x/this|e[x]).([e1/x, #(Tx)x/this]f).
By assumption on the free occurrencesbis,

([e1/x, #(Tx)x/this|e[x]).([e1/x, #(T x)x/this]f) = ([e1/x]e[x]).([e1/x]f) = e[e1].f

Case H[e] = e[o].m(ﬂ(ﬁ), Hle| = new N(w), Hle]| = (N)e[o],H[o]| = F[o], H[o] = e[o]!(e[e]) can
be similarly proved O

Proof of Theorem 4.5By induction on the structure of contexts.

CaseH[e] = . ThenH[(#(Tx)G[x])!(e2)] = (#(Tx)G[x])!(e2) andH[e;] = e, and, by Lemma
[B-conversion, the case holds.

Case H[e] = y. ThenH[(#(T x)G[x])!(e2)] = y andH[e;] = y and the case holds.

252 M. Bellia and M.E. Occhiuto / Properties of Java Simple Chesu

Case H[e] = e[e].f. Assume that theorem holds for conteX¢]: (ih) e[(#(T x)G[x])!(e2)] ~ e[e1] (i.€:
e[(#(Tx)G[x])!(e2)] —* ¢’ and e[e;] —* &’ for somee’). Then,
H[(#(Tx)G[x])!(e2)] = e[(#(Tx)G[x])!(e2)].f andH[e;] = e[e1].f, and by GRC-FELD¢g, the
case holds.

Case H[e| = ¢[o].m(T)(e[o]), H[o] = new N(e[o]), H[o] = (N)e[e], H[e] = F[o], H[s] = ¢[o]! (e[e]) can
be similarly proved d

References
[1] H.P. Barendregt. Functional Pgramming and Lambda QadcuHandbook Of Theoretical Computer
Science2:321-363, 1990.

[2] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Glestor Java, 2006.
http://blogs.sun.com/ahe/resource/closures.pdf.

[3] A. Buckley, J. Gibbons, and M. ReinholdRroject Lambda: Java Language Specification. Version 0.1
Sun Microsystem, Inc., January 2010.
http://mail.openjdk.java.net/pipermail/lambda-détdehments/20100122/3764c21a/attachment.txt.

[4] A. Buckley, J. Gibbons, and M. Reinhol&tate of the LambdaSun Microsystem, Inc., October 2010.
http://cr.openjdk.java.netbriangoetz/lambda/lambda-state-3.html.

[5] M. Bellia and M.E. Occhiuto. Higher Order ProgrammingJava: Introspection, Subsumption and
Extraction.Fundamenta Informatica&7(1):29-44, 2005.

[6] M. Bellia and M.E. Occhiuto. Methods as Parameters: ApRveessing Approach to Higher Order in
Java.Fundamenta Informatica®5(1):35-50, 2008.

[7] M. Bellia and M.E. OcchiutoJavé?: Preprocessing Closures in Javiiniversity of Pisa, Dipartimento
Informatica, 2009.

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mgkihe Future Safe for the Past: Adding
Genericity to the Java Programming LanguageO@PSLA 1998pages 183-200. Sigplan, 1998.

[9] B. Bringert. HOJ - Higher-Order Java, 2005. http://wwse.chalmers.se/alumni/bringert/hoj/.
[10] S. Colebourne. Closures in JDK7, 2009. http://mwwigocom/scolebourne/entry/closuresjdk_7.

[11] Microsoft Corporation. Delegates in Visual J++, 2004.
http://msdn.microsoft.com/en-us/library/aa260511/&/60).aspx.

[12] S. Colebourne and S. Shulz. Fidass methods: Java style closures, 2007.
http://jroller.com/scolebourne/entry/firskassmethodsjava style.

[13] M. Felleisen D.P. Friedman. A Reduction Semantics fopérative High-Order Languages. PARLE
Parallel Architectures and Languages Eurgpelume 2007 o NCS pages 206—223. Springer, 1987.

[14] E. Gamma, R. Helm, R. Johnson, and J.M. VlissidBgsign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, 2005.

[15] N.M. Gafter and P. von der Ahe. Closures for Java (v.Ba09. http://javac.info/closures-v06a.html.
[16] A.lgarashiand B. Pierce. On Inner Classksormation and Computatiqry7(1):56—89, 2002.

[17] A. Igarashi, B. Pierce, and P. Wadler. Featherweigt&.J& Minimal Core Calculus for Java and GJ.
Sigplan Notices34(10):132-146, 1999.

(18]

(19]

(20]
(21]
(22]

(23]

(24]

M. Bellia and M.E. Occhiuto/ Properties of Java Simple Chesu 253

A. Igarashi, B. Pierce, and P. Wadler. Featherweigh:J& Minimal Core Calculus for Java and GJ.
ACM TOPLAS23:396-450, 2001.

B. Lee, D. Lea, and J. Bloch. Concise Instance Creatipré&ssions: Closure without Complexity, 2006.
http://crazybob.org/2006/10/java-closure-spectramlh

E. Meijer. Lambada, Haskell as a better Jabectronic Notes TCSt1(1), 2001.
Sun Microsystems. About Microsoft's Delegates, 200dp://java.sun.com/docs/white/delegates.html.

M. Odersky and P. Wadler. Pizza into Java: Translatihgdry into Practice. IfProc. 24th Symposium
on Principles of Programming Languaggsmges 146-159, 1997.

M. Reinhold. Project Lambda: Straw-Man Proposal, 200fp://cr.openjdk.java.netimr/lambda/straw-
man/.

M. Reinhold. There’s not a Moment to Lose! - ClosuresJava, 2009.
http://blogs.sun.com/mr/entry/closures.

[25] A. Setzer. Java as a Functional Programming Languag@&YPES 2002,LNCS 264pages 279-298,

(26]

2003.

N. Sridranop and R. Stansifer. Higher-Order Functiétragramming and Wildcards in Java. ACMSE
2007, ACM pages 42-46, 2007.

Copyright of Fundamenta Informaticae is the property of 10S Press and its content may not be copied or
emailed to multiple sites or posted to alistserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

