
Published in IET Software
Received on 21st October 2010
Revised on 20th May 2011
doi: 10.1049/iet-sen.2010.0135

ISSN 1751-8806

Exploiting Java scientific libraries with the Scala
language within the ScalaLab environment
S. Papadimitriou1 K. Terzidis1 S. Mavroudi2 S. Likothanassis2

1Department of Information Management, Technological Educational Institute of Kavala, 65404 Kavala, Greece
2Pattern Recognition Laboratory, Department of Computer Engineering and Informatics, School of Engineering,
University of Patras, Rion, Patras 26500, Greece
E-mail: sterg@teikav.edu.gr

Abstract: Since Java is one of the most popular languages in the academic and research community a lot of robust and effective
scientific libraries have been developed. However, the utilisation of these libraries is very awkward especially for the average
scientist that does not expertise in software development. The study presents the framework that has constructed for the
utilisation of Java scientific libraries within the ScalaLab environment. The flexibility and extensibility of the Scala language
allows the implementation of simple, coherent and efficient Matlab-like interfaces to those libraries. Moreover, other
specialised Java libraries can be exploited much more easily and productively from within ScalaLab with the toolbox import
mechanism that this work describes. Additionally, the system offers facilities such as on-line help, code completion, graphical
control of the class-path and a specialised text editor with code colouring facilities that greatly facilitate the development of
scientific software.

1 Introduction

Numerical computation applications benefit from ‘interactive
systems for matrix computation’, which facilitate the rapid
scientific experimentation. With these scripting systems
substantial analysis can be performed by entering stepwise
commands and thereby obtaining results. Experimentation is
encouraged and the tedious ‘compile-link-execute’ cycle of
standard programming languages is eliminated. Well-known
examples of such systems include commercial products
such as Matlab, Maple and Mathematica, and open source
packages like Scilab and Octave.

Recently, we introduced two open source mathematical
programming environments for the Java virtual machine
(JVM), jLab [1] and ScalaLab [2]. Although these systems
present a Matlab-like style of working, they differ from the
forementioned in that they compile the scripts for the JVM.
They utilise and expand modern languages for the JVM,
jLab builds upon the dynamic Groovy language [3] while
ScalaLab exploits the powerful Scala object-functional
one [4].

Interactive scientific programming environments have
gained much popularity mainly for their simplicity and the
great speed improvements with just in time (JIT) compilation
techniques. It is interesting to observe that the recent versions
of Matlab have also gained impressive speed improvements.
However, the bulk of numerical analysis software is in
compiled languages, mainly in Fortran, C/C ++ [5] and
Java. The later language although is not designed specially
for numerical computation has become very popular because
of its portability, reliability, extensibility, simplicity and the

advances in JIT compilation. We motivated our present work
in order to develop a user friendly framework for the
effective utilisation of these Java-based scientific libraries
within ScalaLab.

The ScalaLab environment [2] builds upon the Scala
language system. ScalaLab is an open-source project and
can be obtained from http://code.google.com/p/scalalab/.
The general high-level architecture of ScalaLab is depicted
in Fig. 1. An essential component of ScalaLab, on which
interactivity and user friendly operation is built upon, is the
Scala interpreter. The overall approach of the Scala’s
interpreter is based on compiling initially the requested
code. Afterwards, a Java classloader and Java reflection are
used to run the code and access its results.

The general architecture of ScalaLab and its programming
model is described in [2]. In this article, we concentrate on
two specific directions not addressed in [2]. The first one, is
the incorporation of Java numerical libraries within the core
of ScalaLab. The aim is to provide an easy to use interface
to these scientific libraries, without compromising their
effectiveness. Convenient syntax features such as high-level
mathematical operators are implemented by exploiting the
rich support that Scala provides. Many features of Java’s
Swing [6] assist the work of the user, for example by
providing extensive help and superb display functionality.
Moreover, a set of basic functions is kept consistent and
independent of the utilised library. Also we seek for a
Matlab-like syntax for these functions in order to facilitate
the user.

The second direction is the utilisation of external Java
libraries of scientific code for toolboxes. The system assists

IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551 543
doi: 10.1049/iet-sen.2010.0135 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://code.google.com/p/scalalab/

the user by providing insight about the contents of the
toolboxes using the interrogation potential of the Java
reflection API.

The paper proceeds as follows: Section 2 describes the way that
we can wrap Java scientific libraries with Scala and make
them more conveniently accessible, Section 3 presents a
particular example that utilises a popular open-source Java
numerical library, the efficient Java matrix library (EJML)
(http://code.google.com/p/efficient-java-matrix-library/). Section
4 describes the utilisation of specialised Java code with the
toolbox import mechanism. Section 5 presents an example of
toolbox application using the FastICA Java toolbox. Section 6
evaluates our approach and compares it with other related ones.
Finally, Section 7 concludes the paper and oulines some
directions for future work.

2 Decorating Java scientific libraries
with Scala

In this section, we describe the main features of the Scala
language that we have explored in order to facilitate
significantly the work with Java scientific libraries.

The general, architecture of interfacing Java libraries is
illustrated with Fig. 2. The ‘Wrapper Scala class’ aims to
provide a simpler interface to the more essential
functionality of the Java library, for example, for matrices A
and B, we can add them simply as A + B, instead of the
cumbersome A.plus(B). Also, it performs the useful task of
transforming interfaces to a common pattern, for example,
each Java matrix library has its own style of returning
eigenvalues and eigenvectors. We have to adopt a single
one (preferably Matlab-like) in order not to confuse the user.

The ‘Scala Object for Static Math Operations’ aims to
provide overloaded versions of the basic routines for our
new type. (e.g. to be able to use sin(A) where A is an
object of our wrapper Scala class).

We should note that the Scala interpreter has access to these
three modules and thus it can use even the native Java
interface of the library.

Below we elaborate on the Scala’s approaches of extending
and decorating Java libraries by presenting a simple
illustrative example for the implementation of a class that
implements Matrices. This class is the Mat class.

The ‘SimpleMatrix’ class of the EJML, (http://code.google.
com/p/efficient-java-matrix-library/) implements mathematical
operations in an object oriented way and keeps immutable
the receiver objects. For example to multiply matrix F and x
we call y ¼ F.mul(x). However, the Java-like method calls
are still not much convenient, for example to implement
P ¼ F D F′ + Q, we have to write P ¼ F.mult(P).mult
(F.transpose()).plus(Q) instead of the much clearer:

P ¼ F∗P∗F� + Q that we attain in ScalaLab.
The scalaSci.EJML.Mat (abbreviated Mat) class in

ScalaLab wraps the EJML ‘SimpleMatrix’ class, allowing
us to perform high-level Matlab-like operations.

The default (primary) constructor performs global
initialisation operations (since in Scala any auxiliary
constructor must call finally the primary constructor). It
keeps a reference to the SimpleMatrix object. This primary
constructor is shown:

class Mat(smi: SimpleMatrix) ¼ {
var sm ¼ smi // keep a reference to the SimpleMatrix
// getters for size
def Nrows ¼ smi.numRows()
def Ncols ¼ smi.numCols()
def size ¼ { (Nrows, Ncols) }
def length ¼ { Nrows }

It is interesting that Scala does not have operators. The
flexible syntax of method calls and the acceptance of many
special symbols as method names permits the
implementation of methods that give the illusion of the
built-in operators. Consider for example the operations

var a ¼ 100
var b ¼ a + 40

The operator ‘+’ is actually a method call on the Integer
object a, that is, we can write it more verbosely as:

var b ¼ a .+ (40). The operator-like compact syntax is
possible since Scala does not require the dot (‘.’) symbol
for method calls and parenthesis are optional when a
method has a single argument.

Therefore in Scala operations on objects are implemented
as method calls, even for primitive objects like Integers.

Fig. 1 Architecture of the main software components of ScalaLab

Fig. 2 General architecture of interfacing Java libraries

544 IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0135

www.ietdl.org

http://code.google.com/p/efficient-java-matrix-library/
http://code.google.com/p/efficient-java-matrix-library/
http://code.google.com/p/efficient-java-matrix-library/

However, the compiler is intelligent enough to generate fast
code for mathematical expressions with speed similar to Java.

Scala makes easy to implement ‘prefix’ operators for the
identifiers +, 2 , !, � with the unary_ prepended to the
operator character. Also, ‘postfix’ operators are methods
that take no arguments, when they are invoked without a
dot or parenthesis. Thus, for example, we can declare a
method � at the Matrix class and perform matrix
transposition in this way, that is, to write the transpose of A
as A� .

Returning to our matrix ‘Mat’ class example, when the
compiler detects an operator ‘+’ on a Double object d that
adds a Mat object M, that is, d + M, it has a problem since
this constitutes a type error. There is no method defined on
the predefined Double type that adds to it a Mat object (and
there cannot be one since Mat is a user library defined
type). Similar is the situation when a Mat is added to a
double array. Dynamic languages as Groovy [3], can easily
overcome this obstacle by appending methods to the
MetaClass of the Double or Double[] type. But when we do
not want to sacrifice the merits of static typing other
solutions should be searched.

Implicit conversions [4, 7, 8] provide efficient solutions in
such cases in Scala. When an operation is not defined for
some types, the compiler instead of aborting, tries any
available implicit conversions that can be applied in order to
transform an invalid operation to a valid one. The goal is to
transform the objects to types for which the operation is valid.

For the ‘Mat’ class we define some implicit conversions
that cope with the usual cases where a Mat needs to act
upon a predefined object (e.g. a Double) appearing before it
at the expression.

These implicits are for example as

implicit def DoubleToMat(x: Double) ¼ scalaSci.StaticMaths.
fill0(1,1,x) // implicit conversion of a Double to Mat

At this example the implicit handles the case when the
receiver is a Double. Suppose we have an expression d + M
where d is a Double number and M is a matrix ‘Mat’
object. The operator ‘+’ (method actually as we described),
should add the Double number d with the corresponding
elements of the Mat object M. However, the Double type is
of a predefined type (i.e. built-in) and cannot have any
provisions for implementing operators (methods) that take
arguments of user defined types. However, the Scala
compiler does not give up! Instead of aborting with a
compilation error, it tries to detect if the double array type
is convertible to something that can be added with a Mat
with the ‘+’ operator. The compiler tries to unblock by
exploring all the available implicit conversions within
scope. Indeed, in our case, the ‘DoubleToMat’ conversion
takes a Double and converts it to a Mat, with the method
fill0 defined at the scalaSci.StaticMaths package. This
mechanism is powerful since it allows us to utilise existing
code libraries according to our demands. Independently of
the number of implicits the overhead of implicit processing
at the generated code is absent since all the processing is
done at compile time. The only overhead at run-time, is the
overhead to perform the implicit conversion, which usually
can be negligible.

Scala programmers can implement syntactically elegant
indexing on any objects with the ‘apply’ method and
assignment of values with the ‘update’ method. These
simple things are of utmost importance for the conveniency
of the interface. For the Mat class, obviously we want if M

is a Mat to access its (i, j)th element as M(i, j). Thus we
implement the apply method as

def apply(row: Int, col: Int) ¼ {
sm.get(row, col)

}

We note that the ‘apply’ method calls the corresponding
routine ‘get’ of the EJML library. The Scala compiler
supports flexible syntax for the apply and update methods,
for example, we can call M(i, j) instead of M.apply(i,j) and
write: M(i, j) ¼ 9.8 instead of M.update(i, j, 9.8).

The corresponding ‘update’ operation implements
assignment of elements and can be implemented as

def update(row: Int, col: Int, value: Double): Unit ¼ {
sm.set(row, col, value)
}

The ‘apply’ method can be easily overloaded in order to
extract a Mat subrange by implementing the method apply as

def apply(rowStart: Int, rowInc: Int, rowEnd: Int, colStart:
Int, colInc: Int, colEnd: Int) ¼ {
// the routine extracts and returns a Mat subrange with a

new Mat object
. . ..
}

The end result of this design is that the user can perform
convenient operations on matrices, for example, M(2, k, m,
4, 2, N) to extract a range denoted in Matlab as M(2:k:m,
4:2:N).

Scientific programming environments demand for a global
namespace of functions. Scala has no globally visible
methods; every method must be contained in an object or a
class. However, a global function namespace can be
implemented easily with ‘static imports’. Therefore by
creating global objects we have the same convenience as if
global methods existed. For example the plot() method is
available since we import it from object scalaSci.plot.plot.
Also, Scala offers the possibility to define ‘apply()’
methods for the companion objects of classes. These
apply() methods offer the convenience to call them directly
with the object name. In this case, we need to import in the
global environment only the object and not the particular
method.

3 Examples of interfaced Java scientific
libraries

ScalaLab provides a novel feature: a uniform high-level
interface to multiple Java numerical libraries that can be
switched in order the user to investigate their relative
benefits easily. Currently, we utilise the NUMAL library [9]
with the class Matrix that offers one-indexed Matrices since
the double [][] arrays in NUMAL are one-indexed.
Although, C/C++ and Java programmers are familiar with
zero-indexed arrays, Fortran and Matlab are widespread
languages popular at the scientific community that use one-
indexed arrays. Thus, this is another additional reason to
keep a one-indexed Matrix class. Also, for the zero-indexed
Mat class we can switch the library on which this class is
based: the current options are the JAMA library (http://
math.nist.gov/javanumerics/jama/), the EJML (http://code.

IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551 545
doi: 10.1049/iet-sen.2010.0135 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://code.google.com/p/efficient-java-matrix-library/

google.com/p/efficient-java-matrix-library/) and the Matrix
Toolkit for Java (MTJ) (http://code.google.com/p/matrix-
toolkits-java/).

This is accomplished by implementing similar interfaces
with the corresponding Scala wrapper classes to these
libraries. Also, we take care to make the library routines
Matlab-like whenever possible, to facilitate users familiar
with Matlab.

As we described (see Fig. 2), in order to interface Java
scientific code to ScalaLab, a wrapper Scala class is created
that provides high-level operations by defining operator-like
methods, for example, ‘+’ for addition. For example, the
EJML.Mat Scala class provides a more convenient interface
to the functionality of the ‘SimpleMatrix’ Java class of the
EJML library. This class implements the user friendly
uniform interface to the Java class. Thus the main benefits
of this class are twofold:

(a) Providing operator-like methods, for example, ‘+’, ‘∗’,
etc.
(b) Designing similar methods for all interfaced libraries and,
preferably one similar to Matlab, in order the user to have a
familiar and uniform interface.

The top-level mathematical matrix functions, for example,
rand(int n, int m), ones(int n), etc. should cope with the
matrix-type representation appropriate to the currently
utilised library. Also, a matrix object denoted for example,
Mat can refer to different matrices depending on the library.
The ‘switching’ of libraries is performed by initialising a
different Scala interpreter that imports the corresponding
libraries. For example, there exists a Scala object
‘StaticMathsJAMA’ that performs important initialisations
for the JAMA library and a ‘StaticMathsEJML’ for the
EJML one. The utilisation of the JAMA library is
accomplished by creating a Scala Interpreter that imports
the ‘StaticMathsJAMA’ object while for the EJML the
‘StaticMathsEJML’ one is imported. Currently, the
ScalaLab user can switch different underlying Java libraries
with a right-mouse click popup menu. We will improve the
user interface in future ScalaLab versions, in order to allow
the user to specify more conveniently the preferences on the
Java scientific libraries that he (she) wants to have in the
working configuration.

The EJML is a linear algebra library for manipulating
dense matrices. Its design goals are: (i) to be as
computationally efficient as possible for both small and
large matrices, (ii) to be accessible to both novices and
experts and (iii) to present three different interfaces: (a) the
‘SimpleMatrix’, (b) the ‘Operator’ interface and (c) the
‘Algorithm’ interface. These interfaces are ordered in
increasing sophistication and run efficiency but also in
decreasing simplicity (e.g. the algorithm interface is the
most efficient but also the most complicated).

These goals are accomplished by dynamically selecting the
best algorithms to use at runtime and by designing a clean
API. EJML is free, written all in Java, and can be obtained
from http://code.google.com/p/efficient-java-matrix-library/

The EJML library stores matrices as one-dimensional Java
double array and in row major format, that is, first the zero
row of the matrix, then the second, etc. The ‘CommonOps’
class of EJML works by not overwritting the operands but
instead it creates new objects for storing the results. This
encourages a functional style of programming. The EJML is
designed to facilitate the user, that is, for a square matrix A
of dimension N × N at the equation Ax ¼ b, the exact

solution is seeked while for overdetermined systems (i.e.
N . M) the least squares solution is computed.

The library provides an extensive set of functionality
implemented with the efficiency goal in mind. In ScalaLab,
we can utilise the basic algorithms even more easily and
with a Matlab-like interface.

4 Toolboxes of scientific code

In the previous section, we investigated the integration of
important numerical analysis libraries within the ScalaLab
kernel. These libraries provide a set of useful general
purpose functions, for example, rand, svd, eig, rank to the
ScalaLab user. These functions although they seem
hardwired to the system are implemented on top of Java
numerical analysis libraries using Scala classes and objects
to wrap their operation. However, for more specialised
libraries of scientific code another mechanism is designed
that utilises them dynamically without embedding any code
within the ScalaLab core. An important advantage of
Scalalab is its ability to cope easily and with a Matlab-like
scripting with existing libraries of Java scientific code.
ScalaLab exploits the reflection capabilities of Java in order
to interrogate dynamically the Java libraries and to present
graphically their class contents.

There are two methods by which the ScalaLab user can
utilise toolboxes. The first method that is simpler but does
not present an insight about the toolbox contents is to
simply place the classes of the toolbox at the classpath of
the Scala interpreter.

This is accomplished by the following steps:

1. Unziping the .jar file of the toolbox.
2. Updating the ScalaClassPath to include the root directory
where the .jar file was extracted.

Alternatively, we can append the ScalaLab classpath with
the .jar file of the toolbox without unzipping it. This choice
has the advantage of avoiding the creation of many files on
disk.

The second method of installing toolboxes is more
convenient since it guides dynamically the user about the
toolbox contents using the reflection potential of Java. The
classes and public methods available from the toolbox are
displayed graphically using the potential of the ‘JTree’ [6]
Swing display component to display hierarchically with a
tree representation, the information extracted with the Java
reflection API (Fig. 3).

With this method we import the specified toolboxes in the
‘Available Toolboxes’ list with the ‘Import toolboxes’ button.
Toolboxes can be removed from the ‘Available Toolboxes’
list with a right-mouse click.

An installed toolbox during one ScalaLab session, remains
on the ScalaClassPath, for example, having installed weka.jar,
weka.jar remains on the ScalaLabClassPath for next sessions.

Toolboxes can also be easily removed by:

1. Selecting the toolbox from the loaded toolboxes list.
2. Right-mouse click and selecting the remove option of the
popup menu.

Toolbox classes are loaded into the JVM with an instance
of ‘JarClassLoader’ class which itself extends the class
‘ExtensionClassLoader’. The ExtensionClassLoader class
extends the standard Java application ‘ClassLoader’ class. It
keeps a list of additional paths at which it is able to search

546 IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0135

www.ietdl.org

http://code.google.com/p/efficient-java-matrix-library/
http://code.google.com/p/matrix-toolkits-java/
http://code.google.com/p/matrix-toolkits-java/
http://code.google.com/p/efficient-java-matrix-library/

for a class. Additional entries can be added to this list, in order
to extend the classpath. The ExtensionClassLoader first
delegates the class-loading task to the standard Java System
Class Loader (or Application Class Loader). If the later fails
to load the class then the ExtensionClassLoader searches to
find the class in the specified paths. We should note that the
ExtensionClassLoader favors predefined Java classes over
user classes of the same name. This conforms to the usual
Java security policy of avoiding to override system classes
[6].

The JarClassLoader class offers special convienient
methods for retrieving Java classes from .jar files. The
JarClassLoader loads the classes by first creating a Scala
Interpreter with an extended classpath that includes the
toolbox .jar file. Also, an ExtensionClassLoader is created
that also utilises the same extended classpath. This class
loader has as its parent the classloader of the Scala interpreter.

We demonstrate below the ways that the ScalaLab
environment facilitates the utilisation of Java scientific
libraries. The Java library used as an example toolbox
performs independent component analysis (ICA) using the
FastICA algorithm.

5 FastICA toolbox

The FastICA algorithm exploits the notion of non-
Gaussianity, which is a requirement of ICA [10].

A Gaussian random variable distinguishes itself from all
other random variables by having the largest possible
differential entropy. In particular, the information content of
a Gaussian random variable is confined to second-order
statistics, from which all higher-order statistics can be
computed. To access the non-Gaussianity of a random
variable, we postulate a measure that satisfies two properties:

(a) The measure is non-negative, assuming the limiting value
of zero for a Gaussian random variable.

(b) For all other variables, the measure is greater than zero.

The concept of negentropy satisfies both of these
properties.

Consider a random vector X that is known to be non-
Gaussian. The ‘negentropy’ of X is formally defined by

N (X) = H(XGaussian) − H(X)

where H(X) is the differential entropy of X and H(XGaussian) is
the differential entropy of a Gaussian random vector whose
covariance matrix is equal to that of X.

In information-theoretic terms, negentropy is an elegant
measure of non-Gaussianity; however, is highly demanding
from the computational point of view. Therefore simple
approximations to negentropy are utilised by the FastICA
algorithm. It is beyond our scope to describe the details.
The interesting reader can consult the excellent theoretical
presentation of [10].

The example below demonstrates the utilisation of the
FastICA with ScalaLab. This Java library is open source
and can be obtained from http://sourceforge.net/projects/
fastica/. Although, the FastICA library can be used with any
Java program, ScalaLab facilitates thinks significantly. The
ScalaSci script that follows starts by constructing two
synthetic sinusoidal signals and a Gaussian random signal
(with the vrand() call). Then it mixes them by performing a
Matrix multiplication. Subsequently, a FastICAConfig
structure is configured in order to initialise properly
parameters for the specific FastICA library. Also, a listener
component is created to watch at the FastICA computation.
For readers familiar with Java, the progressListener has the
same semantics as the Java’s Swing listeners, although with
Scala’s syntax. Finally, an activation function for the
FastICA algorithm is chosen and the algorithm is
performed. Fig. 4 displays the original signals before
mixing at the left plot and those after performing ICA at the
right plot. We observe that the ICA algorithm separates the
components successfully (Fig. 5).

6 Comparative evaluation of our method

The traditional approach for scientific scripting environments
is to build them using interpreted scripting approaches. This
was the approach of the ‘j-Script’ interpreter [11, 12] and of
open-source packages as SciLab and Octave. However,
interpreted scripting usually cannot confront heavy
computational loops, since it is much slower than compiled
scripting.

Compiled scripting frameworks for Java operate by first
compiling the code to class bytecodes. Then a ‘Java
classloader’ is used together with a variable ‘binding’
scheme to execute the class and communicate its results.

Compiled Scripting apart from the speed advantage
provides the potential to directly call Java class code. In
contrast, for external class code to be called from the
j-Script interpreter we have required for each function that
needs to be called externally to implement an ‘external’
function interface that consisted of an ‘evaluate()’ function
[11, 12]. The interfacing of existing Java libraries required a
significant work to implement the appropriate interface
functions. Also, specialised toolboxes of Java code
practically cannot be utilised, since their classes are not
directly accessible and subtle interfaces are required.

Fig. 3 Classes of the Java Fast ICA toolbox retrieved with
reflection and displayed graphically with a JTree

IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551 547
doi: 10.1049/iet-sen.2010.0135 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://sourceforge.net/projects/fastica/
http://sourceforge.net/projects/fastica/

A critisism of JVM with respect to number crunching is
that is relatively slow. However, for the recent versions of
the JIT compiler this no longer holds. Instead, we are
impressed that Java outperforms usually C++ in a number
of benchmarks we have tested and it is slightly defeated
only if C++ is supported with an optimised compiler.
Clearly, the optimisations that are performed by the JIT
compiler are quite sophisticated, for example, array bounds
check elimination [13] and the JVM performance on
numeric computations is superb.

For example, we have performed a matrix multiplication
benchmark to exploit the relative performance of C++,
Java and Scala compilers. We tested gcc 3.4.2 running on
SuSE Linux, Visual C++ of Visual Studio 2005, Java 6
and Scala 2.8 with a P-Quad 2.9 GHz with Windows Vista
64-bit. The results for integer and double arithmetic that we
have obtained are presented below in table format
(Table 1). Thus, the JVM is no longer ‘slow’ for scientific
computation, and further improvements in JIT techniques
will make it even better. This fact encourages the software
research to improve on scientific programming
environments for the JVM.

The jLab environment [1] is similar in style with ScalaLab,
but explores the Metaobject protocol of Groovy [3] in order to
build high-level mathematical operators. The statically typed
Scala language cannot implement a Metaobject-like
mechanism, since the later implies the construction of the
code for the proper method invocation at run time. Scala
therefore builds different mechanisms that provide similar

and even better flexibility. We note that with Scala we can
implement easily Matlab-like submatrix extraction and
access operations with the clever apply and update methods.
With Groovy the same requires much more chores to perform.

What is more important is that the resulting numerical code
runs with speeds comparable to native Java classcode. In
comparison some dynamic languages as, for example,
Groovy, although they utilise the effective technique of
‘call-site caching’ [14], to speed up dynamic calls, are
significantly slower. As we tested, with small numerical
benchmarks executed both in Groovy based jLab and with
ScalaLab, depending on the properties of the code, Groovy
is about 40–150 times slower than Scala. It is interesting to
note that an open-source project, the Groovy++ project
(http://code.google.com/p/groovypptest/), designs a
language that permits statically typed code parts mixed with
dynamically typed ones. However, although the statically
typed code parts are no longer slow, complexity is
introduced by this mixed mode execution that at least up-to-
now is not concealed from the user.

The ‘Scalala’ (http://code.google.com/p/scalala/) project
created by Daniel Ramage is another similar project with
ScalaLab. Scalala exploits also the scalability and flexibility
of the Scala language. However, the important difference
is that Scalala is mainly a set of Scala mathematical
libraries and not an easy to use integrated environment as
ScalaLab is.

The Table 2 below compares some attributes of the
ScalaLab environment related to other similar environments.

Fig. 4 Screen snapshot illustrating the application of the Java ICA toolbox to perform signal seperation from within ScalaLab

548 IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0135

www.ietdl.org

http://code.google.com/p/groovypptest/
http://code.google.com/p/scalala/

At this point we should note that we are in the process of
developing a lot of facilities within the ScalaLab framework
that will facilitate the development of scientific software.
We already have working versions on these user interface
components and we improve continuously on them.
Specifically, ScalaLab provides:

† an extensive on-line help system based on the JavaHelp
(http://javahelp.java.net/) framework;

† keyword sensitive help activated with the F1 function key
that is based on the dynamic acquition of the available
classes, methods and fields;
† TAB code completion that facilitates the user by presenting
the identifiers in-scope and their fields and methods;
† graphical control of the classpath;
† a text editor with code-colouring facilities and the ability to
compile Java and Scala sources with source level debugging
abilities (e.g. a limited support of breakpoints and ‘run-to-cursor’);

Fig. 5 Code of the FastICA example

IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551 549
doi: 10.1049/iet-sen.2010.0135 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://javahelp.java.net/

† a specialised file system explorer that provides a lot of
useful operations on files (e.g. create, delete, edit, compile,
run, add to classpath).

Although, such facilities usually exist in modern general
purpose integrated development environments (IDEs), for
example, in Netbeans, Eclipse, we try to integrate them in
ScalaLab more than in any known scientific programming
environment.

7 Conclusions and future work

This work has presented some ways by which we can work
more effectively with existing Java scientific software from
within ScalaLab. We demonstrated that ScalaLab can
integrate elegantly well-known Java numerical analysis

libraries for basic tasks. These libraries are wrapped by
Scala objects and their basic operations are presented to the
user with a uniform Matlab-like interface. Also, any
specialised Java scientific library can be explored from
within Scalalab much more effectively and conveniently.

An extension of Scala with Matlab-like constructs, called
ScalaSci is the language of ScalaLab. ScalaSci is effective
both for writing small scripts and for developing large
production level applications.

Future work concentrates on improving the interfaces of
Java basic libraries and on incorporating smoothly more
competent libraries (e.g. the COLT library for basic linear
algebra). Also, we work on providing better on-line help
and code-completion for these routines. These facilities are
of outstanding importance and support significantly the
utilisation of these rather complicated libraries.

Table 1 Benchmarking results for performance on numerically intensive tasks

gcc, ms VC++, ms VC++optimised, ms Java, ms Scala, ms

integer arithmetic 5554 6021 1981 3807 3634

double arithmetic 5694 6530 1482 3900 3931

We observe that only with code optimisation C++ can outperform JVM code

Table 2 Comparison of ScalaLab attributes related to other similar environments

ScalaLab Matlab SciLab jLab

speed very fast, execution speed

depends on the Java

Runtime, generally faster

than Matlab at script

code, but slower for

routines implemented as

built-in with Matlab

very fast, especially the

build-in routines are

highly optimised, overall

ScalaLab and Matlab run

at comparable speeds

and which one

outperforms depends on

the case

much slower than

ScalaLab (or Matlab),

about 20–100 times

slower

slower than ScalaLab,

about 5–30 times slower

portability very portable, anywhere

exists installed Java 6 JRE

there exist versions for

each main platform, e.g.

Windows, Linux, MacOS

there exist versions for

each main platform, for

example Windows, Linux,

MacOS

very portable, anywhere

exists installed Java 6 JRE

open-source yes no yes yes

user-friendness very user friendly very user friendly very user friendly very user friendly

libraries/toolbox

availability

all the JVM libraries a lot of toolboxes are

available, but generally

not free

there exist toolboxes for

basic applications but for

specialised ones is

difficult to find

all the JVM libraries

documentation little yet, and limited to

on-line help, since even

main code components

are in the development

process

extensive documentation sufficient documentation on-line documentation

only

scalability of the

language

the Scala language is

designed to be scalable

and extensible

matlab is not designed to

be extensiible

SciLab is not designed to

be extensiible.

the Groovy language as

dynamic is extensible

development of

large applications

Scala has a lot of novel

features that can facilitate

the development of large

applications. ScalaLab

applications can run

standalone, as any Java

code

the notion of

MATLABPATH integrates

many Matlab scripts,

something not very

scalable

similar to Matlab, the

SciLab scripts are not well

suited for complex

applications, but rather

they fit well for rapid

testing of scientific

algorithms

Groovy has a full

compiler that can be used

to produce standalone

code of a large

application project

active user

development

community

ScalaLab is a new project,

and thus up-to-now lacks

a large user base

Matlab has a huge user

base

SciLab has a large user

base, however much

smaller than Matlab’s

jLab is a new project, and

thus up-to-now lacks a

large user base

550 IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0135

www.ietdl.org

8 References

1 Papadimitriou, S., Terzidis, K., Mavroudi, S., Likothanasis, S.:
‘Scientific scripting for the Java platform with jLab’, IEEE Comput.
Sci. Eng. (CISE), 2009, 11, (4), pp. 50–60

2 Papadimitriou, S., Terzidis, K., Mavroudi, S., Likothanasis, S.:
‘ScalaLab: an effective scientific programming environment for the
Java platform based on the Scala object-functional language’, IEEE
Comput. Sci. Eng. (CISE), 2011, 13, (5), pp. 43–55

3 Konig, D., Glover, A., King, P., Laforge, G., Skeet, J.: ‘Groovy in
action’ (Manning Publications, 2007)

4 Odersky, M., Spoon, L., Venners, B.: ‘Programming in Scala’ (Artima
Press, 2008)

5 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:
‘Numerical recipes in C++, the art of scientific computing’
(Cambridge University Press, 2002, 2nd edn.)

6 Horstmann, C., Cornell, G.: ‘Core Java 2’, Vol I Fundamentals, Vol II –
Advanced Techniques (Sun Microsystems Press, 2008, 8th edn.)

7 Wampler, D., Payne, A.: ‘Programming Scala’ (O’Reily, 2009)
8 Subramaniam, V.: ‘Programming Scala – tackle multicore complexity

on the Java virtual machine’ (Pragmatic Bookself, 2009)
9 Lau, H.T.: ‘A numerical library in java for scientists and engineers’

(Chapman & Hall/CRC, 2003)
10 Haykin, S.: ‘Neural networks and learning machines’ (Pearson

Education, 2009, 3rd edn.)
11 Papadimitriou, S.: ‘Scientific programming with Java classes

supported with a scripting interpreter’, IET Softw., 2007, 1, (2),
pp. 48–56

12 Papadimitriou, S., Terzidis, K.: ‘jLab: integrating a scripting interpreter
with Java technology for flexible and efficient scientific computation’,
Comput. Lang. Syst. Struct., 2009, 35, pp. 217–240

13 Wurthinger, T., Wimmer, C., Mossenblock, H.: ‘Array bounds check
elimiation for the Java Hotspot Client Compiler’. PPPJ 2007, Lijboa
Portugal, 5–7 September 2007

14 Aho, A., Lam, M.S., Sethi, R., Ullman, J.D.: ‘Compilers, principles,
techniques, & tools’ (Addison-Wesley, 2007, 2nd edn.)

www.ietdl.org

IET Softw., 2011, Vol. 5, Iss. 6, pp. 543–551 551
doi: 10.1049/iet-sen.2010.0135 & The Institution of Engineering and Technology 2011

Copyright of IET Software is the property of Institution of Engineering & Technology and its content may not

be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

