
RESEARCH ARTICLE

IQM: An Extensible and Portable Open Source
Application for Image and Signal Analysis in
Java
Philipp Kainz, Michael Mayrhofer-Reinhartshuber, Helmut Ahammer*

Institute of Biophysics, Center for Physiological Medicine, Medical University of Graz, Graz, Austria

* helmut.ahammer@medunigraz.at

Abstract
Image and signal analysis applications are substantial in scientific research. Both open

source and commercial packages provide a wide range of functions for image and signal

analysis, which are sometimes supported very well by the communities in the correspond-

ing fields. Commercial software packages have the major drawback of being expensive and

having undisclosed source code, which hampers extending the functionality if there is no

plugin interface or similar option available. However, both variants cannot cover all possible

use cases and sometimes custom developments are unavoidable, requiring open source

applications. In this paper we describe IQM, a completely free, portable and open source

(GNU GPLv3) image and signal analysis application written in pure Java. IQM does not de-

pend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a

continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided.

The modular functional architecture based on the three-tier model is described along the

most important functionality. Extensibility is achieved using operator plugins, and the devel-

opment of more complex workflows is provided by a Groovy script interface to the JVM. We

demonstrate IQM’s image and signal processing capabilities in a proof-of-principle analysis

and provide example implementations to illustrate the plugin framework and the scripting in-

terface. IQM integrates with the popular ImageJ image processing software and is aiming at

complementing functionality rather than competing with existing open source software. Ma-

chine learning can be integrated into more complex algorithms via the WEKA software

package as well, enabling the development of transparent and robust methods for image

and signal analysis.

Introduction
Researchers are often confronted with situations, where data needs to be analyzed quickly in a
preferably easy way. Commercially available software packages may not meet current require-
ments in an out-of-the-box configuration, are not available or license fees are too expensive.
Furthermore, source code is often undisclosed and there is no opportunity to change or adapt

PLOSONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 1 / 28

OPEN ACCESS

Citation: Kainz P, Mayrhofer-Reinhartshuber M,
Ahammer H (2015) IQM: An Extensible and Portable
Open Source Application for Image and Signal
Analysis in Java. PLoS ONE 10(1): e0116329.
doi:10.1371/journal.pone.0116329

Academic Editor: Lennart Martens, UGent / VIB,
BELGIUM

Received: July 17, 2014

Accepted: December 4, 2014

Published: January 22, 2015

Copyright: © 2015 Kainz et al. This is an open ac-
cess article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Current version of IQM
can be downloaded from homepage http://iqm.sf.net
or from project page http://sourceforge.net/projects/
iqm/ Source code is available at project page http://
sourceforge.net/projects/iqm/.

Funding: The authors have no funding or support to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116329&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://iqm.sf.net
http://sourceforge.net/projects/iqm/
http://sourceforge.net/projects/iqm/
http://sourceforge.net/projects/iqm/
http://sourceforge.net/projects/iqm/

parts of existing applications. This is a commonly known issue and researchers have to write
their own code for each specific problem [1].

Due to these drawbacks of commercial software, the number of open source users has in-
creased during the last decade. More permissive licenses and the advantage of cross-platform
availability contribute to the considerable increase in open source users, who can now choose
from a broader variety of software to fit their particular use cases and enhance the outcome of
their research [2].

One important aspect in increasing productivity is having an existing framework that al-
ready provides functionality for common and frequent actions like loading and saving relevant
file formats. Such tasks, however, are not directly related to the scientific or algorithmic prob-
lem, but may hamper progress tremendously.

These facts gave reason to the development of IQM, which has initially been developed by
one of the authors in 2004 using IDL (Interactive Data Language, Exelis VIS, Boulder, Colo-
rado, USA) programming language. Several image processing algorithms have been imple-
mented and in 2009 IQM has been migrated to the Java platform [3]. Especially with the
analysis of images using fractal dimensions [4] the visualization requirement for multi-
dimensional results emerged. As a consequence thereof, basic signal analysis algorithms and
plotting were added in late 2012. In recent months, several contributors have implemented and
tested algorithms for image and signal analysis in the IQM framework. The current stable ver-
sion is 3.2 and the project is published under the GNU General Public License version 3 on the
open source hosting platform sourceforge.net [5].

Open source software has several advantages for scientific research: it is free, well reviewed
by the community and most of the time extensible for custom requirements. There are several
open source applications for image analysis, which will be listed in the next section. IQM pro-
vides some unique characteristics for image and signal analysis, which are presented in this
paper.

Organization of this Paper
After giving a brief introduction to the field of open source research software and stating the ra-
tionale behind the development of IQM, the remainder of this paper is organized as follows.

We review existing open source applications for image analysis and name the intended
audience of this paper in the current section. Furthermore, a brief installation guide is pre-
sented here. Within the subsequent sections we give an overview of IQM’s key components,
briefly describe the functionality, and both the system and functional architecture. After
that, a proof-of-concept analysis is presented, demonstrating how users can benefit from the
unique characteristic of combined image and signal processing in a single portable open
source tool.

We demonstrate, how the IQM framework can be extended via operator plugins and how it
integrates with standard open source software for image processing and machine learning. The
structure of plugins and operators is explained using the example of an image operator plugin.
Then, we briefly introduce the scripting interface of IQM and demonstrate its usage in an auto-
mated image processing workflow. Eventually, we will discuss possible future developments of
IQM and open source research software tools.

This paper is supplemented by the source code used in the operator and script example
(S1 File and S2 File), as well as the syntax-highlighted version of the script (S1 Listing). For fur-
ther details on the sections, we kindly refer the reader to the supporting information as well as
the detailed user guide available from the project website http://sf.net/projects/iqm/files/3.2/
IQM3.2_userguide.pdf.

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 2 / 28

http://sourceforge.net
http://sf.net/projects/iqm/files/3.2/IQM3.2_userguide.pdf
http://sf.net/projects/iqm/files/3.2/IQM3.2_userguide.pdf

Related Work
In this section we briefly describe several free and open source software packages for image and
signal analysis. Our focus is on software that can be applied to similar tasks as IQM, is usually
and frequently used in life sciences, and hence is cited in corresponding literature. We raise no
claim to completeness of the following overview, a more extensive list can be found e.g. in a re-
view by Eliceiri et al. [1] or at rsb.info.nih.gov/ij/links.html. Open source image processing li-
braries like OpenCV [6], openIP [7] or the Insight Segmentation and Registration Tookit
(ITK) [8] are not included in this list, however, they should be noted in this context.

• ImageJ, imagej.nih.gov/ij:
The popular image processing software ImageJ (current version: 1.48t, Java) is well known
for its open plugin architecture. It can be extended by developing new plugins or by record-
ing macros, which is both possible for instance with an included editor and a Java compiler.
Furthermore, it is possible to run ImageJ not only as an application on a Java virtual machine
but also as an online applet [9–11]. Fields of application include, amongst others, different
life and medical sciences, as for example (molecular) biology, radiology, and digital pathology
[12–14]. At the moment, a completely rewritten version, ImageJ2, is under development (see
developer.imagej.net/about).

• Fiji, fiji.sc:
Fiji (current version: Madison, Java) is a distribution of ImageJ, which is especially optimized
for an application in life sciences and particularly for the analysis of microscopy images. It
provides detailed descriptions of the included algorithms, extensive documentations and tu-
torials with the aim to enhance collaborations between research communities from computer
sciences and biology [15].

• CellProfiler, www.cellprofiler.org:
The software CellProfiler (current version: 2.1.0, Python) has its main applications in biology
and focuses on user-friendly automated measurements of phenotypes, i.e. to extract quantita-
tive information from biological images [16–19]. Additionally, a free and open source soft-
ware package CellProfiler Analyst (current version: 2.0) is available, which may be used for
exploration and analysis of large, high-dimensional data, e.g. with several included machine
learning tools [20, 21].

• Icy, icy.bioimageanalysis.org:
The bioimage informatics platform Icy offers a correspondent software package (current ver-
sion: 1.5.2.0, Java) for image analysis together with a broad variety of plugins. The main goals
of this project are reproducibility, standardization, and easy management of plugins and
workflows. It supports graphical programming and script development in Javascript and Py-
thon [22].

• Endrov, www.endrov.net:
The image analysis program Endrov (current version: 2.23.2, Java) can be used for image ac-
quisition from light and fluorescence microscopes as well as for post-processing. Main fea-
tures are e.g. the support of high-dimensional microscopy data and the ability for handling
large datasets up to sizes over 100 gigabytes [23].

• BioImageXD, www.bioimagexd.net:
The software package BioImageXD (current version: 1.0, Python and C++) was developed
with a focus on the needs of microscopists and cell biologists. It can be especially used for vi-
sualization of multi-dimensional microscopy images, e.g. to create animations of complex

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 3 / 28

http://rsb.info.nih.gov/ij/links.html
http://imagej.nih.gov/ij
http://www.cellprofiler.org
http://icy.bioimageanalysis.org
http://www.endrov.net
http://www.bioimagexd.net

3D renderings by using virtual camera flying paths, and appropriate object-based and voxel-
based analysis [24].

• TMARKER, www.comp-path.inf.ethz.ch:
Automated analysis of immunohistochemically stained tissue can be automated with the
software toolkit TMARKER (current version: v1.20614, Java), which uses machine learning
algorithms based on randomized decision trees and support vector machines [25].

• VisBio, loci.wisc.edu/software/visbio:
The software tool VisBio (current version: 3.40rc1, Java) can be used for visualization of
high-dimensional image data and its analysis. Its special focus is on the processing of large
and complex datasets, as they are produced e.g. by newly developed laser scanning microsco-
py techniques in biology [26, 27].

Although well-established public domain image processing programs such as ImageJ [11]
include basic methods for fractal image analysis, e.g. the binary box-counting method, freely
available tools for more advanced fractal image and signal analysis are quite rare. However, re-
search groups often publish their implemented algorithms online. In the following an overview
over the most popular, freely available fractal analysis packages or plugins is given.

• FracLac (ImageJ), imagej.nih.gov/ij/plugins/fraclac:
Developed as a plugin for ImageJ, FracLac can be used to calculate mass and box-counting
dimensions and to perform multifractal and lacunarity analysis of black and white as well as
colour images. Suggestions from e.g. the ImageJ, neuroscience, and engineering communities
have been included in its development [28].

• Fractalyse, www.fractalyse.org:
The software package Fractalyse can be used for fractal analysis of black and white images. In
addition to mass and box-counting dimensions, correlation, dilation or Gaussian convolu-
tion approaches are implemented [29].

• FDim, reuter.mit.edu/software/fdim:
The fractal dimension of grey value images can be estimated with FDim, which supports cal-
culation of the capacity, the information, the correlation and the probability dimensions.

• Gwyddion, gwyddion.net:
The open source software Gwyddion, which was developed for scanning probe microscopy,
also offers fractal analysis of images. It includes a tool to apply either a box-counting, a trian-
gulation, a variance, or a power spectrum method for the estimation of fractal dimensions
[30].

All mentioned software applications can be used without programming skills in a high-level
graphical user interface. Some of them also provide command line interfaces for integration in
external tools and tasks. However, IQM expresses several characteristics that are not expressed
by the mentioned software applications and which we will emphasize throughout the paper
wherever appropriate:

1. Combined image and signal analysis from a high level GUI in a single tool,

2. Convenient management of images and signals in a clearly arranged graphical user interface
(GUI),

3. Advanced and versatile stack processing of heterogeneous data in serial or parallel mode,

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 4 / 28

http://www.comp-path.inf.ethz.ch
http://loci.wisc.edu/software/visbio
http://imagej.nih.gov/ij/plugins/fraclac
http://www.fractalyse.org
http://reuter.mit.edu/software/fdim
http://gwyddion.net

4. Interactive evaluation of image and signal processing algorithms in a “preview”mode,

5. Managing persistent parameter preferences for individual algorithms,

6. Multiple independent image annotation layers,

7. On-demand switching between in-memory and disk-cached (“virtual”) processing modes,
and

8. Integrated comprehensive fractal image and fractal signal analysis.

We are not aiming at providing a library of image processing algorithms or substituting any
of the mentioned products, but aim at the simple exploration of algorithms in a user-friendly
environment, where the results remain reproducible.

Intended Audience
With this paper the authors want to address researchers and software engineers in life science,
medical science, computer science, and natural sciences. We provide a free, extensible, easy-to-
use, and cross-platform software application for the exploration and development of image
and signal processing algorithms.

Additionally, IQM could be used in higher education courses in order to visualize and dem-
onstrate the basics of simple as well as sophisticated algorithms. These algorithms and concepts
can be tested with various parameters using an intuitive GUI even without programming skills.
Lecturers are often searching for proper tools for the illustration of essential principles. It
would be a tedious task to develop individual isolated applications for each showcase and most
of the time, one would have to pay a considerably large license fee for a timely restricted use of
commercial products.

With IQM, we tackle these problems by providing an open source and cross-platform soft-
ware written in one of the leading programming languages for application development. The
advantages of IQM are furthermore, that it is freely available and that the software offers a
framework for the integration of both image and signal analysis operators.

Installation
Since IQM is written in pure Java, it remains portable to various operating systems, where a
Java Virtual Machine (JVM) exists. The installation of the compiled IQM software package is
common to all operating systems and quite straightforward. However, the presence of a JVM is
a prerequisite. Packaged binary distributions of IQM can be downloaded from the project web-
site at http://iqm.sf.net. Separate packages are available for different operating systems, where
the Java archives have been packaged for system integration in Microsoft Windows, Linux and
Mac OS X. After downloading, no explicit installation step is required and the application can
be launched immediately in the standard configuration. For more detailed installation instruc-
tions the reader is referred to IQM’s user guide.

Overview and Functions

User Interface and Main Components
In order to establish a common understanding of how IQM is used and how the major compo-
nents interact, we start by describing the main parts of the user interface. The main window
hosts the key elements of the GUI: (i) Tank, (ii) Manager, (iii) Viewport and (iv) Controls, see
Fig. 1.

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 5 / 28

http://iqm.sf.net

Each processing step in IQM starts by putting a single item or an item stack to the Tank.
Items may be either images or signal data for subsequent processing, or table data for visualiza-
tion. They are parsed and loaded from the file system or, in the case of images or signals, can be
generated within the application. The Tank can be viewed as container of all loaded items and
serves as a kind of processing history. Results of previously executed operators are kept in the
list while the user may explore other algorithms or compare different results.

The MANAGER provides two identically constructed lists and coordinates the visualization
and availability of single items or item stacks to operators. Only stacks of homogeneous data
type, e.g. images, are permitted to be loaded in the manager lists. A selected radio button on
top of the lists indicates the currently active list and hence the primary item source when
launching operators. In the context of this paper, the term “operator” is used as synonym for
algorithm. All selected items are scheduled for being processed by operators, enabling flexible
and selective processing of particular items. Both Tank and Manager are able to merge single
items to stacks. Additionally, the Manager can split stacks into single items or do pairwise ex-
port from both manager lists.

The VIEWPORT provides four tabs for visualization of images, signals, tables and text. When
items are selected, they are immediately visualized in the corresponding tab. Additionally, “pre-
view” results of operators are viewed, which can subsequently be approved and appended to
the Tank for further processing. Each tab provides data type specific tools for adjusting the
view, or e.g. in case of images to annotate them.

Figure 1. IQMMainWindow and Components. The major components TANK, MANAGER, VIEWPORT and CONTROLS are highlighted. TANK hosts all items
(images, signals, tables) and serves as a history of processing steps. The MANAGER shows thumbnails of the items at the selected TANK index and lets the user
select items, which will be displayed in the VIEWPORT. CONTROLS are responsible for setting the application to the “virtual”mode, monitoring the JVM at runtime
and determining the stack processing type (serial/parallel).

doi:10.1371/journal.pone.0116329.g001

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 6 / 28

In the CONTROLS section of the main window, the user can approve the preview results of op-
erators, or launch serial or parallel stack processing of items selected in the MANAGER.

Digital Image Analysis
Digital image analysis involves image enhancement techniques, conversions between various
color and sample models, resampling as well as annotation and segmentation. In this section,
we briefly summarize the most important functions and unique features IQM provides for digi-
tal image analysis. All implemented image processing operators are enlisted in Table 1,
grouped by their main category.

Table 1. Implemented Image Processing Operators.

Main Category Operator Name

Analysis Box Dimension* [52, 55–57]

Complex Logical Depth* [58]

Fast Fourier Transform* [59, 60]

Fractal Scan*

Generalized Dimension*

Higuchi Dimension* [51]

Lacunarity*

Minkowski Dimension*

Pyramid Dimension*

Discrete Fourier Transform

Gradient Vector Field

Histogram Modification

Image Calculation

Intensity Statistics

Stack Statistics

Value Calculation

Generator Fractal Surfaces*

Iterative Function System*

Image Generator

Object Detection Template Matching

Processing Fractal Surrogates* [61]

Affine Transformations

Auto Correlation Function

Border Extender

Color Balancer

Color Space Conversion

Distance Transform [62]

Geometric Transformations

Image Crop

Intensity Inverting

Neighbourhood Pixel Scan Rank Filter

Resize

Smoothing

Unsharp Masking

Registration BUnwarpJ [63]

Center of Gravity Registration

Image Stabilizer

TurboReg [64]

(Continued)

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 7 / 28

Convenient file input and output is important to any application and hence standard image
file formats used in everyday computing are supported. Furthermore, IQM supports some file
formats commonly used in (bio)medical imaging. Thus, we are using the functionality of the
OME Bio-Formats library [31] and ImageJ plugins to read these formats.

Image Enhancement, Manipulation and Registration. If required for specific image calcu-
lations or validating algorithms, images can also be artificially generated. The built-in image
generator creates 8bit or 16bit grey value images of custom size from different models like ran-
dom grey values, Gaussian distribution, constant values as well as sine and cosine functions.

IQM offers image enhancement routines for linear and non-linear smoothing and denois-
ing, edge detection algorithms, and a standard deconvolution for sharpening images [32].
Especially for image data obtained via scanning, where noise and distortions of the color spec-
trum are degrading the image, white and color balance can be used for correcting intensity val-
ues. Additionally, image histograms can be modified and standard as well as affine image
transformations are available.

Linear transformations of the intensity spectrum using a constant value can be achieved via
arithmetic and logical operators. For the segmentation of objects using binary masks or the
combination of two images, image calculations are an invaluable tool. Binary masks can be pre-
pared via pre-processing steps like edge detectors and morphological operations (erosion, dila-
tion, . . .) with various kernel shapes. The mask and the original images may subsequently be
combined pixel-by-pixel using arithmetic or logical operators.

Aligning images properly is often a key requirement for image stacks, for instance when track-
ing objects through a sequence of images, preparing a set of MRI or CT slices for 3D volume ren-
dering or for inter-modality registration. Registering is the process of finding a valid global
(rigid) or locally varying (nonrigid/nonlinear) transformation in order to fit one image to another
[33]. Simple translations within a stack can be corrected with a center of gravity registration, but
warping or other distortions require more sophisticated algorithms. ImageJ already provides a
range of plugins for registration and IQM integrates this existing functionality in its framework.

Segmentation and Texture Analysis. Segmentation is one of the most important parts in
image analysis. Generally, IQM provides intensity-, edge-, and region-based algorithms for seg-
menting an image. These algorithms can be applied to the image either globally or locally in an
interactive manner.

Table 1. (Continued)

Main Category Operator Name

Segmentation Color Deconvolution

Edge Detection

Fuzzy k-means Clustering

k-means Clustering

Mathematical Morphology

Region of Interest Segmentation

RGB Relative

Seeded Region Growing

Statistical Region Merging

Threshold [65]

Watershed

This table shows all implemented image operators grouped by their main category. An operator can also

contain subroutines which are triggered and parameterized via the graphical user interface. Operators

denoted by (*) are fractal operators.

doi:10.1371/journal.pone.0116329.t001

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 8 / 28

Global statistical texture parameters can be examined using the Grey Level Co-Occurrence
Matrix (GLCM). The statistics operator computes statistical properties based on intensities as
well as first and second order moments [32] in various directions from the GLCM. Local image
textures can be examined in an interactive manner using a sliding window approach.

Regions of Interest and Annotation Layers. Images are a multi-dimensional source of in-
formation, but when the content is heavily depending on the interpretation, the image alone
may often be insufficient. This obstacle can be overcome by adding custom annotations to the
image. Tools for drawing and modifying regions of interest (ROIs) are invaluable for custom
image annotation. IQM provides various geometric shapes to be used on independent annota-
tion layers, see Fig. 2. Each layer may contain multiple instances of available ROI types. We did
not aim at binding ROIs to each image, but to each image canvas. Hence, ROIs do not disap-
pear when the user changes the underlying image. Moreover, scrolling through an image stack
always preserves the ROI’s location, since the viewport location does not change either. This
facilitates the examination of different images at the same position with the same annotations.
Layers are stacked on top of each other, may be reordered, renamed, recolored, displayed or
hidden.

The content of annotation layers can be exported to files and imported later on. In automat-
ed workflows like scripts this facilitates documentation and reproducibility of results and thus
repeatability of entire experiments, which is a key requirement for scientific research. On
image export, visible layers may optionally be superimposed on the image, see Fig. 2(a).

Digital Signal Analysis
In addition to images, i.e. two-dimensional data, IQM allows for the analysis of digital signals,
i.e. one-dimensional sequences of numbers. The purpose of this analysis is the extraction of
meaningful information from both measured as well as artificially generated signals. Within
IQM, signals are treated as one-dimensional sequences of numbers in a dynamical memory
structure. Multiple signals can be processed in a serial or parallel manner. In this section, we
summarize the most important functions and unique features IQM provides for digital signal
analysis. All implemented signal generators and processing operators are enlisted in Table 2,
grouped by their main category.

One or multiple signals can be loaded from plain text files, lines for header and units are
considered and the required data can be selected. Additionally, IQM offers the possibility to
generate artificial signals with different signal generators.

Figure 2. Annotation Layers.Multiple instances of various ROI shapes may be placed on each annotation
layer: (a) shows an annotated image and (b) the assignment of the ROI shapes to layers 1–3. The image may
be exchanged while keeping the ROIs on each layer.

doi:10.1371/journal.pone.0116329.g002

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 9 / 28

Basic manipulation is implemented to allow an extraction of interesting parts of the signal.
Moreover, mathematical methods, determination of common statistical parameters, and a pe-
riod finder for periodic signals are available. IQM also allows surrogate data testing, e.g. to test
for non-linear structure in a signal.

Fractal Analysis of Images and Signals
IQM contains a substantial extension in order to perform fractal and nonlinear analyses of
binary as well as grey value images. The main purpose of these methods is texture analysis, par-
ticularly useful for natural as well as medical images which often exhibit fractal features
[34, 35]. Besides global methods, there is also a local fractal scanning method in order to com-
pute fractal dimensions as local image content descriptors. Signals may also exhibit fractal fea-
tures, which can be quantified using implemented estimators. For testing purposes, it is also
possible to generate images and signals with mathematically known fractal dimensions.

All implemented fractal operators for images and signals are enlisted in Table 1 and Table 2,
grouped by their main category.

Advanced Stack Processing
In the following, we describe a unique characteristic of IQM, the stack processing capability for
heterogeneous items. In the context of this paper, we refer to a set or sequence of items (signals
or images) as “stack”. Especially in pre-processing, particular homogenization steps like noise
filtering or range normalization may be required for numerous items. Unless operations can be
applied to each item, parameters of the algorithm must be adjusted. In order to find suitable
parameters, the examination of its response across multiple items is essential. This can be done
by on-line evaluation of operator settings with immediate feedback using the “preview” func-
tionality, which is another specialty of IQM.

Table 2. Implemented Signal Processing Operators.

Main Category Operator Name

Analysis Allometric Scaling*

Higuchi Dimension*

Hurst Coefficients*

Auto Correlation Function

Fast Fourier Transform

Period Finder [66]

Signal Entropy [67–70]

Signal Statistics [71]

Symbolic Aggregation [72]

Generator Fractal Generator* [73]

Discrete Chaotic Map [74–76]

Signal Generator

Processing Fractal Surrogates* [61]

Filter

Mathematical Operations

Signal Extractor

This table shows all implemented signal operators grouped by their main category. An operator can also

contain subroutines which are triggered and parameterized via the graphical user interface. Operators

denoted by (*) are fractal operators.

doi:10.1371/journal.pone.0116329.t002

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 10 / 28

Other open source image analysis applications like ImageJ and its derivatives [11] offer
image stack processing as well. However, they impose certain constraints on the nature of im-
ages. They have to be exactly of the same size, otherwise loading fails and only images of equal
size as the first one are loaded. Another drawback is that each image must be encoded with the
same sample and color model (e.g. 8bit single band, or 24bit RGB). This is problematic, since
the evaluation of an algorithm with a specific parameter set across multiple images is often re-
quired. Challenged by similar situations, an advanced and more flexible stack processing capa-
bility has been implemented in IQM. The result of an algorithm can be analyzed with the same
parameters across different images in an on-line manner. The size of the single image within
the stack does not matter, and—for algorithms that implement adaptive processing—neither
does the color or sample model. However, it has to be noted that each algorithm that needs to
be applied to heterogeneous image stacks has to implement a compatibility between different
color models. If the algorithm does not incorporate that compatibility and the color models
vary within a stack, the user has to split it up and merge similar color models again. Further-
more, the zoom factor and the field of view across multiple images remains constant. This fea-
ture is particularly useful when the results of different parameter sets or even different
algorithms need to be compared at the same magnification and position. Besides images, also
signals of various lengths can be processed as stacks.

Once the determination of parameters is satisfactory, the stack may be processed in a serial
or parallel manner. The main difference between these processing methods is that parallel pro-
cessing makes use of multiple CPU cores by distributing the workload to distinct threads. On
the other hand, serial processing considers the stack as first-in first-out queue and applies an al-
gorithm to each item sequentially.

IQM’s advanced stack processing enables the analyst to search for suitable algorithm pa-
rameters with immediate visual feedback on a high level GUI.

System Architecture and Functional Components
The internal software architecture of IQMmay be viewed from both a layer view (horizontal)
and a functional view (vertical), see Fig. 3. In this section we briefly want to introduce the sys-
tem architecture and the functional components and give the reader an idea of how the compo-
nents are connected and where plugins and scripts fit in.

Three-Tier Architecture
IQM follows a classic three-tier model of software architecture [36]. Data management is sepa-
rated from business logic and representation components, facilitating flexibility and extensibili-
ty in the development process. The software is designed to be process-oriented.

Data Tier. In the context of a running IQM instance all persistent and transient data items,
e.g. a single image, a couple of signals, or table objects, are managed by software components
attributed to the data tier. These data items are the most basic unit, where operations can be ex-
ecuted on. They may be either loaded to the memory directly or serialized to a temporary direc-
tory in order to save memory for the actual processing routine. Thus, the data tier plays an
important role in file access tasks by providing functionality for decoding and encoding various
contents. Data is loaded and parsed into a flexible internal data model, which manages the orig-
inal data item as well as its low-level properties such as file names and paths.

Keeping items in memory that are irrelevant to current computations is not efficient, since
they are blocking valuable memory. Processing large collections of items may also become
quite memory-consuming. Hence, we implemented on-demand serialization or “virtualiza-
tion”, which is another unique characteristic of IQM. Within the virtualization framework,

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 11 / 28

every data item marked as “virtual” is serialized to a temporary directory conjointly with its
meta-data, where it remains accessible to the application. If the application context requires
the access of a virtual item during any routine, it will be activated and deserialized into memo-
ry. After the operation is completed and the item is no longer required, the item is serialized
back to the file system and memory is freed by the JVM’s garbage collector. The application
may be set to the virtual mode for the entire session, in between operator executions or just for
a single operation. This procedure can be performed on-line and does not require a restart.

All functions of this tier are extensively used by the next higher business logic tier, but are
not supposed to be used by the presentation tier directly.

Business Logic Tier. The business logic tier implements the use cases of a software applica-
tion and ties together data and presentation tier. It controls the behaviour of the application at
runtime, e.g. performs consistency checks of data items passed to operators and hosts the pro-
cessing algorithms. Image and signal processing algorithms (operators) are the heart of the
IQM operator framework. A workflow is a sequence of one or more operator executions and
controlling them is essential to the stability of the application.

The abstract factory design pattern [37] is widely used in IQM, e.g. for the creation of pro-
cessing tasks and operators. It facilitates the creation of objects without concrete application
context and enables a more modular application architecture. Based on specific declarations or
signatures, i.e. how many input parameters an algorithm takes or whether it is an image or sig-
nal processing algorithm, factories instantiate objects of the corresponding class and bind them

Figure 3. Three-Tier and Functional System Architecture. The system architecture of IQM can be illustrated as classical three-tier model. The functional
architecture is composed of different modules and spans vertically over one or more tiers. The “IQM-APP”module ties together all functional components
and represents the entire application.

doi:10.1371/journal.pone.0116329.g003

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 12 / 28

to the application context at runtime. This enables loose coupling of client code and library, or
framework, respectively. Alongside various registries and generic interfaces, this concept is of
utmost importance for the operator plugin framework and hence for the extensibility of the
software. The concept of operator plugins and how it is realized in IQM will be described in de-
tail in section “Extensibility”.

Presentation Tier. A GUI is usually more attractive than a simple command-line
interface and tends to lead to higher user acceptance [38]. Visual information representation
is crucial to digital image processing, especially when it comes to the evaluation of different
algorithms in a comparative manner. However, a convenient and user-friendly GUI is
accompanied by significant effort in software engineering. Bad usability is one of the top rea-
sons why the best applications are intended to fail acceptance in practice. Especially in (bio)
medical imaging one is expecting good usability due to the fact that visual data can get
extremely complex [39].

Nowadays, researchers use several kinds of operating systems in parallel and often require
their tools being portable from one platform to the other. Users also expect software to inte-
grate fully with the familiar appearance of their operating system. The Java Swing API provides
a comprehensive toolkit for the construction of flexible GUIs and is available without addition-
al libraries in the standard Java Runtime Environment (JRE). IQM’s GUI is based on Swing
and is thus portable across any operating system capable of running the Java Virtual Machine
(JVM). Custom components and widgets based on Swing can be developed on demand, pre-
serving the mobility of the entire application package.

The presentation tier handles all user interaction on the GUI, e.g. drawing annotations on
the image canvas. Furthermore, it triggers business logic processes and visualizes results after
operator executions in the corresponding UI elements.

Functional Architecture
Functional architecture can be viewed as the sum of components implementing functionality
required for specific use cases. The functional components are not exclusively bound to a spe-
cific tier, but may span vertically over more tiers, see Fig. 3.

Over time, most software applications require new functionality to be added constantly.
Modular software architectures enable a controllable development and administration of new
functionality following state-of-the-art design patterns. The functional architecture of IQM
comprises five modules:

• API

• APP (bootstrapper)

• CORE

• PLOT-OP-BUNDLE

• IMG-OP-BUNDLE

Deployment of the application as modules facilitates the exchange of single components, e.
g. for updates.

IQM API. The application programming interface (API) of IQM contains a collection of all
necessary interfaces, abstract implementations as well as events, emitter and listener interfaces,
which are required for developing new functionality and plugins. This module contains the
data model and interfaces to the main workflow control elements TANK and MANAGER. Further-
more, factory interfaces for the extensibility are specified in the API module. This property

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 13 / 28

makes this module to the most important one in the entire IQM framework. Extensions to the
API are occasionally made for new features, while downward compatibility is maintained.

Since version 3.1, IQM also provides an interface to the dynamical object-oriented scripting
language Groovy [40]. With this new feature on board, users are able to develop re-usable pro-
cessing routines within the IQM framework. The API is responsible for injecting required vari-
ables and dependencies into Groovy bindings, which are used to pass the application context to
the script files.

IQM APP. This module is mainly a bootstrapper for the core module and responsible for
initializing system and application properties. At startup, this module creates the application
context in terms of building the GUI, searching for operator plugins and binding them to the
core module.

IQM CORE. The core module is a concrete implementation of the interfaces and abstract
methods provided by the IQM API. It hosts major parts of the GUI and processing framework.
Long-running procedures are executed in the background and are hidden from the high-level
user interface. The most important parts in this module are the registries and factories for oper-
ator plugins, which are used by the bootstrap module at startup in order to register operators
included in the standard bundles and plugins.

The Standard Operator Bundles. Image and signal operators (algorithms) that are part of
the standard application are bundled and deployed in two packages. The image operator bun-
dle contains all image processing algorithms as well as their GUIs in order to adjust the opera-
tor’s parameters. Each operator owns a validation scheme, where the sources passed to the
operator are checked prior to the execution. IQM’s image processing functionality is build
mainly around the Java Advanced Imaging (JAI, available from https://java.net/projects/jai) li-
brary. This comprehensive image processing library provides functionality used in most of the
image processing operators. It is also possible to integrate ImageJ plugins into the IQM frame-
work, which complements the operators perfectly. On the other hand, the signal operator bun-
dle contains algorithms which operate on (multiple) 1D time-dependent signals. Also, GUI
and validation schemes are included in this bundle. Currently, 50 image and 16 signal opera-
tors are part of the standard bundles.

The idea behind creating two more comprehensive libraries instead of developing every op-
erator in a single plugin was that we intend to deploy standard algorithms along the applica-
tion. Highly customized operators may, however, be developed as plugins.

Proof-of-Principle Analysis
In this section, we demonstrate the versatility of IQM’s image and signal processing capabilities
using a real-world example. A standard use case consists of three steps: (i) loading or generat-
ing items such as images or signals, (ii) processing them using various algorithms, and (iii) sav-
ing the processed results or taking them as input for subsequent processing steps.

In this proof-of-principle analysis, a time-lapse video showing the movement and prolifera-
tion of cells was chosen for showcasing analysis with IQM. Since our focus is on the application
of IQM, only basic information regarding the cells, their treatment and the recording of the
video is given. The investigated cells originated from the human epidermoid carcinoma cell
line A431, which is commercially available. The cells were defrosted and incubated using stan-
dard procedures. For microscopic observation, they were placed in a micro incubator, which
was mounted on the microscope stage. During the recording, the cells were perfused with a nu-
trition solution providing physiological conditions. An optical transmission microscope was
used to obtain a series of phase-contrast images through the viewing glasses of the micro incu-
bator. Starting from t = 0 min, every five minutes an image was taken with a CCD camera and

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 14 / 28

http://https://java.net/projects/jai

saved in JPEG format with a resolution of 1300 × 1030 pixels. In total 999 images were re-
corded, covering a total time of over 83 hours. Subsequently, all images were resized and
merged to one single video file (AVI, no compression) with a resolution of 650 × 515 pixels
and a frame rate of 10 fps.

In the therewith obtained time-lapse video, different phases of the cells under investigation
are distinguishable, which are depicted by selected frames in Fig. 4:

• Phase I—Fig. 4(a)
The first couple of frames show the solitary, unattached cells moving around rather quickly,
i.e. they move freely in the nutrition solution, mainly because of the flow of the solution itself.
In the end of this phase, the cells start to adhere to the viewing glass.

• Phase II—Fig. 4(b)
After the cells have adhered to the viewing glass, proliferation starts and more and more of
the visible region is occupied by cells and conglomerates of cells.

• Phase III—Fig. 4(c)
The growth of the occupied area nearly stops. A part of the recorded area stays free of cells
for some time. In the end of this phase, also this area is occupied.

• Phase IV—Fig. 4(d)
In the last part of the video, the whole visible region stays occupied by a monolayer of the
cells, still showing proliferation processes.The aim of this proof-of-principle analysis was to
answer the following questions:

• How long does it take until the cells adhere to the viewing glass (t1)?

• Starting from t1, how long does it take until a complete monolayer of cells is formed (t2+3)?

by applying IQM’s built-in methods without necessity of any programming, but only interact-
ing with the GUI. To ensure reproducibility, the link to the video file and detailed steps of this
example are given in IQM’s user guide, which can be downloaded from the project website.

In the following, the procedure used for analysis is summarized. Although the source video
includes a total of 999 frames, the last cell phase IV already starts at about frame #600. Hence,

Figure 4. Frames of the Proof-of-Principle Analysis. Selected frames of the video in the proof-of-principle analysis. In the first part of the video ((a), phase
I), the recorded cells from the epidermoid carcinoma cell line A431 move freely in the nutrition solution until they adhere to the viewing glass. In the second
phase, more and more of the visible region is occupied due to cell proliferation ((b), phase II). One part of the recorded area stays blank for a longer time
((c), phase III), before this part is occupied as well and the whole recorded area is occupied by a complete monolayer of the cells ((d), phase IV).

doi:10.1371/journal.pone.0116329.g004

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 15 / 28

we can omit the last 200 and load only N = 800 frames. Some of the video frames suffer from
artifacts due to technical problems during recording. In these images, two distinct regions are
distinguishable, which exhibit different intensities separated by a horizontal border. In a first
step of the analysis, IQM was used to identify these frames by stack-processed evaluation of the
mean grey values. Histogram normalization was applied to all images Ii=1. . .N of the video in
order to eliminate differences in illumination. Then, absolute intensity difference images
Jj=1. . .N-1 = |Ij+1 — Ij| were computed.

From the histograms of the resulting images J, the robust statistical parameters energy, entropy,
skewness and kurtosis were calculated and plotted versus the image number j. All of them show
distinct differences in their characteristics for phases I, II, and the combined phases III and IV. As
an example, the obtained skewness is depicted in Fig. 5, the different phases are indicated with col-
ors (blue: phase I, red: phase II, orange: phase III, green: phase IV). During phase I, the skewness
is rising, reaching a maximum value just before the start of phase II at about frame #20, during
which it is decreasing until phase III starts at about frame #200. No significant change of the
curve’s characteristic is observable at the transition from phase III to phase IV. Energy and kurto-
sis show similar, entropy shows inverted behavior. Median filtering was applied to the four signals
to eliminate outliers, then positions of local maxima and minima were identified. The mean values
and the corresponding standard errors were calculated to obtain the length of phase I

t1 ¼ ð105� 25Þmin:

After this time the cells start to adhere to the viewing glasses. With the same method the length of
phase II was found to be t2 = (920� 35) min.

However, the combined time of phases II and III, i.e. the time needed to create a full mono-
layer of cells in the investigated region, is more interesting. Hence, the time was determined
when the transition from phase III to phase IV occured. Region growing was used to measure
the size of the unoccupied spot in the original images I as a function of the frame number i.
After applying a median filter to the obtained signal, the frame was identified, at which the
whole observed region was occupied by a monolayer of the cells. The filtered signal is shown in
Fig. 6. Thus, the time period was determined, after which the investigated area was fully

Figure 5. Skewness of the Difference Images in the Proof-of-Principle Analysis. From the histograms of
the absolute image differences, statistical parameters like energy, entropy, skewness, and kurtosis were
determined. The figure shows the plot of the skewness taken from the Viewport of IQM. Phases I (blue) and II
(red) are clearly distinguishable: During phase I the skewness rises steeply reaching a maximum at the
transition to phase II at about frame #20. During phase II, the skewness is decreasing and reaches a
minimum at the transition to phase III (orange) at about frame #200. The transition from phase III to phase IV
(green) could not be detected with this approach.

doi:10.1371/journal.pone.0116329.g005

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 16 / 28

occupied by a monolayer of the cells. With the found value of t1+2+3 = (2560� 25) min, the
time period from the adhesion of the cells to a full monolayer was found to be

t2þ3 ¼ ð2455� 50Þmin � ð41� 1Þh:

Extensibility
Since a complete re-deployment of an entire application is rather impracticable for adding new
functionality, modern sustainable software architectures support extensibility via modular
components. Plugins are the most common way to extend applications without re-compiling.

IQM provides a plugin framework responsible for locating, loading and integrating the
functionality of image and signal processing operators at runtime.

Operator Plugin Framework
This section covers the following aspects: (i) the structure of the IQM operator plugin frame-
work, (ii) the common structure of image and signal operators and (iii) the encapsulation of
operators in a plugin. We illustrate the structure of an operator using an example implementa-
tion of a plugin, since plugins are designed to encapsulate operators, but first we introduce the
framework, which will host the plugins at runtime.

IQM’s operator plugin framework consists of four major parts: PLUGINSERVICE, PLUGINREGIS-

TRY, OPERATORREGISTRY, and the PLUGIN itself (see Fig. 7). The PLUGINSERVICE can be viewed as
central hub in the plugin framework, which is responsible for recursively locating and loading
plugins from the plugin directory to the classpath of the JVM. Furthermore, it calls the initiali-
zation method of the plugin interface which in turn performs a self-registration of the plugin in
the PLUGINREGISTRY.

Each plugin inherits a property manager from the abstract implementation, which is re-
sponsible for reading plugin meta-data from an XML property file and locating resources such
as menu icons in designated locations. The operator itself is registered with the OPERATORREGIS-

TRY separately.
Operator Structure. Each operator consists of (i) a descriptor, (ii) a validator, (iii) the actual

algorithm, and (iv) a GUI. An operator processes sources (images, signals, . . .) along a set of

Figure 6. Transition from Phase III to Phase IV in the Proof-of-Principle Analysis. Region growing was
used to determine the size of the area which was not occupied by the cells. The figure gives this size in pixels
as a function of the frame number as it was displayed in the Viewport of IQM. The transition from phase III
(orange) to phase IV (green) is identifiable as the frame at which the size of the spot reaches and stays at its
minimum (frame #512).

doi:10.1371/journal.pone.0116329.g006

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 17 / 28

parameters to a result, see Fig. 8. A concrete definition of the operator in terms of unique name
(for the registry), total number and types of sources (image, or signal), and valid ranges of pa-
rameter values is declared in the descriptor class. In the general setting of using operators via
the GUI, sources and parameters are validated implicitly in the workflow. The operator valida-
tor contains custom rules for sources and parameters, e.g. checking a source image for a specific
color or sample model, or checking the length of signals. Validation may be bypassed in some
situations, where a processing chain clearly defines the inputs to the operators (e.g. in scripts or
when cross-calling other operators). If the validation fails, detailed error messages are dis-
played, providing evidence of the underlying error. Otherwise, the algorithm is run with the
specified parameters and sources. Sources are usually selected in the MANAGER, and parameters
are conveniently set using the operator GUI. Once suitable parameters have been determined,
they may be stored in a persistent template for subsequent processing.

Per definition, each operator is able to produce heterogeneous, multi-dimensional result ob-
jects: multiple images, signals or tables, see Fig. 8. For example, an image operator may deliver
multiple sub-images (patches), accompanied by a set of statistical texture parameters for each
item.

Operator Plugin Example. Standard operators are bundled and deployed with the applica-
tion framework. Operator plugins are not designed to override, but to extend the existing func-
tionality. The API module clearly defines interfaces that have to be implemented by classes in
order to be used as plugins. Operators may be developed as single plugins and in this section
we take a brief look under the hood of an operator plugin for a statistical texture descriptor.
Detailed information on developing operator plugins can be found on the Wiki pages at the
project’s website at https://sf.net/p/iqm/wiki. In this example, we implemented Local Binary
Patterns (LBP [41]), a powerful statistical texture descriptor. The complete implementation of
this plugin is available from the public source code repository at https://sf.net/p/iqm/code-0 as
well as in S1 File. We will briefly introduce how the algorithm works and discuss the results it
will produce. Since in (bio)medical imaging tissue samples from biopsies may also be

Figure 7. IQMOperator Plugin Framework. The operator plugin framework enables adding custom signal and image processing operators as plugins. The
PLUGINSERVICE component manages the integration of the plugin into business logic and presentation layer. A plugin is registered with the PLUGINREGISTRY, the
containing operator is registered with the OPERATORREGISTRY. Thus, the operator factory is able to create instances of operators by querying the registry.

doi:10.1371/journal.pone.0116329.g007

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 18 / 28

http://https://sf.net/p/iqm/wiki
http://https://sf.net/p/iqm/code-0

considered as highly textured regions, we can describe the content by LBP pixel-wise (dense
grid sampling).

Operator Descriptor. The operator descriptor defines an algorithm’s behaviour in the IQM
framework. From a set of predefined values the operator type is assigned to the algorithm,
which determines the context-aware activation and deactivation of the associated entry in the
plugin menu. In this example, we define our algorithm to be an image operator, since the menu
should be active exclusively if an image is loaded. The list of output types determines the multi-
dimensional nature of the processing result, i.e. which data types the operator is able to
produce.

Each operator is identified by a unique name (protocol-like string) which is declared as
property in the descriptor. The descriptor defines the number of sources as well as the name,
type, valid value ranges and default values of parameters, see Table 3 for the LBP operator.
Parameters are usually defined using primitive data types such as INT, FLOAT, etc and are en-
capsulated in a parameter block object.

The descriptor also registers the operator with the OperatorRegistry when IQM is starting
up. Options passed to the registry comprise—among others—the class names of descriptor,
validator, algorithm, GUI for the factories to instantiate objects of the corresponding classes at
runtime.

Figure 8. General Operator Execution Flow. Each operator (algorithm) may take heterogeneous sources and parameters as input and processes them to
a multi-dimensional result. The result may contain multiple images, signals, or tables. Furthermore, custom output objects are also possible to be returned by
an operator. The cardinality (0. . . n) denotes that the result may yield zero or more elements of each kind.

doi:10.1371/journal.pone.0116329.g008

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 19 / 28

Validator. The operator validator is responsible for checking integrity of sources passed to
the operator. The LBP operator requires a single-band grey value image at position 0 of the
source vector. First, the default validator checks whether there is an image available. The cus-
tom validator subsequently checks for the required color model.

Algorithm. The standard LBP algorithm proposed in [41] first thresholds a center pixel’s
intensity Ic with the intensities Ip of the eight adjacent pixels and radius R = 1 in a 3-by-3 regu-
lar grid neighbourhood (P = 8). The center pixel is assigned a binary code, depending on the
sampling pattern defined by P and R

LBPP;R ¼
XP�1

p¼0

signðIp � IcÞ2p ð1Þ

where sign(·) designates the sign function

signðIp;IcÞ ¼
1 if Ic � Ip

0 otherwise

(

The code in an 8-neighbourhood can take values from 0 to 255 (8bit) and may conveniently
be treated as decimal number and visualized as discrete grey value in an LBP image. The LBP
algorithm has been extended to use arbitrary neighbourhoods and radii [42], thus generalizing
to 2P possible binary codes. In order to display the codes> 28, we scale the intensities between
0 and 255. A set of P “adjacent” pixels is sampled from a circle around a center pixel defined by
radius R in regular angles. Bilinear interpolation is used for calculating the intensities of in-be-
tween pixel locations.

Rotation invariance [42] was added to the descriptor

LBPri
P;R ¼ minfrotðLBPP;R;iÞji ¼ 0; . . . ;P � 1g ð2Þ

where rot(·) is the rotation function used to minimize the binary code by a circular bit-wise
right shift so that the most significant bit is 0.

Our implementation offers optional smoothing the image by convolution with a Gaussian
prior to computing the descriptor in order to filter high frequencies, which most probably ac-
count for noise. Here we can also demonstrate, how integration of other operators is achieved:
By calling process() on the work package instance, the task factory creates and executes a work-
er thread in the background, which runs the operator and produces a result.

Table 3. Default Parameters and Valid Ranges for the LBP Operator.

Parameter
Name

Type Default
Value

Valid Range

Neighbours P INT 8 ValidP ¼ fP 2 Z
þj1 � P � 32g

Radius R FLOAT 1.0 ValidR ¼ fR 2 R
þjR � 1:0g

Smooth
(Gaussian)

BOOLEAN false {true | false}

Kernel Size k INT 3 Validk ¼ f2i þ 1 2 Z
þji 2 N

þ; i � 50g
Cells C INT 1 ValidC ¼ fC 2 N

þj1 � C � maxfM;Ngg, where M, N are height and
width of the image

Default parameters are set when the operator descriptor is created. The descriptor also checks for valid

ranges on instantiation in defined sets, see last column.

doi:10.1371/journal.pone.0116329.t003

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 20 / 28

AnM × N image may also be partitioned in C × C cells, where for each cell the descriptor
histogram is calculated and concatenated to form the final feature vector [43]. If C = 1, which is
default, the descriptor is computed for the entire image at once. Additionally, we are interested
in the raw binary codes for each pixel in a cell, so we put them in a table in order to store them
later in a file.

LBP can for example be applied to describe the content of histopathological image data,
where a distinction of malign and benign tissue regions is required. Supervised machine learn-
ing can be employed to learn the description of these regions in order to discriminate the tissue
samples and highlight regions in a sample where probably malign tissue is present [44].

The rotation invariant texture measure is calculated for each pixel in a region. At the image
borders, the LBPri

P;Rcodes were computed after extending the image using reflecting borders for

dRe pixels. A histogram of the LBP codes forms the final descriptor of the region and the full
image is described by concatenating the histograms. The descriptor can now be used for tissue
or object classification.

Operator and Result GUI. The GUI is used for exploring the parameter space of an algo-
rithm and to compute the responses in an interactive manner. Widgets like spinners or check
boxes are used to set the parameters, see Fig. 9(a). A preview of the operator can be executed
and shows the results. In this example, we let the algorithm compute a set of images, histo-
grams and tables according to the number of cells. These results are displayed in the multi-
result dialog after processing has finished, where each tab contains a list of the corresponding
data type, see Fig. 9(b–d).

Automatization via Scripting
In daily routine some processing tasks often have to be executed frequently. Since setting pa-
rameters manually is tedious, scripts facilitate chaining of frequently used operations. Scripts
are designed to ease the development of more complex workflows, i.e. execution sequences,
using a dynamical high-level language. The development of custom scripts using Groovy

Figure 9. GUI and Multi-Result Dialog of the Local Binary Pattern Operator. The GUI of the LBP operator illustrated in (a) is used to set the parameters
while performing integrity checks on the valid ranges defined in the descriptor. Calculation options indicate flags for the desired dimensions of the result
object. “Auto preview” enables a quick examination while changing parameters. The output image may be inverted for better contrast and the operator may
explicitly be set to the “virtual”mode prior to the execution. The multi-result dialog (b-d) hosts the preview results from an operator and lets the user choose
whether all or just selected results should be kept for further processing.

doi:10.1371/journal.pone.0116329.g009

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 21 / 28

language is available in IQM since version 3.1. Fig. 10(a) depicts the GUI of the script editor, a
customized multi-tabbed text editor, which supports syntax highlighting. When running a
script, the output is redirected to a custom console (Fig. 10(b)), where it may eventually be
saved to a custom text file. Scripting in IQM ties together available methods for image and sig-
nal processing as well as machine learning and enables the development of advanced process-
ing chains.

Script Example. In this section we want to demonstrate the scripting capability using a
short example. We locate and load some images, perform two subsequent image operations
and save the results as image sequence (running file index number) to a directory, see
S1 Listing and S2 File of this article.

To start with, the application is set to virtual mode where each image is just loaded to mem-
ory for processing and resides on disk otherwise. A custom file dialog for opening supported
image file types lets the user locate the files, which are about to be loaded to the TANK.

The first operator performs image denoising by convolving the image with an isotropic 2D
Gaussian kernel. Therefore, the source images are taken from the current tank position and a
default parameter set is created for the operator’s unique name, which is IqmOpSmooth in this
case. Default parameters may be customized so that the work package contains all sources and
parameters a processing task requires for execution. Resolving of “virtual” data items is per-
formed implicitly by the IQM processing framework. The task factory creates a new task for se-
rial processing, i.e. the images are processed with the same parameters in sequential order. The
execute() command starts the processing and get() retrieves the multi-dimensional result. In
this example we are just interested in the images, so we just take the first index (0) of the result
and add them as interim result to the TANK.

The second operation takes the smoothed output images and extracts edges using the Differ-
ence of Gaussian (DoG) algorithm. Again, sources are added to the work package and default
parameters are overridden. The second operation is executed in parallel using four threads, and
the second interim result is added to the TANK. All processing steps of the script are subsequent-
ly available for closer examination in the Tank. The last part of the script saves the images as a
sequence of PNG-encoded files to a directory, which the user selects via a file dialog.

Figure 10. Groovy Script Editor and Console GUI. IQM provides a multi-tabbed, syntax-highlighting editor (a) for creating, editing and running Groovy
scripts within the IQM framework. A console window (b) displays all output while the script runs and provides methods for saving the console output to a plain
text file.

doi:10.1371/journal.pone.0116329.g010

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 22 / 28

This short example serves as illustration of the capabilities for automatization via scripts in
IQM. Scripts are not limited to a pure orchestration of IQM standard operators, but rather let
the user incorporate other libraries and operators from plugins as well.

Compatibility and Interoperability
ImageJ, OpenCV [6] and MATLAB (The MathWorks, Inc., Massachussets, USA) are among
others the most prominent software applications for image processing, and signal processing,
respectively. Compatibility with established software packages is an important requirement
and hence IQMmakes use of existing interfaces for basic interoperability with these
programs.

IQM packs an instance of ImageJ and they share a common classpath at runtime. Functions
implemented as ImageJ plugins are therefore also available in the IQM framework. Moreover,
a dedicated ImageJ instance can be launched, where image processing functions may be applied
in the familiar ImageJ environment and the resulting image is then ported back to IQM for fur-
ther processing. For example, a visualization of image stacks as 3D volumes is not part of IQM,
but can be achieved with proper ImageJ plugins. Thus, IQM and ImageJ should not seen to be
competing, but complementing each other.

The integration of powerful computer vision libraries like OpenCV in plain Java routines is
possible since OpenCV version 2.4.4. But, in order to use their algorithms, OpenCV must be
installed natively on the system and the Java bindings must be available on the IQM classpath.
Though, a certain compromise between performance and portability of IQM must be consid-
ered: OpenCV implementations are usually in C/C++ and therefore faster than in plain Java,
but the speed-up prohibits a simple transfer of the IQM package from one machine to
another.

In addition to these two open source applications, IQM provides the ability to control a
MATLAB instance via the open source librarymatlabcontrol, available from http://
matlabcontrol.googlecode.com/. Besides reading proprietary �.mat files, MATLAB can be in-
corporated in processing routines in operator plugins and scripts.

State-of-the-art information technology enables the generation of a vast amount of data in
almost all research areas. In order to cope with multi-dimensional data from different sources,
machine learning (ML) has emerged as a common method in order to analyze complex pat-
terns in digital imaging and signal processing. The advantage of ML over conventional pattern
analysis is that ML systems are designed to increase performance with increasing experience, i.
e. they learn from examples [45]. The popular Java open source machine learning suite WEKA
[46] facilitates building complex algorithms including ML methods in IQM. Algorithms imple-
mented in the WEKA library are accessible from IQM plugins and scripts.

Discussion and Outlook
In this paper, we have presented IQM, a versatile and extensible open source software applica-
tion written in Java. We provided insight into the functionality for image and signal analysis
and gave an overview of the most important user interface components. IQM can be used as a
single tool for sophisticated workflows involving both image and signal analysis without explic-
it programming skills, which was demonstrated in a proof-of-principle analysis. A comprehen-
sive set of implementations among the available methods is dedicated to fractal image and
signal analysis, which cannot be found in other free software packages. Another unique charac-
teristic of IQM is the capability of on-demand virtual processing, where memory can be saved
for actual processing tasks. Images can be annotated on multiple independent annotation lay-
ers using various ROI shapes in the image canvas.

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 23 / 28

http://matlabcontrol.googlecode.com/
http://matlabcontrol.googlecode.com/

The functional components (modules) based on the three-tier software architecture enable
an arbitrary extension of IQM. Commonly and frequently used components may be added to
the API module and are thus available to all future developments.

In section “Extensibility” two important concepts for adding functionality and automate
workflows in IQM have been illustrated using example implementations: (i) the operator plug-
in framework and (ii) the Groovy scripting interface. The components of the Local Binary Pat-
tern [41–43] texture descriptor plugin have been described in detail. The example script
showed the convenient Groovy interface to IQM, where several operators are chained in a
stack processing use case. Furthermore, the recent trend of using machine learning in digital
image and signal analysis is supported via the integration of WEKA.

One of the main advantages of IQM lies in its portability across several operating systems.
The binary application package can be run on the JVM and does not depend on pre-installed li-
braries. However, while better performance can be expected from applications compiled for
specific platforms, they need to be installed and may depend on several third-party libraries.
A minor drawback of the core image processing algorithms is the usage of JAI, since this library
ran out of support in 2006. Nevertheless, there exists support for accelerated JAI algorithms on
Solaris, Linux and Windows.

IQM is under active development and has been used in several research projects, e.g. in
[3, 47–52]. Since IQM is released under the permissive GNU GPLv3 license, the source code
and executables are available from the hosting platform sourceforge.net. Open source software
offers great potential to reproducible research, since existing algorithms can be examined at
source code level and new algorithms can be implemented in existing frameworks without the
tedious development of frequently used functions such as locating, reading and writing sup-
ported file formats. Furthermore, the transfer to other programming languages can be achieved
more easily. Open source software is more frequently used in medical science and bio-infor-
matics [53], but may also co-exist with commercial software packages [54] in order to maxi-
mize productivity.

Future developments in IQM will focus on further interoperability with existing software,
the implementation of new algorithms and the speedup of existing algorithms.

Supporting Information
S1 File. Implementation of the Local Binary Pattern texture descriptor operator within the
IQM framework. This file contains the complete Java source code of the plugin described in
section “Extensibility”.
(ZIP)

S2 File. Implementation of the stack processing script. This file contains the source code for
the example script for image stack processing discussed in section “Automatization via
Scripting”.
(ZIP)

S1 Listing. Groovy script example for image stack processing in IQM. This file contains the
listing for the example script for image stack processing discussed in section “Automatization
via Scripting”.
(PDF)

Acknowledgments
The authors would like to thank all contributors to this open source project for their valuable
input in terms of programming and discussion. Furthermore, special thanks goes to Dr. Trevor

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 24 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116329.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116329.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116329.s003

DeVaney, Medical University of Graz, for recording and providing the A431 cell video used in
the proof-of-principle analysis.

Author Contributions
Wrote the paper: PK MMR HA.

References
1. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, et al. (2012) Biological imaging soft-

ware tools. Nature Methods 9: 697–710. doi: 10.1038/nmeth.2084 PMID: 22743775

2. Subramaniam C, Sen R, Nelson ML (2009) Determinants of open source software project success:
A longitudinal study. Decision Support Systems 46: 576–585. doi: 10.1016/j.dss.2008.10.005

3. Ahammer H (2010) IQM—Interactive Quantitative Morphology. ImageJ User & Developer Conference
2010. Mondorf-les-Bains, Luxembourg.

4. Mandelbrot BB (1967) How long is the coast of Britain? Science 156: 636–638. doi: 10.1126/science.
156.3775.636 PMID: 17837158

5. Ahammer H, Kainz P, Mayrhofer-Reinhartshuber M (2014) IQM. Online. Available from: http://iqm.sf.
net. Accessed 2014 April 29.

6. Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools.

7. Kovacs G, Ivan JI, Panyik A, Fazekas A (2010) The openIP open source image processing library. In:
Proceedings of ACMMultimedia 2010. pp. 1489–1492.

8. Yoo TS, Ackerman MJ, LorensenWE, Schroeder W, Chalana V, et al. (2002) Engineering and algo-
rithm design for an image processing API: A technical report on ITK-the insight toolkit. Studies in Health
Technology and Informatics 85: 586–592. PMID: 15458157

9. RasbandW (1997–2014) ImageJ. Online. Available from http://imagej.nih.gov/ij/. Last access: 2014/
07/12.

10. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Internation-
al 11: 36–43.

11. Schneider CA, RasbandWS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis.
Nature Methods 9: 671–675. doi: 10.1038/nmeth.2089 PMID: 22930834

12. Gering E, Atkinson CT (2004) A rapid method for counting nucleated erythrocytes on stained blood
smears by digital image analysis. Journal of Parasitology 90: 879–881. doi: 10.1645/GE-222R PMID:
15357090

13. Barboriak DP, Padua AO, York GE, MacFall JR (2005) Creation of DICOM-aware applications using
ImageJ. Journal of Digital Imaging 18: 91–99. doi: 10.1007/s10278-004-1879-4 PMID: 15827831

14. Eliceiri KW, Rueden C (2005) Tools for visualizing multidimensional images from living specimens.
Photochemistry and Photobiology 81: 1116–1122. doi: 10.1562/2004-11-22-IR-377 PMID: 15807634

15. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source plat-
form for biological-image analysis. Nature Methods 9: 676–682. doi: 10.1038/nmeth.2019 PMID:
22743772

16. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006) CellProfiler: image analysis
software for identifying and quantifying cell phenotypes. Genome Biology 7: R100. doi: 10.1186/gb-
2006-7-10-r100 PMID: 17076895

17. Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated
biological image analysis. Biotechniques 42: 71–75. doi: 10.2144/000112257 PMID: 17269487

18. Vokes MS, Carpenter AE (2008) Using CellProfiler for automatic identification and measurement of bio-
logical objects in images. In: Current Protocols in Molecular Biology, JohnWiley & Sons, Inc., chapter
14. pp. 1–12.

19. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, et al. (2011) Improved structure, function and
compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27:
1179–1180. doi: 10.1093/bioinformatics/btr095 PMID: 21349861

20. Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, et al. (2008) CellProfiler Analyst: data explo-
ration and analysis software for complex image-based screens. BMC Bioinformatics 9: 482. doi: 10.
1186/1471-2105-9-482 PMID: 19014601

21. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, et al. (2009) Scoring diverse cellular mor-
phologies in image-based screens with iterative feedback and machine learning. Proceedings of the
National Academy of Sciences 106: 1826–1831. doi: 10.1073/pnas.0808843106 PMID: 19188593

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 25 / 28

http://dx.doi.org/10.1038/nmeth.2084
http://www.ncbi.nlm.nih.gov/pubmed/22743775
http://dx.doi.org/10.1016/j.dss.2008.10.005
http://dx.doi.org/10.1126/science.156.3775.636
http://dx.doi.org/10.1126/science.156.3775.636
http://www.ncbi.nlm.nih.gov/pubmed/17837158
http://iqm.sf.net
http://iqm.sf.net
http://www.ncbi.nlm.nih.gov/pubmed/15458157
http://imagej.nih.gov/ij/
http://dx.doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1645/GE-222R
http://www.ncbi.nlm.nih.gov/pubmed/15357090
http://dx.doi.org/10.1007/s10278-004-1879-4
http://www.ncbi.nlm.nih.gov/pubmed/15827831
http://dx.doi.org/10.1562/2004-11-22-IR-377
http://www.ncbi.nlm.nih.gov/pubmed/15807634
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1186/gb-2006-7-10-r100
http://dx.doi.org/10.1186/gb-2006-7-10-r100
http://www.ncbi.nlm.nih.gov/pubmed/17076895
http://dx.doi.org/10.2144/000112257
http://www.ncbi.nlm.nih.gov/pubmed/17269487
http://dx.doi.org/10.1093/bioinformatics/btr095
http://www.ncbi.nlm.nih.gov/pubmed/21349861
http://dx.doi.org/10.1186/1471-2105-9-482
http://dx.doi.org/10.1186/1471-2105-9-482
http://www.ncbi.nlm.nih.gov/pubmed/19014601
http://dx.doi.org/10.1073/pnas.0808843106
http://www.ncbi.nlm.nih.gov/pubmed/19188593

22. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, et al. (2012) Icy: an open bioimage in-
formatics platform for extended reproducible research. Nature Methods 9: 690–696. doi: 10.1038/
nmeth.2075 PMID: 22743774

23. Henriksson J, Hench J, Tong YG, Johansson A, Johansson D, et al. (2013) Endrov: an integrated plat-
form for image analysis. Nature Methods 10: 454–456. doi: 10.1038/nmeth.2478 PMID: 23722203

24. Kankaanpaa P, Paavolainen L, Tiitta S, Karjalainen M, Paivarinne J, et al. (2012) BioImageXD: an
open, general-purpose and high-throughput image-processing platform. Nature Methods 9: 683–689.
doi: 10.1038/nmeth.2047 PMID: 22743773

25. Schüffler PJ, Fuchs TJ, Ong CS, Wild PJ, Rupp NJ, et al. (2013) TMARKER: A free software toolkit for
histopathological cell counting and staining estimation. Journal of Pathology Informatics 4: 2. doi: 10.
4103/2153-3539.109804

26. Hibbard B (2003) VisBio: A biological tool for visualization and analysis. ACM SIGGRAPH Computer
Graphics 37: 5–7. doi: 10.1145/763993.764000 PMID: 23766938

27. Rueden C, Eliceiri KW, White JG (2004) VisBio: A Computational Tool for Visualization of Multidimen-
sional Biological Image Data. Traffic 5: 411–417. doi: 10.1111/j.1600-0854.2004.00189.x PMID:
15117315

28. Karperien A (1999–2014) FracLac for ImageJ. Online. Available: http://rsb.info.nih.gov/ij/plugins/
fraclac/FLHelp/Introduction.htm. Accessed 2014 June 24.

29. ThéMA (2014) Fractalyse—fractal analysis software. Online. Available: http://www.fractalyse.org.
Accessed 2014 June 24.

30. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Central Euro-
pean Journal of Physics 10: 181–188. doi: 10.2478/s11534-011-0096-2

31. Linkert M, Rueden CT, Allan C, Burel JM, MooreW, et al. (2010) Metadata matters: access to image
data in the real world. The Journal of Cell Biology 189: 777–782. doi: 10.1083/jcb.201004104 PMID:
20513764

32. Gonzalez RC, Woods RE (2008) Digital image processing. Upper Saddle River, N.J.: Prentice Hall
International.

33. Hajnal JV, Hill DL, Hawkes DJ, editors (2001) Medical Image Registration. Biomedical Engineering.
CRC Press.

34. Mandelbrot BB (1983) The Fractal Geometry of Nature: Updated and Augmented. New York: W. H.
Freeman and Company.

35. Barnsley MF (1993) Fractals Everywhere. Morgan Kaufmann, 2 edition.

36. EckersonWW (1995) Three tier client/server architectures: achieving scalability, performance, and effi-
ciency in client/server applications. Open Information Systems 3: 46–50.

37. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design Patterns: Elements of Reusable Object-
Oriented Software. Prentice Hall.

38. Dolores Gallego M, Luna P, Bueno S (2008) User acceptance model of open source software. Comput-
ers in Human Behavior 24: 2199–2216. doi: 10.1016/j.chb.2007.10.006

39. Carpenter AE, Kamentsky L, Eliceiri KW (2012) A call for bioimaging software usability. Nature Meth-
ods 9: 666–670. doi: 10.1038/nmeth.2073 PMID: 22743771

40. Koenig D, Glover A, King P, Laforge G, Skeet J (2007) Groovy in Action. Manning, 1 edition.

41. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classi-fication
based on featured distributions. Pattern Recognition 29: 51–59. doi: 10.1016/0031-3203(95)00067-4

42. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture clas-
sification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence
24: 971–987. doi: 10.1109/TPAMI.2002.1017623

43. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: Computer
Vision—ECCV 2004, Springer Berlin Heidelberg. pp. 469–481. doi: 10.1007/978-3-540-24670-1_36

44. Fuchs TJ (2010) Computational Pathology: A Machine Learning Approach. Ph.D. thesis, Swiss Feder-
al Institute of Technology Zurich, Zurich, Switzerland.

45. Bishop CM (2006) Pattern Recognition and Machine Learning. New York: Springer.

46. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) TheWEKA data mining software:
An update. SIGKDD Explorations 11: 10–18. doi: 10.1145/1656274.1656278

47. Ahammer H, DeVaney TTJ (2004) The influence of edge detection algorithms on the estimation of the
fractal dimension of binary digital images. Chaos 14: 183–188. doi: 10.1063/1.1638947 PMID:
15003059

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 26 / 28

http://dx.doi.org/10.1038/nmeth.2075
http://dx.doi.org/10.1038/nmeth.2075
http://www.ncbi.nlm.nih.gov/pubmed/22743774
http://dx.doi.org/10.1038/nmeth.2478
http://www.ncbi.nlm.nih.gov/pubmed/23722203
http://dx.doi.org/10.1038/nmeth.2047
http://www.ncbi.nlm.nih.gov/pubmed/22743773
http://dx.doi.org/10.4103/2153-3539.109804
http://dx.doi.org/10.4103/2153-3539.109804
http://dx.doi.org/10.1145/763993.764000
http://www.ncbi.nlm.nih.gov/pubmed/23766938
http://dx.doi.org/10.1111/j.1600-0854.2004.00189.x
http://www.ncbi.nlm.nih.gov/pubmed/15117315
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
http://www.fractalyse.org
http://dx.doi.org/10.2478/s11534-011-0096-2
http://dx.doi.org/10.1083/jcb.201004104
http://www.ncbi.nlm.nih.gov/pubmed/20513764
http://dx.doi.org/10.1016/j.chb.2007.10.006
http://dx.doi.org/10.1038/nmeth.2073
http://www.ncbi.nlm.nih.gov/pubmed/22743771
http://dx.doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1007/978-3-540-24670-1_36
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1063/1.1638947
http://www.ncbi.nlm.nih.gov/pubmed/15003059

48. Ahammer H, DeVaney TTJ (2005) The influence of noise on the generalized dimensions. Chaos, Soli-
tons & Fractals 26: 707–717. doi: 10.1016/j.chaos.2005.01.050

49. Ahammer H, Helige C, Dohr G, Weiss-Fuchs U, Juch H (2008) Fractal dimension of the choriocar-
cinoma cell invasion front. Physica D—Nonlinear Phenomena 237: 446–453. doi: 10.1016/j.physd.
2007.09.016

50. Ahammer H, Kroepfl JM, Hackl C, Sedivy R (2011) Fractal dimension and image statistics of anal
intraepithelial neoplasia. Chaos, Solitons & Fractals 44: 86–92. doi: 10.1016/j.chaos.2010.12.004

51. Ahammer H (2011) Higuchi dimension of digital images.

52. Ahammer H, Mayrhofer-Reinhartshuber M (2012) Image pyramids for calculation of the box counting
dimension. Fractals 20: 281–293. doi: 10.1142/S0218348X12500260

53. Janamanchi B, Katsamakas E, Raghupathi W, GaoW (2009) The state and profile of open source soft-
ware projects in health and medical informatics. International Journal of Medical Informatics 78:
457–472. doi: 10.1016/j.ijmedinf.2009.02.006 PMID: 19321384

54. Bonaccorsi A, Rossi C (2003) Why open source software can succeed. Research Policy 32:
1243–1258. doi: 10.1016/S0048-7333(03)00051-9

55. Liebovitch LS, Toth T (1989) A fast algorithm to determine fractal dimensions by box counting. Physics
Letters A 141: 386–390. doi: 10.1016/0375-9601(89)90854-2

56. Sarkar N, Chaudhuri B (1995) Multifractal and generalized dimensions of gray-tone digital images. Sig-
nal Processing 42: 181–190. doi: 10.1016/0165-1684(94)00126-K

57. Jin X, Ong S, Jayasooriah (1995) A practical method for estimating fractal dimension. Pattern Recogni-
tion Letters 16: 457–464. doi: 10.1016/0167-8655(94)00119-N

58. Zenil H, Delahaye JP, Gaucherel C (2012) Image characterization and classification by physical com-
plexity. Complexity 17: 26–42. doi: 10.1002/cplx.20388

59. Anguiano E, Pancorbo M, Aguilar M (1993) Fractal characterization by frequency analysis. I. Surfaces.
Journal of Microscopy 172: 223–232. doi: 10.1111/j.1365-2818.1993.tb03416.x

60. Aguilar M, Anguiano E, Pancorbo M (1993) Fractal characterization by frequency analysis. II. A new
method. Journal of Microscopy 172: 233–238. doi: 10.1111/j.1365-2818.1993.tb03417.x

61. Shelhamer M (2007) Nonlinear Dynamics in Physiology: A State Space Approach. World Scientific,
Singapore.

62. Danielsson PE (1980) Euclidean distance mapping. Computer Graphics and Image Processing 14:
227–248. doi: 10.1016/0146-664X(80)90054-4

63. Arganda-Carreras I, Sánchez Sorzano CO, Marabini R, Carazo JM, Ortiz-de-Solorzano C, et al. (2006)
Consistent and elastic registration of histological sections using vector-spline regularization. In:
Computer Vision Approaches to Medical Image Analysis. pp. 85–95. doi: 10.1007/11889762_8

64. Thévenaz P, Ruttimann U, Unser M (1998) A pyramid approach to subpixel registration based on inten-
sity. IEEE Transactions on Image Processing 7: 27–41. doi: 10.1109/83.650848 PMID: 18267377

65. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Sys-
tems, Man, and Cybernetics SMC-9: 62–66.

66. LuW, NystromMM, Parikh PJ, Fooshee DR, Hubenschmidt JP, et al. (2006) A semi-automatic method
for peak and valley detection in free-breathing respiratory waveforms. Medical Physics 33: 3634–3636.
doi: 10.1118/1.2348764 PMID: 17089828

67. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and
sample entropy. American Journal of Physiology—Heart and Circulatory Physiology 278:
H2039–H2049. PMID: 10843903

68. Lake D (2006) Renyi entropy measures of heart rate gaussianity. IEEE Transactions on Biomedical
Engineering 53: 21–27. doi: 10.1109/TBME.2005.859782 PMID: 16402599

69. Lake DE, Moorman JR (2011) Accurate estimation of entropy in very short physiological time series:
the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiolo-
gy—Heart and Circulatory Physiology 300: H319–H325. doi: 10.1152/ajpheart.00561.2010 PMID:
21037227

70. Bandt C, Pompe B (2002) Permutation entropy: A natural complexity measure for time series. Physical
Review Letters 88: 174102. doi: 10.1103/PhysRevLett.88.174102 PMID: 12005759

71. Flanagan MT (2012). Michael Thomas Flanagan’s Java Library. Online. Available: http://www.ee.ucl.
ac.uk/*mflanaga/java. Accessed 2014 December 11.

72. Kumar N, Lolla N, Keogh E, Lonardi S, Ratanamahatana CA (2005) Time-series bitmaps: a practical vi-
sualization tool for working with large time series databases. In: SIAM 2005 Data Mining Conference.
SIAM, pp. 531–535.

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 27 / 28

http://dx.doi.org/10.1016/j.chaos.2005.01.050
http://dx.doi.org/10.1016/j.physd.2007.09.016
http://dx.doi.org/10.1016/j.physd.2007.09.016
http://dx.doi.org/10.1016/j.chaos.2010.12.004
http://dx.doi.org/10.1142/S0218348X12500260
http://dx.doi.org/10.1016/j.ijmedinf.2009.02.006
http://www.ncbi.nlm.nih.gov/pubmed/19321384
http://dx.doi.org/10.1016/S0048-7333(03)00051-9
http://dx.doi.org/10.1016/0375-9601(89)90854-2
http://dx.doi.org/10.1016/0165-1684(94)00126-K
http://dx.doi.org/10.1016/0167-8655(94)00119-N
http://dx.doi.org/10.1002/cplx.20388
http://dx.doi.org/10.1111/j.1365-2818.1993.tb03416.x
http://dx.doi.org/10.1111/j.1365-2818.1993.tb03417.x
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1007/11889762_8
http://dx.doi.org/10.1109/83.650848
http://www.ncbi.nlm.nih.gov/pubmed/18267377
http://dx.doi.org/10.1118/1.2348764
http://www.ncbi.nlm.nih.gov/pubmed/17089828
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1109/TBME.2005.859782
http://www.ncbi.nlm.nih.gov/pubmed/16402599
http://dx.doi.org/10.1152/ajpheart.00561.2010
http://www.ncbi.nlm.nih.gov/pubmed/21037227
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://www.ncbi.nlm.nih.gov/pubmed/12005759
http://www.ee.ucl.ac.uk/∼mflanaga/java
http://www.ee.ucl.ac.uk/∼mflanaga/java

73. Caccia DC, Percival D, Cannon MJ, Raymond G, Bassingthwaighte JB (1997) Analyzing exact fractal
time series: evaluating dispersional analysis and rescaled range methods. Physica A: Statistical Me-
chanics and its Applications 246: 609–632. doi: 10.1016/S0378-4371(97)00363-4 PMID: 22049251

74. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261: 459–467.
doi: 10.1038/261459a0 PMID: 934280

75. Hénon M (1976) A two-dimensional mapping with a strange attractor. Communications in Mathematical
Physics 50: 69–77. doi: 10.1007/BF01608556

76. Sprott JC, Sprott JC (2003) Chaos and time-series analysis, volume 69. Oxford University Press
Oxford.

IQM: Open Source Image and Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0116329 January 22, 2015 28 / 28

http://dx.doi.org/10.1016/S0378-4371(97)00363-4
http://www.ncbi.nlm.nih.gov/pubmed/22049251
http://dx.doi.org/10.1038/261459a0
http://www.ncbi.nlm.nih.gov/pubmed/934280
http://dx.doi.org/10.1007/BF01608556

Copyright of PLoS ONE is the property of Public Library of Science and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

