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Abstract. The objective of this research is to build a nested generalized linear mixed model using an ordinal response
variable with some covariates. There are three main jobs in this paper, i.e. parameters estimation procedure, simulation,
and implementation of the model for the real data. At the part of parameters estimation procedure, concepts of threshold,
nested random effect, and computational algorithm are described. The simulations data are built for 3 conditions to know the
effect of different parameter values of random effect distributions. The last job is the implementation of the model for the data
about poverty in 9 districts of Java Island. The districts are Kuningan, Karawang, and Majalengka chose randomly in West
Java; Temanggung, Boyolali, and Cilacap from Central Java; and Blitar, Ngawi, and Jember from East Java. The covariates
in this model are province, number of bad nutrition cases, number of farmer families, and number of health personnel. In
this modeling, all covariates are grouped as ordinal scale. Unit observation in this research is sub-district (kecamatan) nested
in district, and districts (kabupaten) are nested in province. For the result of simulation, ARB (Absolute Relative Bias) and
RRMSE (Relative Root of mean square errors) scale is used. They show that prov parameters have the highest bias, but
more stable RRMSE in all conditions. The simulation design needs to be improved by adding other condition, such as higher
correlation between covariates. Furthermore, as the result of the model implementation for the data, only number of farmer
family and number of medical personnel have significant contributions to the level of poverty in Central Java and East Java
province, and only district 2 (Karawang) of province 1 (West Java) has different random effect from the others. The source of
the data is PODES (Potensi Desa) 2008 from BPS (Badan Pusat Statistik).
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INTRODUCTION

Variable associated with levels often expressed as an or-
dinal scale category variable. Besides appearing as a re-
sult of direct measurement of an object under study, ordi-
nal scale variables can also arise as a result of numerical
clustering measurements. One advantage of using data
with ordinal-scale variables is more easily to be under-
stood in the interpretation. Objects that be observed in
the study did not always stand alone, it is always a mem-
ber of a larger group. Usually, groups (clusters) in the
data emerge based on some reasons, such as the exis-
tence of homogeneity or heterogeneity of individuals, the
influence of geographical location (spatial clustering), or
even the existence of different treatments[1]. Nested in
this section is identical with the understanding of multi-
level or group or cluster of the data.

Determination of statistical modeling is influenced by
many aspects. One of these aspects is homogeneity or
heterogeneity of the data, as well as the location of the

individual being observed. The closer the location of two
individuals being observed, the greater their correlation
[2]. These conditions are often become the basis for the
nested models formation. Statistical modeling that will
be discussed in this paper is a modeling for ordinal re-
sponse in nested conditions. A link function is needed
to connect the ordinal response variable and explanatory
variables. The model will be implemented for poverty
data in Java Island. The relationship between poverty
level, as response variable, and some explanatory vari-
ables will be analyzed. The explanatory variables that
related to the poverty are the number of bad nutrition
cases, the number of poverty, the number of farmer fami-
lies, and the number of health personnel [3]. All variables
used in the model are grouped into 3 levels, the ordi-
nal scale variables. The nested condition is clear, that the
data comprises of sub-districts, districts, and provinces,
where sub-districts nested in a district, and some districts
nested in a province.
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As a model with non-continue and non-Gaussian re-
sponse variable, an appropriate link function is needed
to connect the ordinal response variable and explanatory
variables [4]. The explanatory variables also being as-
sessed through the model, to know how they contribute
to determine the poverty level of areas. In this case, the
districts have chosen randomly, so the model should be
a mixed linear model. The basic assumption in the de-
velopment of the model is: the observations in the same
group are more homogeneous compared to the obser-
vations from different groups. The existence of these
groups lead to the selection of nested models and the ex-
istence of random effect lead to mixed linear model. In
other words, the basic development of this model is the
nonlinearity (ordinal response), the nested condition, and
randomness of an effect in the model.

METHOD

Generalized Linear Mixed Model with
Ordinal Response

Generalized Linear Mixed Models with Ordinal Re-
sponse is a development of Generalized Linear model
with continuous response. This study developed a gen-
eralized linear mixed model with ordinal response by
adding the nested consideration of the data. The steps
undertaken in this research are: first, discuss the thresh-
old model and parameter estimation; second, carry on as-
sessing (the values of model parameter estimation using
simulated data with some given conditions.

Threshold Model

Threshold is a latent variable that made the difference
between the linear models with ordinal response and
the linear models with non-ordinal responses. Threshold
model is explained as follows. In logistic and probit re-
gression models, there are assumptions about an unob-
served latent variable (y) associated with the actual re-
sponses through the concept of threshold [5]. For the di-
chotomy model, it is assumed there is a threshold value
and for the ordinal model with K categories (polytomi),
it is assumed there are K − 1 threshold values, namely
γ1,γ2, . . . ,γK−1, with γ0 =−∞ and γK = ∞. Response oc-
curs in category k (Y = k), if the latent response y is
greater than the threshold γk−1, but not greater than the
threshold value γk. Let a model has ordinal response with
K categories, assume Yi is unobserved, and the i-th obser-
vation is in a category, say category Zi, i = 1, . . . ,N. The
relationship between Yi and Zi is taken to be

γk−1 < Yi ≤ γk ⇐⇒ Zi = k (1)

where k ∈ 1, . . . ,K,γ0 = −∞,γK = +∞ and γ1, . . . ,γK−1
are unknown boundary points that define a partitioning
of the real line into K intervals. Thus, when the realized
value of Yi belongs to the kth interval, we observe that
Zi = k. Under that assumptions, the probability-mass
function of Z1, . . . ,ZN is

P(z1, . . . ,zN) = Pr{Zi = zi (i = 1, . . . ,N)}
= Pr{γzi−1 < Yi ≤ γzi

(i = 1, . . . ,N)}
(2)

This model is called the threshold model[6].

Linear Model

In general, a linear model can be described below. Let
y be a response variable of a linear mixed model

y = Xβ +Wα + e (3)

where X and W are given matrices of dimensions N ×
q and N × r, respectively, β is an unknown parameter
vector qx1, α is a random effect vector r × 1, and e
is a random residuals vector Nx1 that are distributed
independently of α . Moreover, α ∼ MVN(0,σ2D)and
e ∼ MVN(0,σ2I),σ is an unknown positive parameter,
and the elements of D are functions of an unknown
parameter ξ = (ξ1, . . . ,ξc)

′. Assume that ξ is restricted
to a given subset, Ξ, of Euclidean c-space, D is positive
definite for all ξ ∈ Ξ. Furthermore, can be obtained that
y ∼ MVN(Xβ ,σ2V ), with V = I +WDW ′. The linear
mixed model for nested data is

yi jm = x′i jmβ j(i) +w′i jmα j(i) + εi jm (4)

where i = 1,2, . . . , I; j = 1,2, . . . ,J;m = 1,2, . . . ,n j and
yi jm is a value of response variable for mth unit, at jth
category level 1 in ith category level 2. xi jm is a covariate
vector qx1 and wi jm is the rx1 design vector for r random
effects, both vectors being for the mth unit, at jth category
level 1 in ith category level 2. β j(i) is the a vector of
unknown fixed parameters for jth category level 1 in ith
category level 2, α j(i) is the vector of unknown random
effects for jth category level 1 in ith category level 2, and
εi jm are model residuals.

This paper discusses a modeling with ordinal re-
sponse variables which is assumed to be multinomial dis-
tributed, nested level 1 is the sub-districts within a county
(district), nested level 2 is the districts within a province.
Characteristics of sub-districts are used to represent the
profile of a district. If associated with longitudinal data,
the value of covariates of sub-district is the result of re-
peated measurements for a given district, or as a sample
of observations from a cluster. Modeling theory is ex-
plained in the following sub-section.
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Nested Random-Effects Ordinal Regression Model

If the data has ordinal response with more than two
categories, then the response variable will be assumed to
be multinomial distributed. Furthermore, if the data is a
nested data, then the model in equation (4) should be a
Nested Generalized Linear Mixed Models.

Generalized Linear Model (GLM) is a class of regres-
sion models with fixed effects for several types of re-
sponse variables, i.e. continuous, dichotomous, and dis-
crete [7]. Some of the common GLM are linear regres-
sion, logistic regression and Poisson regression. There
are 3 specifications in GLMs: the exponential distribu-
tion families, the linear predictor, and link function. Lin-
ear predictor denoted by ηi = x′iβ For nested model,
which observations m nested in i and i nested in j, the
model becomes

ηi jm = x′i jmβ j(i) (5)

Link function g(·) is used to convert the expected value
of the response variable Yi jm to be a linear estimator ηi jm

g(μi jm) = ηi jm (6)

For mixed nested model,

ηi jm = x′i jmβ j(i) +w′i jmα j(i) + εi jm (7)

Nested Generalized Linear Mixed Model with ordinal
response can be expressed in a cumulative logit model
as the following

log

[
P(Yi jm ≤ k)

1−P(Yi jm ≤ k)

]
= γk +x′i jmβ j(i) +w′i jmα j(i) +εi jm

(8)
γk is a threshold value of laten variable that related to the
true response value Yi jm. For a single random effect, the
expected values can be written as follows:

E

[
log

P(Yi jm ≤ k)

1−P(Yi jm ≤ k)

]
= γk +x′i jmβ j(i) +α j(i) (9)

or

P(Yi jm ≤ k) =
1

1+ exp
[
−(γk +x′i jmβ j(i) +α j(i) + εi jm)

]
(10)

Equation (8) is called the ordered logit model that
depends upon the idea of the cumulative logit. This in
turn relies on the idea of the cumulative probability. Cu-
mulative probability P(Yi jm ≤ k) means the probability
that the m-th individual of the i-th unit level 1 and the
j-th unit level 2 is in or lower than category k,

P(Yi jm ≤ k) =
k

∑
h=1

P(Yi jm = h).

The next is applying the model to the poverty data in
the 3 provinces, with 3 districts in every province, and
m j sub-districts in every district j. Ordinal response
variable is the level of poverty of the sub-district, while
the explanatory variables are number of bad nutrition
cases, number of farmer families, number of health
personnel. The goal of modeling is want to know the
linkages between poverty level of sub-districts and
multiple covariates. All the values of covariates are
grouped into three levels (1, 2, 3): the province (X1),
bad nutrition cases (X2), farmer families (X3), health
personnel(X4), and districts (u). Districts are assumed to
be chosen randomly and should be a random effects in
the model. These effects are taken to be normally dis-
tributed random effects with means of μ and covariances
σ2a f f ′ (f ’,f =1,2,3). Covariates in the model consist of
three categories, therefore dummy variables is needed,
and the model for nested design should be

yi jm = β1 prov1 + β2 prov2 + β3badnut11 +
β4badnut12 + β5badnut21 + β6badnut22 +
β7badnut31+β8badnut32+β9 f arm11+β10 f arm12+
β11 f arm21+ β12 f arm22+ β13 f arm31+ β14 f arm32+
β15med11+β16med12+β17med21+β18med22

+β19med31+β20med32+u j(i) + ei jm (11)

or in the conditional probability,

P(Yi jm ≤ k) =
1

1+ exp [−(γk +ωi jm]
(12)

where ωi jm is similar to right side of the equation (11),
and m, j and i are indexes for sub-districts, districts, and
provinces, respectively.

Threshold model for this data can be written as a spe-
cial case of the general threshold model with r = 9,q =
20; that is u = (u11,u12,u13,u21,u22,u23,u31,u32,u33), β
= (β1,β2, . . . ,β20), and e = (e111, . . . ,e11M, . . . ,e331,
. . . ,e33M), M is the number of sub-districts in every dis-
trict. D = ξ A (where ξi = σ2

ui
/σ2, and A is the matrix

whose ff ’th element is a f f ′ ).

Prediction Procedure

This section builds a prediction procedure for a stan-
dardized threshold model. It is assumed that ξ is a known
quantity. The procedure can be applied also if it is un-
known by first estimating ξ and by then acting as it is a
true value. It will be focused on the estimation of a linear
combination l′γ + x′β +w′u, where γ = (γ2, . . . ,γM−1),
i.e. on a linear combination of the unknown boundary
points and the fixed and random effects. Denoted that the
probability density function (pdf) and the cumulative dis-
tribution function (cdf) of the N(0,1) distribution by φ(·)
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and Φ(·), respectively. Further, for an arbitrary kx1 vec-
tor μ and a positive definite matrix Σ, φk(· ; μ , Σ) repre-
sent the pdf of the MVN(μ , Σ) distribution.

Approach. If y were observable, Handerson’s BLUP
procedure could be used to estimate x′β +w′α . The
BLUP would be x′β̃ +w′α̃ , where β̃ is any solution
to X′V−1Xβ̃ = X′V−1y and α̃ = DW′V−1(y−Xβ̃ ) or,
equivalently, β̃ and α̃ represent any solution to the sys-
tem of linear equations,[

X ′X X ′W
W ′X D−1 +W ′W

][
β̃
α̃

]
=

[
X ′y
W ′y

]
(13)

known as the mixed-model equations[6].The BLUP of β
and α could be found by maximizing

φN+q

([
y
α

]
;
[

X ′β
0

]
,

[
V WD

DW ′ D

])

= φN

(
y;Xβ +W ′α, I

)
φq (α;0,D)

= φq (α;0,D)
N

∏
i=1

φ
(
Yi− x′iβ −w′iα

)
(14)

where x′i and w′i represent the tth rows of X and W. Note
that (15) represents the joint pdf of y and a, as a random
variable of α . Equation (13) are obtained upon equating
to 0 the partial derivatives (with regard to β and α) of
the logarithm of (14).

An approach that analog to the maximization of (14)
is applied to the standardized threshold model as follows.
Define

ψ(z111, . . . ,zIJM;γ,β ,α)

=
I

∏
i=1

J

∏
j=1

M

∏
m=1

∫ γzi

γzi−1

φ
(
yi jm− x′i jmβ j(i)−w′i jmα j(i)

]
dyi jm

=
I

∏
i=1

J

∏
j=1

M

∏
m=1

(Φ(γzi
−ωi jm)−Φ(γzi−1−ωi jm)) (15)

where ωi jm = x′i jmβ j(i) +w′i jmα j(i). The proposed proce-

dure is to estimate l′γ +x′β +w′α by l′γ̂ +x′β̂ +w′α̂ ,
where γ̂ = (γ̂2, . . . , γ̂M−1)

′, β̂ , and α̂ are any values of γ ,
β , and α that maximize

ψ(Z111,Z112, . . . ,ZIJM;γ,β ,α)φq(α;0,D) (16)

Quantity (15) represents the conditional probability
(given a= α) dan Z111 = z111,. . .,ZIJM = zIJM , and thus
that the function (16) represents the joint-probability
mass density function of Z111,. . .,ZIJM ,a, so that

P(zi)=
J

∏
j=1

M

∏
m=1

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(zi jm;γ,β ,α)φq(α;0,D)dα

(17)

In the special case where model (3) reduces to a fixed-
effects model, i.e. where y = Xβ + e, the proposed es-
timation procedure is identical to maximum likelihood
(ML) estimation. The estimator l′γ̂+x’β̂+w’α̂ has a
Bayesian interpretation. If the joint prior distribution of
γ and β is taken to be proportional to a constant, then
the point γ̂ , β̂ , α̂ represents a mode of the joint posterior
distribution of γ , β , α .

Computational Algorithm. This section explains the
computation of γ̂ , β̂ , and α̂ , i.e. the numerical problem of
maximizing the function (16). Maximizing this function
is equivalent to maximizing

f (γ,β ,α;z) = f1(γ,β ,α;z)+ f2(α) (18)

where f1(γ,β ,α;z) = lnψ(Z111, . . . ,ZIJM) and f2(α) =
ln[φ(α;0,D)]. Actually f1 is the log-likelihood function
for a standardized threshold model in which the under-
lying linear model is the fixed-effects linear model ob-
tained by replacing a by α in equation (3). The results
on fixed-effects threshold model is given by Mee on his
Ph.D dissertation, 1981 [6]. Let τ ′ = (γ ′,β ′,α ′), and de-
fine

r(γ,β ,α;z) = ∂ f/∂ r = r1(γ,β ,α;z)+ r2(α)

where

r1(γ,β ,α;z)=∂ f1/∂τ=

⎡
⎢⎢⎣

∂ f1/∂γ
∂ f1/∂β
∂ f1/∂α

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

ν(γ,β ,α;z)
X ′ε(γ,β ,α;z)
W ′ε(γ,β ,α;z)

⎤
⎥⎥⎦

and

r2(γ,β ,α;z) = ∂ f2/∂τ =

⎡
⎢⎢⎢⎣

∂ f2/∂γ
∂ f2/∂β
∂ f2/∂α

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0
0

−D−1β

⎤
⎥⎥⎥⎦

Here, ν(γ,β ,α;z) = ∂ f1/∂γ , is the (M − 2)x1 vector
whose (k-1)th element is

∑
m∈Ωk

(
φmk

	mk

)
− ∑

m∈Ωk+1

(
φmk

	m,k+1

)

= ∑
m∈Ωk

(
φ(γk−ωm)

Φ(γk−ωm)−Φ(γk−1−ωm)

)

− ∑
m∈Ωk+1

(
φ(γk−ωm)

Φ(γk+1−ωm)−Φ(γk−ωm)

)

and ε(γ,β ,α;z) is the N×1 vector whose ith element is

εm = (γ,β ,α;z) = δm,Zm/	m,Zm

where ωm = x′mβ −w′mα , Ωk = {m;Zm = k},
φmk = φ(γk− x′mβ −w′mα), δmk = φm,k−1−φmk and

	mk = Φ(γk− x′mβ −w′mα)−Φ(γk−1− x′mβ −w′mα)
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The quantities γ̂ ,β̂ ,α̂ necessarily satisfy the condition

r(γ̂, β̂ , α̂) = 0 (19)

It had been showed by Pratt (1981) that f1 is a concave
function of γ ,β ,α , and since f2 is a concave function,
the sum f is a concave function, implying that Condition
(19) is sufficient and necessary, i.e. that any solution to
the system (19) of nonlinear equation maximizes f .
Various iterative algorithms are available for solving sys-
tem of nonlinear equations. To solve the system (19), let
k+1th iterate γ̂k+1, β̂ k+1, α̂k+1 satisfies

C̄(γ̂k, β̂ k, α̂k)

⎡
⎣ γ̂k+1− γ̂k

β̂ k+1− β̂ k

α̂k+1− α̂k

⎤
⎦= r(γ̂k, β̂ k, α̂k;z) (20)

Here
C̄(γ,β ,α) = E [C(γ,β ,α;z)|a = α]

where C(γ,β ,α;z) =−∂ 2 f/∂τ∂τ ′. Since

C(γ,β ,α;z) =C1(γ,β ,α;z)+C2

with C1(γ,β ,α;z) = −∂ 2 f1/∂τ∂τ ′ dan C2 =
−∂ 2 f2/∂τ∂τ ′, we have C̄(γ,β ,α) = C̄1(γ,β ,α;z)+C2,
where C̄1(γ,β ,α) = E [C1(γ,β ,α;z)|a = α]. From
Bock, 1975 and Mee’s dissertation, we have

C̄1(γ,β ,α)=

⎡
⎢⎢⎢⎣

Q L′X L′W
X ′L X ′RX X ′RW
W ′L W ′RX W ′RW

⎤
⎥⎥⎥⎦,C2=

⎡
⎢⎢⎢⎣

0 0 0
0 0 0
0 0 D−1

⎤
⎥⎥⎥⎦

(21)
L is an (I× J×M)× (K−1) matrix, Q is an (K− 2)×
(K−2) tridiagonal matrix and R is an (I×J×M)× (I×
J×M) diagonal matrix. The nonzero elements of L, Q
and R are functionally dependent on γ , β , and α .

Mean Square Error. Consider the error incurred in
estimating l′γ+x′β+w′α by l′γ̂+x’β̂+w’α̂ . Suppose that

E(l′γ̂ + x′β̂ +w′α̂− (l′γ + x′β +w′α))
 0 (22)

and

var[l′γ̂ + x′β̂ +w′α̂− (l′γ + x′β +w′α)]


 E[(l′,x′,w′)C̄−(γ,β ,a)(l′,x′,w′)′] (23)

Motivated by the approximate results (22) and (23),
mean square error of l′γ̂ + x′β̂ +w′α̂ is estimated by

(l′,x′,w′)C̄−(γ̂, β̂ ,0)(l′,x′,w′)′ (24)

SIMULATION

The data simulation consists of an ordinal response vari-
able (Z), two fixed effects covariates (X1,X2) and one
random effect (W). All variables are in ordinal scale,
as level of 1,2, and 3 as representative numeric for
good, moderate, and bad. The structure of the data is
(Z,X1,X2,W ). Some aspects that should be considered
in the model building in this research are nested, homo-
geneity, and number of observations (sub-districts) in a
district. The objective of this simulation is to assess the
effects of homogeneity and size of a district (n = the num-
ber of sub-districts in a district) to the parameters esti-
mating values. To create the aspect of homogeneity, the
data simulation are designed for some conditions (sce-
narios), as the following: (1) w ∼ Normal(1,σ2), with
σ2 = 1,0.81, and 0.64, for province 1, 2, and 3, respec-
tively. (2) w ∼ Normal(1,0.64), for all provinces. (3)
w∼Normal(μ,0.64), with μ = 1, 2, and 3, for provinces
1, 2, and 3, respectively. All these three conditions are
implemented for n = 6 (N = 54), 13 (N = 117), 20 (N
= 180), N is the total number of observations. Here, we
have 3 provinces with 3 districts in every province.

ARB and RRMSE

Two important scales for estimators are ARB and
RRMSE. The ARB is defined as the absolute value of
the relative bias of the estimate over the realized finite
population value, to obtain the accurate scale of an esti-
mator. The relative root-mean-square error (RRMSE) is a
frequently used measure of the differences between val-
ues predicted by a model or an estimator and the values
actually observed from the thing being modeled or esti-
mated. The formulas of ARB and RRMSE are as follows
[8]

ARB =

∣∣∣∣∣
1
M

M

∑
s=1

β̂ (s)
p −βp

βp

∣∣∣∣∣ (25)

RRMSE =

√
1
M ∑M

s=1

(
β̂ (s)

p −βp

)2

βp
(26)

These two scales were applied to compare the perfor-
mance of parameters estimator for three different con-
ditions simulation data. The two explanatory variables
(prov and x) in the simulations are independent each
other (not correlated). They have three level categories,
so the model needs two dummy variables for each cat-
egory variable. The data is in nested condition (districts
are in province), so we have 10 parameters that should be
estimated, they are intercept1, intercept2, prov1, prov2,
b11, b12, b21, b22, b31, and b32.
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FIGURE 1. ARB of the Model Parameters

Simulation Results

The results are showed by Figure 1 and 2, each for the
ARB and the RRMSE with n = 6, 13, and 20.
According to the ARB graphs on the Figure 1, biases
(absolute values of relative bias from the realized finite
population values) of prov1 and prov2 parameters for
condition 3 are much higher than the bias of other
parameters, but biases are relatively lower for b21,
b22, b31, and b32 for this condition. It occurs at the
simulation data with n = 6, 13, and 20. For n = 20, biases
are almost same for conditions 1 and 2, while biases for
condition 3 are still looks different from conditions 1
and 2.

Figure 2 shows the RRMSE (relative root means
square error), the differences between values predicted
by a model or an estimator and the values actually ob-
served from the thing being modeled or estimated. It
shows that the parameter estimations for all conditions
are nearly equal. For condition 3, prov2 is smaller but
b22 and b32 are higher than those of conditions 1 and 2.
As well as ARB, the larger the n, the narrower the inter-
val. For n = 6, 13, and 20, the intervals are (-15, 15), (-13,
13), and (-10, 10), respectively.

�

FIGURE 2. RRMSE of the Model Parameters

APPLICATION

The procedures of generalized linear mixed model with
ordinal response described above could be used to com-
pare the districts and subdistricts with respect to the
poverty level. The model is implemented to the poverty
data in 9 districts in Java Island which took in 2008.
The data consists of an ordinal response variable, four
fixed effects and a random effect. The ordinal response
variable is the level of poverty, while the covariates are
province (prov), number of bad nutrition cases (badnut),
number of farmer families (farm), and number of health
personnel (med) which each of them has three levels val-
ues, and district is as a random effect. The values of co-
variates are grouped into the ordinal scale. The names
of districts in the data are Kuningan, Karawang, and
Majalengka that had been chosen randomly from West
Java; Temanggung, Boyolali, and Cilacap from Central
Java; and Blitar, Ngawi, and Jember from East Java.
Unit observation in this research is sub-district (keca-
matan) nested in district, and districts (kabupaten) are
nested in province. Actually, the districts had been cho-
sen randomly from a collection of ordering dually (rank-
ing method) results, furthermore, they are nested in a
province and will be considered in the model. The Equa-
tion (11) is the model for the data.
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TABLE 1. The Categories and the Overall Observed Fre-
quencies

Variable Category or
Number of cases

Level number of
districts

Y Not Poor 1 70
Moderate 2 59

Poor 3 48

Prov West Java 1 56
(X1) Central Java 2 54

East Java 3 67

badnut [0, 9] 1 76
(X2) [10, 24] 2 50

[25, 666] 3 51

farm [0, 2600] 1 36
(X3) [2601, 5000] 2 46

[5001, 16404] 3 95

med [0, 29] 1 55
(X4) [30, 49] 2 78

[50, 1336] 3 44

RESULTS AND DISCUSSION

As the computation results, Table 1 shows the cate-
gories and overall observed frequencies and Table 2
shows the variances of fixed effects in every district and
every province. According to the variances of poverty
level (Y), in province 1 (West Java), var(Y) = 0.68 is
greater than variances of districts 1, 2, and 3 (0.13, 0.38,
and 0.25, respectively) in the same province. It means
that the poverty levels of sub-districts in the same dis-
trict are more homogeneity than those in different dis-
tricts. The same descriptions are for province 2 (Central
Java)(var(Y) = 0.61) and province 3 (East Java) (var(Y)
= 0.58), which these variances are greater than the vari-
ances of their districts. This homogeneity condition com-
ply to the assumption for nested model, even though this
condition is not complied by the explanatory variables.

Table 3 shows the correlations of variables in the
model. Bad nutrition cases has no correlation to the re-
sponse variable (Y) (p-value = 0.8775), while the re-
maining variables have statistically significant correla-
tion to the response. Table 4 shows the solution for fixed
effects. According to the computation result, intercept1
is almost significant (p-value = 0.0508) and just farmer
family (farm21, p-value = 0.0217) and medical (health)
personnel are significant (med21, p-value = 0.0264). The
table shows that farmer families from province 2 with
category 1 is significant different from category 3 (as the
base level). It means in province 2, number of farmer
families with category 1 and 3 cause the different poverty
level of sub-districts. Furthermore, in province 2, num-
ber of medical personnel with category 1 and 3 cause
the different poverty level of sub-districts, as well as in

TABLE 2. The Variances of the Ordinal Variables

prov dist Y badnut farm med

1 1 0.13 0.68 0.66 0.62
2 0.38 0.51 0.49 0.40
3 0.25 0.58 0.49 0.36

2 1 0.23 0.69 0.27 0.58
2 0.51 0.45 0.54 0.62
3 0.53 0.70 0.45 0.34

3 1 0.43 0.33 0.71 0.69
2 0.47 0.70 0.45 0.34
3 0.58 0.45 0.22 0.54

1 0.68 0.51 0.52 0.46
2 0.61 0.61 0.30 0.61
3 0.58 0.68 0.40 0.52

overall 0.66 0.69 0.42 0.59

TABLE 3. The correlations of the variables and the p-
values

Y prov badnut farm med

Y 1 0.2654 -0.0117 0.3807 0.1791
(.0004) (.8775) (<.0001) (.0171)

prov 1 -0.3574 0.2348 -0.1129
(<.0001) (.0017) (.1348)

badnut 1 -0.0063 0.1091
(.9339) (.1483)

farm 1 0.0655
(.3865)

med 1

province 3, for medical personnel with category 2 and 3.
An interpretation of the modeling result is as follows.
The ratio of the odds A over B (let A is a sub-district in
province 2 with category 1 for farmer families and B is a
sub-district in province 2 with category 3 for farmer fam-
ilies, and have the same categories for other covariates)
can be obtained by the calculation,
θ = ωA/ωB =

[P(yA≤ k)/(1−P(yA≤ k))]/[P(yB≤ k)/(1−P(yB≤ k))]

= e2.0883 = 8.071.
It means the odds of A response are about eight times of
the odds of B response or the risks of A become better
sub-district are eight times higher than the risks of B.

The solution for random effect is shown by Table 5
which district 2 (Karawang) in Province 1 (West Java)
is significantly different from other districts (p-value =
0.0103), while the other districts are not statistically
different each other.

153



TABLE 4. Solution for Fixed Effects

Estimate StdErrEst t Value Pr > |t|∗

intercept1 -3.0756 1.2631 -2.43 0.0508
intercept2 -0.7189 1.2328 -0.58 0.5810
prov1 2.2371 1.7749 1.26 0.2543
prov2 0.5727 0.7993 0.32 0.7610
badnut11 0.7138 1.0054 0.71 0.4788
badnut12 0.3129 0.7498 0.42 0.6771
badnut21 -0.4245 0.7941 -0.53 0.5938
badnut22 0.7651 0.8509 0.90 0.3700
badnut31 0.8637 0.7214 1.20 0.2331
badnut32 -0.4148 0.8328 -0.50 0.6191
farm11 1.0739 0.9763 1.10 0.2731
farm12 0.2750 0.8587 0.32 0.7492
farm21 2.0883 0.9004 2.32 0.0217
farm22 0.6587 0.7308 0.90 0.3688
farm31 0.7781 0.8759 0.89 0.3758
farm32 0.6949 0.7013 0.99 0.3233
med11 0.5739 1.0053 0.57 0.5689
med12 0.7225 0.8353 0.86 0.3885
med21 2.2131 0.9871 2.24 0.0264
med22 1.2190 0.6730 1.81 0.0721
med31 0.9243 0.6964 1.33 0.1864
med32 1.7934 0.7147 2.51 0.0132

∗ SAS Output

TABLE 5. Solution for Random Effects

Estimate StdErrEst t Value Pr > |t|∗

district11 1.1031 1.0825 1.02 0.3098
district12 -2.7568 1.0615 -2.60 0.0103
district13 1.6537 1.0760 1.54 0.1264
district21 0.8236 1.0767 0.76 0.4455
district22 0.01994 1.0372 0.02 0.9847
district23 -0.8435 1.0502 -0.80 0.4231
district31 0.9874 1.0254 0.96 0.3371
district32 -0.2911 1.0348 -0.28 0.7789
district33 -0.6963 1.0162 -0.69 0.4943

∗ SAS output

CONCLUSION

In condition 3, where the means of random effect are dif-
ferent for the 3 districts, the ARBs are different from
ARBs other conditions of the simulations data. Gener-
ally, the larger the n, the smaller the bias. The larger the
n, the better the parameters values or it is closer to the
realized finite population values.

The Figure 2 shows that the amplitudes of RRMSE are
narrower for the larger n. It means the estimations are
better for larger n. Condition 3 gives slightly different
values estimator from conditions 1 and 2.

The Simulations data need improvement to obtain the
better results in parameter estimations, especially for the
computation of prov parameters, which the ARBs show

that prov parameters are the highest values for conditions
3 of simulations data, where the mean of 3 provinces are
different.

Furthermore, the condition for correlated data between
explanatory variables need to be carried on to know this
effect for the parameter estimating. In addition, the ran-
dom effects of the simulation data need to be assessed.
As a conclusion of the application of the model for the
data, implementation of the model for the poverty data
in Java Island needs more explanatory variables as well
as interaction between them to have broader view of the
applications.

ACKNOWLEDGMENTS

This paper is based upon work partially supported by the
Direktorat Jenderal Pendidikan Tinggi (DIKTI) through
Hibah Pasca IPB Geoinformatik. Any opinions, findings,
and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily
reflect the views of agencies.

REFERENCES

1. R.P. Haining, (1990), Spatial data analysis in the social
and environmental sciences, Cambridge University Press,
Reading, NY.

2. N.A.C. Cressie, (1993), Statistics for spatial data, John
Wiley and Sons Inc, Reading, NY.

3. G. Tampubolon, (2009), Esai tentang kemiskinan dan kese-
hatan masyarakat di Indonesia selama dwiwindu, preprint,
available at http://kemisan.files.wordpress.
com/2009/02/esai-kemiskinan-kesehatan.
pdf.

4. P. McCullagh, (1980), Regression Models for Ordinal
Data, Journal of the Royal Statistical Society. Series B,
Methodological 42 : 109 – 142

5. D. Hedeker, and R.D. Gibbons, (1994), A random-effects
Ordinal Model for Multilevel Analysis, Biometrics, Vol.50,
4, pp. 933–944.

6. D. A. Harville, and R. W. Mee, (1984), A Mixed-
Model procedure for analyzing ordered categorical data,
Biometrics, Vol.40, pp. 393–408.

7. P. McCullagh and J.A. Nelder FRS, (1989), Generalized
Linear Models, Chapman and Hall, Reading, London,
1989.

8. V. Nekrasaite, (2008), Small area estimation in
practice, preprint, available at http://www.
ms.ut.ee/samp2008/Presentations/
VNekrasaiteLiege.pdf.

154



Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


