
J Supercomput (2012) 61:141–165
DOI 10.1007/s11227-011-0654-9

Design of scalable Java message-passing
communications over InfiniBand

Roberto R. Expósito · Guillermo L. Taboada ·
Juan Touriño · Ramón Doallo

Published online: 23 July 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper presents ibvdev a scalable and efficient low-level Java
message-passing communication device over InfiniBand. The continuous increase in
the number of cores per processor underscores the need for efficient communication
support for parallel solutions. Moreover, current system deployments are aggregating
a significant number of cores through advanced network technologies, such as Infini-
Band, increasing the complexity of communication protocols, especially when deal-
ing with hybrid shared/distributed memory architectures such as clusters. Here, Java
represents an attractive choice for the development of communication middleware for
these systems, as it provides built-in networking and multithreading support. As the
gap between Java and compiled languages performance has been narrowing for the
last years, Java is an emerging option for High Performance Computing (HPC).

The developed communication middleware ibvdev increases Java applica-
tions performance on clusters of multicore processors interconnected via InfiniBand
through: (1) providing Java with direct access to InfiniBand using InfiniBand Verbs
API, somewhat restricted so far to MPI libraries; (2) implementing an efficient and
scalable communication protocol which obtains start-up latencies and bandwidths
similar to MPI performance results; and (3) allowing its integration in any Java paral-
lel and distributed application. In fact, it has been successfully integrated in the Java
messaging library MPJ Express.

R.R. Expósito · G.L. Taboada (�) · J. Touriño · R. Doallo
Computer Architecture Group, Dept. of Electronics and Systems, University of A Coruña, A Coruña,
Spain
e-mail: taboada@udc.es

R.R. Expósito
e-mail: rreye@udc.es

J. Touriño
e-mail: juan@udc.es

R. Doallo
e-mail: doallo@udc.es

mailto:taboada@udc.es
mailto:rreye@udc.es
mailto:juan@udc.es
mailto:doallo@udc.es

142 R.R. Expósito et al.

The experimental evaluation of this middleware on an InfiniBand cluster of multi-
core processors has shown significant point-to-point performance benefits, up to 85%
start-up latency reduction and twice the bandwidth compared to previous Java mid-
dleware on InfiniBand. Additionally, the impact of ibvdev on message-passing col-
lective operations is significant, achieving up to one order of magnitude performance
increases compared to previous Java solutions, especially when combined with mul-
tithreading. Finally, the efficiency of this middleware, which is even competitive with
MPI in terms of performance, increments the scalability of communications intensive
Java HPC applications.

Keywords Message-Passing in Java (MPJ) · InfiniBand · Multicore architectures ·
High performance computing · Remote Direct Memory Access (RDMA) ·
Performance evaluation

1 Introduction

Java is the leading programming language both in academia and industry environ-
ments, and it is an emerging alternative for High Performance Computing (HPC) [1]
due to its appealing characteristics: built-in networking and multithreading support,
object orientation, automatic memory management, platform independence, portabil-
ity, security, an extensive API, and a wide community of developers. Furthermore, in
the era of multicore processors, the use of Java threads is considered a feasible option
to harness the performance of these processors.

Java initially was severely criticized for its poor computational performance [2],
but the performance gap between Java and native (compiled) languages like C or For-
tran has been narrowing for the last years. The main reason is that the Java Virtual Ma-
chine (JVM), which executes Java applications, is now equipped with Just-in-Time
(JIT) compilers that obtain native performance from Java bytecode. Nevertheless, the
tremendous improvement in its computational performance is not enough for Java to
be a successful language in the area of parallel computing, as the performance of the
communications is also essential to achieve high scalability in Java for HPC.

Message-passing is the most widely used parallel programming paradigm as it
is highly portable, scalable, and usually provides good performance. It is the pre-
ferred choice for parallel programming distributed memory systems such as multi-
core clusters, currently the most popular system deployments due to their scalability,
flexibility, and interesting cost/performance ratio. Here, Java represents an attractive
alternative to languages traditionally used in HPC, such as C or Fortran, for the devel-
opment of applications for these systems as it provides built-in networking and multi-
threading support, key features for taking full advantage of hybrid shared/distributed
memory architectures. Thus, Java can use threads in shared memory (intranode) and
its networking support for distributed memory (internode) communications.

The increasing number of cores per system demands efficient and scalable
message-passing communication middleware. However, up to now Message-Passing
in Java (MPJ) implementations have been focused on providing portable communi-
cation devices, rather than concentrate on developing efficient low-level communi-

Design of scalable Java message-passing communications 143

cation devices on high-speed networks. The lack of efficient support for high-speed
networks in Java, due to its inability to control the underlying specialized hardware,
results in lower performance than MPI, especially for short messages. This paper
presents a scalable and efficient Java low-level message-passing communication de-
vice, ibvdev, aiming to its integration in MPJ implementations in order to provide
higher performance on InfiniBand multicore clusters. In fact, it has been already in-
tegrated successfully in the MPJ library MPJ Express [3] (http://mpj-express.org).

The structure of this paper is as follows: Sect. 2 presents InfiniBand background
information. Section 3 introduces the related work. Section 4 describes the design
and implementation of the efficient ibvdev middleware, covering in detail the op-
eration of the communication algorithms that provide the highest performance over
InfiniBand. Section 5 shows the performance results of the implemented library on
an InfiniBand multicore cluster. The evaluation consists of a micro-benchmarking of
point-to-point and collectives primitives, as well as a kernel/application benchmark-
ing in order to analyze the impact of the use of the library on their overall perfor-
mance. Section 6 summarizes our concluding remarks.

2 Java communications over InfiniBand

2.1 InfiniBand architecture

The InfiniBand Architecture (IBA) [4] defines a System Area Network (SAN) for in-
terconnecting processing nodes and I/O nodes. In an InfiniBand network, processing
nodes and I/O nodes are connected to the fabric by Channel Adapters (CA). Channel
Adapters usually have programmable DMA engines with protection features. There
are two kinds of channel adapters: Host Channel Adapter (HCA) and Target Channel
Adapter (TCA). HCAs sit on processing nodes and TCAs connect I/O nodes to the
fabric.

The InfiniBand communication stack consists of different layers. The interface
presented by channel adapters to consumers belongs to the transport layer. A queue-
based model is used in this interface. A Queue Pair (QP) in InfiniBand Architecture
consists of two queues: a send queue and a receive queue. The send queue holds
instructions to transmit data and the receive queue holds instructions that describe
where received data has to be placed. Communication operations are described in
Work Queue Requests (WQR), or descriptors, and submitted to the work queue. Once
submitted, a Work Queue Request becomes a Work Queue Element (WQE). WQEs
are executed by Channel Adapters. The completion of work queue elements is re-
ported through Completion Queues (CQs). Once a work queue element is finished,
a completion entry is placed in the associated completion queue. Applications can
check the completion queue to see if any work queue request has been finished.

2.1.1 Channel and memory semantics

InfiniBand Architecture supports both channel and memory semantics. In channel se-
mantics, send/receive operations are used for communication. To receive a message,

http://mpj-express.org

144 R.R. Expósito et al.

the programmer posts a receive descriptor which describes where the message should
be put at the receiver side. At the sender side, the programmer initiates the send op-
eration by posting a send descriptor. The send descriptor describes where the source
data is but does not specify the destination address at the receiver side. When the
message arrives at the receiver side, the hardware uses the information in the receive
descriptor to put data in the destination buffer. Multiple send and receive descriptors
can be posted and they are consumed in FIFO order. The completion of descriptors
are reported through CQs.

In memory semantics, Remote Direct Memory Access (RDMA) write and RDMA
read operations are used instead of send and receive operations. These operations are
one-sided and do not incur software overhead at the other side. The sender initiates
RDMA operations by posting RDMA descriptors. A RDMA descriptor contains both
the local data source address and the remote data destination address. At the sender
side, the completion of a RDMA operation can be reported through CQs. The opera-
tion is transparent to the software layer at the receiver side.

Both communication semantics require communication memory to be registered
with InfiniBand hardware and pinned in memory. The registration operation involves
informing the network-interface of the virtual to physical address translation of the
communication memory. The pinning operation requires the operating system to
mark the pages corresponding to the communication memory as non-swappable.
Thus, communication memory stays locked in physical memory, and the network-
interface can access it as desired.

2.1.2 Transport services

There are five transport modes defined by the InfiniBand specification: Reliable Con-
nection (RC), eXtended Reliable Connection (XRC), Reliable Datagram (RD), Un-
reliable Connection (UC), and Unreliable Datagram (UD). All transports provide a
checksum verification.

Reliable Connection (RC) is the most popular transport service for implementing
MPI over InfiniBand. As a connection-oriented service, a QP with RC transport must
be dedicated to communicating with only one other QP. A process that communicates
with N other peers must have at least N QPs created. The RC transport provides
almost all the features available in InfiniBand, most notably reliable send/receive,
RDMA and atomic operations.

RC transport makes no distinction between connecting a process (generally one
per core for MPI) and connecting a node. Thus, the associated resource consumption
increased directly in relation to the number of cores in the system. To address this
problem eXtended Reliable Connection (XRC) was introduced. Instead of having a
per-process cost, XRC was designed to allow a single connection from one process to
an entire node. XRC provides the services of the RC transport, but defines a very dif-
ferent connection model and method for determining data placement on the receiver
in channel semantics. When using the RC transport, the connection model is purely
based on processes. By contrast, XRC allows connection optimization based on the
location of a process. The node of the peer to connect to is now taken into account, so
instead of requiring a new QP for each process, now each process only needs to have

Design of scalable Java message-passing communications 145

Table 1 Operations available for each transport service

Operation RC XRC UC RD UD

Send (with immediate) X X X X X

Receive X X X X X

RDMA write (with immediate) X X X X

RDMA read X X X

Atomic X X X

one QP per node to be fully connected. This reduces the number of QPs required by
a factor of the number of cores per node.

Unreliable Connection (UC) provides a connection-oriented service with no guar-
antees of ordering or reliability. It supports RDMA write capabilities and send-
ing messages larger than the Maximum Transmission Unit (MTU) size. Being
connection-oriented in nature, every communicating peer requires a separate QP. In
regard to resources required, it is identical to RC, while no providing reliable service.
Thus, it appears unattractive for implementing MPI over this transport.

Unreliable Datagram (UD) is a connection-less and unreliable transport, the most
basic transport specified for InfiniBand. As a connection-less transport, a single UD
QP can communicate with any number of other UD QPs. However, the UD transport
has a number of limitations. The UD transport does not provide any reliability: lost
packets are not reported and the arrival order is not guaranteed. However, this can
be solved relying on Reliable Datagram (RD). Moreover, UD transport does not en-
able RDMA. All communication must be performed using channel semantics, i.e.,
send/receive.

Table 1 shows the available operations for each transport service, since not all
transport services support all operations, which has to be taken into account for a
message-passing middleware implementation.

2.1.3 Shared receive queues

Shared Receive Queues (SRQs) were introduced in the InfiniBand 1.2 specification
to address scalability issues with InfiniBand memory usage. In order to receive a
message on a QP, a receive buffer must be posted in the Receive Queue (RQ) of that
QP. To achieve high-performance, MPI implementations prepost buffers to the RQ to
accommodate unexpected messages. When using the RC transport of InfiniBand, one
QP is required per communicating peer. However, this task of preposting receives
on each QP can have very high memory requirements for communication buffers.
Recognizing that such buffers could be pooled, SRQ support was added so instead
of connecting a QP to a dedicated RQ, buffers could be shared across QPs. In this
method, a smaller pool can be allocated and then refilled on demand instead of pre-
posting on each connection.

2.2 Message-passing communication devices

Message-passing libraries usually support new transport protocols through the use of
pluggable low-level communication devices, such as Abstract Device Interface (ADI)

146 R.R. Expósito et al.

Fig. 1 Communications support of MPJ applications

in MPICH, Byte Transfer Layer (BTL) in OpenMPI, and xdev [5] in MPJ Express.
These communication devices abstract the particular operation of a communication
protocol, such Myrinet eXpress (MX), uDAPL (user Direct Access Programming
Library), InfiniBand Verbs (IBV), Shared Memory, or SCTP (Stream Control Trans-
mission Protocol), conforming to an API on top of which the message-passing library
implements its communications.

Figure 1 presents an overview of the communications support of MPJ applications
on the high-speed Myrinet network, on Gigabit Ethernet, and on shared memory.
From top to bottom, MPJ applications rely on MPJ libraries, whose communication
support is implemented in the device layer. Current Java communication devices are
implemented either on JVM threads (smpdev, a multithreading device), on sockets
over the TCP/IP stack (niodev on Java NIO sockets and iodev on Java IO sock-
ets), or on native communication layers such as Myrinet eXpress (mxdev, a device
on MX).

Regarding InfiniBand, up to now no direct support was made available for MPJ
applications to fully exploit the communication capability of InfiniBand networks.
This lack of direct InfiniBand support in Java requires the use of upper layer protocols
such as IPoIB [6] (IP over InfiniBand) TCP emulation, as shown in Fig. 2, or SDP
(Sockets Direct Protocol), the high performance native sockets library on InfiniBand.
However, the use of IPoIB, the only communication library that fully supports Java
over InfiniBand, shows quite poor performance [7]. Moreover, when relying on SDP
the performance generally improves, but this is not always possible. Regarding MPI
libraries, their direct InfiniBand support has been implemented some years ago on top
of InfiniBand Verbs (IBV) API (see Fig. 2), achieving very high performance results.
Therefore, our objective is the implementation of the direct InfiniBand support in
Java on IBV through the development of a low-level Java communication device that
can take advantage of InfiniBand RDMA transfers, thus outperforming significantly
previous Java support on InfiniBand.

3 Related work

Current research on efficient Java communication libraries over InfiniBand is, to our
knowledge, restricted to Jackal, Aldeia, Java Fast Sockets (JFS), Jdib, and uStream
projects, next presented. Jackal [8] is a Java DSM (Distributed Shared Memory) mid-
dleware for clusters with InfiniBand Verbs support, embracing also RDMA transfers,

Design of scalable Java message-passing communications 147

Fig. 2 MPI/MPJ applications support on InfiniBand

but it does not provide any API to Java developers as it only implements data trans-
fers specifically for Jackal. Aldeia [9] is a proposal of an asynchronous sockets com-
munication layer over InfiniBand whose preliminary results were encouraging, but
requires an extra-copy, which incurs an important overhead to provide asynchronous
write operations, whereas the read method is synchronous.

JFS [10] is our high performance Java socket implementation for efficient shared
memory and high-speed networks support. JFS relies on SDP (see Fig. 2) to support
Java communication over InfiniBand. Moreover, JFS avoids the need for primitive
data type array serialization and reduces buffering and unnecessary copies. Neverthe-
less, the use of the sockets API is a significant drawback to support efficient message-
passing communications.

Jdib [11, 12] (Java Direct InfiniBand) is a Java encapsulation of IBV API which
maximizes Java communication performance using directly, through Java Native In-
terface (JNI), the InfiniBand RDMA mechanism. The main contribution of Jdib is
its direct access to RDMA, providing to performance-concerned developers, for the
first time, a Java RDMA API. Thus, Jdib significantly outperforms its alternatives,
currently limited to IPoIB- and SDP-based solutions. The main drawbacks of Jdib
are its low-level API and the JNI overhead incurred for each Jdib operation.

uStream [13] is a user-level stream protocol implemented on top of IBV that pro-
vides a higher level API than Jdib. In fact, uStream abstracts developers from the most
tedious operations in Jdib, such as the buffer management, synchronization and the
use of the IBV API, while fully exploiting InfiniBand RDMA performance. There-
fore, uStream is much more effective and easier to use than Jdib for building parallel
and distributed applications.

4 ibvdev: efficient Java communications over InfiniBand

This section presents the design and implementation of the ibvdev communication
device, the Java message-passing middleware over InfiniBand developed in this pa-
per. Unlike VIA [14, 15], InfiniBand architecture does not specify an API. Instead, it
defines the functionality provided by HCAs to operating systems in terms of Verbs
(a “verb” is a semantic description of a function that must be provided). The Verbs
interface specifies such functionality as transport resource management, multicast,

148 R.R. Expósito et al.

work request processing, and event handling. The most important implementation
used today of Verbs interface is the IBV API provided by the OFED (OpenFabrics
Enterprise Distribution) driver distributed by the OpenFabrics Alliance [16]. IBV is
also the lowest level InfiniBand networking API for applications, available only in C
language. Therefore, any Java communication support on IBV must resort to JNI in
order to access IBV API and obtain the best possible performance, the target of the
communication middleware developed, ibvdev.

4.1 Message-passing in Java libraries

There have been several efforts [1] over the last decade to develop a Java message-
passing system since its introduction [17]. Most of these projects were prototype
implementations, without maintaining. Currently, the most relevant ones in terms of
uptake by the HPC community are mpiJava [18], MPJ Express [3], MPJ/Ibis [19] and
F-MPJ [20].

mpiJava [18] is a Java messaging system that uses JNI to interact with the un-
derlying native MPI library. This project has been perhaps the most successful Java
HPC messaging system, in terms of uptake by the community. However, although its
performance is usually high, mpiJava currently only supports some native MPI im-
plementations, as wrapping a wide number of functions and heterogeneous runtime
environments entails an important maintaining effort. Additionally, this implemen-
tation presents instability problems, derived from the native code wrapping (all MPJ
methods are wrapped), and has thread safety issues in the wrapper layer, being unable
to take advantage of multicore systems through multithreading, even if the underlying
MPI library is thread safe.

MPJ Express is an MPJ implementation of the mpiJava 1.2 API [17] specification.
MPJ Express is thread-safe and presents a modular design which includes a pluggable
architecture of communication devices that allows to combine the portability of the
“pure” Java New I/O package (Java NIO) communications (niodev device) with
the high performance Myrinet support (through the native Myrinet eXpress commu-
nication library in the mxdev device).

MPJ/Ibis [19] is an implementation of the JGF MPJ API [21] specification on top
of Ibis [22]. The design philosophy of Ibis is similar to MPJ Express; it is possible to
use 100% pure Java communication or use special HPC hardware like Myrinet. There
are two pure Java devices in Ibis. The first called TCPIbis provides communication
using the traditional java.io package. The second called NIOIbis uses the Java
NIO package. Although TCPIbis and NIOIbis provide blocking and nonblock-
ing communication at the device level, the higher-levels only use blocking versions
of these methods. Nevertheless, MPJ/Ibis does not provide a multithreaded commu-
nication device, unlike MPJ Express, key to harness the performance of multicore
processors.

F-MPJ [20] is our message-passing communication middleware that provides
shared memory and high-speed networks (e.g., InfiniBand, Myrinet, and SCI) com-
munication support through the use of JFS. However, the use of Java IO sockets in its
communication device iodev limits scalability as the progress engine of F-MPJ has
to check every connection for incoming messages, unlike Java NIO sockets whose
support is already implemented in the select method.

Design of scalable Java message-passing communications 149

Fig. 3 Overview of the MPJ
Express design including
ibvdev

MPJ Express project is currently the most active project in terms of adoption by
the HPC community, presence on academia and production environments, and avail-
able documentation. This project is also stable and publicly available along with its
source code at http://mpj-express.org. Therefore, MPJ Express has been selected for
the integration of the ibvdev middleware in a production MPJ library.

4.2 MPJ Express communication devices design

MPJ Express has a layered design that enables its incremental development and pro-
vides the capability to update and swap layers in or out as required. Thus, at runtime
end users can opt to use a high performance proprietary network device, or choose a
pure Java device, based either on sockets or threads, for portability.

Figure 3 illustrates an overview of the MPJ Express design and the different levels
of the software. From top to bottom, it can be seen that a message-passing application
in Java (MPJ application) calls MPJ Express point-to-point and collective primitives.
These primitives implement the MPJ communications API on top of the xdev layer,
which has been designed as a pluggable architecture and provides a simple but pow-
erful API. This design facilitates the development of new communication devices in
order to provide custom implementations on top of specific native libraries and HPC
hardware. Thus, xdev is portable as it presents a single API and provides efficient
communication on different system configurations.

Figure 3 also shows the three implementations of the xdev API for networked
communication: niodev on Java NIO, and hence TCP/IP, and mxdev on Myrinet,
as well as the developed xdev middleware for direct InfiniBand support, ibvdev
(depicted in red).

4.2.1 xdev API design

The xdev API, presented in Listing 1, has been designed with the goal of being
simple and small, providing only basic communication methods, in order to ease
the development of xdev devices. An xdev communication device is similar to the
MPI communicator class, but with reduced functionality. The initmethod starts the

http://mpj-express.org

150 R.R. Expósito et al.

communication device operation. The id method returns the identification (Pro-
cessID) of the device. The finish method is the last method to be called and
completes the device operation.

The xdev communication primitives only include point-to-point communication,
both blocking (send and recv, like MPI_Send and MPI_Recv) and nonblocking
(isend and irecv, like MPI_Isend and MPI_Irecv). Synchronous communications
are also embraced (ssend and issend). These communication methods use PID
(ProcessID) objects instead of using ranks as arguments to send and receive primi-
tives. In fact, the xdev layer is focused on providing basic communication methods
and it does not deal with high level message-passing abstractions such as groups and
communicators. Therefore, a PID object unequivocally identifies a device object.

1 p u b l i c a b s t r a c t c l a s s Device {
2 p u b l i c s t a t i c Device n e w I n s t a n c e (S t r i n g dev) ;
3 P r o c e s s I D [] i n i t (S t r i n g [] a r g s) ;
4 P r o c e s s I D i d () ;
5 void f i n i s h () ;
6

7 Reques t i s e n d (B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x) ;
8 void send (B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x) ;
9 Reques t i s s e n d (B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x) ;

10 void s s e n d (B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x) ;
11 S t a t u s r e c v (B u f f e r buf , PID s r c , i n t t ag , i n t c n t x) ;
12 Reques t i r e c v (B u f f e r buf , PID s rc , i n t t ag , i n t cn tx , S t a t u s s) ;
13 S t a t u s p robe (PID s r c , i n t t ag , i n t c n t x) ;
14 S t a t u s i p r o b e (PID s r c , i n t t ag , i n t c n t x) ;
15 Reques t peek () ;
16 }

Listing 1 API of the xdev.Device class

4.3 Communication device design

Figure 4 presents the overall design of the communication middleware, which con-
sists of three distinct parts. The first is the definition of a new device, ibvdev, in
the xdev layer of MPJ Express (1 in Fig. 4). The analysis of the other high-speed
network support in MPJ Express, the implementation of the mxdev device, reveals
that it also uses native code via JNI to rely on the MX library, thus posing similar
design issues as ibvdev. The MX library [23] provides a set of primitives similar to
those needed to implement xdev interface, so there are a number of functions, such
as mx_isend, mx_issend, mx_irecv, and mx_wait, that are used in the JNI
layer. Therefore, mxdev acts as a Java wrapper layer to MX library, so that the imple-
mentation of a method in xdev generally delegates directly in a native method that
performs the requested operation in MX library. Nevertheless, the design of mxdev
is not directly applicable to ibvdev since InfiniBand lacks an MX-style library that
implements the functionality and operations that must be implemented in xdev. The
available communication layer for ibvdev is the IBV API, which offers low-level
methods for the management of the HCA InfiniBand card.

Therefore, an MX-like library has been defined in order to provide ibvdev with
a set of communication primitives with message-passing semantics on InfiniBand,

Design of scalable Java message-passing communications 151

Fig. 4 Overall design of the
communication library

to ease the development of the xdev communication device. This library has been
denominated IBV eXpress (IBVX) (2 in Fig. 4). With this design, a native communi-
cation library has been implemented on top of IBV to provide basic message-passing
communication primitives to higher level layers (either Java or non Java). Thus, the
new communication device ibvdev can rely on IBVX through JNI. The design of
this layer allows the access to IBVX from MPJ Express through its ibvdev device
(3 in Fig. 4).

4.3.1 IBV eXpress library design

The IBVX library is a scalable and high performance low-level C message-passing
middleware for communication on InfiniBand systems. It has been designed using
the same approach as xdev communication devices. In fact, there is a mapping of
xdev methods to IBVX functions, except for methods id, used for process identi-
fication, and getSendOverhead and getRecvOverhead, which are available
only at the Java level as give information about the buffer handling. The IBVX API
is presented in Listing 2. Like xdev API, IBVX includes only point-to-point com-
munication, both blocking and nonblocking, and also synchronous communication
support. In order to support nonblocking operations, IBVX implements IBV_Wait
and IBV_Test functions, which handle nonblocking operation requests.

1 I B V _ I n i t (char ∗∗pNames , i n t ∗ p L i s t , i n t nProcs , i n t rank , i n t p s l) ;
2 I B V _ F i n a l i z e () ;
3 IBV_Isend (void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c tx , Reques t ∗ r) ;
4 IBV_Issend (void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c tx , Reques t ∗ r) ;
5 IBV_Irecv (void ∗buf , i n t s i z e , i n t s r c , i n t t ag , i n t c tx , Reques t ∗ r) ;
6 IBV_Send (void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c t x) ;
7 IBV_Ssend (void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c t x) ;
8 IBV_Recv (void ∗buf , i n t s i z e , i n t s r c , i n t t ag , i n t c tx , S t a t u s ∗ s) ;
9 IBV_Wait (Reques t ∗ r e q u e s t , S t a t u s ∗ s t a t u s) ;

10 IBV_Test (Reques t ∗ r e q u e s t , S t a t u s ∗ s t a t u s) ;
11 IBV_Iprobe (i n t s r c , i n t t ag , i n t c o n t e x t , S t a t u s ∗ s t a t u s) ;
12 IBV_Probe (i n t s r c , i n t t ag , i n t c o n t e x t , S t a t u s ∗ s t a t u s) ;
13 Reques t ∗ IBV_Peek () ;

Listing 2 Public interface of the IBV eXpress library

152 R.R. Expósito et al.

4.3.2 ibvdev JNI layer design

The design of the JNI layer of ibvdev is quite straightforward as it acts as a thin
wrapper over IBVX. Thus, each native method of ibvdev delegates on a native
IBVX function through JNI, implementing a series of three steps: (1) get Java ob-
jects associated parameters required for calling the corresponding library function in
IBVX; (2) call IBVX function; and (3) save the results in the appropriate attributes
of the Java objects involved in the communication. As general rules in the implemen-
tation of the JNI layer, it has been extensively used the caching of object references,
thus minimizing the overhead associated with the JNI calls.

4.4 IBV eXpress library implementation

IBVX library implements nonblocking low-level communication primitives (see List-
ing 2) on top of IBV API. The first decision is the transport service used to create
the queue pairs. Not all transports services support RDMA operations (see Table 1),
whose support is desirable, so these transport services (UC and UD) are discarded.

Moreover, for RD and XRC transport services is not applicable the InfiniBand
end-to-end flow control and this requires the development of a specific flow control
software layer, which can add significant overhead if the implementation is not effi-
cient. Therefore, the RC transport service has been selected as it provides reliability,
delivery order, data loss detection, and error detection.

IBVX implements all communication operations as nonblocking communication
primitives. Then blocking communication support is implemented as a nonblocking
primitive followed by an IBV_Wait call. Therefore, the basic set of functions im-
plemented consists of IBV_Init, IBV_Finalize, and nonblocking communi-
cation functions (IBV_Isend, IBV_Issend, IBV_Irecv), and the function that
checks the completion of a nonblocking operation (IBV_Test). Thus, the opera-
tion that waits for the completion of a nonblocking operation (IBV_Wait) has been
implemented following a strategy of polling (busy loop) as a continuous loop calling
IBV_Test until the test is positive (thus minimizing latency). Blocking communica-
tion functions (IBV_Send, IBV_Ssend, and IBV_Recv) have been implemented
by a call to its corresponding nonblocking function followed by an IBV_Wait call.
Moreover, the probe operation, which checks for incoming messages without ac-
tual receipt of any of them, has been also implemented in the nonblocking version
IBV_Iprobe, whereas the blocking version (IBV_Probe) relies on the nonblock-
ing operation completion.

4.4.1 IBV eXpress communication protocols

Message-passing libraries usually implement two different communication protocols:

1. Eager protocol: the sender process eagerly sends the entire message to the re-
ceiver. In order to achieve this, the receiver needs to provide a sufficient number
of buffers to handle incoming messages. This protocol has minimal startup over-

Design of scalable Java message-passing communications 153

Fig. 5 MPI eager and rendezvous protocols

Fig. 6 Message format in
IBVX library

heads and is used to implement low latency message-passing communication for
smaller messages (typically < 128 KB, configurable threshold).

2. Rendezvous protocol: this protocol negotiates (via control messages) the buffer
availability at the receiver side before the message is actually transferred. This
protocol is used for transferring large messages (typically > 128 KB), whenever
the sender is not sure whether the receiver actually has enough buffer space to
hold the entire message.

Figure 5 presents graphically the operation of eager and rendezvous protocols.

4.4.2 Message format

The presence of control messages in the operation of the rendezvous protocol and the
need for a receiving process to unequivocally distinguish a message, has forced the
introduction of a message header before the actual data payload. Thus, a message is
defined as the union of a header of 20 bytes (starting from the beginning), which is
followed by the data payload, as shown in Fig. 6.

The header consists of 5 fields of 4 bytes each representing in this order: the pro-
cess rank that sends the message, the destination process rank, the tag or label of the
message, the context to which it belongs, and the type of message. All header fields
are 4-byte integers, for all types of messages.

154 R.R. Expósito et al.

4.4.3 Eager protocol

The overhead of data copies is small for short messages, such as eager protocol trans-
fers and control messages, which are eagerly push through the network to achieve the
lowest latency. This operation matches with the semantic of InfiniBand send/receive
communication.

In IBV_Init a reliable connection is set up between every two processes. For
a single process, the send and receive queues of all connections are associated with
a single CQ (Completion Queue). Through this CQ, the completion of all send and
RDMA operations can be detected at the sender side. The completion of receive op-
erations (or arrival of incoming messages) can also be detected through the CQ (see
Fig. 7).

The InfiniBand Architecture requires the pinning of buffers previous to the com-
munication, thus they must be registered with the hardware. In the eager protocol im-
plementation (shown in Fig. 7), the buffer pinning and unpinning overhead is avoided
by using a pool of prepinned, fixed size buffers for communication. For sending an
eager data message, the data is copied to one of the buffers first and sent out from
this buffer to the send queue (1 in Fig. 7). At the receiver side, a number of buffers
from the pool are preposted (2 in Fig. 7). After the message is received, the payload is
copied to the destination buffer (3 in Fig. 7). The communication of control messages
also uses this buffer pool as they are actually sent using the eager protocol.

Fig. 7 Eager protocol implementation in IBVX

Design of scalable Java message-passing communications 155

4.4.4 Rendezvous protocol

When transferring large messages it is extremely beneficial to avoid extra data copies.
A zero-copy rendezvous protocol implementation can be achieved by using RDMA
operations. The rendezvous protocol negotiates the buffer availability at the receiver
side. However, the actual data can be transferred either by using RDMA Write or
RDMA Read. RDMA Write-based approaches can totally eliminate intermediate
copies and efficiently transfer large messages. RDMA Read-based approaches can
enable both zero copy and computation and communication overlap. Similar ap-
proaches have been widely used for implementing MPI communications over dif-
ferent interconnects [24, 25].

The RDMA Write-based protocol is illustrated in Fig. 8 (right). In this imple-
mentation, the buffers are pinned down in memory and the buffer addresses are ex-
changed via control messages. The sending process first sends a control message to
the receiver (RNDZ_START). The receiver replies to the sender using another control
message (RNDZ_REPLY). This reply message contains the receiving application’s
buffer information along with the remote key to access that memory region. The
sending process then sends the large message directly to the receiver’s application
buffer by using RDMA Write (DATA). Finally, the sending process issues another
control message (RNDZ_END) which indicates to the receiver that the message has
been placed in the application buffer.

IBVX uses a progress engine to discover incoming messages and to make progress
on outstanding sends. As can be seen in Fig. 8, the RDMA Write-based rendezvous
protocol generates multiple control messages which have to be discovered by the
progress engine. Since the progress engine operation is based on polling, it requires
a call to the IBVX library.

RDMA Read operation presents a small number of control messages and thus
a reduced set of I/O bus transactions. In addition, since the receiver can progress

Fig. 8 Rendezvous protocol alternatives

156 R.R. Expósito et al.

independently of the sender (once the RNDZ_START message is sent), the sender
does not need to call any IBVX progress, the data transfer proceeds with RDMA
Read without direct control of the sender.

The rendezvous protocol over RDMA Read is also illustrated in Fig. 8 (left). Here,
the sending process begins with the RNDZ_START message, which has embedded
the virtual address and memory handle information of the message buffer to be sent.
Thus, upon the receipt of this RNDZ_START message all the information about the
application buffer is available to the receiving process, and no RNDZ_REPLY mes-
sage needs to be sent any more. Upon its discovery, the receiving process issues the
DATA message over RDMA Read. When the operation has been completed, it in-
forms the sending process by a RNDZ_END message. This approach, although sim-
ple, poses several design challenges that have to be addressed before directly utilize
RDMA Read:

– Limited Outstanding RDMA Reads: The number of outstanding RDMA Reads on
any QP is a fixed number (typically 8 or 16), decided during the QP creation.

– Issuing RNDZ_END Message: According to InfiniBand specification [4], Send or
RDMA Write transactions are not guaranteed to finish in order with outstanding
RDMA Reads.

For these reasons, the rendezvous protocol has been implemented with RDMA
Write operation, in order to benefit from a more productive development.

4.4.5 Cache of registered buffers

In rendezvous protocol, data buffers are pinned on-the-fly. However, the buffer pin-
ning and unpinning overhead can be reduced by using the pin-down cache tech-
nique [26]. The idea is to maintain a cache of registered buffers. When a buffer is
first registered, it is put into the cache. When the buffer is unregistered, the actual
unregister operation is not carried out and the buffer stays in the cache. Thus, the
next time when the buffer needs to be registered, we do not need to do anything be-
cause it is already in the cache. The effectiveness of pin-down cache depends on how
often the application reuses its buffers. If the reuse rate is high, most of the buffer
registration and deregistration operations can be avoided.

4.5 JNI layer implementation details

The JNI layer is a wrapper for IBVX library, in order to make it accessible from
Java. Therefore, it implements the functions that the javah utility generated in terms
of native operations contained in communication device Java classes. The develop-
ment of this layer must take into account the design of the MPJ Express buffering
layer [27]. The use of this buffering layer incurs a copying overhead that can be
significant for large messages, and is considered a performance bottleneck for MPJ
Express [28], so the handling of this layer has to be implemented efficiently.

The core class of the buffering layer used for packing and unpacking data is
mpjbuf.Buffer. This class provides two storage options: static and dynamic. Im-
plementations of static storage use the interface mpjbuf.RawBuffer. It is possi-
ble to have alternative implementations of the static section depending on the actual

Design of scalable Java message-passing communications 157

Fig. 9 Primary buffering classes in mpjbuf

raw storage medium. In addition, it also contains an attribute of type byte[] that
represents the dynamic section of the message. Figure 9 shows two implementations
of the mpjbuf.RawBuffer interface. The first, mpjbuf.NIOBuffer is an im-
plementation based on ByteBuffers. The second, mpjbuf.NativeBuffer is
an implementation for the native MPI device, which allocates memory in the native
C code. Figure 9 shows the primary buffering classes in the mpjbuf API.

Regarding mpjbuf.Buffer class design, it is necessary to handle at the JNI
layer a second call to the IBVX library when communicating a buffer with data in
the two sections (static and dynamic). To support this operation efficiently, the first 4
bytes of the static buffer indicate the size of the dynamic part of the buffer. Thus, the
overhead of this protocol in terms of buffering space, returned by getSendOver-
head and getRecvOverhead methods, is 4 bytes. These methods, implemented
for every MPJ Express communication device, are used to express the extra space
needed in the static buffer to implement the buffering layer support, and they are
profusely used when handling the buffer contents.

5 Performance evaluation

This section presents a performance evaluation of the developed communication de-
vice ibvdev, compared to native MPI libraries (MVAPICH and OpenMPI) and
the MPJ Express communications devices niodev over InfiniBand (using IPoIB)
and smpdev for shared memory communication. This evaluation consists of a mi-
crobenchmarking of point-to-point data transfers (Sect. 5.2) and collective commu-
nications (Sect. 5.3), as well as an analysis of the impact on the overall performance
of the use of the developed library on several representative MPJ codes (Sect. 5.4).

5.1 Experimental configuration

The evaluation of ibvdev has been carried out in a cluster which consists of 8 nodes,
each of them with 8 GB of RAM and 2 Intel Xeon E5520 quad-core Nehalem pro-
cessors. Although each node has 8 cores, the HyperThreading (HT) is enabled so it is
possible to run 16 processes per node concurrently. The interconnection networks are
InfiniBand (16 Gbps of maximum theoretical bandwidth), with OFED driver 1.5, and
Gigabit Ethernet (1 Gbps). The OS is Linux CentOS 5.3 with kernel 2.6.18 and the
JVM is Sun JDK 1.6.0_13. The evaluated MPJ implementation is MPJ Express [29]
version 0.36 (labeled MPJE in graphs) and the evaluated MPI implementations are
MVAPICH [25] v1.2.0 and OpenMPI [24] v1.3.3. The PSL (Protocol Switch Limit)

158 R.R. Expósito et al.

MPJ Express attribute, the threshold between eager and rendezvous send protocols,
has been set to 128 KB message size for all the benchmarks. F-MPJ and MPJ/Ibis
results are not shown for clarity purposes, apart from the fact that ibvdev is only
integrated in MPJ Express. However, as they are sockets-based implementations, their
performance is similar to niodev results.

5.2 Point-to-point micro-benchmarking

In order to micro-benchmark MPJ point-to-point and collectives primitives perfor-
mance our own micro-benchmark suite [30], similar to Intel MPI Benchmarks used
for MPI libraries, has been used due to the lack of suitable micro-benchmarks for MPJ
evaluation. Here, the results shown are the half of the round-trip time of a pingpong
test or its corresponding bandwidth. The transferred data are byte arrays, avoiding the
serialization overhead that would distort the analysis of the results.

Figures 10 and 11 show point-to-point latencies (for short messages) and band-
widths (for long messages) on InfiniBand and shared memory, respectively. The
ibvdev middleware obtains significant point-to-point performance benefits, thus
obtaining 11 µs start-up latency and up to 7.2 Gbps bandwidth. The threshold be-
tween eager and rendezvous send protocols can be observed in the bandwidth graph
at 128 KB, which confirms the efficiency of the implementation of the zero-copy ren-
dezvous protocol with RDMA Write for ibvdev. These results outperform signifi-
cantly niodev over InfiniBand, limited to 65 µs start-up latency and below 3 Gbps
bandwidth.

Compared to native MPI libraries, ibvdev obtains a similar bandwidth than
MVAPICH (7 Gbps) in this testbed, surpassing it even at several points (e.g., 32 KB,
256 KB, and 512 KB message sizes). Nevertheless, OpenMPI shows the best perfor-
mance from 32 KB message size, obtaining up to 9.2 Gbps bandwidth. As for latency,
ibvdev obtains better results than MVAPICH (13 µs) and only slightly worse than
OpenMPI (10 µs), again the best performer.

Regarding shared memory communication performance, ibvdev obtains much
better start-up latency, 6 µs, than the multithreading smpdev middleware, which
achieves 17 µs, which means that ibvdev has implemented a highly efficient com-
munication protocol and that smpdev presents poor start-up latency, caused by an
excess of synchronizations. The native MPI libraries are again the best performers ob-
taining 0.5 µs an 1 µs for MVAPICH and OpenMPI, respectively, due to their efficient
communications support on shared memory. Regarding bandwidth, MPJ devices are
far from native MPI libraries, obtaining worse performance (15.3 Gbps and 22 Gbps
for ibvdev and smpdev, respectively).

5.3 Collective primitives micro-benchmarking

Figure 12 presents the aggregated bandwidth for representative MPJ data movement
operations (broadcast and allgather), and computational operations (reduce and allre-
duce double precision sum operations) with 128 processes. The aggregated band-
width metric has been selected as it takes into account the global amount of data
transferred. The niodev allgather results could not be taken due to flaws in the im-
plementation that hanged its operation. In addition to ibvdev, niodev, and MPI

Design of scalable Java message-passing communications 159

Fig. 10 Message-passing point-to-point performance on InfiniBand

Fig. 11 Message-passing point-to-point performance on shared memory

communications it has been evaluated the performance of multithreaded versions of
the MPJ collective operations, running only one process per node, and 16 threads
within each process. Thus, instead of running 128 processes on the cluster, only 8
processes are being used, taking advantage of intranode communications through
multithreading. This hybrid support of network and multithreading communications
is one of the main advantages of Java middleware for scalable and efficient commu-
nication on clusters of multicore processors.

The results confirm that ibvdev outperforms significantly niodev, achieving
up to one order of magnitude higher performance, although generally the perfor-
mance benefit is 2 or 3 times better. Moreover, both ibvdev and niodev take ad-
vantage of the multithreaded collectives. With respect to the MPI libraries, ibvdev

160 R.R. Expósito et al.

Fig. 12 Message-passing
collective primitives
performance

Design of scalable Java message-passing communications 161

achieves better performance than MPI collectives for short messages, up to 16–
256 KB, thanks to the exploitation of multithreading in collectives implementation
and the use of a high PSL (128 KB), whereas MPI libraries use smaller PSL (8 KB).
However, for longer messages the MPI collectives achieve much better performance
due to the use of better collective algorithms, and the use of pipelined transfers.

5.4 Kernel/application performance analysis

The impact of ibvdev on the scalability of Java parallel codes has been analyzed us-
ing the NAS Parallel Benchmarks (NPB) implementation for MPJ (NPB-MPJ) [31],
selected as the NPB are probably the benchmarks most commonly used in the evalu-
ation of languages, libraries, and middleware for HPC. In fact, there are implementa-
tions of the NPB for MPI, OpenMP, and hybrid MPI/OpenMP.

Four representative NPB codes have been evaluated: CG (Conjugate Gradient),
FT (Fourier Transform), IS (Integer Sort), and MG (Multi-Grid). Moreover, the jGad-
get [32] cosmology simulation application has also been analyzed. These MPJ codes
have been selected as they show very poor scalability with MPJ Express over Infini-
Band. Hence, these are target codes for the evaluation of the impact on performance
of the use of ibvdev in MPJ Express. The results have been obtained using up to 64
processes instead of 128, due to memory constraints on the cluster.

Figure 13 shows the NPB-MPJ CG, IS, FT, and MG results, respectively, for the
Class C workload in terms of MOPS (Millions of Operations Per Second) (left) and
its corresponding scalability, in terms of speedup (right). For CG kernel, ibvdev
doubles the performance of the niodev device over InfiniBand, with almost 9000
MOPS compared to less than 4000 MOPS on 64 processes. With respect to IS ker-
nel, the results for niodev over InfiniBand show a significant slowdown with 64
processes, not taking advantage of the use of 64 processes, while ibvdev keeps on
scaling and gets up to 650 MOPS, significantly outperforming the niodev results.
Regarding FT, ibvdev also doubles the performance of the niodev device over In-
finiBand, with around 17000 MOPS compared to less than 8000 MOPS. Finally, the
impact of ibvdev on MG is smaller than for the remaining codes as this NPB is less
communication intensive, as obtains relatively good speedups, even with niodev
(speedup of 30 with 64 processes).

The performance comparison of ibvdev against MPI libraries has two different
analyses, depending on the metric used. If we take into account the MOPS achieved,
MPI benchmarks obtain always the best performance, around a 50% higher than
ibvdev results. The poorer performance of NPB-MPJ can be attributed to the lower
performance of the JVM compared to native compilers. However, if we have a look at
the speedups, ibvdev outperforms MPI for FT and MG, while obtains slightly lower
scalability for CG and IS, which suggests that ibvdev implements a highly efficient
communication support, even comparable to MPI libraries, and that the use of effi-
cient communication libraries can bridge the gap between Java and natively compiled
languages provided that an efficient communication support is made available.

The jGadget application is the MPJ implementation of Gadget [33], a popular cos-
mology simulation code initially implemented in C and parallelized using MPI that
is used to study a large variety of problems like colliding and merging galaxies or the

162 R.R. Expósito et al.

Fig. 13 Performance and scalability of NPB-MPI/MPJ codes

formation of large-scale structures. This application has been selected for the perfor-
mance evaluation of ibvdev, measuring its performance using up to 64 processes
instead of 128, due to memory constraints on the cluster (each Java process is using
its own JVM).

Figure 14 presents the performance results of jGadget running a two million par-
ticles cluster formation simulation. As jGadget is a communication-intensive ap-
plication, with important collective operations overhead, only modest speedups are
obtained. Here, ibvdev can take advantage of the use of 64 processes (speedup
above 22), whereas niodev over IPoIB remains with a speedup of 16. Regarding

Design of scalable Java message-passing communications 163

Fig. 14 Scalability of MPI/MPJ
Gadget

MPI results, OpenMPI and MVAPICH achieve around 45% higher speedup than
ibvdev on 64 processes, which suggests that this middleware is bridging the gap
between Java and natively compiled applications in HPC.

6 Conclusions

This paper has presented ibvdev, a scalable and efficient low-level Java message-
passing device for communication on InfiniBand systems. The increase in the number
of cores per system demands languages with built-in multithreading and networking
support, such as Java, as well as scalable and efficient communication middleware
that can take advantage of multicore systems. The developed device transparently
provides Java message-passing applications with efficient performance on InfiniBand
thanks to its direct support on IBV and the efficient and scalable implementation of a
lightweight communication protocol which is able to take advantage of RDMA over
InfiniBand.

The performance evaluation of ibvdev on an InfiniBand multicore cluster has
shown that this middleware obtains start-up latencies and bandwidths similar to
MPI performance results, obtaining in fact up to 85% start-up latency reduction and
twice the bandwidth compared to previous Java middleware on InfiniBand. Addi-
tionally, the impact of ibvdev on message-passing collective operations is signif-
icant, achieving up to one order of magnitude performance increases compared to
previous Java solutions, especially when taking advantage of shared memory intra-
process (multithreading) communication. The analysis of the impact of the use of
ibvdev on MPJ applications shows a significant performance increase compared to
sockets-based middleware (niodev), which helps to bridge the gap between Java
and natively compiled codes in HPC. To sum up, the efficiency of this middleware,
which is even competitive with MPI point-to-point transfers, increments the scala-
bility of communications intensive Java applications, especially in combination with
the native multithreading support of Java.

Acknowledgements This work was funded by the Ministry of Science and Innovation of Spain under
Project TIN2010-16735, and by the Xunta de Galicia under the Consolidation Program of Competitive
Research Groups and Galician Network of High Performance Computing.

164 R.R. Expósito et al.

References

1. Taboada GL, Ramos S, Expósito RR, Touriño J, Doallo R (2011, in press) Java in the
high performance computing arena: research, practice and experience. Sci Comput Program.
doi:10.1016/j.scico.2011.06.002

2. Blount B, Chatterjee S (1999) An evaluation of Java for numerical computing. Sci Program 7(2):97–
110

3. Shafi A, Carpenter B, Baker M (2009) Nested parallelism for multi-core HPC systems using Java. J
Parallel Distrib Comput 69(6):532–545

4. InfiniBand Trade Association (2004) Infiniband architecture specification volume 1, release 1.2.1.
http://www.infinibandta.org/ [Last visited: April 2011]

5. Baker M, Carpenter B, Shafi A (2005) A pluggable architecture for high-performance Java messaging.
IEEE Distrib Syst Online 6(10):1–4

6. IETF Draft. IP over IB. http://www.ietf.org/old/2009/ids.by.wg/ipoib.html [Last visited: April 2011]
7. Hongwei Z, Wan H, Jizhong H, Jin H, Lisheng Z (2007) A performance study of Java communi-

cation stacks over InfiniBand and Gigabit Ethernet. In: Proc 4th IFIP intl conf network and parallel
computing (NPC’07), Dalian, China, pp 602–607

8. Veldema R, Hofman RFH, Bhoedjang R, Bal HE (2003) Run-time optimizations for a Java DSM
implementation. Concurr Comput 15(3–5):299–316

9. Righi RDR, Navaux POA, Cera MC, Pasin M (2005) Asynchronous communication in Java over
InfiniBand and DECK. In: Proc 17th intl symp on computer architecture and high performance com-
puting (SBAC-PAD’05), Rio de Janeiro, Brazil, pp 176–183

10. Taboada GL, Touriño J, Doallo R (2008) Java Fast Sockets: enabling high-speed Java communications
on high performance clusters. Comput Commun 31(17):4049–4059

11. Wan H, Hongwei Z, Jin H, Jizhong H, Lisheng Z (2007) Jdib: Java applications interface to unshackle
the communication capabilities of InfiniBand networks. In: Proc 4th IFIP intl conf network and par-
allel computing (NPC’07), Dalian, China, pp 596–601

12. Wan H, Jizhong H, Jin H, Lisheng Z, Yao L (2008) Enabling RDMA capability of InfiniBand network
for Java applications. In: Proc 4th IFIP intl conf on networking, architecture, and storage (NAS’08),
Chongqing, China, pp 187–188

13. Yao L, Jizhong H, Jinjun G, Xubin H (2009) uStream: a user-level stream protocol over InfiniBand.
In: Proc 15th intl conf on parallel and distributed systems (ICPADS’09), Shenzhen, China, pp 65–71

14. Dunning D, Regnier G, McAlpine G, Cameron D, Shubert B, Berry F, Merritt AM, Gronke E, Dodd
C (1998) The Virtual Interface Architecture. IEEE MICRO 18(2):66–76

15. Compaq, Intel and Microsoft Corporations (1997) The Virtual Interface Architecture specification,
version 1.0

16. OpenFabrics Alliance Website. http://www.openfabrics.org/ [Last visited: April 2011]
17. Carpenter B, Fox G, Ko S-H, Lim S mpiJava 1.2: API specification. http://www.hpjava.org/reports/

mpiJava-spec/mpiJava-spec/mpiJava-spec.html [Last visited: April 2011]
18. The mpiJava project. http://www.hpjava.org/mpiJava.html [Last visited: April 2011]
19. Bornemann M, van Nieuwpoort RV, Kielmann T (2005) MPJ/Ibis: a flexible and efficient mes-

sage passing platform for Java. In: Proc. 12th European PVM/MPI users’ group meeting (Eu-
roPVM/MPI’05), Sorrento, Italy, pp 217–224

20. Taboada GL, Touriño J, Doallo R (2011) F-MPJ: scalable Java message-passing communications on
parallel systems. J Supercomput. doi:10.1007/s11227-009-0270-0

21. Java Grande Forum. http://www.javagrande.org [Last visited: April 2011]
22. van Nieuwpoort RV, Maassen J, Wrzesinska G, Hofman R, Jacobs C, Kielmann T, Bal HE (2005) Ibis:

a flexible and efficient Java-based grid programming environment. Concurr Comput 17(7–8):1079–
1107

23. MX User’s Guide. http://www.myri.com/scs/MX/doc/mx.pdf [Last visited: April 2011]
24. Open Source High Performance MPI Library. http://www.open-mpi.org/ [Last visited: April 2011]
25. MPI over InfiniBand, 10GigE/iWARP and RDMAoE. http://mvapich.cse.ohio-state.edu/ [Last visited:

April 2011]
26. Tezuka H, O’Carroll F, Hori A, Ishikaw Y (1998) Pin-down cache: a virtual memory management

technique for zero-copy communication. In: Proc 12th intl parallel processing symposium/9th sym-
posium on parallel and distributed processing (IPPS/SPDP’98), Orlando, FL, USA, pp 308–314

27. Baker M, Carpenter B, Shafi A (2007) A buffering layer to support derived types and proprietary
networks for Java HPC. Scalable Comput Pract Experience 8(4):343–358

http://dx.doi.org/10.1016/j.scico.2011.06.002
http://www.infinibandta.org/
http://www.ietf.org/old/2009/ids.by.wg/ipoib.html
http://www.openfabrics.org/
http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html
http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html
http://www.hpjava.org/mpiJava.html
http://dx.doi.org/10.1007/s11227-009-0270-0
http://www.javagrande.org
http://www.myri.com/scs/MX/doc/mx.pdf
http://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/

Design of scalable Java message-passing communications 165

28. Taboada GL, Touriño J, Doallo R, Shafi A, Baker M, Carpenter B (2011, in press) De-
vice level communication libraries for high-performance computing in Java. Concurr Comput.
doi:110.1002/cpe.1777

29. MPJ Express Website. http://mpj-express.org/ [Last visited: April 2011]
30. Taboada GL, Touriño J, Doallo R (2003) Performance analysis of Java message-passing libraries on

Fast Ethernet, Myrinet and SCI clusters. In: Proc 5th IEEE intl conf on cluster computing (CLUS-
TER’03), Hong Kong, China, pp 118–126

31. Mallón DA, Taboada GL, Touriño J, Doallo R (2009) NPB-MPJ: NAS parallel benchmarks imple-
mentation for message-passing in Java. In: Proc 17th Euromicro intl conf on parallel, distributed, and
network-based processing (PDP’09), Weimar, Germany, pp 181–190

32. Baker M, Carpenter B, Shafi A (2006) MPJ Express meets Gadget: towards a Java code for cosmo-
logical simulations. In: 13th European PVM/MPI users’ group meeting (EuroPVM/MPI’06), Bonn,
Germany, pp 358–365

33. Springel V (2005) The cosmological simulation code GADGET-2. Mon Not R Astron Soc
364(4):1105–1134

http://dx.doi.org/110.1002/cpe.1777
http://mpj-express.org/

Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

