
Fundamenta Informaticae 128 (2013) 17–33 17

DOI 10.3233/FI-2013-930

IOS Press

Java SAM Typed Closures:
A Sound and Complete Type Inference System for Nominal Types

Marco Bellia and M. Eugenia Occhiuto∗

Dipartimento di Informatica, Università di Pisa, Italy

{bellia,occhiuto}@di.unipi.it

Abstract. The last proposal for Java closures, as emerged in JSR 000335, is mainly innovative in:
(1)Use of nominal types, SAM types, for closures; (2) Introduction of target types and compatibility
for a contextual typing of closures; (3) Need for a type inference that reconstructs the omitted type
annotations of closures and closure arguments. The paper provides a sound and complete type sys-
tem, with nominal types, for such a type inference and discusses role and formalization of targeting
and of compatibility in the designed inference process.

1. Introduction

The paper provides a type inference system, with nominal types, for closures that are typed with SAM
types (hence, the name of SAM typed closures), that: 1) it is sound and complete; 2) given a program, it
checks for the existence of an assignment of types to the omitted type annotations that make the resulting
program, correctly typed; 3) if an assignment exists, it results in the most general assignment of the
program. 4) it works with nominal types. Nominal types have both an external structure, i.e. the name
of the type, and an internal structure, i.e. the type expression defining form and components of the type.
Hence, type inference with nominal types:i) must provide the usual mechanism that reconstructs the
(internal) structure that the omitted type annotations must have;ii) requires an additional mechanism to
select, among all the nominal types whose internal structure matches the found one, the type that must
be considered the most general correct type.

JSR 000335 [6, 7] shares with the other previous, proposals [2, 13] the idea of introducing closures
as expressions defining shortenings for anonymous, single method, objects, but it is innovative in many
fundamental aspects.

∗Address for correspondence: Dipartimento di Informatica,Università di Pisa, Italy

18 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

Closure Definition. Closures are introduced, in a program, by a special form of expressions (lambda
expressions). The syntax of a closure definition consists of the the generic types (if any), the
argument name list (possibly, empty), and the closure body.

Type Inference. The closure definition does not require a type annotation [14] of the defined closure
and also, the type annotations of the arguments can be omitted: Strong typing and omitted type
annotations require a type system capable to perform type inference. A failure during the inference
process, causes a type failure.

SAM Types. Interface types with a single method, namedfunctional interfaces(SAM types [1]), are
the types of the closures. As all Java reference types, SAM types are nominal types, i.e they are
different types if they have different names even though they have the same internal structure. For
this reason, a closure can be assigned to (i.e. iscompatiblewith) many different types.

Generic Types. Generics may be introduced in a closure definition and must bethe same, after renaming
and permutation, of the generics that have been introduced in the closure SAM type. A problem
arises: How can such a SAM type be found when the closure type annotation was omitted?

Target Types. The solution adopted is to assign to each closure thetarget type, that is the expected
type in the specificcontextin which the closure is used. The target type becomes the typeif it is
compatible with the closure.

Closure Contexts. The possible contexts in which a closure can appear are:

1. Variable declaration
2. Assignment
3. Return statement
4. Array initializer
5. Method or constructor argument
6. Lambda expression body
7. Conditional expression
8. Cast expression

Type Compatibility. The conditions which must hold for a closure to be compatiblewith a type are:i)
The type must be a functional interface: Letm be its single method.ii) Number and types of the
closure arguments must be the same as those ofm. iii) Return types of the closure and ofm must
be compatible.iv) Exceptions thrown by the closure body must be allowed in thethrows clause
of m.

Closure Invocation. There is no ad hoc syntax for closure invocation. The user hasto specify, hence
know and remember, the name that has been chosen for the single method of the functional inter-
face.

Non-local Variables. Any name used but not declared in the closure, must be either declaredfinal
or effectively final. The concept ofeffectively finalvariables, already introduced in Java SE 7, is
now broadened, to mitigate the restriction on variables updating. An effectively final variable is a
variable which is not declared final but its value is not modified.

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 19

Variable Shadowing. As for blocks the local variables or formal parameters of a closure cannot shadow
already declared names.

Meaning of this. The self referencethis in a closure refers to the object whose method is enclosing
the closure definition and not to the defined closure (this transparency), thus disallowing recursive
definitions throughthis. To define a recursive closure, it’s necessary to associate aname to the
closure, for instance through variable declaration and initialization or assignment.

For space reason we limit the definition of the type inferencesystem to a significative kernel of
Java with closures: It includes the field initialization butleaves out variables and assignment, includes
interfaces and hierarchies of classes but leaves out hierarchies of interfaces, includes method overriding
but leaves out method overloading.

We assume the reader already has some familiarity with the algebraic framework ofFeatherweight
Java, introduced in [11], in particular with its main technicalities and motivations for their use. Then, the
paper organization is as follows: We start defining a reduction semantics and declarative typing system
for a kernel of Java, FGJ [11], extended with SAM typed closures, FGATCJ. The term ”declarative” is
in order to emphasize that the closures that we initially consider, in FGATCJ, are SAM typed closures
that have type annotations of the defined closure and of all the closure arguments. The typing system is
then, studied to provide soundness and to formalize variousnotions of the proposal, including the type
targeting and type compatibility. Then, we extend FGATCJ inFGATCJ• that differs because of its type
structure and of its typing system. The type structure includes a (denumerable) set of a new kind of
variables, called d-variables. Programs of FGATCJ• are considered as the counterpart of programs of
FGATCJ where some type annotations, in the program closure definitions, are omitted and replaced by
d-variables. The typing system of FGATCJ• is in effect, a type inference system: The system introduces
constrained judgements that are essentially the judgements of the declarative typing system, extended
with the constraints of a suitable constraint system. A constrain solver, based on ordinary, first order
unification, is then, defined: It computes the most general solution. We prove that the inference system is
sound and complete, and we show how, given a program, it computes the most general assignment of d-
variable to types, that makes the resulting program correctly typed, provided that one such an assignment
exists.

Section 2 contains a brief presentation of the Java kernel language FGJ. Section 3 introduces the
kernel language FGATCJ and its reduction semantics. Section 4 contains the (declarative) typing system
of FGATCJ and proves the type soundness. Section 5 introduces the kernel language FGATCJ•, the type
inference system and proves soundness and completeness. Section 6 concludes the paper.

2. Featherweight Generic Java

A program in FGJ [11] consists of a collection of generic class definitions and of an expression to be
evaluated using such classes. The expression corresponds to the body of the 0-arguments main method
of ordinary Java.

A complete definition of the abstract syntax of FGJ consists of the grammar rules inTable 1 that
are labelled by the defined grammatical category indexed by FGJ. Symbols⊳ and↑ are a notational
shorthands for Java keywordextends andreturn. For syntactic regularity, (a) classes always specify
the super class, possiblyObject, and have exactly one constructor definition; (b) class constructors

20 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

have one parameter for each class field with the same name as the field, invoke the super constructor
on the fields of the super class and initialize the remaining fields to the corresponding parameters; (c)
field access always specifies the receiver (object), possibly this. This results in the stylized form of the
constructors. Both classes and methods may have generic type parameters.

FGJ has no side effects. Hence,sequencingandassignmentare strictly confined to constructor bod-
ies. In particular, method bodies have always the formreturn, followed by an expression. The lack
of Java constructs for sequencing control and for store updating (along with that of concurrency, and
reflection) is the main advantage of the calculus in studyinglanguage properties that are not affected by
side effects. In this way the calculus is, as much as possible, compact and takes advantage of the refer-
ential transparency. The latter one provides a simple reduction semantics which is crucial for rigorous,
easy to derive, proofs of the language properties [10]. About compactness, FGJ has only five forms of
expressions (see definition of categorye in Table 1): One for variables1, another forfield access, and
one forObject Creation. The remaining two forms aremethod invocationandcast.

The presence ofcast in FGJ is justified by its fundamental role in compiling generic classes. The
reduction semantics of FGJ consists of the first three rules that appear inTable 2: Computation, and
deal with term evaluation, and of the first five rules inTable 2: Congruence, that deal with the redex
selection. The remaining 20 rules of the semantics of FGJ deal with the type system and with term
well-formedness. The rules of FGJ have labels that are indexed by FGJ inTables 2, 4, 5.

3. Featherweight GATCJ

The calculus defined in this paper is obtained as an extensionof the calculus FGAJ[3], which is in turn an
extension of FGJ, with interfaces, anonymous classes and consequently objects from anonymous classes
creation. FGATCJ extends FGAJ with the closures defined in [6]. The issue concerned with non-local
variables in closures, has no meaning since all the variables of FGJ can be considered effectively final.
Similarly, it is about variable shadowing, since FGJ programs are, in effect, abstract syntax terms (i.e.
modulo variable renaming).

3.1. Notation and General Conventions

In this paper we adopt the notation used in [11], accordinglyf is a shorthand for a possibly empty
sequencef1, . . . , fn (and similarly forT, x, etc.) andM is a shorthand forM1 . . . Mn (with no commas)
wheren is the size|f|, respectively|M|, i.e. the number of terms of the sequence. The empty sequenceis
◦ and symbol ”,” denotes concatenation of sequences. Operations on pairs of sequences are abbreviated
in the obvious wayC f is C1 f1, . . . , Cn fn and similarlyC f; is C1 f1; . . . Cn fn; andthis.f = f; is a
shorthand forthis.f1 = f1; . . . this.fn = fn;. Sequences of field declarations, parameters and method
declaration cannot contain duplications. Cast,() , and closure definition,→ , have lower precedence
than other operators, and cast precedes closure definition.Hence()→ (this.invoke()) can be written
as() → this.invoke(). The, possibly indexed and/or primed, metavariablesT, V, U, S, W range over
type expressions;X, Y, Z range over type variables;N, P, Q range over class types;C, D, E range over class
names;I ranges over interface names;f, g range over field names;e, v, d range over expressions;x, y
range over variable names andM, K, L, H andm range respectively, over methods, constructors, classes

1Variables include parameters andthis, see ruleGR-Invk, Table 2.

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 21

and interfaces, method headers, and method names.[x/y]e denotes the result of replacingy by x in e.
FV (T) denotes the set of free type variables inT. Eventually, following the notation adopted in [11],
symbol ”=” is used in formulas both as an abbreviation forlet ∆ = X<:N, . . . and as a constraintif
X = FV (T): The context solves any ambiguity.

3.2. Syntax

A program in FGATCJ consists of a collection of generic, class and interface definitions and of an
expression to be evaluated using such classes and interfaces. The syntax is formally, given inTable 1
by emphasizing the extensions of which FGATCJ is composed starting from the kernel language: At the
top of the table is reported FGJ, below the first extension IA (that involves extensions on both types and
expressions), finally the last extension TC that introducesthe closures. The table concludes with a view
of the various involved, languages.

Besides interfaces and anonymous classes already providedin FGAJ and FGACJ in [3], in FGATCJ
it is possible to define SAM typed closures. The syntax of the expressions that define SAM closures
is given inTable 1. Such expressions have forma : T, where: T is the type annotation of the defined
closure and specifies the type that the defined closure is supposed to have. Moreover, the form ofa is
〈X ⊳ N〉(T x)→ e where: 〈X ⊳ N〉 is the possibly empty, sequence of the closure generics, whilst e is
the closure body. Eventually,T x is the possibly empty, argument sequence of the closure, where: each
argumentxi has associated its type annotationTi that specifies the type that the defined closure assumes
for the argumentxi.

Table 1 : Syntax

FGJ

T ::= X | N (TFGJ)
N ::= C〈T〉 (NFGJ)

L ::= class C〈X ⊳ N〉 ⊳ N {T f; K M} (LFGJ)

K ::= C(T f){super(f); this.f = f; } (KFGJ)
M ::= 〈X ⊳ N〉T m(T x){↑ e; } (MFGJ)

e ::= x | e.f | new N(e) | e.m〈T〉(e) | (N)e (eFGJ)

IA: Extensions for Interfaces and Anonymous Class Objects

T ::= I〈T〉 (TFGAJ)

L ::= interface I〈X ⊳ N〉{H} (LFGAJ)

H ::= 〈X ⊳ N〉T m(T x) (HFGAJ)

e ::= new I〈T〉() {M} (eFGAJ)

TC: Extensions for SAM Typed Closures

e ::= a : T | (I〈T〉)e (eFGATCJ)

a ::= 〈X ⊳ N〉(T x)→e (aFGATCJ)

FGAJ= FGJ + IA

FGATCJ= FGJ+ IA + TC

Actually, these closures differ from the ones in [6] becausethey always require type annotations for
both the defined closure and the closure arguments. In effect, the aim of FGATCJ is to provide the right
(language) structure to design a type system for SAM typed closure, study the nominal properties of
SAM types and prove the soundness of the system. In this respect, the types of the defined closures as
well as those of closure arguments are explicitly given and the proposed type system is designed only
for checking the type correctness of the programs. The type system of FGATCJ is a sort of declarative
type system for a language, later on called FGATCJ•, in which type annotations can be omitted as in

22 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

the closures of [6], hence the name used in Section 4 and inTable 4DN: In particular, the programs
of FGATCJ are those of FGATCJ• where the omitted type annotations are replaced with types and the
resulting programs are then checked for type correctness.

The possibility to omit types in FGATCJ• is dealt with in Section 5 where, the type correctness
of programs of FGATCJ• becomes the existence of a suitable type assignment for the omitted type
annotations, whilst checking for type correctness leads todesign a type inference for asking about such a
type assignment. The type inference will be obtained from the declarative type system through a suitable
re-design of the judgments introduced in Section 5.1.

For space convenience, the reduction rules of the semanticsas well as the typing rules are not given
in separate tables for each calculus. In fact, since compositionality of the semantics (we use), the rules
of the various constructs are the same in all calculi containing such a construct. However, for the reader
convenience, in all tables, butTable 3, the rules for each calculus, FGJ, FGAJ and FGATCJ, have a label
which is indexed by the name of the minimal calculus including the construct, involved in the rule. Note
that C〈T〉 includesObject(sinceT may be the empty sequence andC may beObject) hence generic
variables in classes and methods can be instantiated with typesT that include interfaces.

3.3. Semantics: Reduction

Table 2: Computation

Computation
fields(N) = T f

(new N(e)).fi ei

(GR-FIELDFGJ)

mbody(m〈V〉, N) = x.e

(new N(e)).m〈V〉(d) [d/x, new N(e)/this]e
(GR-INVKFGJ)

∅ ⊢ N<:P

(P)(new N(e)) new N(e)
(GR-CASTFGJ)

mbody(m〈V〉, new I〈T〉(){M}) = x.e

(new I〈T〉(){M}).m〈V〉(d) [d/x, new I〈T〉(){M}/this]e
(GR-INVK -ANONYMFGAJ)

(〈X ⊳ N〉(T x)→e : T).m〈S〉(d) [d/x]e (GR-CLOS-INV-TYPEFGATCJ)

(T) a : T a : T (GR-CCASTFGATCJ)

Congruence
e0 e

′

0

e0.f e
′

0
.f

(GRC-FIELDFGJ)

e0 e
′

0

e0.m〈T〉(e) e
′

0
.m〈T〉(e)

(GRC-T-INVFGJ)

ei e
′

i

e0.m〈T〉(. . . , ei, . . .) e0.m〈T〉(. . . , e
′

i
. . .)

(GRC-INV-ARGFGJ)

ei e
′

i

new N(. . . , ei, . . .) new N(. . . , e
′

i
, . . .)

(GRC-NEWFGJ)

e e
′

(N)e (N)e
′

(GRC-CASTFGJ)

e e
′

(I〈T〉)e (I〈T〉)e′
(GRC-CCASTFGATCJ)

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 23

The reduction semantics is given through the inference rules in Table 2, which define the relation
e e′ that says that “expressione reduces to expressione′ in one step”. The computation may diverge
or otherwise, terminate, possibly resulting into a value. The values of FGATCJ are either named or
anonymous class objects and closures. The syntactic category V defines the form of the expressions
representing such values:

V ::= new N(V)

| new I〈T〉(){M}

| 〈X⊳ N〉(T x)→e : T

These expressions are normal forms (i.e. cannot be further reduced) of the reduction relation , as it
was expected. However, the converse does not hold since expressions as they result from the grammar
in Table 1 may contain unproper uses of field accesses, or of method invocations, or of type casts: The
type system discussed in the next sections, aims to recognize programs that contain such expressions.

Table 3: Classes and Interfaces

Subclassing

C E C
C E D D E E

C E E

class C〈X ⊳ N〉 ⊳ D {S f; K M}

C E D

Auxiliary functions
fields(Object) = ◦ (F-OBJECT)

class C〈X ⊳ N〉 ⊳ N {S f; K M} fields([T/X]N) = U g

fields(C〈T〉) = U g, [T/X]S f
(F-CLASS)

class C〈X ⊳ N〉 ⊳ N {S f; K M} 〈Y ⊳ P〉U m (U x){↑ e; } ∈ M

mtype(m, C〈T〉) = [T/X](〈Y ⊳ P〉U 7→ U)
(MT-CLASS)

class C〈X ⊳ N〉 ⊳ N {S f; K M} m 6∈ M

mtype(m, C〈T〉) = mtype(m, [T/X]N)
(MT-SUPER)

interface I〈X ⊳ N〉 {H} 〈Y ⊳ P〉U m(U x) ∈ H

mtype(m, I〈T〉) = [T/X](〈Y ⊳ P〉U 7→ U)
(MT-I NTERFACE)

class C〈X ⊳ N〉 ⊳ N {S f; K M} 〈Y ⊳ P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, C〈T〉) = x.[T/X, V/Y]e
(MB-CLASS)

class C〈X ⊳ N〉 ⊳ N {S f; K M} m 6∈ M

mbody(m〈V〉, C〈T〉) = mbody(m〈V〉, [T/X]N)
(MB-SUPER)

interface I〈X ⊳ N〉 {...} 〈Y ⊳ P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, new I〈T〉(){M}) = x.[T/X, V/Y]e
(MB-I NTERFACE)

interface I〈X ⊳ N〉 {H} |H| = 1 ∆ ⊢ V<:[V/X]N 〈Y ⊳ P〉U m (U x) = H

∆ ⊢ met(I〈V〉) = 〈Y ⊳ [V/X]P〉[V/X]U m ([V/X]U x)
(METHOD)

Auxiliary predicates
override(m, Object, 〈Y ⊳ P〉T 7→ T0) (OVER-Object)

mtype(m, N) = 〈Z ⊳ Q〉U 7→ U0 =⇒
((P, T) = [Y/Z](Q, U) and Y<:P ⊢ T0<:[Y/Z]U0)

override(m, N, 〈Y ⊳ P〉T 7→ T0)
(OVER)

interface I〈X ⊳ N〉 {H} ∆ ⊢ V<:[V/X]N |H| = 1

∆ ⊢ Fun(I〈V〉)
(FUN)

DCast

dcast(C, D) dcast(D, E)

dcast(C, E)

class C〈X ⊳ N〉 ⊳ D〈T〉 {. . . } X = FV (T)

dcast(C, D)
(DCAST)

24 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

The structure of values results from the reduction rules of the calculus. The rules indexed by FGJ
in Table 2 are the same as those of calculus FGJ [11], and the one indexedby FGAJ is the same of
FGAJ [3]. The rules use auxiliary functions (mbody, fields) and notation that are introduced inTable
3, which collects all the auxiliary definitions. The rule GR-INVK -ANONYMFGAJ defines the semantics of
invocation with anonymous class objects, in a way quite similar to the one of method invocation with
objects of named classes. The new rules indexed FGATCJ include invocation for closures and a rule to
cast closures to SAM types. Also one congruence rule for casting is added.

4. Declarative Typing

The declarative typing extends the typing rules of [11], uses the same two environments∆ andΓ, and
eight different typing judgements (two more than [11]’s ones): One judgment for each different term
structure of the language. A type environment∆ is a mapping from type variables to types. It is written
as a list ofX<:T (with at most one binding for each type variableX), meaning that type variableX must
be bound to a subtype of typeT. Hence, using functional notation, we have that∆(X) = T holds if and
only if ∆ containsX<:T. An environmentΓ is a mapping from variables to types written as a list ofx : T
(with at most one binding for each value variablex), meaning that “x has typeT”.

Table 4DN: Declarative Typing Rules

∆;Γ1, x : T,Γ2 ⊢ x : T (GT-VARFGJ)

∆;Γ ⊢ e0 : T0 fields(bound∆(T0)) = T f

∆;Γ ⊢ e0.fi : Ti
(GT-FIELDFGJ)

mtype(m, bound∆(T0)) = 〈Y ⊳ P〉U 7→ U

∆;Γ ⊢ e0 : T0 ∆ ⊢ V ok ∆ ⊢ V<:[V/Y]P
∆;Γ ⊢ e : S ∆ ⊢ S<:[V/Y]U

∆;Γ ⊢ e0.m〈V〉(e) : [V/Y]U
(GT-INVFGJ)

∆ ⊢ N ok fields(N) = T f

∆;Γ ⊢ e : S ∆ ⊢ S<:T

∆;Γ ⊢ new N(e) : N
(GT-NEWFGJ)

∆;Γ ⊢ e : T ∆ ⊢ bound∆(T)<:N

∆;Γ ⊢ (N)e : N
(GT-UCASTFGJ)

∆;Γ ⊢ e : T ∆ ⊢ N ok ∆ ⊢ N<:bound∆(T)
N = C〈T〉 bound∆(T) = D〈U〉 dcast(C, D)

∆; Γ ⊢ (N)e : N
(GT-DCASTFGJ)

∆;Γ ⊢ e : T ∆ ⊢ N ok

N = C〈T〉 bound∆(T) = D〈U〉 C 6ED D 6EC

∆;Γ ⊢ (N)e : N
(GT-SCASTFGJ)

∆ ⊢ I〈T〉 ok ∆;Γ ⊢ M OK IN I〈T〉

∆;Γ ⊢ new I〈T〉(){M} : I〈T〉
(GT-ANONYMNEWFGAJ)

∆;Γ ⊢ a ↓ T e = a : T

∆;Γ ⊢ e : T
(GT-CLOSUREFGATCJ)

T = I〈T〉 ∆;Γ ⊢ e : T

∆;Γ ⊢ (T)e : T
(GT-CCASTFGATCJ)

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 25

1. The judgement for a (generic) typeT (seeTable 5) has the form∆ ⊢ T ok meaning that “T is a
well-formed type in the type environment∆”.

2. The judgement for sub-typing (seeTable 5) has the form∆ ⊢ S<:T meaning that “S is a subtype
of T in ∆”.

3. The judgement for classes (see rule GT-CLASSFGJ in Table 4DNb) has the formC OK meaning that
“C is well typed”.

4. Similarly, the judgement for interfaces (see rule GT-INTERFFGAJ in Table 4DNb) has the formI OK
meaning that “I is well typed”.

5. The judgement for class methods (see GT-METHODFGJ in Table 4DNb) has the formM OK IN C

meaning that “M is well typed when its declaration occurs in classC”. The same judgement is used
for method signatures in interfaces (see GT-HEADERFGAJ in Table 4DNb) whereH OK IN I means
that “H is a well typed signature in interfaceI”.

6. The judgement for methods of interface instances is∆;Γ ⊢ M OK IN I〈V〉 meaning that “M is well
typed when its declaration occurs in interface instanceI〈V〉 which is a well typed anonymous class
instance in the context of environments∆ andΓ” (see GT-ANONYMFGAJ in Table 4DNb).

7. The judgement for expressions (see the rules ofTable 4DN) has the form∆;Γ ⊢ e : T meaning
that expression “e has typeT in the context of environments∆ andΓ”.

8. The judgment for SAM typed closures (see the rule ofTable 4DNa) has the form∆;Γ ⊢ a ↓ T

meaning that closure “a is compatible with SAM typeT in the context of environments∆ andΓ”.

Table 4DNa: Declarative Typing Rule - target compatibility

Closure compatibility

bound∆(T) = I〈V〉 ∆ ⊢ Fun(I〈V〉) a = 〈X ⊳ N〉(T x)→e

∆ ⊢ met(I〈V〉) = 〈Y ⊳ P〉U m(S w) N = [X/Y]P
∆ ⊢ [X/Y]S<:T ∆;Γ, x : T ⊢ e : Z ∆ ⊢ Z<:[X/Y]U

∆;Γ ⊢ a ↓ T
(COMP.TFGATCJ)

Table 4DNb: Typing Rules

Classes, Interfaces, Methods

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok
∆; x : T, this : C〈X〉 ⊢ e0 : S ∆ ⊢ S<:T

class C〈X ⊳ N〉 ⊳ N{...} override(m, N, 〈Y ⊳ P〉T 7→ T)

〈Y ⊳ P〉T m(T x){↑ e0; } OK IN C〈X ⊳ N〉
(GT-METHODFGJ)

Y<:P, X<:N ⊢ T, T, P ok

〈Y ⊳ P〉T m(T x) OK IN I〈X ⊳ N〉
(GT-HEADERFGAJ)

∆
′
= ∆, Y<:P ∆

′ ⊢ T, T, P ok

∆
′
; Γ, x : T, this : I〈V〉 ⊢ e0 : S P

′
= [Y

′
/Y][V/X]P ∆

′ ⊢ S<:T
interface I〈X ⊳ N〉{H} ∆ ⊢ V<:[V/X]N 〈Y ⊳ P〉T m(T x) ∈ H

∆;Γ ⊢ 〈Y′ ⊳ P
′〉T m(T x){↑ e0; } OK IN I〈V〉

(GT-ANONYMFGAJ)

X <: N ⊢ N, N, T ok M OK IN C〈X ⊳ N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈X ⊳ N〉 ⊳ N {T f; K M} OK
(GT-CLASSFGJ)

X <: N ⊢ N ok H OK IN I〈X ⊳ N〉

interface I〈X ⊳ N〉{H} OK
(GT-INTERFFGAJ)

26 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

Table 5: Subtypes

Subtypes
bound∆(X) = ∆(X) (B-VARFGJ)

bound∆(N) = N (B-CLASSFGJ)

bound∆(I〈V〉) = I〈V〉 (B-INTERFACEFGJ)

∆ ⊢ T<: T (S-REFLFGJ)

∆ ⊢ S<:T ∆ ⊢ T<:U

∆ ⊢ S<: U
(S-TRANSFGJ)

∆ ⊢ X<:∆(X) (S-VARFGJ)

class C〈X ⊳ N〉 ⊳ N{. . . }

∆ ⊢ C〈T〉<: [T/X]N
(S-CLASSFGJ)

Well-formed types
∆ ⊢ Objectok (WF-OBJECTFGJ)

X ∈ dom(∆)

∆ ⊢ X ok
(WF-VARFGJ)

class C〈X ⊳ N〉 ⊳ N{. . . } ∆ ⊢ T ok ∆ ⊢ T<:[T/X]N

∆ ⊢ C〈T〉 ok
(WF-CLASSFGJ)

interface I〈X ⊳ N〉{. . . } ∆ ⊢ T ok ∆ ⊢ T<:[T/X]N

∆ ⊢ I〈T〉 ok
(WF-INTERFFGAJ)

The typing rules are contained inTable 4DN and extend those of FGJ [11], and those of FGAJ [3].
The new rules define the type for closures and casting on closures. They are very simple, the first one
says that a closurea : T has typeT provided that∆;Γ ⊢ a ↓ T. The second one says that the type of the
closure must be the same as the type to which the closure is cast.

4.1. Properties of the Type System

We prove the soundness of the declarative type system of FGATCJ: It guarantees that programs that are
well-typed have computations that if terminate then eitherresult into a value or get stuck at a failing type
cast. Analogously to [11], we prove the subject reduction theorem and the progress theorem first, the
type soundness immediately follows. For space problems, the complete theorem proofs are deferred to
the extended version [4].

Theorem 4.1. (Subject reduction)
If ∆;Γ ⊢ e : T ande e′ then∆;Γ ⊢ e′ : T′, for someT′ such that∆ ⊢ T′<:T.

Proof:
By induction on the reductione e′, with a case analysis on the reduction rule used. The proof ofthe
corresponding theorem for FGJ (pp. 426-428, [11]), has beenextended to include rules GR-CLOS-INV-
TYPE and GR-CCAST ⊓⊔

Let e be an expression. Then,e is awell-typedexpression if and only if∆,Γ, T exist such that:∆;Γ ⊢
e : T. Moreover,e is a closed, well-typed,expression when, in addition,∆ = ∅,Γ = ∅. A classC,
respectively an interfaceI, is well-typedif and only if C ok, respectivelyI ok holds. A program is
well-typed if and only if its classes, interfaces, and expressions are all well-typed.

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 27

Theorem 4.2. (Progress)
Supposee is well-typed. Ife includes as a subexpression:
1. new N(e).f thenfields(N) = T f, for someT andf, andf ∈ f.
2. new N(e).m〈V〉(d) thenmbody(m〈V〉, N) = x.e0, for somex ande0, and|x| = |d|.
3. (〈X ⊳ N〉(T x)→e0 : T).m〈S〉(d) then|x| = |d| = |T| for someT, x ande0.

Proof:
The proof is based on the analysis of all well-typed expressions and concludes that either are normal
forms or they fall in one of the above three cases ⊓⊔

Theorem 4.3. (Type Soundness)
If ∅; ∅ ⊢ e : T ande ∗ e′ with e′ a normal form, thene′ either is a valuev ∈ V with ∅; ∅ ⊢ v : S and
∅ ⊢ S<:T, or an expression containing(P)(new N(e)) with N 6<:P

Proof:
By Theorem 4.2, ife is well-typed then either it is a normal form expression or itis not. In the last case,
e (contains a sub-expression) that can be reduced and resultsinto an expressione′ that, by Theorem 4.1,
is a well-typed expression, again. In the first case, we observe that eithere = e′ ∈ V, or e is stuck in a
type cast, since they are the only well typed, closed, normalform, expressions ⊓⊔

5. Type Inference

In this case the program concrete syntax may omit to specify,in closure definitions, the following type
annotations:

(a) all or some parameter types;
(b) the closure type;

Hence, the aim of type inference is to find a type assignment for the omitted annotations, that guarantees
the correct type checking of the resulting program. In orderto do it, the program abstract syntax replaces
the omitted annotations with a special class of types. Hence, we need to extend typing in two ways.
Firstly, we need a new kind of variable for types. This kind oftype variable will be called dotted variable
(d-variable, for short), it will be denoted by a variable identifier, X, preceded by•, and differs from
generic variables because it is used as a placeholder for those type annotations that are omitted in the
program.

Table 4INR - Types, Type Constraints andFGATCJ•

Types Type Constraints

TR ::= T | • X R ::= TR = TR | TR<•TR | R ∪ R

T ::= X | C〈T〉 | I〈T〉

TC• : Targeted Closures with omitted type annotations

e ::= a : TR | (I〈T〉)e

a ::= 〈X ⊳ N〉(TR x)→e

FGATCJ•=FGJ+ IA + TC•

The second extension is concerned with the constraints thatare generated by the type inference system,
when it collects the requirements that the omitted type annotations should satisfy. This is reported in
Table 4INR: The syntaxTR of types which extendsT, and the syntaxR of constraints. For notational
convenience,R1 ∪ ... ∪Rn is represented by (and called) a constraint sequenceR.

28 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

Let ST, respectivelySTR , be the set of terms (types) ofT, respectivelyTR. Let SX• be the denumer-
able set of d-variables, and FGATCJ• be the set of all the terms of the language FGATCJ extended by
allowing d-variables in the type annotations. The type inference system consists of a set of rules defining
constrained judgements. The new rules are contained in tablesTable 4IN, 4INa and4INb. Each rule in
Table 4IN (and similarly for the other two) has a corresponding rule inTable 4DN (4DNa, 4DNb) and
uses the corresponding constrained judgement. For instance, the constrained judgement for expressions
has the form∆;Γ⊢inf e : T |R meaning that expressione has typeT in the context∆ andΓ, provided
that all constraints inR are satisfied (by an assignment of types to d-variables)

5.1. Constrained Judgements

Table 4IN: Inference Typing Rules

∆;Γ1, x : T,Γ2⊢inf x : T| ∅ (IGT-VARFGJ)

∆;Γ⊢inf e0 : T0| R fields(bound∆(T0)) = T f

∆;Γ⊢inf e0.fi : Ti| R
(IGT-FIELDFGJ)

∆;Γ⊢inf e0 : T0| R0 ∆ ⊢ V ok

mtype(m, bound∆(T0)) = 〈Y ⊳ P〉U 7→ U ∆ ⊢ V<:[V/Y]P

∆;Γ⊢inf e : S| Re ∆ ⊢ S<:[V/Y]U

R = {S<•[V/Y]U} ∪ R0 ∪ Re

∆;Γ⊢inf e0.m〈V〉(e) : [V/Y]U| R
(IGT-INVFGJ)

∆ ⊢ N ok fields(N) = T f

∆;Γ⊢inf e : S| Re ∆ ⊢ S<:T

R = {S<•T} ∪ Re

∆;Γ⊢inf new N(e) : N| R
(IGT-NEWFGJ)

∆;Γ⊢inf e : T| Re ∆ ⊢ bound∆(T)<:N

∆;Γ⊢inf (N)e : N| Re
(IGT-UCASTFGJ)

∆;Γ⊢inf e : T| Re ∆ ⊢ N ok ∆ ⊢ N<:bound∆(T)
N = C〈T〉 bound∆(T) = D〈U〉 dcast(C, D)

∆; Γ⊢inf (N)e : N| Re
(IGT-DCASTFGJ)

∆;Γ⊢inf e : T| Re ∆ ⊢ N ok

N = C〈T〉 bound∆(T) = D〈U〉 C 6ED D 6EC

∆;Γ⊢inf (N)e : N| Re
(IGT-SCASTFGJ)

∆ ⊢ I〈T〉 ok ∆;Γ ⊢ M OK IN I〈T〉

∆;Γ⊢inf new I〈T〉(){M} : I〈T〉| ∅
(IGT-ANONYMNEWFGAJ)

e = a : Ta ∆;Γ⊢inf a ↓ T| Ra

R = {Ta = T} ∪ Ra

∆;Γ⊢inf e : T | R
(IGT-CLOSUREFGATCJ)

T = I〈T〉 ∆;Γ⊢inf e : T| Re

∆;Γ⊢inf (T)e : T | Re
(IGT-CCASTFGATCJ)

Constrained judgments are essentially the judgements of the declarative typing system, extended with the
constraints of a suitable constraint system(Σ,A,X ,L)2 [12], or more simply, of a unification problem
(Σ,X , E) [8, 5], where the logicL is replaced by an algebraE, having a possibly complete, rewriting
system which conveniently, provides the core of the constraint system solver. However, the algebraE
results uselessly tricky in order to deal with constraintsT1<•T2. Hence, we prefer treating the constraint

2Σ = {X0, Cn, In| n ∈ ℵ}3 is the signature of type constructors;A = ST is the constraint computation domain;X = SX• is
the set of variables;L is the set of the admitted formulas.

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 29

system as an ordinary, first-order unification [9] onSTR, where: ConstraintT1 = T2 is asserting thatT1
andT2 must be unified, whilstT1<•T2 is asserting thatT1 andT2 must be unified, only if one of the two
is bound to a d-variable. In fact, constraints of the formT1<•T2 come from the presence of subtyping
in the declarative type system. This treatment of such constraints reflects the simplificative choice, of
keeping the subtyping rules outside the type inference.

Table 4INa: Inference Typing Rule - target compatibility

Closure compatibility

bound∆(T) = I〈V〉 a = 〈X ⊳ N〉(T x)→e

∆ ⊢ met(I〈V〉) = 〈Y ⊳ P〉U m(S w) N = [X/Y]P ∆ ⊢ Fun(I〈V〉)

∆ ⊢ [X/Y]S<:T ∆;Γ, x : T⊢inf e : Te | Re ∆ ⊢ Te<:[X/Y]U

R = {[X/Y]S<•T; Te<•[X/Y]U} ∪ Re

∆;Γ⊢inf a ↓ T | R
(ICOMP.TFGATCJ)

Table 4INb: Typing Rules

Classes, Interfaces, Methods

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok

∆; x : T, this : C〈X〉⊢inf e0 : S| R solved(R) ∆ ⊢ S<:T
class C〈X ⊳ N〉 ⊳ N{...} override(m, N, 〈Y ⊳ P〉T 7→ T)

〈Y ⊳ P〉T m(T x){↑ e0; } OK IN C〈X ⊳ N〉
(GT-METHODFGJ)

Y<:P, X<:N ⊢ T, T, P ok

〈Y ⊳ P〉T m(T x) OK IN I〈X ⊳ N〉
(GT-HEADERFGAJ)

∆
′
= ∆, Y<:P ∆

′ ⊢ T, T, P ok

∆
′
; Γ, x : T, this : I〈V〉⊢inf e0 : S| R solved(R) P

′
= [Y

′
/Y][V/X]P

∆
′ ⊢ S<:T interface I〈X ⊳ N〉{H} 〈Y ⊳ P〉T m(T x) ∈ H

∆;Γ ⊢ 〈Y′ ⊳ P
′〉T m(T x){↑ e0; } OK IN I〈V〉

(GT-ANONYMFGAJ)

X <: N ⊢ N, N, T ok M OK IN C〈X ⊳ N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈X ⊳ N〉 ⊳ N {T f; K M} OK
(GT-CLASSFGJ)

X <: N ⊢ N ok H OK IN I〈X ⊳ N〉

interface I〈X ⊳ N〉{H} OK
(GT-INTERFFGAJ)

Auxiliary predicates
Sols(R) 6= {}

solved(R)
(R-SOLVER)

5.2. Properties of the Type Inference System

For all termsu ∈ FGATCJ•, dVar(u) is the set of d-variables that are inu. A (idempotent4. Hence,
we consider only idempotent substitutions) substitutionρ, on STR is a (idempotent) function from d-
variables intoSTR , that maps identically except for a finite set of d-variables, called the domain ofρ
and denoted bydom(ρ). The setIm(ρ), is the image set ofρ and, the setdVar(ρ), is the set of all d-
variables occurring in the image set ofρ. Each substitutionρ onSTR ⊂ FGATCJ• is uniquely, extended
to a endomorphismρE on FGATCJ•: For eachu ∈ FGATCJ•, ρE(u) is the term of FGATCJ• resulting
by replacing, inu, •X with ρ(•X), for all d-variables. LetSubs(STR) be the set of all the substitutions
on STR . Subs(STR) contains the identity substitutionε, it is closed under function composition◦, i.e.

4We consider here, only idempotent substitutions that furnish a compact and simple, algebraic framework [9], for term unifica-
tion and constraint solving on terms

30 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

ρ ◦ σ ∈ Subs(STR) for all ρ, σ ∈ Subs(STR), it has a partial ordering� havingε at the bottom. Identity
is an idempotent substitution and hasdom(ε) = Im(ε) = dVar(ε) since all are the emptyset.

Definition 5.1. (dom, Im, dVar, ε,�)
dom(ρ) = {•X|ρ(•X) 6= •X};
Im(ρ) = {ρ(•X)| •X ∈ dom(ρ)};
dVar(ρ) =

⋃
u∈Im(ρ) dVar(u);

ε(•X) = •X,∀ • X ∈ S•X;
ρ � σ if and only if σ = δ ◦ ρ for someδ.

To eachR corresponds a finite set of finite sets of termsM(R) such that a solution ofR is any unifier
5 ρ of M(R). Hence, the solution setSols(R) of a constraint sequenceR is the set of all the unifiers
of M(R). Let mgu be the most general unifier6 of a set of sets of terms onSTR , the most general solver
ρ[R], if any, of a sequenceR of constraints, is such thatρ[R] = mgu(M(R)).

Definition 5.2. (M, ρ[R], Sols)
M(R) = {{T1, T2}|T1 = T2 ∈ R} ∪ {{T1, T2}|T1<•T2 ∈ R and {T1, T2} ∩ S•X 6= {}};
- ρ[R] = mgu(M(R));
- Sols(R) = {σ ◦ ρ[R] | σ ∈ Subs(STR)}.

Theorem 5.3. (Soundness)
For all∆,Γ, e, T,R, If:

- ∆;Γ⊢inf e : T| R and,
- ρ ∈ Sols(R) and,
- dVar(T) ∪ dVar(e) ⊆ dom(ρ) and,
- dVar(ρ) = {}

Then, (*) ∆; ρE(Γ) ⊢ ρE(e) : ρE(T).

Proof:
By induction on the size of expressione, measured as the maximum of the sub-term nesting level and
case analysis on the last rule used in the inference∆;Γ⊢inf e : T| R. ⊓⊔

Let e• ∈ FGATCJ• be an expression. A type assignments fore• is any substitutionρ ∈ Subs(STR) such
that: ρ(e•) ∈ FGATCJ⊂ FGATCJ• andρ(e•) is correctly typed, i.e.:∆;Γ ⊢ ρ(e•) : T holds for a type
T and well defined∆ andΓ.

Theorem 5.4. (Completeness)
For all∆,Γ, e, T, If:

- ∆;Γ ⊢ e : T and,
- e = ρ(e•), for someρ ∈ Subs(STR), e• ∈ FGATCJ•.

Then, (**) ∆;Γ•⊢inf e
• : T• | R and ρ(Γ•) = Γ and ρ(T•) = T.

5A unifier [9] is any substitution that makes identical the terms in each term set ofM(R)
6The most general unifier is the lower bound of unifier set, [9] definition 4.7

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 31

Proof:
By induction on size of expressionse, measured as the maximum of the subterm nesting level and case
analysis on the last rule used in the inference∆;Γ ⊢ e : T. ⊓⊔

5.3. Example

Consider a program with three interfaces that define three SAM types. In particular,I0 andI2 are such
that their closures are compatible both withI0 andI2 and consequently they can have both typeI0 and
I2. This is due to the nominal nature of SAM types.

interface I0{Integer invoke()}; interface I1{I0 invoke(Integer x)};
interface I2{Integer invoke()}

We now show how the system infers a unique type for the closurea = ()→3 when it occurs in a program,
for instance the following:((I1)((x) → () → 3)).invoke(2). We start adding dotted variables when
needed, hence the expression is rewritten as follows:((I1)((•X1 x)→(()→3 : •X2) : •X3)).invoke(2).

The computation is below.

1 ∅; ∅ ⊢inf ((I1)((•X1 x)→(()→3) : •X2) : •X3)).invoke(2) : T |R by IGT-Inv

1.1 ∅; ∅⊢inf (I1)((•X1 x)→(()→3) : •X2) : •X3) : T0| R0

1.2 mtype(invoke, I1) = Integer→ I0 with T = I0

1.3 ∅; ∅⊢inf 2 : Integer |Re with Re = {} since the additional axioms on

primitive data

1.4 R = {Integer<•Integer} ∪ R0 ∪Re

From 1.1, by IGT-CCast with T0 = I1
1.1.1 ∅; ∅⊢inf ((•X1 x)→(()→3) : •X2) : •X3) : I1|Re1

with R0 = Re1 by IGT-Closure

1.1.1.1 ∅; ∅⊢inf ((•X1 x)→(()→3) : •X2) ↓ I1 |Ra

with Re1 = {•X3 = I1} ∪ Ra by IComp.T

1.1.1.1.1 ∅ ⊢ I1<:I1

1.1.1.1.2 ∅ ⊢ Fun(I1)

1.1.1.1.3 ∅ ⊢ met(I1) = I0 invoke(Integer x)

1.1.1.1.4 ∅ ⊢ Te1<:I0

1.1.1.1.5 ∅; x : •X1⊢inf ()→3 : •X2 : Te1 |Re2

with Ra = {Integer<: • X1, Te1<•I0} ∪ Re2 by IGT-Closure

1.1.1.1.5.1 ∅; x : •X1⊢inf ()→3 ↓ Te1 |Re3 with Re2 = {•X2 = Te1} ∪ Re3

By contstraint solving, meta-variable Te1 is replaced by

•X2 then, •X2 is replaced by I0: Hence 1.1.1.1.5.1 becomes

∅; x : •X1⊢inf ()→3 ↓ I0|Re3 by IComp.T

1.1.1.1.5.1.1 bound(I0) = I0
1.1.1.1.5.1.2 ∅ ⊢ met(I0) = Integer invoke()
1.1.1.1.5.1.3 ∅ ⊢ Fun(I0)

32 M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System...

1.1.1.1.5.1.4 ∅ ⊢ Te2<:Integer

1.1.1.1.5.1.5 ∅; x : •X1⊢inf 3 : Integer|Re4 with Re4 = {} since the

additional axiom on primitive data

1.1.1.1.5.1.6 Re3 = {Integer<•Integer} ∪ Re4

Re2 = Re3 = {Integer<•Integer}
Ra = {Integer<: • X1, •X2<•I0, Integer<•Integer}
Re1 = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}
R0 = Re1 = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}
R = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}

Hence, the type of the initial expression results by 1.2:T = I0, andR is satisfied by the assignment of
types to d-variables,R = {•X3 = I1, •X1 = Integer, •X2 = I0} that is obtained by constraint solving.

6. Conclusions

We have provided a type inference system for Java SAM typed closures [6]. It deals with nominal types
and furnishes the most general assignment, if one exists, oftypes to the omitted type annotations of the
program. The system has been proved sound and complete. Due to space limitation, the system ignored
the mechanism of the interface hierarchy and that of method overloading. However, the approach we have
followed is structured enough to allow an easy inclusion of the (computation and typing) rules for the
additional mechanisms. Eventually, a type inference algorithm for FGATCJ• is a program transformation
that accepts programs of FGATCJ• and returns the same program with all expressions annotatedwith
their types, if any, or otherwise, it signals type error. Thedefinition of such an algorithm was out of the
scope of the paper, however it has the constrained rules system, introduced inTables 4IN, as its central
core, but it needs in addition, to implement a strategy to apply in a deterministic, possibly efficient, way
such rules.

References

[1] D. Lea B. Lee and J. Bloch. Concise Instance Creation Expressions: Closure without Complexity, 2006.
crazybob.org/2006/10/java-closure-spectrum.html.

[2] M. Bellia and M.E. Occhiuto.Java in Academia and Research, chapter JavaΩ: Higher Order Programming
in Java, pages 166–185. iConcept Press Ltd., 2011.

[3] M. Bellia and M.E. Occhiuto. The equivalence of Reduction and Translation Semantics of Java Simple
Closures.Fundamenta Informaticae, 119:1–16, 2012.

[4] M. Bellia and M.E. Occhiuto. Java SAM Typed Closures: A Sound and Complete Type Inference Sys-
tem for Nominal Types(Extended Version). Technical ReportTR-13-07, University of Pisa, Dipartimento
Informatica, 2013. http://compass2.di.unipi.it/TR/.

[5] F. Baader and K. Schultz.Cmbining Constraint Solving, volume 2001 ofLNCS. Springer-Verlag, 2001.

[6] A. Buckley and D. Smith.JSR-000335 Lambda Expressions for the Java Programming Language - Early
Draft Review: Lambda Specification, Version 0.4.2. Oracle Corporation, December 2011.
http://download.oracle.com/otndocs/jcp/lambda-04 2-edr-spec/index.html.

M. Bellia and M.E. Occhiuto / Java SAM Typed Closures: A Soundand Complete Type Inference System... 33

[7] A. Buckley and D. Smith.State of the Lambda. Oracle Corporation, December 2011.
http://cr.openjdk.java.net/b̃riangoetz/lambda/lambda-state-4.html.

[8] H. Comon and C. Kirchner.Constraint Solving on Terms, volume 2001 ofLNCS. Springer-Verlag, 2001.

[9] Elmar Eder. Properties of Substitutions and Unifications. J. Symb. Comput., 1(1):31–46, March 1985.

[10] Matthias Felleisen and Daniel P. Friedman. A ReductionSemantics for Imperative Higher-Order Languages.
In PARLE (2), pages 206–223, 1987.

[11] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Calculus for Java and GJ.ACM
TOPLAS, 23:396–450, 2001.

[12] C. Kirchner.Constraint Solving on Terms: Syntactic Methods. Preliminary Lecture Notes.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.30.6600, 1999.

[13] OpenJDK. Project lambda, 2012. http://openjdk.java.net/projects/lambda/.

[14] B.J. Pierce.Types and Programming Languages. MIT Press, 2002.

Copyright of Fundamenta Informaticae is the property of IOS Press and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

