Fundamenta Informaticae 128 (2013) 17-33 17
DOI 10.3233/F1-2013-930
10S Press

Java SAM Typed Closures:
A Sound and Complete Type Inference System for Nominal Types

Marco Bellia and M. Eugenia Occhiutc*
Dipartimento di Informatica, Universitdi Pisa, Italy
{bellia,occhiutd @di.unipi.it

Abstract. The last proposal for Java closures, as emerged in JSR 00838&inly innovative in:
(1)Use of nominal types, SAM types, for closures; (2) Introtibn of target types and compatibility
for a contextual typing of closures; (3) Need for a type iafere that reconstructs the omitted type
annotations of closures and closure arguments. The papeédps a sound and complete type sys-
tem, with nominal types, for such a type inference and disesisole and formalization of targeting
and of compatibility in the designed inference process.

1. Introduction

The paper provides a type inference system, with nominadyfor closures that are typed with SAM
types (hence, the name of SAM typed closures), that: 1) @gusd and complete; 2) given a program, it
checks for the existence of an assignment of types to thdemhtitpe annotations that make the resulting
program, correctly typed; 3) if an assignment exists, ititesin the most general assignment of the
program. 4) it works with nominal types. Nominal types hae¢htan external structure, i.e. the name
of the type, and an internal structure, i.e. the type expresiefining form and components of the type.
Hence, type inference with nominal type$:must provide the usual mechanism that reconstructs the
(internal) structure that the omitted type annotationstrhase;ii) requires an additional mechanism to
select, among all the nominal types whose internal straatuaitches the found one, the type that must
be considered the most general correct type.

JSR 000335 [6, 7] shares with the other previous, propogalk3] the idea of introducing closures
as expressions defining shortenings for anonymous, singlkad, objects, but it is innovative in many
fundamental aspects.

*Address for correspondence: Dipartimento di Informatidgaiversita di Pisa, Italy

18 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

Closure Definition. Closures are introduced, in a program, by a special form pfessions lambda
expressions The syntax of a closure definition consists of the the gengpes (if any), the
argument name list (possibly, empty), and the closure body.

Type Inference. The closure definition does not require a type annotatioh ¢14he defined closure
and also, the type annotations of the arguments can be dmiteong typing and omitted type
annotations require a type system capable to perform typeeimce. A failure during the inference
process, causes a type failure.

SAM Types. Interface types with a single method, nanfedctional interfacegSAMtypes [1]), are
the types of the closures. As all Java reference types, SAdstare nominal types, i.e they are
different types if they have different names even though tteve the same internal structure. For
this reason, a closure can be assigned to (i.eonspatiblewith) many different types.

Generic Types. Generics may be introduced in a closure definition and mutstdosame, after renaming
and permutation, of the generics that have been introducétkiclosure SAM type. A problem
arises: How can such a SAM type be found when the closure typetation was omitted?

Target Types. The solution adopted is to assign to each closuretdhget type, that is the expected
type in the specificontextin which the closure is used. The target type becomes theitytpis
compatible with the closure.

Closure Contexts. The possible contexts in which a closure can appear are:

Variable declaration
Assignment

Return statement

Array initializer

Method or constructor argument
Lambda expression body
Conditional expression

Cast expression

© N OarwNPE

Type Compatibility. The conditions which must hold for a closure to be compatilith a type arei)
The type must be a functional interface: lebe its single methodi) Number and types of the
closure arguments must be the same as those of) Return types of the closure and mfmust
be compatibleiv) Exceptions thrown by the closure body must be allowed intth&ws clause
of m.

Closure Invocation. There is no ad hoc syntax for closure invocation. The usetdapecify, hence
know and remember, the name that has been chosen for the siegihod of the functional inter-
face.

Non-local Variables. Any name used but not declared in the closure, must be eigdam@dfinal
or effectively final The concept oéffectively finalvariables, already introduced in Java SE 7, is
now broadened, to mitigate the restriction on variablesatipd. An effectively final variable is a
variable which is not declared final but its value is not medifi

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 19

Variable Shadowing. As for blocks the local variables or formal parameters obsate cannot shadow
already declared names.

Meaning of this. The self referencehis in a closure refers to the object whose method is enclosing
the closure definition and not to the defined clostitei § transparency), thus disallowing recursive
definitions throughthis. To define a recursive closure, it's necessary to associatame to the
closure, for instance through variable declaration artéhiigation or assignment.

For space reason we limit the definition of the type inferesgstem to a significative kernel of
Java with closures: It includes the field initialization tesves out variables and assignment, includes
interfaces and hierarchies of classes but leaves out bieearof interfaces, includes method overriding
but leaves out method overloading.

We assume the reader already has some familiarity with tiebedic framework ofeatherweight
Javg introduced in [11], in particular with its main technideds and motivations for their use. Then, the
paper organization is as follows: We start defining a redacsemantics and declarative typing system
for a kernel of Java, FGJ [11], extended with SAM typed clesuFGATCJ. The term "declarative” is
in order to emphasize that the closures that we initiallysaber, in FGATCJ, are SAM typed closures
that have type annotations of the defined closure and ofaklttsure arguments. The typing system is
then, studied to provide soundness and to formalize vanotisns of the proposal, including the type
targeting and type compatibility. Then, we extend FGATCE@ATCJ that differs because of its type
structure and of its typing system. The type structure ohetua (denumerable) set of a new kind of
variables, called d-variables. Programs of FGAT@tk considered as the counterpart of programs of
FGATCJ where some type annotations, in the program closefigitions, are omitted and replaced by
d-variables. The typing system of FGATUS in effect, a type inference system: The system introduces
constrained judgements that are essentially the judgenuérthe declarative typing system, extended
with the constraints of a suitable constraint system. A trairs solver, based on ordinary, first order
unification, is then, defined: It computes the most genetatisa. We prove that the inference system is
sound and complete, and we show how, given a program, it camplie most general assignment of d-
variable to types, that makes the resulting program cdyrggied, provided that one such an assignment
exists.

Section 2 contains a brief presentation of the Java kerngulzge FGJ. Section 3 introduces the
kernel language FGATCJ and its reduction semantics. Sedtamntains the (declarative) typing system
of FGATCJ and proves the type soundness. Section 5 intredheekernel language FGATCdhe type
inference system and proves soundness and completenetisn®econcludes the paper.

2. Featherweight Generic Java

A program in FGJ [11] consists of a collection of generic sldsfinitions and of an expression to be
evaluated using such classes. The expression correspmiits hody of the 0-arguments main method
of ordinary Java.

A complete definition of the abstract syntax of FGJ consisth® grammar rules iffable 1 that
are labelled by the defined grammatical category indexed®y. FSymbols< and 1 are a notational
shorthands for Java keywoektends andreturn. For syntactic regularity, (a) classes always specify
the super class, possibBbject, and have exactly one constructor definition; (b) class tcocrs

20 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

have one parameter for each class field with the same name &iglth invoke the super constructor
on the fields of the super class and initialize the remainielgldito the corresponding parameters; (c)
field access always specifies the receiver (object), pgssilils. This results in the stylized form of the
constructors. Both classes and methods may have geneei@éypmeters.

FGJ has no side effects. Henseguencingandassignmenare strictly confined to constructor bod-
ies. In particular, method bodies have always the fernurn, followed by an expression. The lack
of Java constructs for sequencing control and for store tiqgléalong with that of concurrency, and
reflection) is the main advantage of the calculus in studianguage properties that are not affected by
side effects. In this way the calculus is, as much as posgiblapact and takes advantage of the refer-
ential transparency. The latter one provides a simple temusemantics which is crucial for rigorous,
easy to derive, proofs of the language properties [10]. Alsompactness, FGJ has only five forms of
expressions (see definition of categeryn Table 1): One for variablel another forfield accessand
one forObject Creation The remaining two forms amethod invocatiomndcast

The presence ofastin FGJ is justified by its fundamental role in compiling geoerlasses. The
reduction semantics of FGJ consists of the first three rilasappear imable 2: Computation, and
deal with term evaluation, and of the first five rulesTiable 2: Congruence that deal with the redex
selection. The remaining 20 rules of the semantics of FGDwlitha the type system and with term
well-formedness. The rules of FGJ have labels that are @dlby FGJ inTables 2, 4, 5

3. Featherweight GATCJ

The calculus defined in this paper is obtained as an exten$ibe calculus FGAJ[3], which isin turn an
extension of FGJ, with interfaces, anonymous classes amskgaently objects from anonymous classes
creation. FGATCJ extends FGAJ with the closures defined]inTée issue concerned with non-local
variables in closures, has no meaning since all the vasalfl&GJ can be considered effectively final.
Similarly, it is about variable shadowing, since FGJ proggaare, in effect, abstract syntax terms (i.e.
modulo variable renaming).

3.1. Notation and General Conventions

In this paper we adopt the notation used in [11], accordirfgig a shorthand for a possibly empty
sequencefy, ..., £, (and similarly forT,x, etc.) andV is a shorthand fo¥; . ..M, (with no commas)
wheren is the sizef|, respectivelyl], i.e. the number of terms of the sequence. The empty seqigence
o and symbol ”,” denotes concatenation of sequences. Opesatin pairs of sequences are abbreviated
in the obvious way f is C; f1,...,C, £, and similarlyC f; is C; f1;...C, f,,; andthis.f = f;is a
shorthand fothis.f; = £1;...this.f, = £,;. Sequences of field declarations, parameters and method
declaration cannot contain duplications. C&st,, and closure definition,— _, have lower precedence
than other operators, and cast precedes closure definitience() — (this.invoke()) can be written
as() — this.invoke(). The, possibly indexed and/or primed, metavarialiie, U, S, W range over
type expressionst, Y, Z range over type variables; P, Q range over class types; D, E range over class
names;I ranges over interface names;g range over field names; v, d range over expressions; y
range over variable names anmdk, L, H andm range respectively, over methods, constructors, classes

Lvariables include parameters atigli s, see rule&sGR-Invk, Table 2

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System... 21

and interfaces, method headers, and method napag¢gle denotes the result of replacingby x in e.
FV (T) denotes the set of free type variablesTinEventually, following the notation adopted in [11],
symbol "=" is used in formulas both as an abbreviation fet A = X<N,... and as a constraint

X = FV/(T): The context solves any ambiguity.

3.2. Syntax

A program in FGATCJ consists of a collection of generic, slasd interface definitions and of an
expression to be evaluated using such classes and interfabe syntax is formally, given ifiable 1
by emphasizing the extensions of which FGATCJ is composetirsg from the kernel language: At the
top of the table is reported FGJ, below the first extensiontihat(involves extensions on both types and
expressions), finally the last extension TC that introdubesclosures. The table concludes with a view
of the various involved, languages.

Besides interfaces and anonymous classes already pravid&aAJ and FGACJ in [3], in FGATCJ
it is possible to define SAM typed closures. The syntax of tkgressions that define SAM closures
is given inTable 1. Such expressions have foran T, where: T is the type annotation of the defined
closure and specifies the type that the defined closure isosedo have. Moreover, the form sfis
(X < N)(T X) — e where: (X < N) is the possibly empty, sequence of the closure genericdstwhis
the closure body. Eventually, x is the possibly empty, argument sequence of the closureievkbach
argument; has associated its type annotatiyrthat specifies the type that the defined closure assumes
for the argumenk;.

| Table 1 : Syntax |
FGJ

Tu=X|N (TEgY)
N = C(T) (=N
L ::= class C(X < N) < N {Tf;KM} (Lrgy
K ::= C(T f){super(f); this.f = f; } (KFgy
Mu= X <INTn(Tx){T e} MY
ei=x|e.f|newlN(d) | em(T)(3) | (N)e (eFcy)

IA: Extensions for Interfaces and Anonymous Class Objects

T = I(T) (TEGAY
L ::= interface I(X < N){H} (Lrcad)
H:= (X<IN)Tn(TX) (HEgAY)
e ::=new I(T)() {M} (ercal)

TC: Extensions for SAM Typed Closures

en=a:T|(I(T))e (eFGATCY

X <AN)(TX) —e (arcaTCy)

a::

FGAJ= FGJ + IA
FGATCJ= FGJ+ IA + TC

Actually, these closures differ from the ones in [6] becatlgy always require type annotations for
both the defined closure and the closure arguments. In effecaim of FGATCJ is to provide the right
(language) structure to design a type system for SAM typeduck, study the nominal properties of
SAM types and prove the soundness of the system. In thisegdpe types of the defined closures as
well as those of closure arguments are explicitly given dmedproposed type system is designed only
for checking the type correctness of the programs. The types of FGATCJ is a sort of declarative
type system for a language, later on called FGAT@J which type annotations can be omitted as in

22 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

the closures of [6], hence the name used in Section 4 addbie 4DN: In particular, the programs
of FGATCJ are those of FGATCJvhere the omitted type annotations are replaced with typdstze
resulting programs are then checked for type correctness.

The possibility to omit types in FGATCJs dealt with in Section 5 where, the type correctness
of programs of FGATCJbecomes the existence of a suitable type assignment forrtiged type
annotations, whilst checking for type correctness leadesign a type inference for asking about such a
type assignment. The type inference will be obtained froerdibclarative type system through a suitable
re-design of the judgments introduced in Section 5.1.

For space convenience, the reduction rules of the semagia®ll as the typing rules are not given
in separate tables for each calculus. In fact, since coriposlity of the semantics (we use), the rules
of the various constructs are the same in all calculi coirtgisuch a construct. However, for the reader
convenience, in all tables, biiable 3, the rules for each calculus, FGJ, FGAJ and FGATCJ, havesh lab
which is indexed by the name of the minimal calculus inclgdime construct, involved in the rule. Note
that C(T) includes0Object(sinceT may be the empty sequence abdnay beObject) hence generic
variables in classes and methods can be instantiated wiésTythat include interfaces.

3.3. Semantics: Reduction

Table 2: Computation

Computation

field(N) = T

(new N(e)).f; ~ e;

mbodym(V), N) = X.e

(new N(€)).m(V)(d) ~» [d/X, new N()/this]e

0+ N<P
(P)(new N(8)) ~~ new N(?)

mbodym(V), new I(T)(){M}) = x.e

(new I(T)) {M}) (V) (@) ~ [d/, new I(T)(){M} /this]e

(GR-RELDEGY)

(GR-INVKEGY)

(GR-CasTEg))

(GR-INVK-ANONYMEGAJ)

(X <W(TT) —e : T).m(S)(d) ~ [d/F]e

(T)a: T~ a:T

(GR-CLOS-INV-TYPEEGATCY)

(GR-CASTEGATCY)

Congruence

eowe’O

eg.f ~ e:).f

eowe’O

e0.m(T)(8) ~ e(.m(T)(d)

’
e; ~ e

eo.m(TY(. .. e, ...)~ eo.m(T)(...

(GRC-HELDEG)

(GRC-T-INVEG)

(GRC-INV-ARGEG)

(GRC-NEWEGg)

(GRC-CASTEGY

’
e~ e

T(TM)e ~ (I(T))e’

(GRC-COSTEGATC))

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 23

The reduction semantics is given through the inferencesrimdable 2, which define the relation
e ~ e’ that says that “expressianreduces to expressia in one step”. The computation may diverge
or otherwise, terminate, possibly resulting into a valude Values of FGATCJ are either named or
anonymous class objects and closures. The syntactic egatégdefines the form of the expressions
representing such values:
V = newlN(V)
| new I(T)() {7}

[(X<N)(TX)—>e:T

These expressions are normal forms (i.e. cannot be furdteiced) of the reduction relatior, as it
was expected. However, the converse does not hold sincessipns as they result from the grammar
in Table 1 may contain unproper uses of field accesses, or of methodativeas, or of type casts: The
type system discussed in the next sections, aims to re@gnigrams that contain such expressions.

| Table 3: Classes and Interfaces |

Subclassing
c<dp DJE class C(X < N) <D {Sf;KM}
cdc
d c<dD
Auxiliary functions
fieldyObject) = o (F-OBJECT)
class C(X I N) <N {S£;KM } field{ [T/X]N) = Ug (F-CLass)
field{C(T)) = Ug, [T/X|SE
class C(X < N) <IN {SE; KM} Y <AP)Un(Ux){Te;} €N (MT-CLasS)
mtypem, ¢(T)) = [T/X]((Y <P)T > V)
lass C(X < N) <IN {SE;KM M
class C(X < N) <IN { } n¢g (MT-SUPER)

mtypem, C(T)) = mtypgm, [T/X]N)

interface I(X < N) {H} (Y<P)un(Ux) € H
mtypgm, I(T)) = [T/X]((Y < P)T = V)

(MT-INTERFACE)

class C(X <A N) <N {55; Kﬁ} 1§ <1 z :ng){te}eN (MB-CLass)
mbodym(V), C(T)) = X.[T/X,V/Y]e
class C(X I N) <IN {SE;KM} mgM (MB-SUPER

mbodym(¥), ¢(T)) = mbodym(V), [T/X]N)

interface I(X < N) {...} Y <P)Un(Ux){Te;} €N
mbodym(V), new I(T)(){M}) = %.[T/X,V/Y]e

(MB-INTERFACE)

interface I(X < N) {H} H =1 AR V<[V/X]N (Y<P)Unm (UX) =H

= —————— — (METHOD)

A F me(I(V)) = (Y < [V/X]P)[V/X]Um ([V/X]UX)

Auxiliary predicates

override (m, Object, (Y < P)T +— Tg) (OvER-Object)

mtypetm,) = (Z G WU — Vo = o
((?,T) = [¥/2](@,) and Y<P - To <[¥/Z]00) overy

override(m, N, (Y < P)T — Tg)

interface I(X < N) {H} A FV<[V/XN H =1 (Fun)

A F Fun(I(V))

DCast

dcast(C, D) dcast(D, E) class CX <Ny <D(T) {...} X=FV(T)
dcast(C,E) dcast(C,D)

(DCasT)

24 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

The structure of values results from the reduction ruleshefdalculus. The rules indexed by FGJ
in Table 2 are the same as those of calculus FGJ [11], and the one indgxEGAJ is the same of
FGAJ [3]. The rules use auxiliary functionsipody, fields) and notation that are introduced Table
3, which collects all the auxiliary definitions. The rule GRWK-ANONYMgga; defines the semantics of
invocation with anonymous class objects, in a way quite laimo the one of method invocation with
objects of named classes. The new rules indexed FGATCadhvocation for closures and a rule to
cast closures to SAM types. Also one congruence rule foimzpist added.

4. Declarative Typing

The declarative typing extends the typing rules of [11],sub® same two environments andI’, and
eight different typing judgements (two more than [11]'s sneOne judgment for each different term
structure of the language. A type environménis a mapping from type variables to types. It is written
as a list ofX<:T (with at most one binding for each type varialfle meaning that type variable must
be bound to a subtype of tyfge Hence, using functional notation, we have thqX) = T holds if and
only if A containsX<:T. An environment is a mapping from variables to types written as a list ofl
(with at most one binding for each value variak)e meaning thatx has typer”.

| Table 4DN: Declarative Typing Rules |

A;Ty,x:T,I'obFx:T (GT-VAREGY
AT Feg: T fields(bounda (Tg)) =TT
; e : To (boundx (To)) (GT-FELORG)
AT Feg.f; 1 T;
mtypem, bounda (Tg)) = (Y AP)U — U
A;T Feg:To A F Vok A FV<[V/Y]P
AT HE:S AFS<[V/Y]U
— — (GT-INVEGY
AT Foeg.m(V)(e) : [V/Y]U
A+ Nok fieldqN) =T%
A;TH&: S A S<T
(GT-NEWEG)
A;T F newN(e) : N
A;THe:T AFb da (T)<N
e ounda (1) (GT-UCASTEGY)
A;TF (N)e: N
A;THe:T A F Nok A F N<:bounda (T)
N = C(T bounda (T) = D(U dcast(C,D
@ NOELI) (D) (6T OCsTe)
A;T F (N)e: N
A;THe:T A F Nok
N = (T bounda (T) = D(U CAD DAC
@ A =0@ c# v CTsosTe)

A;T F (N)e: N

AFI(Tyok A;T+MOKIN I(T)

AT F new I(T) O {1} : L(T) (GT-ANONYMNEWEGA))

A;THalT e—=a:T

GT-CLOSUR
ATFe:T (EFGATCY)

T =1(T) AT e T
AT F (T)e: T

(GT-CCASTEGATCY)

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System... 25

. The judgement for a (generic) tyfig(seeTable 5) has the formA F T ok meaning thatT is a
well-formed type in the type environmen”.

. The judgement for sub-typing (s&able 5) has the formA F S<:T meaning that$ is a subtype
of Tin A”.

. The judgement for classes (see rule GOAEs., in Table 4DNb) has the fornt 0K meaning that
“Cis well typed”.

. Similarly, the judgement for interfaces (see rule Qi RF-ca, in Table 4DNb) has the fornt 0K
meaning that I is well typed”.

. The judgement for class methods (see GETMODcg, in Table 4DNb) has the forn 0K IN C
meaning thatM is well typed when its declaration occurs in cl@ssThe same judgement is used
for method signatures in interfaces (see GEABER:, in Table 4DNb) whereH OK IN I means
that “H is a well typed signature in interfadé.

. The judgement for methods of interface instances;iE - M 0K IN I(V) meaning thatt is well
typed when its declaration occurs in interface instahige which is a well typed anonymous class
instance in the context of environmemisandl™ (see GT-ANONYMega; in Table 4DND).

. The judgement for expressions (see the ruletatle 4DN) has the formA;T" F e : T meaning
that expressione' has typerT in the context of environment& andI™.

. The judgment for SAM typed closures (see the rul@aifle 4DNg) has the formA;T' - a | T
meaning that closures‘is compatible with SAM typd in the context of environment& andI™.

| Table 4DNa: Declarative Typing Rule - target compatibility |

Closure compatibility

bounda (T) = I{V) A F Fun(I(V)) a=X<aN)(Tx)—e
A Fme(I(V)) = (Y<P)Un(Sw) N=[X/Y]P
AF X/YS<T A;T,x:Tke:Z AFZZ[X/YJU
r

(ComPTEGATCY)

Table 4DNb: Typing Rules

Classes, Interfaces, Methods

A = X<N, Y<P A -T,T,Pok
A;X:T,this : C(X) Feg : S A S<T
class C(X < N) < N{...} override (m, N, (Y < P)T +— T)

(Y<P)T m(TX){T ep; } OKIN C(X <IN)

(GT-METHODEGY)

Y<P,X<:NFT,T,Pok
(Y<P)T m(Tx)OKIN I(X <N)

(GT-HEADEREGAY)

A=A Y<P A’ FT,T,Pok
AT, X:T,this : I(V) Feg:8 P = [/NV/XP A Fs<T
interface I(X < N){H} A R V<[V/X]N (Y<P)Tn(TX) €H
AT H (Y 9B)Tm(TR) {1 eo; } OKIN I(V)

(GT-ANONYMEGAJ)

X<:NFN/NTok MOKIN C(X<IN)
fields(N) =Ug K= C(Ug,Tf){supe(g); this.f = £; }
class C(X < N) < N {Tf;KM} 0K

(GT-CLASSEGY)

X<:NkNok HOKIN (X<
interface I(X < N){H} 0K

(GT-INTERFEGAYJ)

26 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

| Table 5: Subtypes |

Subtypes

bounda (X) = A(X) (B-VAREG)
bounda (N) = N (B-CLASSEGY)
bound (1(V)) = I(V) (B-INTERFACERG)
AFT<T (S-REFLEGY)
AFS<T A T<U &-T
. -TRANS;
AF S<U FGJ
AF X<A(X) (S-VAREG)
lass C(X < N) < N{...
Slass & —) — {7 } (S-QAssggy)
A ¢(T) < [T/X]N
Well-formed types
A Objectok (WF-OBJECTEG)
X € dom(A)
- 7 WF-VAR
A F Xok ¢ FGJ

class C(X < N) < N{...} A F Tok A+ T<[T/XN
A F C(T) ok

(WF-CLASSEGY)

interface I(X <IN){...} A F Tok A+ T<[T/X|N
A+ I(T) ok

(WF-INTERFEGAYJ)

The typing rules are contained Trable 4DN and extend those of FGJ [11], and those of FGAJ [3].
The new rules define the type for closures and casting onrm@ssrhey are very simple, the first one
says that a closure : T has typeT provided thatA; T' - a | T. The second one says that the type of the
closure must be the same as the type to which the closuretis cas

4.1. Properties of the Type System

We prove the soundness of the declarative type system of QAT guarantees that programs that are
well-typed have computations that if terminate then eitkeult into a value or get stuck at a failing type
cast. Analogously to [11], we prove the subject reducti@otbm and the progress theorem first, the
type soundness immediately follows. For space problenes¢cdimplete theorem proofs are deferred to
the extended version [4].

Theorem 4.1. (Subject reduction)
If A;T'+e: Tande ~ e thenA;T' e’ : T/, for someT’ such thatA + T/'<T.

Proof:

By induction on the reductioa~~¢’, with a case analysis on the reduction rule used. The protifeof
corresponding theorem for FGJ (pp. 426-428, [11]), has le&tanded to include rules GREGS-INV-
TyPEand GR-CQsST a

Let e be an expression. Thea,s awell-typedexpression if and only if\, ', T exist such thatA; T +
e : T. Moreover,e is aclosed, well-typedexpression when, in additiod) = (,I" = (). A classc,
respectively an interfacg, is well-typedif and only if C ok, respectivelyI ok holds. A program is
well-typed if and only if its classes, interfaces, and espiens are all well-typed.

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 27

Theorem 4.2. (Progress)

Supposes is well-typed. Ife includes as a subexpression:
1. new N(€).f then fields(N) = T £, for someT andf, andf € f.
2. new N(e).m(V)(d) thenmbody(m(V),N) = X.eq, for somex ande(, and|x| = |d|.
3. (X<N)(TX)—eo: T)m(S)(d) then|z| = |d| = |T| for someT, x andey.

Proof:
The proof is based on the analysis of all well-typed exposssiand concludes that either are normal
forms or they fall in one of the above three cases O

Theorem 4.3. (Type Soundness)
If);0 e : Tande ~* & with ¢’ a normal form, ther’ either is a valuer € V with §; 0 - v : S and
) = 8<:T, or an expression containin@)(new N(€)) with N <P

Proof:

By Theorem 4.2, ik is well-typed then either it is a normal form expression as itot. In the last case,
e (contains a sub-expression) that can be reduced and ragalen expression’ that, by Theorem 4.1,
is a well-typed expression, again. In the first case, we obdbiat eithere = e’ € V, ore is stuck in a
type cast, since they are the only well typed, closed, nofanai, expressions O

5. Type Inference

In this case the program concrete syntax may omit to spenifylosure definitions, the following type
annotations:

(a) all or some parameter types;

(b) the closure type;
Hence, the aim of type inference is to find a type assignmernhéomitted annotations, that guarantees
the correct type checking of the resulting program. In otdelo it, the program abstract syntax replaces
the omitted annotations with a special class of types. Heweeneed to extend typing in two ways.
Firstly, we need a new kind of variable for types. This kindygfe variable will be called dotted variable
(d-variable, for short), it will be denoted by a variable ntiier, X, preceded by, and differs from
generic variables because it is used as a placeholder fee ttype annotations that are omitted in the
program.

[Table 4INR - Types, Type Constraints andFGATCJ® |

Types Type Constraints
TR :=T| X R :u=Tp =Tp | ThR<eTR | RUR
T =X |C(T) | I{T)

TC®: Targeted Closures with omitted type annotations
en=a:Tg| (I(T))e
an= X<AN)(TRX) e

FGATCI=FGJ+ IA + TC®

The second extension is concerned with the constraintathagenerated by the type inference system,
when it collects the requirements that the omitted type tatioms should satisfy. This is reported in
Table 4INR: The syntaxTy of types which extends, and the syntasR of constraints. For notational
convenienceR, U ... U R, is represented by (and called) a constraint sequéce

28 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

LetST, respectiveI)STR, be the set of terms (types) Of respectivelyTy. Let S%* be the denumer-
able set of d-variables, and FGATCe the set of all the terms of the language FGATCJ extended by
allowing d-variables in the type annotations. The typerifiee system consists of a set of rules defining
constrained judgements. The new rules are contained ies@hble 4IN, 4INa and4INb. Each rule in
Table 4IN (and similarly for the other two) has a corresponding rul@able 4DN (4DNa, 4DNb) and
uses the corresponding constrained judgement. For irsstéme constrained judgement for expressions
has the formA; T3¢ e : T [R meaning that expressianhas typer in the contextA andT, provided
that all constraints iR are satisfied (by an assignment of types to d-variables)

5.1. Constrained Judgements

| Table 4IN: Inference Typing Rules |

A;Ty,x: T, Dobinsx: T| 0 (IGT-VAREG)

A;Thinseg : To| R fieldgbounda (Tg)) = T

— IGT-FIELD
A;Thins eg.f; : Ti| R (FG)

A;Thins €9 :Tg‘ﬁo A F Vok
mtypgm, bounda (Tg)) = Y <IP)T — U A - V<[V/T]P
A;Thine3:5|Rg A FS<[V/Y]U
R = {5<e¢[V/Y]U} URo U Rz

— — = IGT-INV
A3 T st 20-0(V) (3) : [W/7JU] R (Fe)
At Nok fieldN) =T%
A;Thips e : S| Re A FS<T
R = {S<eT} UTRg
{(8<e} ° (IGT-NEWEG))

A; Tkt newN(3) : N| R

A;Thins e : T| Re A F bounda (T) <N

— IGT-UCAST|
A;Thint (We : N Re (FGJ)

A;Thigs e : T| Re AFNok A F N<bounda(T)
N = ¢(T) bounda (T) = D(U) dcast(C,D)

— IGT-DCAsT,
A;THins (N)e : N| Re (FGJ)

A;Thigs e : T| Re A + Nok
N = c(T) bounda (T) = D(U) c¥D DHAC
A;Thigs (Ne : N| Re

(IGT-SCASTEGY)

AFI(Tyok A;I'+MOKIN I(T)

IGT-A N
A; TF 1t new I(TY)41} : 1(T)| 0 (IGT-ANONYMNEWEGA))

e=a:T, A;Thiral T Ra
R ={Ta =T} URa
A;Fl—jnfe:T\ﬁ

(IGT-CLOSUREEGATCY)

T=1I(T) A;TFinre:T|Re

=3 IGT-CCAST,
A TFine (Te : T| Re (FGATCY

Constrained judgments are essentially the judgement ofdblarative typing system, extended with the
constraints of a suitable constraint systém .4, X', £)? [12], or more simply, of a unification problem
(3, X, E) [8, 5], where the logicC is replaced by an algebi&, having a possibly complete, rewriting
system which conveniently, provides the core of the comgtsystem solver. However, the algekira
results uselessly tricky in order to deal with constraintg,T,. Hence, we prefer treating the constraint

2y, = {x%,¢", 1"| n € R}3 s the signature of type constructord;= ST is the constraint computation domaif; = S¥eis
the set of variablest is the set of the admitted formulas.

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 29

system as an ordinary, first-order unification [9]@]9“, where: ConstrainT; = T, is asserting thal,
andT, must be unified, whilsT; <, T, is asserting thaf; andT, must be unified, only if one of the two
is bound to a d-variable. In fact, constraints of the farm:,T, come from the presence of subtyping
in the declarative type system. This treatment of such cains$ reflects the simplificative choice, of
keeping the subtyping rules outside the type inference.

Table 4INa: Inference Typing Rule - target compatibility

Closure compatibility

bounda (T) = I(V) a= TX) —e
A F me(I(V)) = (Y<P)Un(S®) N=[X/ A F Fun(I(V))
A b [X/Y]S<T AT, %:Thinse: Te | Re A F Te<:[X/Y]U
R = {[X/Y|S<eT; Te<e[X/Y|U} U R

A;Thinra lT| R

(ICOMP.TEGATCY)

Table 4INb: Typing Rules

Classes, Interfaces, Methods

A =X<N, Y<P A FT,T,Pok
A;X:T,this : C(X)Fins eg : S| R solved(R) A Fs<T
class C(X < N) < N{...} override (m, N, (Y <P)T ~— T)
(Y<P)T m(TX){T ep; } OKIN C(X <IN)

(GT-METHODEG j)

Y<P,X<:NF T, T,P ok
T (GT-HEADEREGAY)

(Y<QP)T m(TX) OKIN I(X < N)

A=A, Y<P A’ FT,T,Pok
X :T,this : I(V)Finr e : S| R solved(R) P’ = [¥'/Y][V/X]P
A’ FS<T interface I(X <N){H} (Y<P)Tn(TX) € H
AT H (Y 9B)Tm(TR) {1 eo; } OKIN 1(V)

AT

(GT-ANONYMEGAJ)

X<:NFN/N,Tok MOKIN C(X<IN)
fields(N) =Ug K= C(Ug,Tf){supe(g); this.f = £; }
class C(X < N) < N {Tf;KM} 0K

(GT-CLAsSEG))

X<:NkDNok HOKIN I(X<N)
interface I(X < N){H} 0K

(GT-INTERFEGAY)

Auxiliary predicates
sols(R) # {}

— (R-SOLVER)
solved(R)

5.2. Properties of the Type Inference System

For all termsu € FGATCZ, dvar(u) is the set of d-variables that arein A (idempoten‘l. Hence,
we consider only idempotent substitutions) substitutioron ST is a (idempotent) function from d-
variables intoST®, that maps identically except for a finite set of d-variablesled the domain op
and denoted bylom(p). The setIm(p), is the image set of and, the setiVar(p), is the set of all d-
variables occurring in the image set@fEach substitutiom on STe c FGATCZ is uniquely, extended
to a endomorphism® on FGATCJ: For eachu € FGATCZ, p¥(u) is the term of FGATCJresulting
by replacing, inu, eX with p(eX), for all d-variables. LeBubs(STR) be the set of all the substitutions
on STz, Subs(STR) contains the identity substitutiof it is closed under function compositian i.e.

“We consider here, only idempotent substitutions that &ilirai compact and simple, algebraic framework [9], for terifiaa
tion and constraint solving on terms

30 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

poo € Subs(STr) for all p, o € Subs(ST#), it has a partial orderings havinge at the bottom. Identity
is an idempotent substitution and hisn(c) = Im(e) = dVar(e) since all are the emptyset.

Definition 5.1. (dom, Im, dVar,e, <)
don(p) — {#X|p(eX) # oX};
Tn(p) = {p(eX)]| oX € dom(p)};
dVar(p) = Uyern(p) dVar(w);
c(eX) = oX,V 0 X € S°X;
p = oifandonly ifo = § o p for somes.

To eachR corresponds a finite set of finite sets of termR) such that a solution dR is any unifier
5 p of M(R). Hence, the solution s&b1s(R) of a constraint sequende is the set of all the unifiers
of M(R). Letmgu be the most general unifiérof a set of sets of terms BT, the most general solver
p[R], if any, of a sequencR of constraints, is such thafR] = mgu(M(R)).

Definition 5.2. (M, p[R], Sols)
M(R) = {{T1,T2}|T1 = T € R}U {{T1,T2}|T1 <o T2 € R and {T1, T2} N S*X £ {}};
- [R] = mgu(M(R));
-801s(R) = {0 0 p[R] | o € Subs(ST*)}.

Theorem 5.3. (Soundness)
ForallA,T,e, T, R, If:

- A;Thiq¢ e : T| R and,

- p € Sols(R) and,

- dVar(T) U dVar(e) C dom(p) and,

- dvar(p) = {}
Then, (x) A;pP(T) F pP(e) : pP(T).

Proof:
By induction on the size of expressien measured as the maximum of the sub-term nesting level and
case analysis on the last rule used in the infereRgcBH;,; e : T| R. O

Lete® € FGATCZ be an expression. A type assignmentsdbis any substitution € Subs(STR) such
that: p(e®*) € FGATCJC FGATCZ andp(e®) is correctly typed, i.e.A;T' = p(e®) : T holds for a type
T and well defined\ andT".

Theorem 5.4. (Completeness)
ForallA, T, e, T, If:
-A;T'Fe:Tand,
-e = p(e®), for somep € Subs(ST*),e® € FGATCJ.
Then, (xx) AT e®:T*|R and p(T*)=T and p(T*) =T.

SA unifier [9] is any substitution that makes identical themsrin each term set of1(R)
5The most general unifier is the lower bound of unifier set, [nition 4.7

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 31

Proof:

By induction on size of expressiors measured as the maximum of the subterm nesting level aed cas
analysis on the last rule used in the inferedcd™ e : T. O

5.3. Example

Consider a program with three interfaces that define thred 8fes. In particularI, andI, are such
that their closures are compatible both withand I, and consequently they can have both tgpend
I,. This is due to the nominal nature of SAM types.

interface Ip{Integer invoke()}; interface I;{I; invoke(Integer x)};
interface Io{Integer invoke()}

We now show how the system infers a unique type for the clasurg) — 3 when it occurs in a program,
for instance the following:((I1)((x) — () — 3)).invoke(2). We start adding dotted variables when
needed, hence the expression is rewritten as foll@ws;((eX; x) — (() — 3 : eX2) : eX3)).invoke(2).

The computation is below.

1 0;0 Fine ((I1)((eX1 x)—(()—3) : X2) : @X3)).invoke(2) : T |R by IGT-Inv
1.1 0;0ine (T1)((0X1 x)—(()—3) : @X3) : #X3) : To| Ro

1.2 mtype(invoke, I;) = Integer — I with T =1

1.3 (0;0ins 2: Integer |R. with Re =1{} since the additional axioms on

primitive data

1.4 R = {Integer<,Integer} URoUR.

From 1.1, by IGT-CCasT with Top =1,
1.1.1 0;0ksne ((oX1 %)= (() 2 3) : X2) : oX3) : 1R,
with Rop = Re, by IGT-CLOSURE

1.1.1.1 0;0ksne ((oX1 x)=(()—=3) : oX2) | I1 [Ra
with R., = {eX3=I1;} UR, by ICoMP.T

1.1.1.1.1 0+ I1<Iy

1.1.1.1.2 0 - Fun(I;)

1.1.1.1.3 0 met(I) = Ipinvoke(Integer x)
1.1.1.1.4 0+ Te, <Io

1.1.1.1.5 0:x : ®Xqlins ()_—>3:ox2:Tel|ﬁe2

with R, = {Integer<: @ X;, T, <e¢Io} UR., by IGT-CLOSURE
1.1.1.1.5.1 0;x : @X1Fins () =3 Te,|Re; with Re, = {Xs = T¢, } UR,,
By contstraint solving, meta-variable T.,, is replaced by
oXo9 then, eX; is replaced by Ip: Hence 1.1.1.1.5.1 becomes
0;x: XiFins () =31 Ig|Re; by ICoMP.T

1.1.1.1.5.1.1 bound(Ip) = I
1.1.1.1.5.1.2 0 - met(Iy) = Integer invoke()
1.1.1.1.5.1.3 () - Fun(Io)

32 M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SamdiComplete Type Inference System...

! 0 - T.,<Integer

5 0;x : ®X1Fins 3 : Integer|R., with R., = {} since the
additional axiom on primitive data

1.1.1.1.5.1.6 Re; = {Integer<,Integer} U R.,

Re, = Re; = {Integer<,Integer}

Ra = {Integer<: e X;, #Xo<,I(, Integer<,Integer}

_el = {#X3 = I;, Integer<: @ Xi, eX2<,Iy, Integer<,Integer}

Ro = Re, = {0X3 = I, Integer<: e X1, eXa<,I, Integer<,Integer}

R = {oX3 = I;,Integer<< e X, eXy<,Iy, Integer<.Integer}

o

Hence, the type of the initial expression results by I.2: I,, andR is satisfied by the assignment of
types to d-variablesk = {eX3 = I;,eX; = Integer, X, = I} that is obtained by constraint solving.

6. Conclusions

We have provided a type inference system for Java SAM typeslioks [6]. It deals with nominal types
and furnishes the most general assignment, if one existgpesé to the omitted type annotations of the
program. The system has been proved sound and completepoBpade limitation, the system ignored
the mechanism of the interface hierarchy and that of methedaading. However, the approach we have
followed is structured enough to allow an easy inclusionhef fcomputation and typing) rules for the
additional mechanisms. Eventually, a type inference &lyorfor FGATCJ is a program transformation
that accepts programs of FGATCand returns the same program with all expressions annotétad
their types, if any, or otherwise, it signals type error. Hedinition of such an algorithm was out of the
scope of the paper, however it has the constrained rulesrsysttroduced ifTables 4IN, as its central
core, but it needs in addition, to implement a strategy tdyaippa deterministic, possibly efficient, way
such rules.

References

[1] D. LeaB. Lee and J. Bloch. Concise Instance Creation &gions: Closure without Complexity, 2006.
crazybob.org/2006/10/java-closure-spectrum.html.

[2] M. Bellia and M.E. Occhiuto.Java in Academia and Researdthapter Jav@: Higher Order Programming
in Java, pages 166-185. iConcept Press Ltd., 2011.

[3] M. Bellia and M.E. Occhiuto. The equivalence of Reduntiand Translation Semantics of Java Simple
Closures Fundamenta Informaticad 19:1-16, 2012.

[4] M. Bellia and M.E. Occhiuto. Java SAM Typed Closures: Aufid and Complete Type Inference Sys-
tem for Nominal Types(Extended Version). Technical Refd&t13-07, University of Pisa, Dipartimento
Informatica, 2013. http://compass2.di.unipi.it/ TR/.

[5] F. Baader and K. Schultmbining Constraint Solvingzolume 2001 oL NCS Springer-Verlag, 2001.

[6] A. Buckley and D. Smith.JSR-000335 Lambda Expressions for the Java Programminguage - Early
Draft Review: Lambda Specification, Version 0.42acle Corporation, December 2011.
http://download.oracle.com/otndocs/jcp/lambdé-B-edr-spec/index.html.

M. Bellia and M.E. Occhiuto/Java SAM Typed Closures: A SanmdiComplete Type Inference System... 33

[7] A. Buckley and D. SmithState of the Lambdaracle Corporation, December 2011.
http://cr.openjdk.java.ndifiangoetz/lambda/lambda-state-4.html.

[8] H. Comon and C. KirchnerConstraint Solving on Termsgolume 2001 o£ NCS Springer-Verlag, 2001.
[9] Elmar Eder. Properties of Substitutions and Unificasiah Symb. Compuytl(1):31-46, March 1985.

[10] Matthias Felleisen and Daniel P. Friedman. A ReducBemantics for Imperative Higher-Order Languages.
In PARLE (2) pages 206-223, 1987.

[11] A. lgarashi, B. Pierce, and P. Wadler. Featherweigt#:JA Minimal Core Calculus for Java and GACM
TOPLAS 23:396-450, 2001.

[12] C. Kirchner.Constraint Solving on Terms: Syntactic Methods. Prelimjrizecture Notes
http://citeseerx.ist.psu.edu/viewdoc/summary?dai+=21D.1.1.30.6600, 1999.

[13] OpenJDK. Project lambda, 2012. http://openjdk.jaedprojects/lambda/.
[14] B.J. PierceTypes and Programming Languag®sIT Press, 2002.

Copyright of Fundamenta Informaticae is the property of 10S Press and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

