
Scientific Programming 22 (2014) 187–199 187
DOI 10.3233/SPR-140378
IOS Press

MATLAB-like scripting of Java scientific
libraries in ScalaLab

Stergios Papadimitriou a,∗, Seferina Mavroudi b,c, Kostas Theofilatos b and Spiridon Likothanasis b

a Department of Computer and Informatics Engineering, Technological Educational Institute of Eastern
Macedonia & Thrace, Kavala, Greece
E-mail: sterg@teikav.edu.gr
b Department of Computer Engineering and Informatics, University of Patras, Greece
E-mails: {theofilk, likothan, mavroudi}@ceid.upatras.gr
c Department of Social Work, School of Sciences of Health and Care, Technological Educational Institute of Patras,
Greece Technological Educational Institute of Patras, Patras, Greece

Abstract. Although there are a lot of robust and effective scientific libraries in Java, the utilization of these libraries in pure Java
is difficult and cumbersome, especially for the average scientist that does not expertise in software development. We illustrate
that ScalaLab presents an easier and productive MATLAB like front end. Also, the main strengths and weaknesses of the core
Java libraries of ScalaLab are elaborated. Since performance is of paramount importance for scientific computation, the article
discusses extensively performance aspects of the ScalaLab environment. Also, Java bytecode performance is compared to native
code.
Keywords: Java, Scala, functional programming, scripting, interpreters, MATLAB, scientific programming

1. Introduction

Scripting environments are very popular in scientific
computing especially for educational and prototyp-
ing applications. MATLAB dominates as a commer-
cial scientific scripting package. Recently, we intro-
duced the Scala based ScalaLab [16] environment for
the Java Virtual Machine. ScalaLab exploits the pow-
erful Scala object-functional language [12]. It presents
a MATLAB-like style of working, and compiles the
scripts for the JVM. ScalaLab runs the scripts at the
full Java’s speed which as we illustrate can be signifi-
cantly better than unoptimized C code.

Three styles of programming coexist and can be
combined in ScalaLab:

(a) The MATLAB-like scripting. It is the easiest one
and the more convenient for small scientific pro-
grams.

(b) The Java-like object oriented style. It is rather
inconvenient and verbose but fits well with ap-

*Corresponding author: Stergios Papadimitriou, Department of
Computer and Informatics Engineering, Technological Educational
Institute of Eastern Macedonia & Thrace, 65404 Kavala, Greece.
E-mail: sterg@teikav.edu.gr.

plication domains where inheritance can be ef-
fective in factoring common code.

(c) The functional programming style. It is very ex-
pressive but rather delicate. The articles [7,11]
highlight many aspects of the functional pro-
gramming style in scientific computing.

ScalaLab is an open-source project and can be ob-
tained from http://code.google.com/p/scalalab/. It’s top
level architecture is depicted with Fig. 1. The language
of ScalaLab is the scalaSci, an extension of Scala with
MATLAB like syntactic constructs that implements the
core scientific classes. These classes can be used also
in standalone applications for the Java Virtual Ma-
chine. The present article focuses on the scalaSci do-
main specific language component. The Scala Com-
piler cooperates with the Scala Interpreter for the im-
plementation of a flexible and fast compiled scripting
framework. The Java Compiler can compile and exe-
cute pure Java classes from within the ScalaLab envi-
ronment. The JNI interface and the CUDA accelera-
tion module aim to provide very fast parallel operations
based on GPU computing. The role of the other mod-
ules of the figure should be evident. As can be seen,
ScalaLab is an integrated system with many classes for
user interface tasks.

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

188 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

Fig. 1. The architecture of the main software components of
ScalaLab.

The emphasis of this work is the important subject
of interfacing Java matrix libraries in ScalaLab. These
libraries are integrated within the core of ScalaLab.
The aim is to provide an easy to use interface to these
scientific libraries, without compromising their speed
and effectiveness. Also, their functionality is retained
and can be used from within ScalaLab with the na-
tive interface of each library. Furthermore, important
computational tasks, e.g. FFT, can be performed within
ScalaLab much faster with the new GPU acceleration
feature (https://developer.nvidia.com/cuda-gpus).

ScalaLab is one of the few (if not the only) systems
that integrates support for different matrix libraries.
This multi-library support has these advantages:

(a) allows each user to work with the preferred li-
brary;

(b) permits comparison of results (both accuracy
and performance) using the corresponding dif-
ferent libraries. Performances depend both on
the storage format of matrices and the algo-
rithms that each library uses;

(c) allows a “mixed mode” programming style, i.e.
programming both with high-level constructs
and with the native interface of each library.
Routines from different libraries can also be
combined for improved functionality;

(d) different libraries have their own strengths and
weakness and which one is “better” depends on
what each application requires.

The paper proceeds as follows. Section 2 describes
the architecture for interfacing Java libraries in
ScalaLab. Section 3 describes in some more detail
the mechanism of implicit conversions that realizes
high-level constructs without performance loss. Sec-
tion 4 illustrates some basic techniques that are used
to construct elegant high-level syntax, exploiting the
superb facilities that the Scala language offers. Sec-
tion 5 presents some examples of Java libraries used in
ScalaLab. Section 6 introduces mixed mode program-
ming, an effective practical framework for implement-
ing numerical procedures. Section 7 presents a lot of
performance benchmarks. Section 8 presents and dis-
cusses related work. Finally, Section 9 concludes the
paper.

2. Interfacing libraries in ScalaLab

This section describes the main features of Scala that
facilitate significantly the work with Java Scientific Li-
braries. The general architecture of interfacing Java li-
braries with ScalaLab is illustrated with Fig. 2.

For each library, two are the important interfac-
ing classes: The Wrapper Scala Class (WSC) and the
Scala Object for Static Math Operations (SOSMO).
The Wrapper Scala Class (WSC) aims to provide a
simpler interface to the more essential functionality of
the Java library, e.g. for matrices A and B, we can
add them simply as A + B, instead of the cumber-
some A.plus(B). For example, some wrapper Scala
classes are the class Matrix for one-indexed matri-
ces based on the NUMAL library [10], class Mat
a zero-indexed matrix based on Scala implementa-
tions that borrow functionality from the JAMA Java
(http://math.nist.gov/javanumerics/jama/) package and
the EJML.Mat class based on the EJML library (https:
//code.google.com/p/efficient-java-matrix-library/).

The Scala Object for Static Math Operations
(SOSMOs) provides overloaded versions of the basic
routines for our new types. For example, it allows to
use sin(B) where B can be an object of our Mat Scala
class or a simple double number, or a Java 2-D ar-
ray, etc. Each SOSMO object implements a large set
of coherent mathematical operations. The rationale be-
hind these objects is to facilitate the switching of the
Scala interpreter to a different set of libraries. The top

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 189

Fig. 2. The general architecture of interfacing Java libraries in
ScalaLab.

level mathematical functions for the zero-indexed ma-
trices e.g. rand0(int n, int m), ones0(int n) etc., should
return the matrix type representation of the currently
utilized library. A matrix object denoted e.g. Mat can
refer to different matrices depending on the library.
The “switching” of libraries is performed by creating
a different fresh Scala interpreter that imports the cor-
responding libraries with the aid of the specially de-
signed SOSMOs objects. For example, there exists a
Scala object StaticMathsJAMA that performs impor-
tant initializations for the JAMA library and a Static-
MathsEJML for the Efficient Java Matrix Library one.
The utilization of the JAMA library is accomplished
by creating a Scala Interpreter that imports the Stat-
icMathsJAMA object while for the EJML the Static-
MathsEJML is imported.

The RichDouble2DArray is the “super” Matrix class
of ScalaLab. It implements mathematical routines ex-
ploiting the best of different Java libraries. Also,
it is available independently of the particular uti-
lized library. By convention, utility routines that do
not end in 0 or 1, return RichDouble2DArray ob-
jects. For example, rand(), zeros(), ones() etc., all
construct RichDouble2DArray objects. Furthermore,
the extensibility of RichDouble2DArray is exploited
with implicit conversions [12] in order to provide
for example its rich functionality to standard 2-D
Java/Scala arrays. Also, a new feature the GPU ac-
celeration, is implemented for many compute inten-
sive routines of the RichDouble2DArray. This feature
is based on the NVIDIA’s CUDA framework (https://
developer.nvidia.com/category/zone/cuda-zone).

The Java library module in Fig. 2 corresponds to the
Java code of the library that performs the main numer-
ical chores. We should note that the Scala interpreter
can also use the native Java interface of each library.

There are many WSC classes, one for each sup-
ported library (e.g. JAMA, EJML, MTJ, Apache Com-
mon Maths). ScalaSci factors out the common patterns
for all operations on zero-indexed matrices with the
trait scalaSciMatrix. This factoring serves to avoid du-
plication of code and the corresponding inconsistency
problems. The scalaSciMatrix trait leaves abstract only
two methods:

• the apply(i: Int, j: Int): Double, that returns the
value of the corresponding matrix element. The
Scala Compiler allows to call the apply() and up-
date() functions with a MATLAB like syntax, e.g.
the indexing operation A(i, j) calls A.apply(i, j)
and the update operation A(i, j) = x is mapped
to A.update(i, j,x).

• the update(i: Int, j: Int, x: Double), that assigns
the value x to the corresponding matrix element.

Clearly, the implementation of these methods de-
pends on the storage format of each matrix type.

Many other matrix methods are implemented in
terms of the above two by the scalaSciMatrix trait.
Therefore they are kept general and independent of the
particular library. For example, we provide a row select
operation like MATLAB’s A(i, :), by implementing an
apply Scala method as in Listing 1.

At the code of Listing 1, a Scala object called
MatrixFactory is used to construct the various
matrix types. The this parameter at the call
scalaSci.MatrixFactory(this, rowNum, colNum) cor-
responds to the particular matrix type where the
scalaSciMatrix trait is mixed-in. Therefore, this object
constructs a Matrix of the appropriate type, i.e. of the
same type as the matrix that we extract its row.

The call involving this cannot be resolved statically
by the Scala compiler, since the type of this is un-
known at compile time. Thus these calls are dynami-
cally binded according to the type of the object where
the trait is mixed in. Therefore, this modular design
with the factorization of the common code patterns in
traits has a slight performance penalty. Specifically, the
implementation of the access/update operations is only
about 10–20% slower than the corresponding direct
operations in the RichDouble2DArray class, that wraps
two-dimensional Java double arrays and uses direct ac-
cess/update operations for efficiency.

3. Implicit conversions

The mechanism of implicit conversions is central to
the flexibility that Scala permits in customizing syn-
tax, without compromising run-time efficiency. Sup-

190 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

Listing 1

Indexing with the apply methods

// extracts a specific row, take all columns, e.g. m(2, ::) corresponds to MATLAB’s m(2, :)

def apply(row: Int, allColsSymbol: ::.type): specificMatrix = {

var colStart = 0; var colEnd = Ncols − 1; // all columns

// dimensions for the extracted matrix (i.e. single row, all columns)

var rowNum = 1; var colNum = colEnd − colStart + 1;

var subMatr = scalaSci.MatrixFactory(this, rowNum, colNum) // create a Matrix to keep the extracted range

// fill the created matrix with values

var ccol = colStart

while (ccol <= colEnd) {

subMatr(0, ccol) = this(row, ccol) // a dynamically binded call

ccol + = 1

}

subMatr.asInstanceOf [specificMatrix]

}

pose that the statement d+M is for evaluation where d
is a double and M is a matrix object (i.e. of Mat class).

When the compiler detects an operator ‘+’ on a
Double object d that adds a Mat object M , i.e. d+M , it
has a problem since this constitutes a type error. There
is no method defined on the predefined Double type
that adds to it a Mat object (and there cannot be one
since Mat is a user library defined type). Similar is the
situation when a Mat is added to a double array. Dy-
namic languages as Groovy [9], can easily overcome
this obstacle by appending methods to the MetaClass
of the Double or Double[] type. But when we do not
want to sacrifice the merits of static typing other solu-
tions should be searched.

Implicit conversions [12,20,21] provide efficient so-
lutions in such cases in Scala. When an operation is not
defined for some types, the compiler instead of abort-
ing, tries any available implicit conversions that can be
applied in order to transform an invalid operation to a
valid one. The goal is to transform the objects to types
for which the operation is valid.

The mechanism of implicit conversions is of funda-
mental importance for the construction of high-level
mathematical operators in ScalaLab. Here, we describe
the design of the implicit conversions in ScalaLab
around the RichNumber, RichDouble1DArray and
RichDouble2DArray classes.

Consider for example the code below:

var a = rand 0(200, 300)

//create a 200 by 300 Matrix

var a2 = 2 + a

//performs the addition by implicitly converting 2

The design of the implicit conversions for that chunk of
code is build around the RichNumber class. This class
models an extended Number capable of accepting op-
erations with all the relevant classes of ScalaLab, e.g.,
with Mat, Matrix, EJML.Mat, MTJ.Mat and generally
whatever class we need to process.

At the example above, the number 2 is transformed
by the Scala compiler to a RichNumber object, that de-
fines an operation to add a Matrix. Therefore, the op-
eration proceeds effectively with only the slight cost of
creating one RichNumber wrapper class.

Similarly, the classes RichDouble1DArray and
RichDouble2DArray wrap the Array[Double] and
Array[Array[Double]] Scala classes, in order to allow
convenient operations, e.g. addition and multiplication
of Array[Array[Double]] types.

As RichNumber enriches simple numeric types,
RichDouble1DArray enhances the Array[Double] type
and RichDouble2DArray the Array[Array[Double]]
type. Therefore, for example, the following code be-
comes valid:

var a = Ones(9, 10)

//an Array[Array[Double]] filled with 1 s

var b = a+ 10

//add the value 10 to all the elements returning b

as an Array[Array[Double]]

var c = b+ a ∗ 89.7

//similarly using implicit conversions this

computation proceeds normally

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 191

4. Designing high-level operators in ScalaLab

The class used as an example to illustrate the
design of high-level operators of ScalaLab is the
scalaSci.EJML.Mat class. This class (abbreviated Mat)
class in ScalaLab wraps the EJML SimpleMatrix class,
allowing us to perform high-level MATLAB-like oper-
ations.

The SimpleMatrix class of the Efficient Java
Matrix Library (EJML, http://code.google.com/p/
efficient-java-matrix-library/) implements mathemati-
cal operations in an object oriented way and keeps im-
mutable the receiver objects. For example, to multi-
ply matrix F and x we call y = F .mul(x). The re-
sult of the multiplication is returned in y and F is
kept unaltered. However, the Java like method calls
are still not much convenient, for example to im-
plement P = FDF ′ + Q we have to write P =
F .mult(P).mult(F .transpose()).plus(Q) instead of the
much clearer:

P = F ∗ P ∗ F∼+Q

that we attain in ScalaLab.

In Scala operators on objects are implemented as
method calls, even for primitive objects like Integers.
But the compiler is intelligent enough to generate fast
code for mathematical expressions with speed similar
to Java. Therefore, in ScalaLab infix operators are im-
plemented as method calls, e.g. the statement var b =
a ∗ 5 corresponds to var b = a. ∗ (5). Scala makes easy
to implement prefix operators for the identifiers +, −, !,
∼ with the unary_ prepended to the operator character.
Also, postfix operators are methods that take no argu-
ments, when they are invoked without a dot or paren-
thesis. Thus, for example, we can declare a method ∼
at the Matrix class and perform Matrix transposition in
this way, i.e. to write the transpose of A as A∼.

An example illustrating Scala’s flexibility is the
implementation of the MATLAB’s colon operator.
ScalaLab supports the MATLAB colon operator, for
creating vectors, e.g. we can write:

var t = 0 :: 0.02 :: 45.9.

This statement returns t as a scalaSci.Vec type. To
implement such syntax we combine implicit conver-
sions with the token cells approach [5,6]. We construct
also two helper objects, the MatlabRangeStart, and the
MatlabRangeNext. In Scala, methods with name end-

ing with the ‘:’ character are invoked on their right
operand, passing in the left operand. Therefore, the ex-
ample is evaluated as 45.9. :: (0.02. :: (0)). Since Dou-
ble (i.e. 45.9) does not have a :: method, it is implicitly
converted to our MatlabRangeStart object. The Mat-
labRangeStart object retrieves the receiver’s value (i.e.
45.9) with its constructor and stores it as the ending
value of the range. We should remind, that with the
order that Scala evaluates methods with name ending
with ‘:’, the first object (i.e. MatlabRangeStart) has as
its value the end of the range. Consequently, the Mat-
labRangeStart object has a method named :: that pro-
cesses the increment parameter. Note that :: is a valid
method name in Scala. This method creates a Mat-
labRangeNext object passing the calling object (i.e. the
MatlabRangeStart) as a parameter. The :: method of the
MatlabRangeNext has all the information (i.e. starting,
increment and ending values) to construct and return
the vector.

MATLAB-like indexing/assignment is implemented
easily by defining overloaded versions of apply() that
operate on vectors. For example, at the sentence M (2 ::
4 :: 20, 3 :: 2 :: 100), M .apply(2 :: 4 :: 20,
3 :: 2 :: 100) is called. The implicit conversions
mechanism, converts parameters to vectors, then ap-
ply extracts from the vectors the starting, increment
and ending values, converting the call to the familiar
M .apply(2, 4, 20, 3, 3, 100).

Below we describe some key characteristics of im-
portant libraries of the ScalaLab core.

5. Example Java libraries of ScalaLab

Although there are many capable libraries, we de-
scribe only three as characteristic examples. The first
one, the EJML is a Java library for many Linear Al-
gebra tasks designed with efficiency in mind (i.e. both
the algorithms and the matrix storage schemes are de-
signed to be fast). The NUMAL library and the Numer-
ical Recipes are general purpose Numerical Libraries.
They offer wide support for many diverse numerical
analysis tasks. Finally, MTJ is an object oriented wrap-
per to some essential functionality (actually a small
part) of the famous LAPACK package.

5.1. The EJML library

The Efficient Java Matrix Library (EJML) is a lin-
ear algebra library for manipulating dense matrices. Its
design goals are: (1) to be as computationally efficient

192 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

as possible for both small and large matrices, (2) to
be accessible to both novices and experts and (3) to
present three different interfaces: (a) the SimpleMatrix,
(b) the Operator interface and (c) the Algorithm inter-
face. These interfaces are ordered in increasing sophis-
tication and run efficiency but also in decreasing sim-
plicity (e.g. the Algorithm interface is the most effi-
cient but also the most complicated).

These goals are accomplished by dynamically se-
lecting the best algorithms to use at runtime and by de-
signing a clean API. EJML is free, written all in Java,
and can be obtained from http://code.google.com/p/
efficient-java-matrix-library/. The documentation pro-
vided within the EJML sources is of superb quality
with references to books on which the implementation
of the algorithms is based. Also, the project is well
documented with many examples for nontrivial appli-
cations, e.g. Kalman filters.

The EJML library stores matrices as one dimen-
sional Java double array and in row major format, i.e.
first the zero row of the matrix, then the second etc. The
CommonOps class of EJML works by not overwritting
the operands but instead it creates new objects for stor-
ing the results. This encourages a functional style of
programming. The EJML is designed to facilitate the
user, i.e. for a square matrix A of dimension NXN at
the equation Ax = b, the exact solution is sought while
for overdetermined systems (i.e. more equations than
unknowns) the least squares solution is computed.

The EJML library provides an extensive set of func-
tionality implemented with the efficiency goal in mind.
For further efficiency, it implements many block algo-
rithms and has the capability of switching automati-
cally to block based processing, if for a particular ma-
trix size it is faster.

In ScalaLab we can utilize the basic algorithms
even more easily with high-level mathematical nota-
tion and with a MATLAB-like interface. The Sim-
pleMatrix class of the Efficient Java Matrix Library
implements mathematical operations in an object ori-
ented way and keeps immutable the receiver objects.
For example, to multiply matrix F and x we call
y = F .mul(x). However, the Java like method calls
clearly are not convenient, for example to implement
P = F · P · F ′ + Q we have to write P =
F .mult(P).mult(F .transpose()).plus(Q) instead of the
much clearer:

P = F ∗ P ∗ F∼+Q

that we attain in ScalaLab. The scalaSci.EJML.Mat
(abbreviated Mat) class in ScalaLab wraps the EJML

SimpleMatrix class, allowing us to perform high-level
MATLAB-like operations. In addition, we can exploit
all the native potential of the EJML, as with any other
library. Section 6 describes this topic.

5.2. The NUMAL and the Numerical Recipes libraries

Another basic library is the NUMAL Java library
described in [10]. NUMAL has a lot of routines cover-
ing a wide range of numerical analysis tasks. NUMAL
uses one-indexing of arrays as MATLAB and Fortran
also do. The Matrix ScalaLab class is a one-indexed
class designed to facilitate the ScalaLab user in ac-
cessing NUMAL functionality. The routines of that li-
brary operate on the Array[Array[Double]] type and
they are imported by default in the Scala Interpreter.
Also, the DoubleDoubleArr Scala object aims to im-
plement an additional simpler interface to these rou-
tines. Additionally, an implicit conversion from Ma-
trix to Array[Array[Double]] allows the NUMAL ma-
chinery to be used with the Matrix ScalaLab type. Al-
though NUMAL is not object oriented, it is practically
an effective framework for scientific computing, since
it covers many engineering tasks and has good docu-
mentation (see [10]).

Similarly, the Numerical Recipes [19] is a library
that covers a wide range of Numerical Analysis prob-
lems. The book [19] is an excellent tutorial to the in-
ternals of the routines, and therefore this library has
a great tutorial value. The routines are generally fast
and well designed and can be used from ScalaLab with
their native Java interface. They operate on plain dou-
ble Java arrays and therefore it is trivial to combine the
functionality of Numerical Recipes with many other li-
braries.

5.3. The Matrix Toolkit for Java (MTJ) library

The Matrix Toolkit for Java (MTJ) is an open source
Java matrix library (http://code.google.com/p/matrix-
toolkits-java/) that provides extensive numerical pro-
cedures for general dense matrices, for various ma-
trix categories (e.g. various band matrix forms), for
block matrices and for sparse matrices. Most of the
functionality of MTJ is built upon the powerful Java
LAPACK (JLAPACK) package which is a Java trans-
lation of the famous LAPACK package [2]. The Netlib
API obtained from the open-source project netlib-java
(http://code.google.com/p/netlib-java/) provides a low-
level interface to the Java LAPACK functionality. In
turn, the Matrix Toolkits for Java (MTJ) project pro-

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 193

Listing 2

Eigenvalue decomposition using MTJ

// compute the eigenvalue decomposition of general matrix Mat

def eig(m: Mat) = {

/∗ compute the eigenvalue decomposition by calling a convenience method for computing the complete eigenvalue decomposition of the given
matrix ∗/
/∗ allocate an EVD object. This EVD object in turn allocates all the necessary space to perform the eigendecomposition, and to keep the
results, i.e. the real and imaginary parts of the eigenvalues and the left and right eigenvectors

The method factorize() performs the eigendecomposition using JLAPACK. ∗/
var evdObj = no.uib.cipr.matrix.EVD.factorize(m.getDM) // getDM returns the MTJ matrix

// representation

(evdObj.getRealEigenvalues(), evdObj.getImaginaryEigenvalues(),

new Mat(evdObj.getLeftEigenvectors()), new Mat(evdObj.getRightEigenvectors()))

}

vides a higher level API and is suitable for program-
mers who do not specifically require a low level Netlib
API. We covered in detail the interfacing of MTJ and
JLAPACK in ScalaLab in [14].

LAPACK is powerful but is difficult to use. The in-
terfaces of their routines are Fortran like with long pa-
rameter lists, that make programming cumbersome and
error prone.

With MTJ some part of the LAPACK functionality
can be exploited much more easily. It uses an object-
oriented design for its Matrix classes. For example, the
AbstractMatrix is one of its basic base classes. A few
methods of the AbstractMatrix through an Unsupport-
edOperationException and should be overridden by a
subclass: get(int, int), set(int, int, double), copy() and
all the direct solution methods. The concrete imple-
mentation of these methods is dependent on the matrix
format that LAPACK uses for that particular matrix
type, e.g. a tridiagonal band matrix, an upper-triangular
etc. For the rest of the methods, the library provides
simple default implementations using a matrix iterator.

Operations as the eigenvalue decomposition are kept
with an object-oriented wrapping. The class EVD for
example is used to compute eigenvalue decomposi-
tions of MTJ Dense Matrices by calling appropriately
the powerful and reliable routines of the LAPACK li-
brary. After performing the eigendecomposition the
user can conveniently acquire the results from the EVD
object by calling appropriate methods, e.g. getLeft-
Eigenvectors(), getRightEigenvectors(), getRealEigen-
values(), getImaginaryEigenvalues() etc.

ScalaLab constructs an additional layer in order to
provide even more user friendly operations than MTJ.
For example, the routine eig(m: Mat) performs the
eigendecomposition of the MTJ Mat class m. This is
achieved by factorizing first the MTJ matrix represen-

tation of the data, performing the eigendecomposition
using JLAPACK’s functionality and then preparing the
results with a convenient Scala tuple for output, see
Listing 2.

JLAPACK is powerful and provides advanced algo-
rithms that generally perform well, even if the Java
translation of the Fortran LAPACK code was obtained
automatically. MTJ facilitates the utilization of the
most important LAPACK functionality. However, with
ScalaLab an expert programmer can exploit the full
JLAPACK functionality with a scriptable way of work.

Finally, the JBLAS library (http://jblas.org/) offers
a very usable interface to native BLAS and LAPACK
routines. These routines, wrapped by the JBLAS class,
are very easy to use from within ScalaLab. The rel-
evant native libraries are installed automatically with
the jblas.jar file. Therefore, using native routines
from ScalaLab requires nothing special from the user.
JBLAS routines are very fast, about 4 to 10 times faster
than corresponding Java routines.

6. Exploiting and glueing the functionality of
native libraries

ScalaSci implements many high-level Scala classes,
that wrap Java classes of many scientific libraries.
However, although it is more convenient to work with
those Scala classes, they expose only the most impor-
tant functionality of the lower-level classes. This sec-
tion presents how we can adopt a mixed mode pro-
gramming style, in order to exploit both the lower-level
functionality and to have the convenience of Scala
based operations where it is applicable.

We call that style as “mixed mode” since it con-
sists of both ScalaSci code and library dependent

194 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

code patterns. Clearly, the engineer that uses the later
type of code, should be familiar with the relevant li-
brary. Mixed mode programming is supported by four
methods of the scalaSciMatrix trait: (a) getNative-
MatrixRef (), (b) matFromNative(), (c) FromDoubleAr-
ray(), (d) ToDoubleArray(). Since all ScalaSci Matrix
classes implement that trait they have this functional-
ity.

The getNativeMatrixRef () method returns a refer-
ence to the library dependent class that implements na-
tive operations. This allows the ScalaLab programmer
to combine all the rest functionality, with the existing
native operations provided by the Java library. In this
way the full potential of the underlying Java class can
be utilized. The definition of getNativeMatrixRef as an
abstract method of the ScalaSciMatrix trait is:

def getNativeMatrixRef: AnyRef

For example, this abstract method is implemented for
the EJML ScalaSci classes as:

def getNativeMatrixRef() = sm

//the scalaSci.EJML.EJMLMat wraps

an EJML SimpleMatrix

Another important routine, the matFromNative, con-
verts from the lower level representation to the corre-
sponding higher level scalaSci matrix. Therefore, the
getNativeMatrixRef can be used to take a reference to
the lower level representation, transform it using rou-
tines of the native library and then convert back to the
higher level scalaSci matrix using matFromNative.

Also, very useful for glueing the functionality of the
different matrix libraries, are the routines toDoubleAr-
ray() that converts the contents of any matrix type to
a simple two-dimensional Java array, and fromDou-
bleArray() that performs the opposite operation.

The matFromNative can be called using the scalaSci
matrix reference on which getNativeMatrixRef is
called, e.g.

var x = new scalaSci.Mat(4, 5)

//create a ScalaSci matrix

var xv = x.getNativeMatrixRef

//take its internal representation

xv(0)(0) = 200

//change the internal representation,

we can have here any operations

//on the native representation

var xrecons = x.matFromNative(xv)

//a new ScalaSci matrix with the changed

data

7. Discussion on performance

Attempting to provide an open-source alternative to
MATLAB for the Java Virtual Machine we initially im-
plemented jLab [13,15,17], that is based upon an inter-
preter that executed MATLAB like scripts. However,
the performance was very poor and the execution of
reasonable loops formidable.

Compiled scripting was the solution to overcome
these severe performance problems. Initially we used
the Groovy [9] dynamically typed language at the
context of jLab. Groovy was not quite efficient, al-
though today as it is used with the jlabgroovy project
(http://code.google.com/p/jlabgroovy/) has improved a
lot in performance. With Groovy 2.0, the utilization
of the new invoke dynamic instruction of the Java Vir-
tual Machine and the possibility of statically compiling
chunks of code, the performance is comparable to that
of Scala/Java.

The HotSpot Java Virtual Machine JIT (Just In
Time) compiler generates dynamic optimizations, in
other words it makes optimization decisions while the
Java application is running. Generally, it produces high
performing native code.

By tuning the proper parameters of the JVM we can
obtain a significant speedup. For example by setting
for 32-bit Windows the parameters controlling the min-
imum and maximum heap size to 500 and 1500 Mb
respectively, i.e. −Xms = 500 and −Xmx = 1500,
we obtain execution time for the multiplication of a
2500 × 2500 matrix to 23.26 s. By adjusting the min-
imum heap in order to be the same as the maximum,
i.e. −Xms = 1500, this time is reduced to 15.678 s,
i.e. a speedup of about 35.34%.

We design ScalaLab with performance as one of ba-
sic goals. Therefore we have avoided using generic
implementation of matrices since they produce much
slower code. Also, the class RichDouble2DArray aims
to combine the fastest algorithms from many libraries.
In this way, RichDouble2DArray is a “super” matrix
class, that provides its methods to the ScalaLab user in-

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 195

dependently of which particular matrix library is used
by the Scala interpreter.

At the design of ScalaSci we avoid parameterized
arrays, i.e. arrays of type Array[T] where T is any Java
primitive type (i.e. int, long, float, double, byte, short,
char or Object). These types require the Scala compiler
to insert a sequence of type tests that determine the ac-
tual array type. As a consequence accesses to generic
arrays are at least three to four times slower than ac-
cesses to primitive or object arrays.

Java conforms fully to IEEE standard [14] that es-
tablishes a precise interface for floating point com-
putations. The double type performs sufficiently ac-
curate for most applications and in today’s JVMs is
not slower than the float type. Therefore, generally
ScalaLab prefers to present an interface for double
types. Also, both Java and Scala support BigDecimal
arithmetic at the library level. These types however
are much slower. ScalaLab also supports the reliable
computation framework of [6]. That framework can
produce confidence intervals for many types of com-
putations. Although the “SmartFloat” arithmetic runs
much slower than pure double arithmetic, it can also be
very useful at the development stage, since we can gain
valuable insight about the accuracy of our algorithms.

JBLAS (http://www.jblas.org/) is similar in many
aspects with MTJ in that it provides a higher level in-
terface to BLAS and LAPACK functions. The Native-
BLAS class of JBLAS contains the native BLAS and
LAPACK functions. Each Fortran function is mapped
to a static method of this class. For each array ar-
gument, an additional parameter is introduced which
gives the offset from the beginning of the passed array.
In C, we can pass a different reference, from the be-
ginning of an array, but in Java, we can only pass the
reference to the start of the array.

Due to the way the JNI (Java Native Interface) is
implemented, the arrays are first copied outside of the
JVM before the function is called. This means that
functions whose runtime is linear in the amount of
memory usually not run faster just because we are us-
ing a native implementation. This holds true for most
Level 1 BLAS routines (like vector addition) but also
for most Level 2 BLAS routines (matrix–vector multi-
plications).

JBLAS routines that use the Native BLAS are the
fastest routines in ScalaLab, with nearly the same
speed as corresponding MATLAB built-in operations
(e.g. for matrix multiplications).

We performed several benchmarking tests compar-
ing ScalaLab with SciLab and MATLAB. All the tests

were performed on an Intel Core™ 2 Quad CPU
clocked at 2.4 GHz, with 4 GB of RAM. Also, we
compare with GroovyLab (http://code.google.com/p/
jlabgroovy/) a similar system based on the Groovy dy-
namically typed language for the JVM. A general con-
clusion is that ScalaLab is significantly (i.e. about 2 to
5 times about) faster than SciLab but not fast as MAT-
LAB for the operations that the latter implements with
optimized built-in code. However, ScalaLab scripts run
also significantly faster than M-file scripts.

It is interesting to observe that MATLAB’s perfor-
mance in some built-in operations (e.g. matrix multi-
plication) is similar to the performance we obtained
from ScalaLab using Native BLAS (using the JBLAS
library, http://www.jblas.org/). We can assume that
MATLAB also uses these fast native routines.

Table 1 compares some qualitative aspects of
ScalaLab and some similar environments. Also, Ta-
ble 2 is concentrated on quantitative results on some
characteristic problems for scientific programming.

In order to access the efficiency of accessing the ma-
trix structure we have used the following simple script,
for which we list the code in MATLAB.

Array access benchmark in MATLAB
N = 2000; M = 2000
tic
a = rand(N ,M);
sm = 0.0;
for r = 1 : N ,
sm = 0.0;

for c = 1 : M ,
a(r, c) = 1.0/(r + c+ 1);
sm = sm + a(r, c) − 7.8 ∗ a(r, c);

end
end
tm = toc

For that script ScalaLab clearly outperforms both
MATLAB and SciLab. GroovyLab has similar speed
when the option of static compilation is used. With
the implementation of optimized primitive operations
(i.e. later versions of Groovy produce fast code for
arithmetic operations since they avoid the overhead
of the meta-object protocol) and with the later invoke
dynamic implementation, Groovy generally is slightly
slower than Scala. The reason for the superiority of
ScalaLab in terms of scripting speed, is clearly the stat-
ically typed design of the Scala language that permits
the emission of efficient bytecodes.

The FFT benchmark is performed in ScalaLab using
implementations of FFT from various libraries.

196 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

Table 1

Qualitative aspects of ScalaLab and some similar environments

ScalaLab MATLAB SciLab GroovyLab

Speed Very fast, execution speed
depends on the Java
Runtime, generally about
2 times faster than
MATLAB 2012 at script
code, but slower for
routines implemented as
built-in with MATLAB

Very fast, especially the
build-in routines are
highly optimized, overall
ScalaLab and MATLAB
run at comparable speeds
and which one
outperforms depends on
the case

Much slower than
ScalaLab (or MATLAB),
about 20 to 100 times
slower

Slower than ScalaLab,
about 2 to 5 times slower.
However, with statically
typed blocks of code,
performance is at about
the same level as
Java/Scala

Portability Very portable, anywhere
exists installed Java 7 JRE

There exist versions for
each main platform, e.g.
Windows, Linux, MacOS

There exist versions for
each main platform, e.g.
Windows, Linux, MacOS

Very portable, anywhere
exists installed Java 7 JRE

Open-source Yes No Yes Yes

Libraries/Toolbox
availability

All the JVM libraries A lot of toolboxes are
available, but generally
not free

There exist toolboxes for
basic applications but for
specialized ones is
difficult to find

All the JVM libraries

Documentation Little yet, and limited to
on-line help, since even
main code components
are in the development
process

Extensive documentation Sufficient documentation On-line documentation
only

Scalability of the
language

The Scala language is
designed to be scalable
and extensible

MATLAB is not designed
to be extensible

SciLab is not designed to
be extensible

The Groovy language as
dynamic is extensible

Development
of large
applications

Scala has a lot of novel
features that can facilitate
the development of large
applications. ScalaLab
applications can run
standalone, as any Java
code

The notion of
MATLABPATH integrates
many MATLAB scripts,
something not very
scalable

Similar to MATLAB, the
SciLab scripts are not well
suited for complex
applications, but rather
they fit well for rapid
testing of scientific
algorithms

Groovy has a full
compiler that can be used
to produce standalone
code of a large application
project

Active user
development
community

ScalaLab is a new project,
and thus up-to-now lacks
a large user base

MATLAB has a huge user
base

SciLab has a large user
base, however much
smaller than MATLAB’s

GroovyLab is a new
project, and thus
up-to-now lacks a large
user base

Of these libraries the Oregon DSP library
obtains the fastest speed. The second and close in
performance is the JTransforms (https://sites.google.
com/site/piotrwendykier/software/jtransforms). Since
JTransforms is multithreaded, it can logically gain su-
periority with better machines (e.g. having 8 or 32
cores, instead of only 4). Also, as can be seen, the
rather tutorial FFT implementation of the classic Nu-
merical Recipes book [19] obtains adequate perfor-
mance. Surprising enough is that the Oregon DSP and
JTransforms FFT routines are nearly as fast as the op-
timized built-in FFT of MATLAB.

We tested also other types of problems such as the
eigenvalue decomposition, singular value decomposi-
tion, solution of overdetermined systems etc. The gen-
eral conclusion is that ScalaLab is faster than SciLab

5.21 by about 3 to 5 times but slower than MATLAB
7.1 by about 2 to 3 times. It is evident also that routines
of JLAPACK for special matrix categories run orders
of magnitude faster than routines for general matrices,
e.g. for a 1500× 1500 band matrix with 2 bands above
and 3 bands below the main diagonal, the JLAPACK’s
SVD routines runs about 250 times faster than for a
general 1500 × 1500 matrix.

In order to test the JVM performance vs native
code performance, an implementation of SVD in C
is used (see http://code.google.com/p/scalalab/wiki/
ScalaLabVsNativeC). We used both the Microsoft’s cl
compiler of Visual Studio on Windows 8 64-bit, and
the gcc compiler running on Linux 64-bit. ScalaLab is
based on the Java runtime version: 1.7.0_25 and Scala
2.11 M4. Clearly, ScalaLab is faster than unoptimized

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 197

Table 2

Results of some basic benchmarks

ScalaLab (s) SciLab 5.21 (s) MATLAB 7.1 (s) GroovyLab (s)

Matrix multiplication with matrix sizes: 36.5 with Java, 61.8 13.05 The same as ScalaLab

(2000, 2500) × (2500, 3000) 14.2 with Native BLAS

LU

1000 0.67 3.13 0.36 0.7

1500 2.41 3.82 1.18 2.58

2000 5.6 6.42 2.72 5.8

inv

1000 2.7 12.97 1.3 3.1

1500 7.8 13.14 4.5 8.2

2000 9.31 19.07 5.9 10.1

QR

1000 2.5 4.3 1.2 2.7

1500 11.3 9.96 4.26 12.4

2000 29.09 19.69 9.89 30.2

Matrix access scripting 0.03 32.16 10.58 0.031 static compilation,

benchmark 0.156 with primitive ops,

0.211 with invoke dynamic

FFT Oregon DSP: Real case: 2.32 Real case: 0.05 The Java libraries for FFT

100 ffts of 16,384 real case: 0.05 Complex case: 4.2 Complex case: 0.08 are the same as ScalaLab’s

sized signal complex case: 0.095

Jtransforms:

real case: 0.07

complex case: 0.11

Apache Common Maths:

complex case: 0.5

Numerical Recipes:

real case: 0.09

complex case: 0.12

Note: These results are obtained by averaging 5 executions.

Table 3

SVD performance: Java vs native C code

Matrix size Optimized C ScalaLab Unoptimized C

(gcc, similar is for cl) (gcc, similar is for cl)

200 × 200 0.08 0.15 0.34

200 × 300 0.17 0.2 0.61

300 × 300 0.34 0.58 1.23

500 × 600 3.75 5.06 8.13

900 × 1000 35.4 51.3 53.3

C and close even to optimized C code. Table 3 shows
some results.

For obtaining the SVD code from the third edition
of the Numerical Recipes book [19] is used. The same
code is implemented both in C++ and in Java, there-
fore direct comparison can be performed. The results
presented in Table 3 are obtained by averaging 5 runs.

However, the execution time is stable, i.e. we have not
observed significant deviations.

8. Related work

This section compares the ScalaLab environment
with some other related approaches.

Similar to ScalaLab is the GroovyLab system, that is
developed also as an open source project (https://code.
google.com/p/jlabgroovy/). It uses Groovy instead of
Scala for scripting. There are many similarities to the
user interface design between the two systems, but also
many essential differences concerning both execution
speed and syntax constructs. We plan to present an ex-
tensive comparison of the two systems with another ar-
ticle. Since both systems offer similar functionalities,

198 S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab

which fits better depends to a large degree upon which
language, Groovy or Scala, the programmer is more
familiar with.

Similar to many aspects with ScalaSci is the Breeze
system (https://github.com/scalanlp/breeze). It is de-
veloped in pure Scala and presents also elegant MAT-
LAB like systax as ScalaSci, for a lot of mathemat-
ical problems. However, Breeze is a library and not
an integrated MATLAB-like environment as ScalaLab.
In addition, the functionality of Breeze can be made
available to the ScalaLab user, if we install Breeze as a
ScalaLab toolbox.

Similarly, Spire (https://github.com/non/spire) is an
elegant Scala library, that provides a rather limited set
of classes. It focus on efficiency using advanced facil-
ities of Scala, as Scala macros. In contrast, ScalaLab
obtains efficiency by avoiding parameterized types us-
ing carefully designed matrix structures and Java mul-
tithreading where is appropriate. Also, ScalaLab is
now developed with integrated CUDA support (https://
developer.nvidia.com/category/zone/cuda-zone).
CUDA makes possible to obtain extremely fast com-
putations using NVIDIA graphics cards. For example,
on a GeForce GTX 650 Ti BOOST card, a 3000×3000
matrix multiplication is about 110 times faster than
Java.

Finally, similar systems is the NumPy [18] based on
Python and the jHepWork [3] based on Jython. These
systems offer similar to ScalaLab set of tools, although
with a different syntax based on Python. In addition,
Jython allows as Scala, to use any Java library. Since
Scala is statically typed, it has a speed advantage com-
pared to Jython. Also, it allows to exploit the func-
tional programming style that is very powerful. How-
ever, which system fits better for some application, de-
pends both to the peculiarities of the application and
on the programmer’s preferences.

9. Conclusions and future work

This work has presented some ways by which we
can work more effectively with existing Java scien-
tific software from within ScalaLab. We demonstrated
that ScalaLab can integrate elegantly well-known Java
numerical analysis libraries for basic tasks. These li-
braries are wrapped by Scala objects and their basic
operations are presented to the user with a uniform
MATLAB-like interface. Also, any specialized Java
scientific library can be explored from within Scalalab
much more effectively and conveniently.

Scala is ideal for our purpose: the ability to handle
functions as first-class objects, the customizable syn-
tax, the ability to overload operators, the speed of the
language, the full Java interoperability, are some of its
strengths. An extension of Scala with MATLAB-like
constructs, called ScalaSci is the language of ScalaLab.
ScalaSci is effective both for writing small scripts and
for developing large production level applications.

ScalaLab emphasizes user friendliness and therefore
develops facilities such as on-line help, code comple-
tion, graphical control of the class-path and a special-
ized text editor with code coloring facilities that greatly
facilitate the development of scientific software.

Future work concentrates on improving the inter-
faces of Java basic libraries and on incorporating
smoothly more competent libraries (e.g. the COLT
library for basic linear algebra). Also, we work on
providing better on-line help and code-completion
for these routines. These facilities are of outstand-
ing importance and support significantly the utiliza-
tion of these rather complicated libraries. Also, an-
other important direction for work is parallel program-
ming with the NVIDIA’s CUDA framework (https://
developer.nvidia.com/cuda-gpus). We started to work
with CUDA interfaces to some important routines, and
the results seem very promising. For example we ob-
tain a speedup of more than 50 for multiplication of
large matrices, and more than 30 for FFTs of large
signals. We plan to report on the CUDA interface of
ScalaLab in a future article.

References

[1] A. Aho, M.S. Lam, R. Sethi and J.D. Ullman, Compilers, Prin-
ciples, Techniques, & Tools, 2nd edn, Addison-Wesley, 2007.

[2] E. Anderson, Z. Bai, C. Birschof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. Mckenney and D. Sorensen, LAPACK Users’ Guide, 3rd
edn, SIAM, 1999.

[3] S.V. Chekanov, Scientific Data Analysis using Jython Scripting
and Java, Springer-Verlag, 2010.

[4] E. Darulova and V. Kuncak, Trustworthy numerical computa-
tion in Scala, ACM OOPSLA’11, October 22–27, Portland, OR,
USA, 2011.

[5] G. Dubochet, On embedding domain-specific languages with
user-friendly syntax, in: Proceedings of the 1st Workshop on
Domain Specific Program Development, 2006, pp. 19–22.

[6] G. Dubochet, Embedded domain-specific languages using li-
braries and dynamic metaprogramming, PhD thesis, EPFL, Su-
ise, 2011.

[7] K. Hinsen, The promises of functional programming, Comput-
ing in Science & Eng. 11(4) (2009), 86–90.

S. Papadimitriou et al. / MATLAB-like scripting of Java scientific libraries in ScalaLab 199

[8] C. Horstmann and G. Cornell, Core Java 2, Vol. I – Fundamen-
tals, Vol. II – Advanced Techniques, 8th edn, Sun Microsystems
Press, 2008.

[9] D. Konig, A. Glover, P. King, G. Laforge and J. Skeet, Groovy
in Action, Manning Publications, 2007.

[10] H.T. Lau, A Numerical Library in Java for Scientists and En-
gineers, Chapman & Hall/CRC, 2003.

[11] K. Laufer and G.K. Thiruvathukal, The promises of typed, pure
and lazy functional programming, Part II, Computing in Sci-
ence & Eng. 11(5) 68–75.

[12] M. Odersky, L. Spoon and B. Venners, Programming in Scala,
Artima, 2008.

[13] S. Papadimitriou, Scientific programming with Java classes
supported with a scripting interpreter, IET Software 1(2)
(2007), 48–56.

[14] S. Papadimitriou, S. Mavroudi, K. Theofilatos and
S. Likothanasis, The software architecture for performing sci-
entific computation with the JLAPACK libraries in ScalaLab,
Scientific Programming 20 (2012/2013), 379–391.

[15] S. Papadimitriou and K. Terzidis, jLab: Integrating a scripting
interpreter with Java technology for flexible and efficient scien-
tific computation, Computer Languages, Systems & Structures
35 (2009), 217–240.

[16] S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothana-
sis, ScalaLab: an effective scientific programming environment
for the Java Platform based on the Scala object-functional lan-
guage, IEEE Computing in Science and Engineering (CISE)
13(5) (2011), 43–55.

[17] S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothana-
sis, Scientific scripting for the Java platform with jLab, IEEE
Computing in Science and Engineering (CISE) 11(4) 2009,
50–60.

[18] F. Perez, B.E. Granger and J.D. Hunter, Python: An ecosys-
tem for scientific computing, in: IEEE Computing in Science
& Engineering, March/April 2011, pp. 13–21.

[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,
Numerical Recipes in C++, The Art of Scientific Computing,
2nd edn, Cambridge Univ. Press, 2002.

[20] V. Subramaniam, Programming Scala – Tackle Multicore
Complexity on the Java Virtual Machine, Pragmatic Bookself,
2009.

[21] D. Wampler and A. Payne, Programming Scala, O’Reily, 2009.
[22] T. Wurthinger, C. Wimmer and H. Mossenblock, Array bounds

check elimination for the Java HotSpot client compiler, in:
PPPJ 2007, September 5–7, ACM, Lisboa, Portugal, 2007.

Copyright of Scientific Programming is the property of IOS Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

