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Abstract A key issue in the development of reliable embedded software is the proper
handling of reactive control-flow, which typically involves concurrency. Java and its
thread concept have only limited provisions for implementing deterministic concur-
rency. Thus, as has been observed in the past, it is challenging to develop concurrent
Java programs without any deadlocks or race conditions. To alleviate this situation,
the Light-weight Synchronous Java (SJL) approach presented here adopts the key
concepts that have been established in the world of synchronous programming for
handling reactive control-flow. Thus SJL not only provides deterministic concurrency,
but also different variants of deterministic preemption. Furthermore SJL allows con-
current threads to communicate with Esterel-style signals. As a case study for an
embedded system usage, we also report on how the SJL concepts have been ported to
the ARM-based Lego Mindstorms NXT system. We evaluated the SJL approach to be
efficient and provide experimental results comparing it to Java threads.
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1 Introduction

Embedded systems typically react to inputs with internal, state-based computations,
followed by some output, as shown in Fig. 1. These computations often exploit
concurrency, which can be implemented with Java threads. To prevent race con-
ditions and deadlocks, Java provides synchronization primitives like semaphores
and also higher level mechanisms like monitors. The synchronize keyword in a
Java class introduces this concept implicitly. Since Java 1.5, semaphores are part
of Java’s java.util.concurrent package. The thread concept introduces intense non-
determinism. It is up to the scheduler to select one of the active threads to run and
others to yield. To overcome this situation synchronization techniques like monitors or
semaphores can be used to prune away non-deterministic behavior typically to avoid
race conditions when accessing shared resources. This is not the problem that SJL tack-
les in first place. By means of using queues and barrier synchronization, monitors or
semaphores can be further exploited to enforce scheduling constraints. Lee [16] argues
that this is approaching the problem backwards. Introducing scheduling constraints
into a highly non-deterministic concurrent program afterwards in order to achieve a
deterministic scheduling is a difficult task and typically makes the program hard to
read and hard to maintain. Synchronization techniques like monitors and semaphores
for implementing deterministic concurrent behavior additionally often lead to dead-
lock situations that are hard to detect and understand, as further discussed by Lee [16].
Neither monitors nor semaphores are able to prevent serious scheduling overhead. In
contrast to pruning away non-determinism from concurrent Java programs (by spec-
ifying scheduling constraints) we argue to use deterministic synchronous concepts
from the beginning.

Contributions

We here present SJL, an approach that allows to directly embed deterministic reactive
control-flow in Java, which encompasses concurrency and preemption. We side-step

Fig. 1 Cyclic, discretized execution of a reactive embedded system computing a reaction to control the
environment stimulated by some input from the environment
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the traditional Java thread concept and its dependence on a—from an application point
of view—unpredictable scheduler. Instead, SJL implements a light-weight application-
level thread concept that combines coroutines with the synchronous model of compu-
tation (MoC). A case study shows how SJL can be used for solving common concurrent
problems on reactive embedded targets.

Outline

In the next section, we discuss related work. Section 3 follows with a presentation of
deterministic concurrency in SJL. Section 4 illustrates the usage of SJL preemption
and how to mimic the behavior of synchronous-style signals. Section 5 discusses some
implementation aspects, including deployment on an embedded example platform.
Section 6 presents a Lego Mindstorms case study. Section 7 evaluates experimental
results comparing SJL with traditional Java threads. We conclude in Sect. 8 and give
some outlook on future work.

2 Related work

Nilsen [21] presented early ideas to use Java in embedded real time systems. The
proposed extensions allow to analyze and measure timing and memory requirements
of system activities. The extensions also allow to specify a protocol that codifies how
to add activities to a real time executive that is managing resource budgets. As a
Real Time Java environment, Miyoshi [18] implemented prototype threads with spe-
cial synchronization mechanisms as an extension package with minimal changes to
the original Java Virtual Machine (JVM). Plsek et al. [22] also modified the JVM.
These approaches cannot utilize the advantage of platform independence of the Java
language, unlike SJL, which is itself implemented in Java and hence platform indepen-
dent. Furthermore, SJL does not need any specific real-time environment or real-time
constructs in order to ensure predictability and deterministic execution. Synchronous
languages separate the concerns of physical timing and functionality. Because physi-
cal timing is orthogonal to determinism that SJL tackles, it can smoothly be combined
with any Java real-time implementation.

To gain predictable Java applications there is another category of solutions, e. g.,
by Schoeberl [25], which do not modify or specialize the JVM but supply specialized
hardware that is able to execute Java Byte Code (JBC) natively. The Java Optimized
Processor (JOP) [23] and the Reactive Java Optimized Processor (RJOP) [20] are both
such hardware-based approaches. These could perfectly be combined with SJL, which
addresses programming and scheduling issues.

The Real-Time Specification for Java [5] tightens Java w.r.t thread scheduling and
synchronization allowing programs to run without interference from garbage collec-
tion so that timing constraints are provable. Safety Critical Java [14] is a standard
facilitating programs capable of certification under standards such as DO-178B. It
introduces missions as bounded sets of periodic reactive jobs. Schoeberl [24] extends
this by mission modes as coarse application building blocks. These cover different
modes of operation during runtime of real-time applications. SJL could be utilized
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for implementing missions, in particular SJL makes most sense for single mission
applications with a fixed number of threads.

2.1 Coroutines

One problem of Java threads is their performance depending on the actual implementa-
tion [27]. Another problem of Java threads is that the scheduler may interleave threads
at arbitrary points during execution.

The idea of coroutines [8] is to let threads cooperate, with themselves in charge
of passing on control, instead of using a scheduler. For implementing a coroutine
scheduling in Java, there exist various possibilities. Using Java threads for doing
this is cumbersome because it is not light-weight. JBC manipulation is a very low
level addressing of this problem. Such solutions are restricted to fully-compliant JVM
stacks, e. g., this will not work on Android. There are solutions to build a patched
JVM for supporting coroutines more natively, e. g., the Da Vinci Machine [26]. There
are other attempts to implement coroutines using Java Native Interface (JNI), loosing
Java’s platform independence. SJL tackles the coroutines-like scheduling problem in
true Java by exploiting the switch-case statement combined with Java reflection. We
also implemented an embedded variant of SJL that does not even use Java reflection.
The advantage is a light-weight and platform-independent implementation. In addition,
unlike the aforementioned approaches, SJL offers deterministic preemption.

2.2 Synchronous languages

Synchronous languages like Esterel [4] or Lustre [7] address concurrency and pre-
emption in a precisely predictable and semantically well-founded way. The execution
scheme follows the reactive model illustrated in Fig. 1. Physical time is divided into
multiple discrete ticks. The reaction is conceptually considered to be atomic and to
take no time, i. e., practically to be fast enough according to timing requirements
that stem from the physics of the environment. The semantics prescribes the execu-
tion order of concurrent threads, which not only entails determinism, but also timing
predictability [3].

Reactive C [9] is an extension of C. Inspired by Esterel, it employs the concepts of
ticks and preemptions, but does not provide true concurrency. FairThreads [6] are an
extension introducing concurrency via native threads. SJL does not use Java threads,
but does its own, light-weight thread book keeping.

Precision Timed C (PRET-C) [1] similarly to Synchronous C (SC) [11] enriches
the C programming language inspired by synchronous languages, but is restricted to
static execution orders among threads. SJL additionally is able to deal with thread
hierarchy, offering dynamic priorities and dynamic thread switching.

2.3 Synchronous C

SJL has been largely inspired by Synchronous C (SC), also known as SyncCharts in
C [11], which introduces deterministic and light-weight threads for the C language.
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Synchronization and scheduling are based on priorities and computed gotos. Resulting
SC programs remain fully C compliant because SC operators boil down to C macros.
SC additionally borrows ideas from Precision Timed Machines (PRET) [17] w.r.t.
predictability and advance the deadline instruction from a very low level timing spec-
ification to a more abstract execution order specification. Like SC, SJL also extends
a programming language within itself. SJL does this for Java in order to allow for
deterministic reactive control-flow specifications. Because C offers computed gotos
and Java does not, SJL exploits the switch-case statement. Auxiliary labels and addi-
tional internal book keeping are required. As C and Java have different capabilities to
express control flow, SC operators and SJL operators also differ. Section 4 later com-
pares an SJL example with its SC counterpart in more detail. Köser [15] investigates
the SC approach for modern multi-core computer architectures. SC, like SJL, can be
used to implement the recently proposed sequentially constructive MoC [12], which
loosens some restrictions the classical synchronous MoC by taking advantage of the
sequential nature of C/Java-like languages. The sequentially constructive MoC also
provides an approach to automatically compute the priorities employed by SC and SJL.

2.4 Synchronous Java

With Synchronous Java (SJ) [19] we already presented an earlier version of SJL and
extended this in several ways. For simplicity reasons we relinquished the definition
of special signals that may have unnecessary overhead during execution. We here
present how to accomplish the same semantic meanings by using just standard Java
variables. We redesigned some basic SJ operators to be significantly faster and simpler
to be use. We present further implementation details of the light-weight reimplemen-
tation. Finally, we report on updates of our experimental results to validate our latest
developments.

3 Deterministic concurrency in SJL

We now discuss the overall structure of SJL programs and the dynamic behav-
ior of threads and their coroutine-like scheduling in order to provide deterministic,
synchronous-style concurrency. Section 4 then describes preemption and signal han-
dling in SJL.

3.1 SJL program structure

SJL is an extension to Java that is written in pure Java itself. Figure 2 illustrates
the basic structure of an SJL program. An SJL program extends the abstract class
SJProgram which provides the SJL operators, of which Table 1 lists the most relevant
ones discussed in the remainder of this paper.

The enumeration StateLabel (line 2) defines a finite set of states that this program
or system can be in. These states correspond to locations in the program, which in SJL
are expressed as different cases in a switch statement; if Java had a goto statement,
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Fig. 2 Structure of an SJL program

Table 1 SJL operator overview yielding operators are marked with an asterisk (*)

SJL operator Explanation

Thread management

fork(l, p)∗ Fork a new descendant thread at label l with priority p. A sequence of fork()
operators should always be terminated with a gotoB(), prioB() or pauseB()
to ensure the current forking thread advances its program counter and the
scheduler is invoked

join() Return true iff all descendant threads have terminated. If there is any
descendant thread that has not yet terminated join() will return false

prioB(p, l)∗ Change the priority of the running thread to p, continue at label l

Pausing/terminating

pauseB(l)∗ Suspend execution for the current tick, continue in the next tick at label l

termB()∗ Terminate thread

haltB()∗ Shorthand for pauseB(l) where l is the current label

Further control flow

gotoB(l) Jump to label l

abort() Recursively abort all descendants created by the current thread

transB(l) Shorthand for abort() and gotoB(l)

these states could simply be statement labels. Each SJL thread maintains a coarse
program counter that corresponds to a particular state, or continuation. The constructor
specifies the initial state of the main thread (see line 5), together with its priority. The
main thread can create additional threads with the fork() operator.

The tick() method (lines 7–18) defines the behavior of the program for one tick.
The while loop ensures that the computation of the complete reaction (tick), which
may consist of several computational steps, is run until isTickDone() returns true,
which indicates that all threads have finished the current tick. During each iteration of
the while loop, the state() method call invokes a priority-based scheduler that returns
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the current state of the thread to be executed next, which is then used in the switch
statement.

The coroutine-like cooperative scheduling is realized by reaching a break that
terminates the current case of the switch statement and leads to the next scheduler
call. Therefore, the SJL operators that upon their completion require a scheduler call
must always be followed by a break statement, hence we call these also breaking
operators. An example is gotoB(), where a thread changes its state. As an aid to
the programmer, breaking operators are appended with a B. Some of the breaking
operators are also yielding, marked with an asterisk in Table 1. After completion of
a yielding operator, another thread may become eligible for execution, for example,
because a thread has finished its current tick and therefore calls the pauseB() operator.
An example of a non-yielding operator that nonetheless calls the scheduler is gotoB(),
which merely changes the coarse program counter of a thread that then immediately
continues at the new state.

An SJL program also contains a main() method, not shown in Fig. 2, which calls
the tick() method whenever a reaction should take place. More precisely, it calls the
doTick() wrapper that re-activates all threads that are alive and have paused in the last
tick computation before calling tick() to compute the current tick. The main() method
is illustrated later in the example shown in Fig. 5c. The SJL program and thread life
cycles are explained in more details hereafter (cf. Fig. 3).

3.2 SJL cooperative threads

Figure 3a illustrates the life cycle of a thread. It can either be dead or alive. The main
thread is alive, active and running by default, while other concurrent or child threads
are initially dead. When being forked, a thread becomes alive and active but firstly
waiting unless it is selected by the SJL scheduler, i. e., the state() method call, to
run. Running threads can act as normal Java programs and execute code that has been
specified for this thread within the aforementioned tick() method. This can be Java
code mixed with SJL operators.

Alive threads that still have work to do in the current tick remain active, threads
that are still alive but done for the current tick are paused. Some SJL operators leave a
thread running, such as transB(). The pauseB() operator leaves the thread alive, but
suspends it for the remainder of the tick. As shown in Fig. 4, threads can yield and give
control back to the SJL scheduler by lowering their priority using the prioB() operator.
Afterwards they are waiting to be selected by the scheduler to continue execution in
the current tick. At the end of their work, threads usually terminate (termB()) or are
aborted by a (transitive) parent thread with abort(). SJL allows for building trees
of threads for specifying hierarchical relations and make preemptions possible. SJL
keeps track of these relations and maintains the book keeping.

A running program repeatedly calls the doTick() method to perform the program
reactions, see also Fig. 3b. Within a tick, the scheduler keeps selecting a thread from a
queue of running threads. When this thread breaks (yields) and isTickDone() is still
false, the next thread is selected for continuing its execution. If isTickDone() is finally
true, i. e., there are no schedulable active threads left for the tick, the doTick() method
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(a) Life cycle of an individual SJL thread

(b) Life cycle of a complete SJL program

Fig. 3 State diagrams for the reactive life cycle of an SJL program and its individual threads, initial states
have a bold outline
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(a) (b)

Fig. 4 Comparison of cooperative thread scheduling concepts

returns and the SJL program is waiting for the next call of the doTick() method. This
continues until the isTerminated() method call in the main method indicates that the
program becomes terminated.

3.2.1 Thread priorities

Threads are always associated with a unique priority. As already mentioned, the ini-
tial priority of the main thread is defined in the constructor of the SJL program. For
other threads, their initial priority is specified as an argument when creating them
with the fork() operator. Threads can change their priority with prioB(). The afore-
mentioned state() method (Sect. 3.1) keeps track of all threads and their current
priorities, and schedules from the currently running threads the one with the highest
priority.

Note that priorities used by SJL are not dynamically used for resolving resource
contention problems or scheduling decisions that may be required by scheduling poli-
cies like Earliest Deadline First (EDF). In contrast, priorities implicitly define a static
sequential schedule that the scheduler will process. Because of the distinct sequential
nature of SJL schedules, the computations are completely deterministic. Additionally
note that the priority inversion problem is ruled out by construction because of the
static sequential schedule and the synchronous tick boundary. Each tick corresponds to
the release of all concurrent tasks/threads. The scheduler will enforce the thread with
highest priority to run first in the deterministic sequential execution for a tick. This
sequential execution is not dependent on any shared resources. But as the example
in Sect. 3.3 reveals, ensuring a specific protocol for accessing shared resources may
result in specific priorities, e. g., considering data dependencies and a write-before-read
policy.

3.2.2 Cooperative thread scheduling

SJL’s underlying thread scheduling is a cooperative, coroutines-like scheduling. The
idea of coroutines [8] is to let threads cooperate, with themselves in charge of passing
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on control, instead of using a scheduler. Figure 4a shows an example schedule of an
execution with three coroutine threads. Thread1 resumes Thread2 at some specific
and well-defined point during its execution. After Thread2 has finished its work
completely, it resumes Thread1 again. After finishing its work, Thread1 gives control
to Thread3.

SJL threads run concurrently and hand over control from one thread to another,
in contrast to normal Java programs where control-flow is characterized by method
invocations and method returns. This cooperative thread scheduling is inspired by
coroutines [8], but in contrast to typical coroutines, in SJL it is not the yielding thread
that has to specify which thread should resume. The yielding thread merely relin-
quishes control, by reaching a break statement. Then, the scheduler choses the thread
to resume, via the state() method. This choice is driven by the thread priorities which
are application-controlled and typically static. Hence, the priorities are crucial for
ordering accesses to shared data within a tick. For example, we can enforce a writers-
before-readers discipline, which is commonly part of the synchronous MoC, by giving
threads that write to a particular variable a higher priority than threads that read from
that variable. Note, however, that even if we do not require strict writers-before-readers,
the SJL program is still deterministic, as determinism is already implied by the under-
lying sequential nature of the tick() function that does not use the Java scheduler. This
is exploited, e. g., in the sequentially constructive MoC [12]. Hence, using SJL one is
able model the constructive semantics [4] of SyncCharts [2] and the sequentially con-
structive semantics of Sequentially Constructive Charts (SCCharts). For SyncCharts,
signals can be codified as explained in Sect. 4.

Figure 4b shows an example schedule of three threads. Thread1 starts the con-
trol because it has the highest priority of 4 when tick() is called. Thread1 executes
some code. It then lowers its priority to 2 by calling prioB(2). After this priority
change, Thread2 has the next highest priority of 3 and is selected by the state()
method for continuation. In the same synchronous tick, Thread2 then executes some
code including two transition changes with the transB() operator. This means that the
coarse program counter maintained by SJL for Thread2 is changed for continuation
to some other label, but this does not involve a thread re-scheduling, i. e., transB() is
not yielding. After this, Thread2 calls pauseB() to indicate that it finished execution
for this tick. state() now selects Thread1 again because it has the highest priority of 2
of all running threads. When Thread1 also calls pauseB() to indicate it has finished
execution for this tick, finally, Thread3 with priority 1 is selected to run its code.
When Thread3 calls pauseB(), no other thread needs to be scheduled for execution
in this tick. Hence, the tick() method returns. The first thread to run in the next tick is
again the one with the highest priority.

Table 2 summarizes the similarities and differences of SJL thread scheduling com-
pared to coroutines. Additionally it compares standard Java threads with both.

3.3 The Producer–Consumer example

The Producer–Consumer (PC) example in Fig. 5, inspired by the Producer–Consumer–
Observer (PCO) example of Lickly et al. [17], is a small-scale application with two
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Table 2 Similarities and differences of coroutines and SJL cooperative thread scheduling, additionally
compared to Java threads

Coroutines SJL Java threads

Similarities

Threads decide to yield Yes Yes No

Arbitrary interleaving No No Yes

Coarse program counter Yes Yes No

Differences

Scheduler present No Yes Yes

Next thread selected by Thread Scheduler Scheduler

Selection based on Code Priorities (highest) JVM + OS dependent

Threads yield by Explicit resume prioB(), pauseB(), termB() n/a

concurrent threads, a data producer and a data consumer. The threads jointly access
some shared variable BUF, which is effectively a one-place buffer. This must be
accessed in the usual fashion, where first the producer must write to BUF, then the
consumer reads BUF, after which the producer may write again, and so forth. As in the
original example of Lickly et al. [17], exemplarily, the computations of the consumer
are two split: First receiving the value of BUF in a local variable tmp and second
performing some further internal computations with the received value, e. g., writing
it to an internal array arr.

3.3.1 Classical Java implementation

In the program shown in Fig. 5a, the class PC creates the concurrent Producer and
Consumer threads in its constructor. Both threads share a common Monitor buffer
object.

In this example a monitor is used as a higher level synchronization mechanism.
Other possibilities for implementing synchronization would have been the usage of
lower level synchronization mechanisms like semaphores. Both mechanisms can be
used to manage concurrent access to shared resources. This is typically done by using
queues (monitors) or barrier synchronization (semaphores). Nonetheless there is no
predictable scheduling as the scheduler may freely (non-deterministically) chose a
thread to continue. Synchronization techniques are then used to prune away this non-
determinism. Hence, neither monitors nor semaphores are able to prevent serious
scheduling overhead.

The Producer thread produces data in its run() method (lines 35ff), consumed
by the Consumer thread in its run() method. There is no synchronization constraint
explicitly specified, neither in the producer nor in the consumer thread, although the
producer has to run before the consumer. All synchronization is expressed in the shared
Monitor. It suspends threads trying to consume (getBUF()) data from an empty buffer
and the ones trying to produce (setBUF()) data on a full (!empty) buffer. The constraint
that the producer thread has to run before the consumer is realized only implicitly. With
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(a)

(b) (d)

(c)

Fig. 5 The Producer–Consumer (PC) example
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notifyAll() all producer and consumer threads possibly waiting are awoken. These may
wait() again afterwards immediately without doing anything (lines 17 and 25).

With this realization, scheduling has large influences on possible interleavings and
the actual execution order that is totally unpredictable. Hence, execution time is also
hard to predict. The situation becomes worse if one wants to add an additional observer
thread like in the original example [17]. If the observer does not consume data but needs
to run after the producer and before the consumer, this also has to be expressed in the
Monitor class specifying the shared buffer. Overhead of poorly scheduled executions
with unnecessary awoken threads will consequently grow. A related problem is the
creation and killing of threads for simple tasks, which is also inefficient. An alternative
is to re-use threads of a thread pool, which is more efficient but uses more system
resources.

To summarize, the classical Java approach to concurrency suffers from the inability
to explicitly specify scheduling constraints that are required for determinism. Such
constraints are expressed only implicitly using coordination data structures like mon-
itors. The scheduling constraints cannot be expressed in the producer or the consumer
activities directly. Moreover the solution with Java threads has the overhead of poten-
tially many additional but superfluous context switches between threads.

3.3.2 The PC example with SJL

SJL allows for light-weight threads and more explicit control over scheduling by the
application itself. Consider Fig. 5c where the PC example is listed in Java using SJL
constructs, according to the structure already discussed in Sect. 3.1. Following the syn-
chronous approach, the program behavior is broken up into discrete reactions, or ticks,
which in this case correspond to one production/consumption cycle. The tick() method
(lines 19ff), repeatedly invoked via doTick() in main() (lines 43ff), computes one tick.

Within the tick() method, the concurrent behavior of the program is specified by
the switch statement and its different states (cases). The main thread starts at state
InitPC with priority 2, as specified by the PC constructor (line 14ff). The fork()
operator in line 23 creates a consumer thread with initial state Consumer and priority
1. The main thread subsequently assumes the role of the producer thread, and gotoB()
defines the next state of this thread to be Producer. The priority of that thread remains
2. Whenever threads are forked, one should give the scheduler again a chance to run,
as one might possibly have created new threads with higher priorities than the already
existing threads. Thus gotoB() is a yielding operator that should be followed by a
break statement (line 25), although here, this is not strictly necessary as the currently
running thread could just fall through to the next case.

In the next iteration of the enclosing while loop, the scheduler run by the state()
method selects the running thread with the highest priority, which in this case is 2,
corresponding to the producer thread that resumes at Producer. This thread writes to
BUF, increments i, and declares that it is done for the tick with pauseB(), specifying
Producer as continuation point when starting this thread in the next tick. Next, the
scheduler selects the consumer thread with priority 1, which does its computations
until it pauses again. As explained earlier these computations are receiving the BUF in
a local variable tmp that then is written to an internal array arr. After the Consumer
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pauses as well the isTickDone() returns true and tick()/doTick() returns to the main()
method. However, both threads are still alive; in fact, they never terminate in this
example. Therefore, pc.isTerminated() returns false, and doTick() is invoked again,
until PC.TICKS ticks have been executed.

The behavior of the SJL program is also illustrated in the logical tick time line in
Fig. 5d, which highlights some variable assignments taking place within the first three
ticks.

To summarize, the SJL program expresses deterministic concurrent control flow
directly at the application level, without any need to invoke the Java scheduler. In
every tick, the producer and the consumer run in lock-step and the producer always
runs before the consumer. Hence, the deterministic execution schedule is ensured by
priorities that are used by SJL constructs to sequentialize the access to BUF in order
to maintain the write-before-read requirement. In general, threads are coordinated
with explicit, user-controlled priorities, which provide the basis for a deterministic
scheduling regime. Threads require minimal bookkeeping, they just have to keep track
of a priority and execution state, and hence context switches are very light-weight.

3.3.3 Comparison of SJL program and SyncCharts implementation

SyncCharts is a graphical synchronous language with Esterel semantics. A full descrip-
tion of SyncCharts is given by André [2]. The PC program can also be specified using
the SyncCharts formalism as shown in Fig. 5b.

At this point it is important to note that the underlying synchronous tick-wise
computation of SJL and SyncCharts is fundamental for achieving determinism. In
each tick the SJL program and the SyncCharts do only a finite amount of computations
that are distinctly sequentialized by the given priorities in the SJL program and by the
data dependencies in the SyncChart.

After initializing i and j the SyncChart immediately transitions to the run state. In
the run state there are two concurrent regions, specifying the behavior of the Pro-
ducer and the behavior of the Consumer. Regarding the shared variable BUF there
is a dependency from the writing Producer to the reading Consumer as visualized
by the red arrow. Hence, in each synchronous tick the Producer will be scheduled
before the Consumer. The thread priorities for the Producer (2) and for the Con-
sumer (1) used in the SJL implementation are derived from this data dependency.
These priorities statically determine the order in which both SJL threads are executed
in each synchronous tick.

4 Preemption and signals

After discussing the core SJL concepts for handling concurrency in the previous sec-
tion, we now cover further control-flow constructs, notably a set of preemption-related
operators, and the capability to communicate among threads with synchronous-style
signals.
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4.1 Signals

In synchronous languages, a signal is defined by its presence status (present or absent)
within a tick. Within a tick, a signal is absent by default, unless it gets emitted and is
hence present. There are also valued signals which may be associated with a unique
value, which is set during signal emission. The present status of interface signals are
set by the environment before each tick. SJ [19], the predecessor of SJL, included an
explicit synchronous signal class.

On the one hand this eases the use of synchronous-style communication in SJ. For
example one thread could emit a signal s using s.emit() and another thread could
test for its presence status using s.isPresent() within the computation of a reaction.
Additionally, these signals always carry their present status of all previous ticks. The
previous instance of a signal can be accessed by calling s.pre() on a signal s.

On the other hand these explicit signals of SJ makes it necessary to explicitly ini-
tialize them with a special initSignals() method that makes additional use of Java
reflection. But Java reflection is not available on all embedded platforms. Further
shortcomings are reduced efficiency and higher memory requirements during runtime
where simple communication results in various method calls on various necessary sig-
nal objects. Moreover, holding previous instances available requires additional mem-
ory and computation in order to create new instances of every signal for each tick.
Altogether the signal management also obfuscates and blows up the SJ implementation
where signals might not always be desirable (cf. Fig. 5).

In contrast to SJ, SJL has no explicit signals but the same behavior can be accom-
plished by using boolean variables as shown in Fig. 6. The following rules must be
satisfied in order to mimic synchronous signals correctly:

1. Signal variables representing local and output signals must be reset to false (absent)
before each tick computation (cf. lines 2–3) and

2. signal variables may be set to true (present) but must not be set to false (absent)
during a tick computation.

Alternatively, boolean signal variables representing local and output signals can
also be reset to false (absent) in some other part of the enclosing program before
calling doTick(). The emission of a signal s corresponds to setting a boolean variable
s to true. Testing for presence of a signal s corresponds to testing a boolean variable
s for whether it is true.

Valued signals can be realized by using an additional variable to store the value in
combination of a boolean variable to store the present status as described before.

For both, SJ and SJL, priorities must ensure that all code writing to a signal (emitting
it) executes before all code reading this signal (testing for its presence) during a tick
computation.

To summarize, SJL can mimic signals with a one tick live span of its present status.
This can be used to model signals as used in synchronous languages like Esterel,
SyncCharts, or SCCharts. Additionally SJL can handle any Java variables and arbitrary
Java objects with a live span that persist over the ticks. An example was given in Fig. 5
where an integer buffer BUF was used for communication and an integer array arr for
thread-internal further computations.
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(a)

(b) (c)

(d)

Fig. 6 ABSWO example in SJL and SC, illustrating weak and strong preemption. It also illustrates the
usage of synchronous-signal-style boolean variables for communication. ABSWO concurrently waits for
the signals A and B. If both have occurred, it emits output signal O. Note that input signal A is sufficient
because signal B is emitted once signal A occurred. The behavior of ABO is reset strongly by signal S and
weakly by signal W
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4.2 Preemption

A signal can for example be used to trigger a preemption, which is illustrated in the
ABSWO example shown in Fig. 6. To familiarize ourselves with ABSWO, we first
have a look at the SyncChart version shown in Fig. 6a, which is a graphical means to
precisely describe concurrent and preemptive behavior. We here describe SyncCharts
to the extent needed to explain ABSWO, a full description of SyncCharts is given
by André [2]. In SyncCharts, transitions are triggered by the presence of a specified
signal, and in turn taking a transition can make a signal present. For example, initially
the reactive system is in states wA and wB, as well as in the enclosing states AB and
ABO. However, when signal A becomes present in some tick, a transition wA to dA
takes place in the same tick and emits B.

To illustrate preemption, ABSWO has two different preemptive self transitions from
state ABO to ABO. The transition triggered by presence of S is a strong preemption
(indicated by a red circle at the transition source), meaning that in each tick the
transition’s trigger (signal S) is tested before the behavior of the source state (ABO)
gets executed. This implies that if S becomes present in a tick, then O cannot be
emitted anymore in that tick. Conversely, the transition triggered by W is a weak
transition, meaning that this transition is tested after ABO has been executed. If a
state has multiple outgoing transitions, as is the case for ABO, then these transitions
are statically ordered by a transition priority, indicated by numeric tail labels. Strong
preemptions must be tested before weak transitions, therefore the transition triggered
by S has priority 1 and the other transition has priority 2. Another transition type is
the normal termination (indicated by a green triangle at the transition source), which
takes place when all concurrent regions within the transition source have terminated,
i. e., have entered a final state (indicated by double outline). In ABSWO, state AB
contains regions HandleA and HandleB, which in turn contain final states dA and
dB, respectively. When both of these final states have been entered in a tick, the normal
termination transition from AB to done is taken in that same tick. Transition triggers
are per default non-immediate, meaning that they are always disabled in the tick when
their source state is entered. In ABSWO, this prevents an instantaneous loop to be
induced by the self transitions on ABO. It also prevents the transitions originating in
wA and wB to be taken in a tick immediately after just entering ABO in that tick.

A possible execution trace is shown in the tick time line in Fig. 6d. No signals are
present in the initial tick; in the second tick, the environment makes A present, which
triggers in turn presence of B and O; in the third tick, the behavior is reset by S; and
so on.

Figure 6c shows the SJL tick() function which precisely corresponds to the Sync-
Chart of Fig. 6. In line 2 the output signal O is first reset to false (absent) for each call
of tick(), i. e. for each reaction computation. This is in accordance to the explanation
of the previous paragraph that illustrates how a synchronous-style signal handling
can be implemented using standard Java variables. The constructor (not shown here)
starts the main thread at state ABO with priority 5. This forks off another thread at
AB and continues at ABOMainStrongEntry, which then pauses for a tick (line 10).
This pause corresponds to the non-immediate nature of the self-transitions on ABO.
From the next tick on, the main thread first, running at priority 5, tests S (line 13)
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and possibly takes the (strong preemptive) self-transition to ABO (line 14); if this
transition is not taken, it then, at priority 1, tests W (line 19) and possibly takes the
(weak preemptive) self-transition (line 21); otherwise it again raises its priority again
to 5, transfers control to ABOMainStrongEntry (line 23), and pauses (line 10). Con-
currently, the thread started at AB first forks two threads wA and wB (lines 26 and
27) and then, in state ABMain, waits for them to terminate with join() (line 31) and
then sets O to true, i. e., it emits O to be present in the case of a join (line 32) and
terminates (line 33). It self-transitions otherwise (line 35). AB runs at priority 2, so it
is executed after strong preemption on ABO (triggered by S) is tested, but before the
weak preemption is tested. Also concurrently, the thread starting at wA tests whether
A is present (line 37), and if so, emits B (line 38) and terminates (line 39). It self-
transitions otherwise (line 41). The thread starting at wB similarly tests B and possibly
terminates or self-transitions. These two threads run at priorities 4 and 3, respectively,
thus when A is present, B will be emitted before it gets tested.

To summarize, SJL provides variants of deterministic preemption that allow the
modeler to choose explicitly whether the preemption should prevent a preempted
component to still execute the current tick or not. This is clearly preferable over
most other typical implementations of preemption, where this choice is up to (unpre-
dictable) scheduling decisions. The ABSWO example illustrates how signals can be
used to trigger preemptions, but of course any Boolean expressions in standard Java
can be used as preemption triggers as well. The ABSWO example also illustrates again
how priorities can be used to statically control thread scheduling, which in this case
allows to distinguish strong and weak preemptions, and to assure that any emissions
of some signal take place before that signal gets tested. Traulsen et al. [28] discuss
how transition priorities to implement SyncCharts can be synthesized automatically.

For a brief comparison between Synchronous Java and Synchronous C, Fig. 6b lists
the equivalent Synchronous C (SC) program. The principles are exactly the same. How-
ever, as C/gcc have some capabilities that Java does not have, notably computed gotos
and a powerful preprocessor, the C variant allows to hide most of the low-level control
logic in SC macros. For example, the AWAIT() macro automatically generates a con-
tinuation label, hidden to the user, based on the source code line number. Conversely,
some SC macros are just a structuring aid without much functionality. For example,
the Thread(l) macro simply terminates the preceding thread and generates a label l.

5 Implementation notes

An interesting part of SJL behind the scenes is the method isTickDone(). It returns
true iff the current tick is done, i. e., when the internal queue of active threads is finally
empty. At the beginning of a tick, all alive threads are considered active by adding
them to this queue ordered by their priority. If a thread calls prioB(), its position in
the priority queue is re-arranged. A thread is removed from this queue when it calls
pauseB(). It is then no longer considered to be active.

Another central method is the state() method that implements the SJL dispatcher
and does the actual scheduling. It returns the next thread state label for the switch-
case statement to continue execution. This is the label that is the state of the program

123



Light-weight Synchronous Java 299

Fig. 7 Basic data structures of an SJL program

counter of the next active thread from the top of the ordered priority queue. Forking and
terminating threads as well as the handling of signals requires additional internal book
keeping. This book keeping and further details about the scheduling implementation
are sketched in the following paragraphs.

5.1 Basic SJL data structures

SJL needs some basic data structures to do the aforementioned bookkeeping and thread
management. Figure 7 shows these structures. The coarseProgramCounter (line 2)
is an array that stores for every thread (identified by its unique priority) a continuation
label (of type State). The currently executing thread’s id, i. e., its priority, is stored in
currentThread (line 5). Two important fields are alive (line 8) and active (line 11).
alive is an integer array that stores up to 32 alive threads per entry. active is an integer
array that stores up to 32 active threads per entry. Refer to Fig. 3 for an explanation
of thread states such as alive and active. Threads that are not contained in alive are
considered to be dead. Threads that are not contained in active are considered to be
paused. All threads in active must also be contained in alive. The fields descendants
(line 14) and parent (line 17) are used for storing parent-child relationships. An entry
of descendants is an integer array for a parent thread identified by its priority which
holds up to 32 child threads per entry. An entry of the parent array for a child thread
identified by its priority points to the id of its parent thread.

In the following the doTick method is discussed that uses some of the data structures
and is responsible to call the implemented tick() method as indicated in Sect. 3.1.

5.2 doTick() implementation

The tick() method implements the reaction computation of an Light-weight Synchro-
nous Java program. In order to stimulate the SJL program from outside the implement-
ing class the doTick() is called because it encapsulates the call to tick(). As shown
in Fig. 8 it will first copy all entries of alive into the active array (line 3). Hence,
all alive threads that may have paused in the previous tick will become active again
for the current tick computation and can then be selected by the SJL scheduler, as
explained in the next paragraph. doTick() will then internally call the tick() method to
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Fig. 8 Implementation of doTick() method that is repeatedly called until it returns false

Fig. 9 Light-weight scheduler of an SJL program

compute the reaction (line 5) and returns (line 7) whether the program has terminated,
i. e., whether alive contains no more threads.

5.3 Scheduler implementation

The scheduler is called whenever a restart of the switch–case statement is enforced
by a break, as explained in Sect. 3.1. In this case the state() method returns the next
continuation point of the currently executing thread. Underneath the state() method
call the SJL scheduler always selects the thread with the highest priority and returns its
program counter. This is fulfilled by performing a bit scan reverse operation of all active
threads, as shown in Fig. 9 (line 2). This is how the priority queue is implemented.
The following line will lookup the resumption case label of the current thread in the
coarseProgramCounter array (line 4). The switch–case statement will then jump
to this case and resume its execution there. Note that bitScanReverse() should never
return –1 which would indicate an error condition (line 6) caused by calling state()
with no active threads.

As a side-effect state() will update currentThread (line 2) that is used internally
by several SJL operators. Some of them are discussed in the next paragraph.

5.4 SJL operator implementations

There are several SJL operators, as presented in Sect. 3.1. We will further discuss
the internals of some important representatives of these operators in the following.
Figure 10 lists the code of gotoB(), pauseB(), fork(), termB() and join().

gotoB() just updates the coarseProgramCounter array entry of the current-
Thread to the desired resumeState (line 3).

pauseB() first updates the coarseProgramCounter using gotoB() (line 8). Then it
removes the currentThread from the active threads (line 10) such that it
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Fig. 10 Light-weight implementation of some SJL operators

is paused now for the current tick until doTick() will make it active again
for computing the next tick’s reaction.

fork() creates a new entry in the coarseProgramCounter array (line 15) for the
new created child thread with the priority prio where forkedState is the
first starting point (coarse program counter state) of this new thread. It will
then add the child as an descendant (line 17) for the current forking parent
thread. It will finally set the parent relationship accordingly (line 18) before
it makes the new child thread alive (line 20) and active (line 21) by adding
it to the according arrays.

termB() just removes the currently executing thread from both, the active (line 26)
and the alive (line 27) array.

join() returns true (line 33) iff all direct children have been terminated,
i. e., none of the direct child threads are listed in the descendants
entry for the current parent thread. Hence, the sets alive and descen-
dants[currentThread]) must be disjoint. Otherwise join() returns false.
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Fig. 11 Excerpt of underlying bit-level internal set operations

The above SJL operator implementations and the doTick() method make use of some
bit-level operations such as setAdd(), setDelete(), or setDelete(). These are dis-
cussed in the next paragraph.

The set operations use an efficient, compact bit-vector representation for sets to
implementat the SJL operators. This means that every thread id, i. e., every thread
priority is projected to a specific bit in the integer arrays, e. g., alive or active. These
bits are grouped by 32 bits per integer array entry. Some of the underlying set operations
are sketched in Fig. 11.

5.5 Further details and context

A further, more detailed discussion of the SJ implementation is given by Heinold [13].
SJL and SJ are implemented as a part of the Kiel Integrated Environment for Lay-
out Eclipse Rich Client (KIELER)1 modeling framework. KIELER [10] focuses the
pragmatics of modeling tools to enhance the practical modeling interaction between
the modeler and the modeling tool. A key enabler is automatic layout for graphical
models. As described by Fuhrmann et al. [10], objectives are the creation, the edit-
ing and the browsing of graphical and textual models, statically but also dynamically
during simulation runs. Both SC and SJL serve as designated targets for simulating
synchronous models and exploiting semantic issues. The SJL and the SJ source code
and the documentation is freely available under the Eclipse Public License (EPL) at
the KIELER website.

6 Lego Mindstorms case study

Lego Mindstorms2 is an easily accessible embedded device with an ARM-based Next
Lego Computing Brick (NXT) as its heart. It can be programmed using Java for Lego

1 http://www.informatik.uni-kiel.de/rtsys/kieler.
2 http://mindstorms.lego.com.
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Fig. 12 KIELER view of SJ program running on a Lego Mindstorms NXT

Mindstorms (LeJOS)3 where there is some support for the Eclipse platform as well.
For validation, we brought an embedded variant of SJL’s predecessor SJ onto the
Lego Mindstorms NXT device. A debugging facility inside the KIELER platform
offers the possibility to debug SJ programs running on the NXT device step-by-step.
Figure 12 shows a setup where the ABSWO example is running on the NXT and
is debugged within the KIELER RCP. In the current macro tick the input signal A
was set to be present in the upper Data Table Eclipse View, which serves as a user
input facility. Running on the embedded device, the SJ ABRO program on the left
reacted to this input as the termB() operation near the wA label is executed because
the awaitDoneCB(A) operation finished its execution. All taken micro steps can be

3 http://lejos.sourceforge.net.
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observed in the SJ Instructions View. A micro step consists of an SJ primitive, possibly
with following Java code. For a selected micro step, already executed code is marked
green in the editor and not yet executed code is marked red. Because the input signal B
was not set to be present yet and hence the second wB thread has not yet terminated,
the joinDoneCB() predicate is not yet true and the guarded code lines for emitting
output signal O are not executed in this current macro tick.

7 Experimental results

With SJL we brought concepts borrowed from synchronous languages to Java in order
to specify deterministic concurrency. In our experiments our goal was to measure
the gain in predictability and efficiency of these constructs. Hence, we compared
Java with synchronous concepts to Java without synchronous concepts. To illustrate
the predictability and the efficiency of the SJL approach compared to Java threads,
we compared the run times of the Java threads version and the SJL version of the
PC example discussed in Sect. 3. We also included a benchmark of the earlier SJ
version [19] to compare it with the new light-weight approach, presented in this
paper.

The specification of the PC program in a synchronous language such as Sync-
Charts was given in Fig. 5b. Synchronous languages typically are compiled into a
host language like C or Java in order to execute them. In this compilation step the
deterministic scheduling order must be preserved. Traulsen et al. [28] shows a com-
pilation from SyncCharts to SC code where this deterministic scheduling order is
expressed using priorities. This idea can be reused for compiling SyncCharts to SJL.
In order to be able to compare the predictability and efficiency of executions we here
chose Java as the host language. Hence, the SJL version of the PC example shown
in Fig. 5c can be seen as the implementation for the SyncChart version shown in
Fig. 5b.

We ran all three programs on an Intel Core 2 Duo T9800 @ 2.93 Ghz machine with
8GB of RAM and a 64 Bit JVM with a variable number of ticks, that were equal to
the number of data produced/observed by each implementation. So for each variable
number of ticks, all implementations had the same task to fulfill.

Figure 13 shows the execution time of each implementation over the variable num-
ber of ticks and the speed up of the SJL variant over the Java threads implementation.
For getting reasonable results, we made three experiments for each number of ticks
and took the worst execution time. We considered tick numbers between 0 and 10.000
in linear steps of 1000. The results also show the speed-up.

The SJ version is already faster (average of 1.75 times faster) compared to the
Java threads version that has to struggle with more overhead due to possibly poorly
scheduled executions. Moreover the SJL version is considerably faster (average of 4.5
times faster) compared to the Java threads version due to its very light-weight bit-level
implementation strategy. Another, perhaps more important difference is the variability
of the worst-case run time. While the Java threads version is heavily unpredictable
especially when it comes to more duty, i. e., more ticks, the SJL as well as the SJ
variants are much closer to a linear growth and hence more predictable. Both facts
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Fig. 13 Worst-case run times, SJL vs. SJ vs. standard Java threads, for the PC example

support our thesis that SJ and, even more so, SJL is much more light-weight and
predictable than standard Java.

8 Conclusion and outlook

Properly synchronizing Java threads may be complex and problematic. We presented
SJL as an adoption of the synchronous concepts for Java, and showed that SJL can help
specifying concurrent threads in a light-weight and robust way. We also illustrated
the use of preemption and how to mimic synchronous-style signals for predictable
communication between concurrent threads of an SJL program. Another benefit is
that such programs can run on platforms where a thread management may be too
much overhead, e. g., on embedded JVMs. As a case-study, we presented an embedded
variant of SJ running on Lego Mindstorms.

In addition to providing deterministic reactive control flow, our experimental results
indicate that SJL programs have a more predictable run time and are typically faster
than Java threads. SJL can be considered a programming language as well as a target
language for code generation from more abstract models, such as SyncCharts. SJL
code is close to abstract specifications, as it directly supports concepts like states and
transitions. SJL permits to implement synchronous data-flow applications, see the PC
example, as well as control-driven applications, see ABSWO.

We plan to exploit SJL as an automated code generation target from SyncCharts,
SCCharts, and Esterel, possibly also Lustre, and to integrate and evaluate this in the
context of KIELER. We further intend to enhance the development process of concur-
rent and preemptive SJL code with visual and interactive debugging possibilities. We
also plan to validate SJL and SC simulators by leveraging the Ptolemy4 Project of the
UC Berkeley.

4 http://www.ptolemy.org.
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