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Abstract

Background

With the advent of paired-end high throughput sequencing, it is now possildentify
various types of structural variation on a genome-wide scale. Ajthmany methods haye
been proposed for structural variation detection, most do not provide poecisdaries fo
identified variants. In this paper, we propose a new mefbistkibution Based detection of
Duplication Boundaries (DB), for accurate detection of tandem duplication breakpoints, an
important class of structural variation, with high precision and recall.




Results

Our computational experiments on simulated data show thabDierforms state-of-the-art
methods in terms of finding breakpoints of tandem duplications, with a rhigbtstive
predictive value (precision) in calling the duplications’ presence.pdrticular, DB's
prediction of tandem duplications is correct 99% of the time evewelyr noisy data, whilg
narrowing down the space of possible breakpoints within a margin ad 20 bps on the
average. Most of the existing methods provide boundaries in rangetéad to hundreds
of bases with lower precision values. Our method is also highly rtdbwsirying properties
of the sequencing library and to the sizes of the tandem duplisaths shown by its stable
precision, recall and mean boundary mismatch performance. We derteonsiranethod’s
efficacy using both simulated paired-end reads, and those gah&@h a melanoma sample
and two ovarian cancer samples. Newly discovered tandem duplicat®nslidated using
PCR and Sanger sequencing.

Conclusions

Our method, DB uses discordantly aligned reads, taking into account the distributjon of
fragment length to predict tandem duplications along with theiakip@nts on a donor
genome. The proposed method fine tunes the breakpoint calls by apjplyimgvel
probabilistic framework that incorporates the empirical fragnemgth distribution to scotre
each feasible breakpoint. BBs implemented in Java programming language and is freely
available at http://mendel.gene.cwru.edu/laframboiselab/software.php.

Background

Structural variation is a class of genetic variation that includesrtions, inversions,
translocations, deletions, and duplications of segments of DNA. Tramigplications are
serially repeated segments of the human genome which may haw tems several
hundred kilobases in size. Many studies have implicated tandem dwplgcati a variety of
diseases. In one such study [1], it was shown that a subset of csean@ars share a marked
tandem duplication phenotype with triple-negative breast cancers.nt&nnal tandem
duplication of theFLT3 gene ELT3/ITD) is recurrent in acute myeloid leukemia (AML) and
myelodysplastic syndrome (MDS) with frequencies of 20 and 3-15%pecévely [2,3].
Additionally, 5% to 10% of patients with AML possess the rearrangemethe mixed-
lineage leukemiaMLL, also known a®\LL1 or HRX) gene as the result of a partial tandem
duplication (PTD) [4]. Germline tandem duplications have also be@&tiatsd with human
disease. In one recent study [5], it was shown that a patient ahdlfgster with extensive
polysyndactyly of the hands and feet, and craniofacial abnormal#treéed identical 900-kb
tandem duplications of the Indian hedgehiyH) locus. Another study [6] reported a father
and daughter, both with a history of compulsive over-eating in childhoagjngaa small
tandem duplication within exon 1 of tt®fNURFSNRPNgene on chromosome 15. These
studies underscore the need for computational methods for identifying tandem cndicati

Next-generation sequencing (NGS) technology was first usedteatdstructural variations
by Korbelet al. [7]. In that study, the paired-end sequences of two samples' gem@res
generated and the read pairs with discordant paired-end orientation and magpee diste
used to find basic structural variations. Subsequently, [8] used NG@®&dover genome



rearrangements in tumor DNA. The first genome that was wisafjuenced by a NGS
platform was presented in [9], which reported several structural variations.

NGS data provides several sources of information from which methogdsdetect structural
variation, including read depth, paired-end orientation, distance betwggrednands, and
pairs where one end is “split” mapped or “one-end anchored” (i.enats is not mapped).
PEMer [10], BreakDancer [11], VariationHunter [12,13], GASV [14], and GASVPro [15] use
the orientation and the mapped distance between the read pairs torsdetdions, deletions,
inversions, and/or translocations. CREST [16] is another method thaésutdplit mapped
reads as well as paired-end read orientation. The problem ofdindvel insertions was also
addressed using one-end anchored read pairs in another recent stutty §tidjtion, EWT
[18] and SegSeq [19] were developed for detecting the genomic regatndifter in copy
number between individuals using the depth of single reads in sequenc€uatatly, the
most well-known methods for detecting the tandem duplications (al@thgotiner types of
variations) using just the paired-end NGS data include SVDetect [2NMer [21],
SPANNER [22], InGAP-sv [23], BreakDancer [11], GASV [14] and CREST [16].

For methods that use paired-end reads, an important factor isefrtatgngth, since the two
sequenced ends of each fragment will be separated by this leruytlevet, the length of
each fragment is not known precisely. Although many of theiegisnethods assume that
fragment length is within a certain range for all fragrada®-14], they do not make use of
important information contained in the distribution of these lengths yheritizing among
the predicted breakpoints of the structural variations. If the leoigdach fragment were
known, one could use this information to precisely detect the boundaries afatiops.
While precise lengths are not generally available, theiemgérdistribution can be derived
empirically from concordantlymapped reads. Here a read pair is said to be concordantly
mapped to the reference genome when the end with a lower mappingat®isialigned to
the forward strand, the end with the higher mapping coordinate is altgntéek reverse
strand (i.e., FR read pairs, where F and R refer to forwardemedse strands, respectively)
and the distance between the mapped ends is within an expected range.

Motivated by this insight, here we propose a metlistribution Based detection of
Duplication Boundaries (DB) that characterizes the distribution of fragment length
empirically and utilizes this empirical fragment length ribsttion to predict the breakpoints
of the tandem duplications at a very high resolution with high acgarat low false positive
rate. To the best of our knowledge, none of the existing methods develogedefciing any
kind of structural variations utilizes this valuable information fardmting the breakpoints
of detected variations. Although we focus on tandem duplications in tsisoript, the
proposed framework can easily be extended to detect the boundaridseofswuctural
variations as well.

The general framework implemented by DiB summarized in Figure 1 (see Methods for
details). Briefly, DB uses the Binary Alignment/Map (BAM) files obtained by magptime
paired-end read sequences to the human reference genome using2BW\(Ar [any other
alignment tool that can produce BAM files). The resulting BAMsfiinclude orientation
information as well as the mapping coordinates for each readdmaicordant read pairs map
in the expected FR orientation, and are thought to correspond to réigabrdo not differ
from the reference genome (in structural terms), whereas path an “everted” RF
orientation are indicative of tandem duplications [25].



Figure 1 A flowchart summarizing the framework implemented by DB’ Since the
distances between the aligned ends of the concordantly mapped read pairsoresidieeet
as representatives of the real fragment lengths, we first exteacbhcordant read pairs from
the BAM files and obtain the empirical fragment length distribution using themeVerted
(RF) read pairs, which are also extracted, are indicative of tandem duplic#tiense each
of the RF pairs along with the empirical fragment length distribution tesept the feasible
breakpoints of the tandem duplication that induced this RF pair. NeXt;lD&ers the read
pairs that may be induced by the same tandem duplication, and hence finds distinct tandem
duplications along with their potential breakpoints. It scores each potentipbneizby
utilizing the empirical length distribution and obtains the breakpoint with the higbes as
the putative breakpoint of each tandem duplication. After the conflict resolutpn ste
eliminates the likely false positives, the final set of tandem duplicatiengported to the
user.

DB? uses the read pairs that are reported to be concordant Higtiteeat tool to deduce the
empirical fragment length distribution, and the RF read pairdigeovering the tandem
duplications along with their putative genomic breakpoint coordinates. Trdifydehe
tandem duplications, DBadopts the geometric representation of the putative breakpoints of a
tandem duplication that induces a discordant read pair, which wagrésised in the design

of GASV [14]. Our method then groups the RF read pairs that arg tikéle induced by the
same tandem duplication and uses the information extracted out tgflentéad pairs along
with the empirical fragment length distribution to preciselirthe putative breakpoints of

the tandem duplications.

As a final step, we resolve the conflicts among the tandem dtiphs, which are caused by
multiple distinct tandem duplications having overlapping boundaries, by agpin
algorithm that relies on the maximum parsimony principle. Aftex most likely false
positive tandem duplications are eliminated in this step, the smindiict-free duplications
are reported to the user. As we show via systematic computagiqueiiments in the Results
section, incorporation of fragment length distribution greatly immawe method's ability in
fine tuning the breakpoints of identified duplications.

Results and discussion

Simulation procedure

For simulation testing, we have implemented an artificial paeretiread generator using the
February 2009 assembly (Hg19) of the human reference genome. Ouatsingénerates
paired-end read sequences that are similar to those of thenHiiSulexa platform (see
Materials and Methods section for details). To evaluate the pwafare of the proposed
method, for each experiment, we inserted 1000 tandem duplications whgtfes [én bases)
were drawn from a normal distribution, with a default standard dewiatf 100 bp and
default mean of 10 Kbp, into the reference genome. For the expéaineealuation of our
algorithm, we used four criteria; precision, recalksEore and mean breakpoint mismatch.
Precision is defined as the fraction of the number of true tandgircations (true positives)
among all tandem duplications identified by our algorithm (true pesitand false positives).
In order for a predicted (by our method or other methods) tandemcalignt to be
considered as a true positive, we required at least 50% mutualpoweértae real and the
predicted tandem duplications. Recall is defined as the fractiomefpbsitives among all



tandem duplications in the donor genome (true positives and false nepdfv&core is a
commonly used aggregate metric in information retrieval that derssiboth precision and
recall. It is defined as the harmonic mean of precision and.rbtedn breakpoint mismatch
is defined as the average of total distances (in bp) betwe@nettlieted and the real start and
end positions of the inserted tandem duplications.

Other methods used for comparison

We compared the performance of our algorithm with that of five atbBware packages
designed to detect structural variations from paired-end NGS 8¥faetect [20], CNVer
[21], Breakdancer [11], GASV [14] and CREST [16]. Note that the marenteversion of
GASV, GASVPro, is not included in the compared methods because ihdbsapport the
identification of the tandem duplications. Although SPANNER [22] and iRGA [23] are
also able to detect tandem duplications, both of these methods weueleek from the
experimental evaluation since SPANNER was not publicly availabkk inGAP-sv was
significantly outperformed by the other methods. For all the methwedsaligned the
generated read pair sequences with BWA using the default paramd&he default
parameters for CNVer, Breakdancer, CREST and GASV were udesteas the default
values ofwindow_sizeandstep_lengthparameters had to be slightly modified in SVdetect to
obtain the best performance with the simulation data. We set tiheggarameters to 1000
and 500, respectively.

Several factors can affect any method’s ability to deteeindem duplication: the average
depth coverage of the experiment, the base call error rategctdrastics of the tandem
duplications in the donor genome (such as the size of the tandem dopdizgdroperties of
the read library (including the distribution of the fragment leggtand read length. For this
reason, we tested the algorithms across various values of sixgbarams discussed in the
following sections.

Effect of base calling error rate on performance

To evaluate the effect of base call errors, we simulatedreliffeerror rates using our
synthetic data generator by changing each base with a propahélttis defined with the
base call error rate. As shown in Figure 2A, the precision of othatieBreakdancer and
GASV is steady at 99-100% for all base calling error radesthe other hand, the precision
of CNVer decreases dramatically as error rate increageyeas CREST first has a
decreasing and then increasing precision performance. SomewhaisghprSVDetect has
an increasingly better performance as the base callingiecreases. We observed that it can
reach at most 97% at the highest level of noise induced in our sonslawhich is still
lower than DB's performance. The positive impact of error rate on precigolikely
because the alignment tool will drop spurious mappings as error rate goes up.

Figure 2 Performance as a function of error rate. (A)Precision(B) Recall anqC) F;:-
score performances of the methods at different base calling erroarateesented. Here the
average depth coverage is fixed at 40X.

The recall of our method and SVDetect are almost identicaui@igB), whereas CNVer,
GASV, Breakdancer and CREST have drastically declining pedoces with increasing
error rate. The decrease in the sensitivities of all methods can benerdgi the fact that the
alignment tool fails to align increasingly noisy RF reads. Thaghe error rate goes up, the



effective coverage goes down, and the evidence for the duplicationsve@ter, which
results in fewer predictions and hence fewer true positives. Tdatalithis claim, we
computed the mean number of the read pairs supporting each tandem dunpéisatie base
calling error increases (Additional file 1: Figure S1). Aswn in this figure, the support for
each tandem duplication significantly decreases due to lowectigl coverage as we
increase the noise in the data. To assess the overall accuttheyroéthods, we present the
Fi-score performance in Figure 2C. As mentioned beforescére evaluates the precision
and recall performance of each method by aggregating them intgle galue for each error
rate level. As seen in Figure 2C, our method outperforms all tiseniesl methods in terms
of Fi-score at each error rate.

As seen in Figure 3, our algorithm outperforms SVDetect and €hiMerms of finding the
breakpoints of the tandem duplications but CREST is able to identigxtet location of the
tandem duplication. Although Breakdancer can attain a mean breakpoimatetis
performance similar to that of our method for low error raf@B8? outperforms it by
maintaining a robust performance even for very high base calling errar rates

Figure 3 Mean breakpoint mismatch at different base calling error ratesBreakpoint
mismatch is calculated as the average number of bases between the realiatetipre
breakpoints. Average depth coverage is fixed at 40X.

Overall, DB provides the bestifscore, which represents the aggregate of precision and
recall, along with a very good mean breakpoint mismatch thatesable as the noise in the
data increases.

Effect of depth coverage on performance

Breakdancer, GASV and BButperform the other three methods in terms of precision across
a wide range of coverages. As seen in Figure 4A, those methodsigrestabilizes around
99-100%, whereas precision declines with increasing coverage foret8¥D(this is
consistent with SVDetect’s declining performance with decngasiror rate, since increased
coverage also results in more false mappings) and CREST. CN¥ea mather stable
performance around 92.5% as a function of depth coverage. On the other tahthr®B?
and SVDetect stabilizes at around 99% as the coverage in¢redgssesas GASV, CREST,
CNVer and Breakdancer peak at 92%, 85% , 90% and 89%, respectiglye(BiB). In
terms of f-score, DB performs much better than all the other methods having a staibée sc
around 98.5% whereas our closest competitor, SVDetect, statatizasund 95.5% (Figure
4C). This shows our method’s ability to maintain very high precismracall performances
with changing depth of coverage levels.

Figure 4 Performance as a function of depth coverage. (Arecision(B) Recall andC)
Fi-score performances at different average depth coverage levels are sleve/the base
call error rate is fixed at 0.01.

For varying levels of coverage, CREST again attains nudeetgvel accuracy with regard to
mean breakpoint mismatch for true tandem duplications whereas outhatghas a slightly
lower performance than that of CREST. On the other hand® Emsistently and
substantially outperforms CNVer and SVDetect in terms of thesrio(Figure 5). Indeed,
DB? is able to accurately localize breakpoints to within 15 baseswerfeven at low
coverage values. This observation suggests that the use of fragngthtdistribution indeed



improves accuracy in fine-tuning of the breakpoints, as it givese nimportance to
breakpoints consistent with a higher frequency fragment lengéghMethods for details). On
the other hand, Breakdancer and GASV slightly perform worse foctarage levels but
then their performances catch up with the performance &ff@Bigher coverage values.

Figure 5 Mean breakpoint mismatch at different depth coverage levelslhe base call
error rate is fixed at 0.01.

Varying levels of coverage directly impact the amount of datalable to each method. As
shown in the above analysis, BBonsistently achieves the best-s€ore and recall
performance, but has slightly worse mean breakpoint mismatébripance than that of
CREST, even when the data availability is low (i.e., lower cgestavels). Considering the
CREST's much lower recall and precision performance$'sBerage mismatch of 15 base
pairs when identifying the boundaries of a tandem duplication is quite tolerable.

Effect of duplication size on performance

For this set of experiments, we increased the size of thentaddplications starting from 2
Kbp up to 10 Kbp in 2 Kbp increments for each experiment setting. Alalb®f the
methods have a stable performance in terms of all metriegedacrease the size of each
duplication inserted into the donor genome (Additional file 2: Figurers2Aalditional file

3: Figure S3). This is an expected result foDnce as long as the fusion point of a tandem
duplication is straddled by a read pair, DRill use this information to identify its
breakpoints regardless of duplication size.

Effect of changing properties of the read library m performance

There are multiple important factors during the read libragpgmation phase of any NGS
experiment that can affect the performance of a structuréatizar identification method.
These include (but are not limited to) the distribution of the lengt the fragments, and the
read length.

In order to see the effects of these factors, we conductetea sEexperiments by changing
the values of read length and fragment length mean/standagatide\during the simulation
data preparation. With the exception of CREST, we observe no sighigfect on any
method’s Recall, Precision and;-§core performance (Additional file 4: Figure S$4,
Additional file 5: Figure S5 and Additional file 6: Figure S6, exdvely). CREST performs
poorly in terms of recall for a read length of 50 bp, but then imprimrdarger read lengths
(Additional file 6: Figure S6). In contrast, the precision perforreané CREST first
deteriorates as we enlarge the reads, and then stabilizes around 70%.

Increasing the mean value of the fragment lengths drartatileecreases the mean boundary
mismatch performance of GASV, CNVer, and SVDetect, whereB$, BREST, and
Breakdancer are unaffected (Figure 6A). The decrease in GAfAfformance can be
explained by the method’s conceptual use of trapezoids, deternyirdidcbhrdantly mapped
read pairs, to define the possible boundaries of the tandem duplicati@V @GAds the
intersection of the trapezoids (as does’)0B predict the location of the tandem duplication.
However, as the fragment length increases, so does the areadcbyeeach trapezoid,
causing GASV to report a larger interval for candidate staiit end sites for the tandem
duplication. DB solves this problem by ranking the predicted start and end gigessigning



probability values to each of them using the fragment length distib(gee Methods), and
as a result does not have a deteriorating performance as #re vakle of the fragment
lengths increases. For similar reasons, we also observe la digrease in the mean
boundary mismatch performance for GASV as the standard deviatiba dhgment lengths
increases. All other methods except SVDetect have stable mmamddyy mismatch

performances (Figure 6B).

Figure 6 Mean breakpoint mismatch for various levels of (A) mean value of fragment
lengths, (B) standard deviation of fragment lengths, and (C) read lengtlere the base
call error rate, depth of coverage, duplication size are fixed at 0.01, 40X and 10 Kbp,
respectively. Fo(A) and(B), the read length is fixed at 75 bp. EA) and(C), standard
deviation of the fragment lengths is fixed at 10 bp.(Byr mean of the fragment lengths is
200 bp and fo(C), this value is fixed at 400 bp.

Lastly, we observe a poor performance for GASV in terms amimundary mismatch for
small reads (again for similar reasons), wherea&sDirformance is very stable for all read
lengths (Figure 6C). Indeed, as the read length decreasesedhef @ach trapezoid induced
by a discordantly aligned read pair increases. Again, weconwe this difficulty by
calculating a probability value for each predicted loci paingighe empirical fragment
length distribution and reporting the one with highest probability. & 3n the results of
these experiments, our method is very resilient to negativetefiéchanging properties of
the read library in terms of all metrics.

Run-time and memory consumption comparison

For each method, we computed the average time needed to prodeselis as well as its
peak memory consumption on a PC that has 96 gigabytes of memoeygandntel Xeon
E5-4620 CPUs each with a clock speed of 2.20 GHz and (Table 1). AlthougtoB&imes

the largest memory among all the methods, it is still toleralien we take its superior run-
time into account. It should also be taken into consideration that edary's low-end
desktop computers are equipped with 8 GB of memory, which makes the ynemor
requirement of DBfeasible for a high-end computer cluster used for scientific computation.

Table 1 Average run-time and memory consumption for compared methods

DB? SVDetect CNVer Breakdancer GASV CREST
Run Time (seconds) 142.55 368.26 168.95 180.56 403.58 1625.092
Peak Memory Usage (kb) 8601184 5161536 4615120 144784 5309072 201024

Tandem duplications identified in two ovarian cancegenomes

To investigate whether our algorithm can identify tandem duplicatioresal data setting, we
applied DB to the paired-end read data obtained from two ovarian cancer gefiomeEhe
Cancer Genome Atlas (TCGA). The samples that we analyzed G@A-13-0723 and
TCGA-24-0980. We identified a total of 219 tandem duplications in these gsnasing our
approach, which we provide in the Additional file 7: Table S1. A restrly [26] analyzing

the same set of samples reported three tandem duplications —T0D&A:13-0723 and two

in TCGA-24-0980. DB was able to identify these tandem duplications. In Table 2, we
present the start and end sites of these duplications reported by [26] and dlbptHiE’.



Table 2Previously-reported tandem duplications identified by our method f Hg 19
coordinates)

Sample Chromosome  Start Bp (reported) End Bp (reported) Start Bp (by DB?)  End Bp (by DB?)
TCGA-13-0723 2 28681251 29521634 28663242 29521603
TCGA-24-0980 2 28887883 28900892 28887881 28912909
TCGA-24-0980 2 122915488 122919330 122915490 122293

Tandem duplications identified in a melanoma genome

We also applied our method to the paired-end read data obtained froedl tieecCOLO-

829, immortalized from a 43-year-old male with metastasis ofalignant melanoma.
lllumina GAIll genome analyzers were used to obtain more than 40-¥eichge haploid
genome coverage [27]. We applied our pipeline (Figure 1) to the Bkd dbtained by
mapping the FASTQ-formatted paired-end read data obtained from @G22Qell line to
the human reference genome using BWA [24]. Table 3 describesafuderh duplications
(two previously reported [27] and two novel) found in this genome b§ DBe two novel
discoveries were validated with PCR (Figure 7) and Sanger seqggAdditional file 8:

Figure S7).

Table 3Colo-829 Tandem duplications identified by our method and PCR/Sanger -
validated or previously reported (Hg 18) coordinates

Chromosome Reported*/ Sequencing  Reported*/ Sequencing Predicted Start Bp Predicted End Bp Previously Reported?*
Validated Start Validated End
1 222713226 222866743 222713222 222866796 Yes
7 104272303 104399536 104272363 104399571 Yes
7 114317959 114318185 114317896 114318193 No
16 80356160 80356702 80356082 80356669 No

* in the study that first sequenced this sample [27]. The two that mot previously reported
are PCR (Figure 7) and Sanger Sequencing (Additional file 8: Figure S7)tedlida

Figure 7 PCR results for previously unreported tandem duplicationsThe top panel

shows the band for the PCR product generated from primers within the duplicated regions
(control band), present in both COLO-829 and the NA19141 control sample (since COLO-
829 is heterozygous for each duplication). In the bottom panel, the second and fourth lanes
show the presence, in the COLO-829 cell line, of the third and fourth, respectively, tandem
duplications given in Table 3. Lanes three and five correspond to NA19141. Here forward
primers were designed left of the fusion points and reverse primers were degiphef the
fusion point, creating an amplicon of about 150 bp straddling the fusion point of the
duplication. See Additional file 9: Table S2 for primer sequences.

Conclusions

Tandem duplications are an important class of structural variatuwse identification
requires specialized algorithms. The algorithm that we propose dar identify tandem
duplications with a very low false positive rate and a very lowmmmareakpoint mismatch
(approximately 15-20 bp), even in very noisy NGS datasets, withoufproomsing
sensitivity. As shown by systematic computational experimentsimonlated data, DB
achieves a precision of 99.6% and a recall of 77% even for an unusoigjydata (base call
error rate 0.07). These results indicate that our method is noswsrgptible to the effects of
base calling errors in terms of making false tandem duplicgtiredlictions and false



boundary detections. One other important aspect of our algorithm igstiperformance is
stable even when the properties of the sequencing library @izhef tandem duplications
in the target genome change. This shows the suitability of cethad across NGS
experiments with different characteristics.

The key to the success of BB accurate breakpoint localization is the utilization of the
empirical fragment length to predict the most feasible breakpoird tandem duplication.
As shown in Additional file 10: Figure S8, the distribution of the fragmlengths is
generally not uniform in NGS experiments. Thus, given an evéR&() read pair as the
evidence for a tandem duplication, breakpoints of this duplication that te@decéigher
frequency fragment length (hence higher probability for tlagrfrent length to be observed)
for this RF read pair, should have a higher probability than the otbelse the real
breakpoints. DB uses this novel idea to precisely determine the breakpoints ¢drttlem
duplications. Note that neither GASV, nor its extended version GAS¥Rpmoys empirical
fragment length distribution to probabilistically score the potebti@akpoints of structural
variations. They instead assume that the lengths of all fragnaeatwithin a predefined
range, and based on this assumption estimate a (rather broad) aaregjually likely
breakpoints for identified duplications. In contrast, we use the enlpieicgth distribution
obtained from the concordantly aligned reads to assign a propauitite to each feasible
breakpoint, thereby enabling ranking of candidate breakpoints in terthsiofikelihood of
being the correct breakpoint. As detailed in the Results andugdien, the use of the
fragment length distribution gives our method the stability fausste boundary prediction
performance.

Our method also achieves a very high precision and recall performanbstantially
outperforming the SVDetect and CNVer in terms of these twasores. Although
Breakdancer and GASV achieve the best precision performanceyathdne methods, they
perform at most only 1% better than H)Bind are substantially outperformed in terms of
recall. In terms of Fscore, our method outperforms all the other methods with increasing
error rate and data coverage, showing the superiority of our miethdehtifying the largest

set of true positive tandem duplications with the least numbeisaf fmsitives. Finally, the
duplications identified in the two TCGA ovarian cancer samplesren@OLO-829 cell line
confirm the applicability of DBto real datasets.

DB? is freely available at http://mendel.gene.cwru.edu/laframbaissitiware.php. Efforts
are underway to extend the methodology to detecting non-tandem dopBc¢aleletions and
inversions.

Methods

Our method uses the BAM files that are generated by BWA j@4i;h aligns the FASTQ-
formatted read pair files generated by the sequencer fronddher genome’s (i.e. the
genome under interrogation) DNA. Everted (RF) read pairs aredavadito be indicative of
tandem duplications [25]. The RF read pairs are those that map teféhence genome in
such a way that the end with a lower mapping coordinategisealito the reverse strand on a
chromosome, and the other end is aligned to the forward strand dtea bogrdinate on the
same chromosome.



Let there beM RF read pairs that map uniquely to the reference genome, ancefgesent
the lengths of the reads in base pairs. Note that each readmpas rom a single fragment.
For eachi € M, lets ande denote the lowest base positions of ifRgair's ends that are
aligned to the reverse and forward strands, respectively (R&jufiehe standard sequencing
protocol includes a size-selection step to yield fragments wdhaesired range with a
relatively low variance. Each fragment has a length within thisge, which may be
considered an instance of a random varidbrawn from a distribution within this range.
Thus it can be assumed thiathas lower and upper bounds, denotedlfy and lax
respectively. Let; denote the length of the fragment for tHeRF read pairlfin < li < lnay-
Clearly, I; is not observed. However, the distribution of fragment length, alory iveit
minimum and maximum valuekyin andlyna, can be determined empirically using the read
pairs that are mapped to the reference genome concordantly by the alignment tool.

Figure 8 The alignment of a read pair straddling the fusion point of a tandem

duplication. This figure demonstrates that the alignment of'thead pair straddling the
fusion point of a tandem duplication of the region delimited by coordingtasly, should

be everted (RF). Furthermore, the length ofitheagment should be equal to the sum of the
lengths of two segments, one delimitedypynde and the other delimited by ands +r —

1 as shown here.

Set of potential breakpoints implicated by a singl&liscordant read pair

Suppose that there exists a tandem duplication of the segmenttekliby genomic
coordinatessy andyo, denoted here as= (X, Yo). We refer to the coordinates andy, as
respectively the start and end breakpoints of the tandem dugmtitaktience Xo, Yo) is called

a breakpoint-pair. If thé" fragment ( € M) straddles the fusion point, then the corresponding
pair is expected to have an RF discordant mapping (owing to aberntation, as
explained in [25]) to positions ande on the reference genome as shown in Figure 8.

Based on the observation shown in Figure 8, the following four inequalities hold:

()Yo=xo+&—s—r—1+lnipn,
(i) Yo<xo+&—5—r—1+lnax
(iif) X< s and
(iV)yo=>e+r-1

As seen in Figure 8; is equal to the sum of the lengths of two segments in feeenee
genome, one delimited lyy ande and the other delimited by ands +r — 1 (i.e.li = (yo —
et+l)+6G+r-1-x+1)=ys—X —6€ +s +r + 1). Since fragment length is variable, we
do not know the value df, but do only know its minimum and maximum possible values.
Thus, we obtaidmin <yo—& +5 —X + r + 1 <Iax Which yields to the inequalities (i) and
(ii). Furthermore, the two reads will flank the fusion point but catain it. These two
restrictions are expressed by the inequalities (iii) and (iv).

Therefore, given the mapping of tie RF read pair (i.e. ands) and the minimum and
maximum values of the fragment lengthi, andlna, we can define the range of possible
start and end breakpoints of the tandem duplication that indud& tfiscordant mapping
using the inequalities (i), (ii), (iif) and (iv). The inequalitigsometrically define a trapezoid

in CxC plane, whereC represents the coordinates of the reference chromosome. This idea
was introduced by [14] for the identification of various types of strat variations. The



trapezoid (shown in Figure 9 as the light blue region) comprises the skpogsble pairs of
start and end breakpoints, ) delimiting a tandem duplication that can potentially induce
the i RF read pair. We denote the set of breakpoint-pairs in this trapasz®. More
formally,

W:{(X,)ODCXC:( e s ¥ DO ¥ xems— -t ) )3 2y, pll

Figure 9 The geometric representation of the set of all potential pairs of staand end
breakpoint coordinates.In this figure, the light blue region denoted\Byrepresents the set
of all potential pairs of start and end breakpoint coordinates of a tandem duplicdtiomg
an RF read pair that aligns ®, ).

Detecting distinct putative tandem duplications

A donor genome will often harbor multiple tandem duplications. Furthernasregepth
coverage for a typical experiment increases, one would expeanhtnatthan one read pair
straddling the fusion point of each tandem duplication will be producedchgduhe
sequencing of a donor genome. This gives us the opportunity to use nudégigairs to
predict the breakpoints of the tandem duplications more preciselydseeze have more
statistical power and more information as more RF read paérsnduced by the same
tandem duplication. However, this also necessitates the idemificatt multiple read pairs
that are induced by the same tandem duplication.

Given M, r, Inin andlna, We can take advantage of the fact that, if two RF read ipairdj

are induced by the same tandem duplication (for ease of notatiampwvdenote each read
pair by its corresponding index), then the real coordinates ofitipdication should lie in the
intersection of the corresponding trapezalsindW,. It follows that a tandem duplication in
the donor genome can be identified by finding the maximum subset, ddrydseof the set

of all aligned RF read pairs such tiiat e W # @ (i.e. all trapezoids corresponding to read
pairs inSintersect in at least one point). In this case, we say lieatandem duplication
induces the RF pair s&t Thus, the problem of discovering multiple tandem duplications can
be framed as the problem of finding the Set {S;, S, ..., S} where each read pair st €

Sis induced by a unique tandem duplicatipn

In an ideal setting, two trapezoids associated with distinstS§etndS, (q # p) should not
overlap, since no read pair can straddle two tandem duplication#asigpusly (assuming
that the tandem duplications do not overlap). TRus ideally a partitioning of the set of all
RF read pairs into disjoint subsets (ilgs, cs Sy = M and$; N S = @ for all g # K) such that
all read pairs in eacB have corresponding trapezoids intersecting at least one point, and
trapezoids corresponding to read pairs from two diffe@atdo not intersect. However,
noisy sequence data (e.g. base call or alignment errorsga&arid imperfect partitioning of
the read pair set. As such, we relax the condition requiringhtbatdpezoids induced by the
same tandem duplication contain the breakpoint coordinates of duplicaigirad, we
require that there is a mutual intersection between the trapermldsed by the same
duplication. Formally, we require that eaShsatisfies the conditionvi € S, 3] € &, such
thati #j andW N W, # @.



An important step in our method for finding the partition®ignvolves determining which
trapezoids intersect a given trapezoid. To perform this operation yuw&limplement an
R* tree [28] data structure, which is a variant of the R trea daucture [29] used for
indexing spatial information. R-trees are hierarchical datectstres, which are used for the
dynamic organization of a set of multi-dimensional geometric thjeg representing them
with the minimum bounding multi-dimensional rectangles?DBilds an R* tree using the
Java implementation freely available at [30] to index all ofttpezoids oM, and uses this
data tree to identify the trapezoids that intersect a givgrezoad. In our experimental
evaluation, we have observed that using R* trees for intersectiamtificktion is
computationally more efficient compared to a naive method, which woulck chié the
trapezoids irM for intersection.

To find the disjoint sets of intersecting trapezoids, we use hametimilar to that used for
finding the connected components of an undirected graph [31]. Namely, wememnl a
breadth-first search (BFS) like algorithm, which startdaih arbitrary trapezoidl, finds all
trapezoids that intersect wiih and then iteratively finds all trapezoids that intersect with
these trapezoids. This procedure discovers the entire connempeddid set containing
before it returns. Next, it assigns the newly found connected tralseibinto a seb (where
initially k =1) andM is updated a81 = M \ S andk = k + 1. Then the same procedure is
repeated for the updatdd until M becomes empty. The set of tandem duplications, ,= {
to, ..., to} corresponding to the s&= {S,, S, ..., S} of connected trapezoids represents our
algorithm'’s final set of predicted tandem duplications. At thagies, the tandem duplication
breakpoints are not yet precisely defined. Optimally detengitliese breakpoints is the next
step.

Set of potential breakpoints implicated by multiplediscordant read pairs

After we determine the set of distinct tandem duplications, TilendetS,, of RF read pairs
induced by each tandem duplication, the next step is to estimagtathand end breakpoint
sites of eacly. Ideally, the set of candidate breakpoints would be the inteysedtfi all
trapezoids corresponding to the read pair§inHowever, due to sequencing and mapping
errors, this intersection is often empty. For this reason, we contBelset of breakpoints that
are supported by the maximum number of RF pairs as candi@atepbints. In other words,
we defineQy as the set of all coordinates in tkxC plane that are contained by the
maximum number of trapezoids corresponding to read pa$s The set) for eachty is the

set of candidate breakpoint-pair coordinates for the corresponding tandem duplication.

Scoring candidate breakpoints based on the observalistribution of fragment
length

Once we identify the set of candidate breakpoint-pairs for eactein duplication, the final
step is to score and rank these candidate breakpoint-pairs. Fputpase, we introduce a
probabilistic model that makes use of the empirical distribution of fragmerthleng

In order to motivate the proposed approach, we first consider thewbes only a single RF
read pair, say th&" pair, is induced by a tandem duplication. Recall ¥adenotes the set of
all possible genomic coordinates delimiting the tandem duplicatidnirttiaces thé™ RF
read pair. Now define B{(y) | i] (where &, y) € W) as the probability of this tandemly
duplicated segment being delimited by base positicansdy, given only thé™ RF read pair
and the empirical fragment length distribution. If the distributiofragment lengthl, was



uniform, then all the genomic coordinatesfhwould have the same probability of being the
true breakpoint-pairs. However, in practice, we know that fragmagtHds not uniformly
distributed. This can be seen, for example, in the COLO-829 celtiéitee[27] (Additional
file 10: Figure S8).

Each candidate breakpoint-pax; ) € W, corresponds to a specific fragment length, since
for breakpoint-pairy, y), the corresponding fragment length can be computgd-a&s+ s —

X + r + 1. Therefore, applying Bayes’ theorem, we can conclude tharohability score for
each coordinate pair i\ is proportional to the probability that th®8 fragment has the
corresponding length. Consequently, we can compute the probability ¥t Rfe read pair
being induced by a tandem duplication of the genomic segment ddlibyiteoordinatex
andy as:

g,(%Y)
(a,b)

P[(x y)lijzz(

a.
a,bjowy !

wheresi(x, y) =R [L=y - +5 —x +r + 1] is based on the empirical fragment length
distribution.

Now we generalize this observation to the case where a tandematioplis supported by
multiple RF read pairs. For eack §) € Q, let Zy yy denote the set of RF read pairs that
support the candidate breakpoint-pair ), i.e., the trapezoids for these RF read pairs
contain & Yy). Assuming that the lengths of different fragments are indeméndhe
probability of &, y) € Qx being the start and end breakpoint-pair ofdi¢andem duplication
will be proportional to the product of the probabilities of observing theegponding
fragment lengths of the read pairs iR 4 Thus, we can compute the probability, denoted by
Pl(x, y) | &, that a pointX, y) € Q is the real breakpoint-pair tfas follows:

I_l j Dz(w)ai (X’ y)
P[(X' y) | $] = Z(a,b)DQk |_| jDZ(avb)a-J' (a’ b)

0 otherwise

(x y)0Q,

After computing this probability score for each ¥) € Qx, we report thex, y) with the
highest probability as the predicted breakpoint-paitydin the case of a tie, the point is
randomly selected from those with highest probability). Formgll/defined as:

t =argmax o, (A x ¥ 18)).

As an example, Figure 10 shows the probability distribution compytedralgorithm for a
simulated tandem duplication on human reference chromosome 22, which irftleeeRF
read pairs shown with three trapezoids. In this c&smnsists of only these three RF read
pairs. Notice that the real breakpoint coordinate of this tandem dtipfic shown by "X",
lies in the common intersection of these three trapezQids,



Figure 10 A heatmap representation of the probability scores of the potential

breakpoint coordinates of an example tandem duplicationin this figure, we show a
heatmap of the probability scores of the potential breakpoint coordinates of goleexam
tandem duplication with true start and end breakpoints, (31219230, 31224279) on
chromosome 22. In this casg¢ontains three read pairs shown by the dotted trapezoids and
Q contains only the points in the core area for which a probability score is computed.

Conflict resolution among tandem duplications

After the set of all distinct tandem duplications, T, is idesdifalong with their coordinates,
it is possible that some of the predicted duplications overlap wath @her in terms of their
boundaries. In such a case, we say that the tandem duplications dictingnfith each
other and the conflict is likely caused by false positive tandeplications that are the
results of the noisy data. Therefore, a conflict resolution proceduneeded to find the
subset of the tandem duplications out of T, containing only non-overlagppiigations that
are possibly the true positives. Toward this end, we employ plesidea based on the
maximum parsimony principle. Namely, we assume that the tondem duplications
existing in a donor genome do not overlap; hence, the duplications thiapoweh most of
the other predicted duplications are falsely identified.

To obtain the true positive set, we use a greedy approach. Staitingd, we eliminate the
tandem duplication that overlaps with most of the duplications inobt@in a subset'Df T.

We then check if there is still any conflict in the new set of tandem dupheafl. If there is

no conflict, DB reports Tas the final set of tandem duplications. Otherwise, the procesiure i
iterated until there is no conflict left.

Data generation for simulation experiments

We have implemented a freely available NGS data generator [82]d&a generator first
selects a user-defined number of base positions uniformly at raodomthe reference
chromosome provided by the user. These randomly selected positionthenatérting point
of each tandem duplication. Next, the size of each duplication is dimmm a normal
distribution, whose mean and standard deviation are defined by thé&aoiseur simulations,
we have used 10 Kbp and 100 bp as the default mean and standard deviatiotivelgspec
and simulate 1000 tandem duplications for each experiment. Aftentieitey the start and
end breakpoint-pair for each duplication, our data generator ingertxact copy of the
genomic segment delimited by these two coordinates, righttafteznd breakpoint to spike
in the tandem duplication.

We then select a user-defined number (which is computed accodlitige tuser-defined
depth of coverage) of base positionsvs, ..., v, on the genome as the start location of each
read pair. Subsequently, left and right ends ofitheead pair are generated as follows. A
“read” of r bases (in the current study, we use 75 as the default value of read length)
starting from selected base position is extracted fromedfezence genome in the forward
direction. This sequence forms the left end of the read pair.dr@rating the right end, our
simulator first selects akn value from a normal distribution (with a default mean value of
200 and default standard deviation of 10). Note that the empiricahleingtibution of the
paired-end reads obtained from the COLO-829 cell line [27] is sinaldhis setting. The
start locus of the right end on the reverse strand is determsed |;. The right end read is
formed by reading bases of the reverse strand of the genome in the reverseodirge.,



read direction is from right to left and the bases in the rigilt sequence are the
complementary bases of the forward strand of the genome). Dimengetd generation
process, we replace the base at each locus with a randonatedddase with a user-defined
probability value (i.e., base call error rate) to simulate the sequenaimg. err

Additional data files

The following additional data are available with the online wersif this paper. Additional
data file 1 is a figure showing the mean number of supporting readgbavarious levels of
base calling error rate. Additional data file 2 is a figueendnstrating the Precision, Recall
and F1-score performances of the methods at different duplicaizeiss Additional data file
3 is a figure showing the mean breakpoint mismatch performanaifeaent duplication
sizes. Additional data files 4, 5 and 6 are figures demonstratingréogsion, Recall and,+
score performances of the methods at different levels of fratgleagth mean/standard
deviation and read length, respectively. Additional data file 7tabke listing the genomic
location of the tandem duplications identified in TCGA ovarian casasiples. Additional
data file 8 is a table listing the PCR primer sequences wsedafidating the two novel
tandem duplications discovered by DB COLO-829 cell line. Additional data file 9
contains two figures demonstrating the Sanger validation of previoustpamed tandem
duplications in COLO-829. Additional data file 10 is a figure thabves the empirical
fragment length distribution of sequenced COLO-829 cell line.
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