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In this paper, a flow-sensitive, context-insensitive alias analysis in Java is pro-
posed. It is more efficient and precise than previous analyses for C++, and it
does not negatively affect the safety of aliased references. To this end, we first
present a reference-set alias representation. Second, data-flow equations based
on the propagation rules for the reference-set alias representation are intro-
duced. The equations compute alias information more efficiently and precisely
than previous analyses for C++. Third, for the constant time complexity of the
type determination, a type table is introduced with reference variables and all
possible types for each reference variable. Fourth, an alias analysis algorithm
is proposed, which uses a popular iterative loop method for an alias analysis.
Finally, running times of benchmark codes are compared for reference-set and
existing object-pair representation.
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1. INTRODUCTION

An alias is defined as two or more reference (pointer) variables that may
point to the same memory location. Aliases can be created by assignment



statements among reference variables, and by calling statements among
procedures on global variables and parameters (call-by-reference) of refer-
ence variables. Aliases complicate the data-flow analysis which is per-
formed during optimization and parallelization of a part of program. It
causes side effects that make the code unsuitable for parallel execution.

As one optimization technique used in the static analysis of compilers,
alias analysis has been developed to detect aliased variables and to reorder
instructions in order to enhance performance. Aliases are detected on
assignment statements through intra-procedural analysis within a procedure
by using its control flow graph (CFG) and on call statements through inter-
procedural analysis among procedures by using its calling graph (CG).
There are the context-sensitive and context-insensitive approaches to build-
ing a CG for inter-procedural analysis. The context-sensitive approach is
characterized by a data flow analysis based on path-sensitivity, so each
procedure may be analyzed separately for different calling contexts. In the
context-insensitive CG, each procedure is represented by a single node in a
calling graph, so information is computed efficiently with a context-insen-
sitive graph, but the computed data are approximate. In object-oriented
languages such as C++ and Java, the static determination of run-time
object types is a critical factor in the optimization. The static determination
of run-time types makes inlining/cloning optimizations possible by pre-
dicting dynamic function calls. It is used to resolve a number of indirect
function calls by limiting the number of possible functions invoked and by
converting the indirect function calls to direct function calls. Also, it
improves the precision of inter-procedural analyses and transformations.
We can define ‘‘precision’’ as a measure of the extent to which an analysis
accurately reports aliases; as stated by Hind: ‘‘a less precise alias analysis
will conservatively report more alias relations representing real memory
locations than a more precise analysis.’’ (31) We also can define the ‘‘safety’’
as a measure of the extent to which an analysis correctly reports aliases, in
that a less safe alias analysis will report a smaller subset of all the actual
alias relations representing real memory locations, than will be reported by
a more safe analysis. In addition, in case of alias analysis, the static deter-
mination of run-time object types are needed to build safe calling graphs
for function calls including virtual function calls.

The integration of alias analysis with type information increases the
precision of alias detections, particularly with regard to inheritance among
classes. Although the integration of alias analysis with type informa-
tion (15, 19, 24, 39) improves the precision and efficiency of alias analysis for
virtual functions in C++ (overridden methods in Java), these approaches
do not achieve the desired precision in Java because their alias representa-
tions are for pointer and object based languages. Also, for constructors and

40 Woo, Gaudiot, and Wendelborn



class inheritances, the type information may lose information regarding
shadowed variables in Java: shadowed variables are variables defined in
one class with the same named variable of its super class; overridden
method is a method defined in one class with same named method and
same argument types of its super class. Further, their type inference methods
may not be safe for dynamic type determination (39) and the indirect type
inference with objects may negatively affect performance. (15, 19, 39)

In this paper, we present a compile-time, flow-sensitive, context-insen-
sitive, alias analysis algorithm with type information in Java. It addresses
those issues in C++ while applying to Java. Our alias analysis algorithm
adapts to Java an existing alias analysis algorithm for C++ (15) by adding
our type inference algorithm and data flow equations for our reference-set
representation. In this scheme, the type information of references during
alias analysis is inferred by using our type inference operation. The inferred
type information is used to increase the precision of subsequent alias
analyses not only for overridden methods but also for shadowed variables.
The inference is much more efficient because a reference variable has all
possible type information. Also, our algorithm proposes a data flow com-
puting rule for possible statements by regarding constructors as functions.
Compared to other algorithms, (15, 19, 24, 39) the precision of our analysis algo-
rithm is improved by adding type information of shadowed variables and
by regarding constructors as functions. Also, it computes safe aliases and
improves efficiency by using reference-set representation. Further, the
equations can compute aliases in exception statements.

Section 2 presents related work for alias analysis in C/C++. Section 3
shows motivation of our alias analysis in Java. Section 4 describes the dif-
ferences between C++ and Java for alias computing. Section 5 introduces
our reference-set alias representation for Java and describes the structure of
our algorithm. Section 6 explains our propagation rules on the reference-set
representation. Section 7 shows our alias analysis algorithm and computes
the time and space complexities of the algorithm. Section 8 shows the
experimental results. Finally, the conclusions are presented.

2. RELATED WORK

The computation of pointer aliases has been studied in several publi-
cations (5, 6, 10, 15, 19, 26, 35, 39) in the context of C and C++. C is a procedural
language where a memory is handled by using pointer variables while
C++ is an extension of C to object-oriented concepts, although it is not a
pure object-oriented language. Since the existence of pointers implies many
hidden aliases, earlier works (5, 6, 10, 15, 19, 26, 35, 39) have investigated the computa-
tion of pointer induced aliases. They focused on how to improve efficiency,
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preciseness, and safety of analyses and demonstrated that these goals are
often contradictory: one must be traded off against the other. Thus, they
each have their own alias-set representations and type inference methods.

Java has a syntax similar to C and C++, so we might hope that alias
analysis in Java could be an extension of existing alias analyses in
C/C++. Unfortunately, since Java is a pure object-oriented language with
several properties including object references, the ability to invoke methods
of other classes, late dynamic binding, class hierarchies, exceptions and
multithreading, conventional studies (5, 6, 10, 15, 19, 26, 35, 39) are not sufficient
solutions to compute aliases among objects in Java. Nonetheless, conven-
tional inter-procedural analyses give useful backgrounds to the problem of
alias analysis in Java.

2.1. Alias-Set Representation

This section introduces how alias representation for alias analysis has
been developed from C and C++. Pande (39) presented the first algorithm
which simultaneously solved type determinations and pointer aliases with
points-to alias set representation in C++ programs. Points-to has the form
Oloc, objP where obj is an object and loc is a memory location of the object
obj. Points-to pair is essentially points-to relation as introduced by Emami. (26)

Emami proposed it to reduce extraneous alias pairs generated in certain
cases with alias pairs of Landi. (35)

Carini (15) proposed a flow-sensitive alias analysis in C++ with compact
representation. The compact representation is an alias relation that has a
name object or one level of dereferencing. The compact representation of
alias relation was introduced by Choi (5, 6, 10) to eliminate redundant alias
pairs.

Chatterjee (19) presented a flow-sensitive alias analysis in object-oriented
languages with points-to alias set representation in C++. It improves the
efficiency and safety of points-to alias set representation comparing to
Pande’s method.

The compact and points-to alias representation are highly similar.
However, the points-to alias representation contains may or must alias
information. (5, 6)

Woo (49) introduced a flow-sensitive alias analysis in Java with referred-
set alias representation, which is an alternate formulation to this paper.
Referred-set is a set of objects that may be pointed by a reference variable
and an alias set is a collection of referred-set. It is used to reduce extra-
neous alias pairs while applying the compact and points-to alias representa-
tions in C/C++ to Java.
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For example, in C++ (see (a) in Fig. 1), Alias pairs can be generated
as O*x, yP, O**x, *yP, O*y, zP, O**x, zP. The corresponding compact repre-
sentations are O*x, yP, O*y, zP. Points-to pairs can be represented as
Ox, y, DP, Oy, z, DP where D represents the pair as must alias relation.
Referred-set alias relation is A(statement 2)=null because each variable
does not point to any object.

In Java (see (b) in Fig. 1), Alias pairs can be generated as Oz, obj_AP,
Oy, zP, Ox, yP, Oy, obj_AP, Ox, obj_AP where obj_A is an object gener-
ated by statement 1. The compact representations of the statement are
Oz, obj_AP, Oy, zP, Ox, yP. Points-to pairs can be represented as
Oz, obj_AP, Oy, z, DP, Ox, y, DP where D represents the pair as must alias
relation. Referred-set alias relations are Az=Oobj_AP, Ay=Oobj_AP,
Ax=Oobj_AP, A(statement 3)={Az, Ay, Ax}.

Existing alias relations in C++, compact and points-to representa-
tions, are quite similar, especially when applied to Java, because it repre-
sents an alias as a pair of Oobject name, object nameP. Object name is an
object generated or a reference variable that points to the object. Therefore,
in this paper, we call compact and points-to representations as object-pair
representation. The space complexity of the object-pair representation is
O(Nr+No × nC2), where Nr is the number of reference variables, No is the
number of objects, n is the number of reference variables that refer to an
object, and nC2 is to generate the combination set with 2 elements among n.
The space complexity of Referred-set alias relations is O(Nr+No × Ao),
where Nr is the number of reference variables, No is the number of objects,
and Ao is the maximum number of references aliased for an object. If n
becomes larger, nC2 will be larger than Ao. Thus, O(Nr+No × nC2) >
O(Nr+No × Ao). Therefore, comparing to object-pairs, the collection of
objects for a reference variable saves space. Further, it may improve per-
formance in terms of the time complexity to compute alias set.

func() {

   A **x, *y, z;

 

   x = &y;  //statement 1

   y = &z;  //statement 2

}

bar() {

   A x, y, z;

 

   z = new A(); //statement 1

   y = z; //statement 2

   x = y; //statement 3

}

(a) A Code in C++ (b) A Code in Java

Fig. 1. Example programs for related work.
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2.2. Type Inference for Objects

As an object-oriented language, C++ and Java often make use of
inheritances, which leads to dynamic invocation. Dynamic invocation, such
as through virtual functions, makes it hard to build a calling graph stati-
cally. Type inference statically computes possible run-time types for every
expression in the program’s source code. The static determination of pos-
sible run-time types is a key issue for compile-time optimization because
the dynamic calls of an object-oriented language make it hard to build its
calling graph statically.

Therefore, there are advantages of static type determinations. First,
the inlining or the cloning optimization mechanisms of functions are
applicable if the static type determination resolves a number of indirect
function calls by limiting the number of possible functions invoked and by
converting the indirect function calls to direct function calls. Second, the
static type determination improves the precision of inter-procedural analy-
ses and transformations in object-oriented language. Finally, the static type
determination has solved problems upon the occurrence of virtual function
calls for compile-time optimization. For alias analysis in object-oriented
languages, the second and third benefits will improve the precision or, at
least, maintain the safety of the analysis by recognizing the dynamic calls at
compile time.

Pande (39) integrates alias analysis and dynamic type information in
C++. His points-to alias relations contain type information for each
object. However, his method loses safety of alias relations because it is not
clear how to maintain type information for conditional statements.

Carini (15) proposed a type table to infer possible types of an object in
C++. The type table is a pair of Oobject, typeP. We can statically infer
possible types of an object with its alias relations and the type table. Its
space complexity with compact alias representation is O(No+Nr), where No

is the number of objects and Nr is the number of references. Its time com-
plexity with compact alias representation is O((No+Nr) × Ar), where Ar is
the maximum number of references aliased for an object.

Chatterjee (19) computed a type of pointer variables with referenced and
modified type relations and alias relations at each program point in C++.
Its space complexity is the same as the compact representation. Its points-to
relation contains alias pairs and their type information. Further, it main-
tains the safety of the possible types for conditional statements by adding
may or must flag. The time complexity is the same as that of compact alias
representation.

The time complexity of the Referred-set (49) alias relation for type
inference is O(R × Ao), where R is the maximum number of accessible

44 Woo, Gaudiot, and Wendelborn



references at a program point and Ao is the maximum number of objects
pointed by a reference. A type table is defined with a pair of an object and
its type. In the table, we can search for each object to collect possible types
of a reference because a referred-set contains all possible objects to which
the reference points. Since, R is usually smaller than No+Nr, the referred-
set alias relation will be more efficient than the others.

3. MOTIVATION

There are three motivations for developing an alias detecting algo-
rithm in Java. First, aliases causes problems not only for optimizing a
sequential compiler but also for a parallel compiler when using Java.
Second, some mechanisms used in inter-procedural analysis cannot be
adequately applied to object-oriented languages because procedural lan-
guages do not have objects. Third, conventional alias analysis with type
information in C++ needs to be adapted for an alias representation,
additional type information, and rules including exceptions when applied
to Java. Those motivations are more specifically described as follows.

High performance computing on distributed computing systems has
been widely studied. (12, 18) It has been shown that high performance compu-
tation can be achieved without any extra cost, using existing computers
that are connected via some network to execute some applications con-
currently as in distributed computing systems.

Since Java is a platform independent language, it can be used for
integrating different computational platforms into a distributed computing
system at no additional cost. Java is an object-oriented language which
allows for easy maintenance, update and reuse of application programs. An
application program can be implemented for applets or servlets that are
executed on the World-Wide-Web. Thus, we can create a distributed or
clustering computing system which is more scalable and allows accesses to
arbitrary hosts with the owner’s permission.

These properties are making Java a major interesting parallel language
for distributed computing application. However, Java is an object-oriented
language with reference variables which refer to objects instantiated. Ref-
erence variables become possible aliases if a pair of references are left-hand
and right-hand side references on an assignment statement. Those aliased
references may cause race conditions if each reference is assigned to a dif-
ferent process. Further, it may cause context switch and communication
delay. Researchers have studied to avoid or detect aliases among pointers
in C and C++. (5, 6, 10, 15, 19, 26, 35, 39) Since reference implies pointers or pointed
objects, we could refer to those studies for Java in order to detect aliases
among reference variables.
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4. DIFFERENCES BETWEEN C++ AND JAVA

Naming of an object should be considered to represent aliases in C++
and Java. In C++, static objects declare object names. Also, dynamic
objects and pointer-valued objects (pointer variables) have their own
names for an alias analysis. A pointer variable name is a name which
points to an object that contains the address of a pointed-to object. In
Fig. 2(a), the pointer variable name p is naming a pointer-valued object
that contains its address value. The dereferenced pointer p is naming the
object that is pointed to by p. A variable name p that is not a pointer is
naming an object that contains the address of the variable. There exist alias
relations among pointer-valued objects because of pointer-to-pointer rela-
tionships. Therefore, in the previous works, (6, 10, 20) when pointer p points to
an object of v, the alias relation is represented as O*p, vP.

Figure 2(b) shows that a pointer points to another pointer variable
that complicates the alias analysis, where a box depicts a pointer-valued
object and a circle is a nonpointer object. Those alias relations are repre-
sented as O*p, qP and O*q, vP. Existing alias relations in C++ are similar,
which are compact (6, 10, 20) and points-to (19, 39) representation. Those relations
save space by representing all alias relations without using an exhaustive
set. Those relations can be used in Java. However, there are some problems
in the use of those representations because only references are used to name
objects in Java. A reference is a variable that refers to an object as a
pointer in C++. There are no pointer-to-pointer concepts and no pointer
operations in Java. An object in Java is created dynamically so that the
object becomes an anonymous object that does not have its own name and
that is only refered to by a reference variable. Thus, each object needs its
own naming such as obj1 and obj2 by binding a reference name and an
object name for the existing alias relations. However, we have another
more efficient binding.

In Fig. 3(a), if there is an assignment statement r=&w, the value of
the addressed valued object named by r is changed to the value of the
addressed valued object bound by w. Therefore, O*r, vP can be killed and a
new alias relation Or, *wP is generated through the compact representation
rule (5, 6, 10) as follows.

(a) (b)

p v p q v

Fig. 2. Relation between a pointer and an object in C++.
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Object-pairs AIN before r=&w:
AIN={O*p, rP, O*q, rP, O*r, vP}

Object-pairs after r=&w:

Kill :AIN(*r)={O*r, vP}

Gen: 0
Or, uP ¥ AIN, AR ¥ AIN(*w)

{AR(*u/*w)}={Or, rP} é {O*w, *wP}

={Or, *wP}

finally,

object-pairs AOUT=(AIN − Kill) 2 Gen
=({O*p, rP, O*q, rP, O*r, vP} − {O*r, vP})

2 {Or, *wP}
=({O*p, rP, O*q, rP, Or, *wP}

In Fig. 3(b), an alias relation via compact representation in Java is
shown. If there is an assignment statement p.d=w when the variable w
refers to an object obj3, we can compute alias relations with the compact
representation rule as follows:

Object-pairs AIN before p.d=w:

AIN={Op, rP, Oq, rP, Op.d, vP, Oq.d, vP, Ow, obj3P}

Object-pairs after p.d=w:

Kill :AIN(p.d)={Op.d, vP}

Gen: 0
Op.d, uP ¥ AIN, AR ¥ AIN(w)

{AR(u/w)}={Op.d, p.dP} é {Ow, wP}

={Op.d, wP}

finally,

object-pairs AOUT=(AIN − Kill) 2 Gen
=({Op, rP, Oq, rP, Op.d, vP, Oq.d, vP, Ow, obj3P} − {Op.d, vP})

2 {Op.d, wP}
=({Op, rP, Oq, rP, Oq.d, vP, Ow, obj3P, Op.d, wP}

However, for the correct relation, Oq.d, vP of AOUT should be killed.
The incorrect result comes from the fact that, in Java, a reference name is
used for naming an object without a dereferencing operator such as * in
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(a)

p r v

(b)
p

r v

q q

d

<*p, r> <*q, r> <*r, v> <p, r> <q, r> <r.d, v>

Fig. 3. Difference between a pointer in C++ and a reference in Java.

C++. Therefore, we believe that the traditional rule is not applicable to
Java to detect precise alias relations as well as compact representation may
have more aliased elements in Java as shown in Fig. 3(b).

To obtain the correct result in this example, r.d should be recognized
not only as a memory location that contains its addressed value in
Op.d, r.dP but also as an object that is referred to by the reference r.d. To
solve this problem, an alias relation for an address-valued object should be
presented by extending a compact representation. Otherwise, a data flow
equation for aliases should recognize the difference. Therefore, reference
names for an alias relation should be meant as dereferencing and the
Op.d, r.dP alias relation for the alias computation should be analyzed dif-
ferently. Particularly, the alias computation should consider that reference
names in an assignment statement l-value and r-value should be used to
assign the address value of the memory location.

5. REFERENCE-SET REPRESENTATION

An alias analysis algorithm computes alias sets in a piece of program.
Each statement of the program collects an alias set from its predecessor
and updates it with the statement itself and passes the resulting alias set to
its successor(s). The alias computation should be iteratively performed until
the alias sets and a calling graph have converged for the program. Since the
computation mainly depends on the number of elements in the alias sets
and the representation of the elements, alias set representation affects the
efficiency of the entire algorithm.

We propose the reference-set representation to improve the accuracy
and the efficiency of the alias computation and its type inference for Java.

Reference-set : a set of alias references that consist of more than two
references which refer to an object; R i={r1, r2,..., rj}:
for each j, initially j \ 2 and rj is a reference for
an object; when rj and rk are in the same path and
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qualified expressions with a field f, rj, and rk can be
represented with a R i.f with a reference-set R i for an
object i; during the data flow computation in an alias
analysis, j \ 1 is allowed when passing references
forward and backward at a call site.

Alias set : a set of reference-sets at a statement s; As={R1, R2,..., Ri}

Initially, we only consider reference-sets that contain more than two ele-
ments since a reference-set with one element is redundant for alias analysis.
For example, in a statement s, each reference-set and alias set for the alias
relation in Fig. 4(a) are represented as follows:

R1={a, b} R2={R1 .e, c, d} R4={f.h, g}

As={R1, R2, R4}

The space complexity of the reference-set representation is O(Rn × Ar),
where Rn is the number of objects and Ar is the maximum number of
aliased references for an object. It is less than O(Rt × Ar) of the conven-
tional compact representation, where Rt is the maximum number of objects
in the program. Practically, Rn is less than Rt because Rn is initially the
number of objects that include more than two references. The time com-
plexity of an alias computation depends on the space complexity of each
representation. Thus, the efficiency of whole algorithms is improved via the
reference-set representation.

We can maintain the safety of alias analysis in Java with structures
such as CFG, CG, and Type Table, especially for exception statement in
Java. Java provides an exception handling mechanism with the try/catch/
finally construct. The try block handles its exceptions and abnormal exits

a

c

1 2

b

f

g

3 4

e

h

d

try Block B1

catch Block B2

merging Node n

h

(a) The relationships between references and objects

(b) A part of a CFG
      in try Block of (b) ...

...

Fig. 4. The relationships between objects in a block of CFG.
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public class ThrowTest {

  public static void main(String args[]){

    int i;

    try { i = Integer.parseInt(args[0]);}

    catch (ArrayIndexOutOfBoundsException e){

      System.out.println("needs an argument!");

      return;

    } catch (NumberFormatException e){

      System.out.println("needs an integer argument!");

      return;      

    }

    a(i);

  }

  public static void a(int i){

    try { b(i); }

    catch (MyException e) {

      if (e instanceof MySubException)System.out.println("MySubException!");

      else System.out.println("MyException!");

      System.out.println(e.getMessage());

    }

  }

  public static void b(int i) throws MyException {

    int result;

    try { 

      System.out.println("i= " + i);

      result = c(i); 

      System.out.println("c(i)= " + result);

    } catch (MyOtherException e) {

      System.out.println("MyOtherException:" + e.getMessage());

    } finally{

      System.out.println("\n" + "fin" + "\n");

    }

  }

  public static int c(int i) throws MyException, MyOtherException {

    switch(i){

    case 0: throw new MyException("too low input");

    case 1: throw new MySubException("still too low input");

    case 99: throw new MyOtherException("too high input");

    default: return i*i;

}  } }

class MyException extends Exception {

  public MyException() { 

                 super();

  }

  public MyException(String s) { 

                super(s);

  }

}

class MyOtherException extends Exception {

  public MyOtherException() { 

                super();

  }

  public  MyOtherException(String s) { 

                super(s);

  }

}

class MySubException extends MyException {

  public MySubException() { 

                 super();

  }

  public  MySubException(String s) { 

                super(s);

  }

}

Fig. 5. An exception handling example code [Flan97].

with zero or more catch blocks. The catch clauses catch and handle spe-
cified exceptions. The finally block should be executed even though an
exception is caught or not. A programmer’s own exceptions are generated
by the throw statement. Figure 5 shows example exception classes that were
written by Flanagan. (27)

For the computation of the aliases, CFGs can be used for intraproce-
dural alias analysis. Our CFG is a directed graph defined for each method
as ONCFG, ECFG, nentry, nexit, BCFGP; NCFG is a set of nodes with nentry, nexit, and
each statement of the method; ECFG is the set of directed edges that repre-
sent the alias set information between predecessor and successor state-
ments; nentry and nexit represent the entry and the exit node of the method;
BCFG is a set of blocks that consist of the set of nodes for try, catch, and
finally blocks.

We assume that each potential exception statement (PES) in a try
block has its corresponding catch block for an exception construct. An
exception edge is connected to a catch block from the block that contains
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mainentry

a(i) catch block catch block

merging

aentry

try block

catch block

aexit

try block

bentry

try block

catch block

bexit

finally block

centry

case 0 block default block

flow construct

case 1 block case99 block

mainexit
cexit

merging merging
merging

flow construct flow construct
flow construct

Fig. 6. CFGs of example classes in Fig. 5.

the exception statement. Further, the catch block is connected to the exit
node or a finally block.

Also, we need to consider PESs of a CFG. Runtime Exceptions are
caused by wrong array indexes, string indexes, and class casts, by qualified
expressions of a null pointer, and by dividing-by-zero. nexit of a CFG
includes an out alias set of the last statement and out alias sets of PESs.
Figure 6 shows CFGs of example classes in Fig. 5.

A CG is needed for interprocedural alias analysis between a calling
method and the methods it calls at a call statement. Our CG is a directed
graph defined as ONCG, ECG, nmainP; NCG is a set of nodes and each node is
a method shown once in a CG even though it may be called many times;
ECG is a set of directed edges connected from caller(s) to callee(s) and one
edge is connected even though a caller may invoke the callee many times;
nmain is the main method that executes initially in a Java program. Figure 7
shows the CG of example classes in Fig. 5.

A type table contains all possible types of each reference variable. The
type table is built during the execution of our algorithm and it contains

main(): ThrowTest

a(): ThrowTest

b(): ThrowTest getMessage(): Exception

c(): ThrowTest

new MyException() new MySubException() new MyOtherException()

Fig. 7. CG of example classes in Fig. 5.
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three columns: a reference variable, its declared type, and its overridden
method types. The declared type represents static and shadowed variable
type information of a reference variable. The dynamic types represent pos-
sible overrid-den method types of the reference variable. We can improve
the efficiency of the analysis with the type table by inferring types of each
reference variable in a constant time.

6. PROPAGATION RULES OF ALIAS INFORMATION

In a flow-sensitive alias analysis, alias information is kept up-to-date
for each program statement. The information is propagated to the next
statement and subsequently updated according to the CFG of a method.
Figure 8 presents possible control flow rules in a program. This analysis for
Fig. 8 starts with the alias set holding at the entry node nentry, traverses all
nodes, and computes the out alias set of each node. The analysis ends at the
exit node nexit. Let in(n) be the input alias set and out(n) be the output alias
set held on the exit of a node n. The effect of a node n can be described by
the following equation:

in(n)=1 out(pred(n))

out(n)=Trans(in(n))=Modgen[Modkill(in(n))]

In this equation, pred(n) represents a predecessor node of the node n.
Modkill denotes the alias set modified after killing some reference-sets of
in(n) and Modgen is the subsequent alias set after generating the new refer-
ence-sets on Modkill . In our reference-set representation, an operator 1
works within the same reference-sets between alias sets as well as the alias

in
in in

in1

out out
out

out

in2
inn

…

…

R ule 1. F low  C onstruct 

N ode
Rule 2. M erging Node

R u le  3 . A s s ig n m e n t N o d e

R u le  4 . E n try  N o d e

R u le  5 . E x it N o d e

R u le  6 . R e tu rn  N o d e

Rule 7. Precall Node

Rule 8. Postcall Node

Fig. 8. Flow control rules.
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sets themselves. For example, when an alias set A1={R1, R2} where R1=
{a, b} and R2={b, c} and an alias set A2={R1, R3} where R1={a, c}
and R3={b, d}, A=A1 2 A2 is:

A={R1, R2, R3}

where R1={a, b, c}, R2={b, c}, R3={b, d}

because R1={a, b} 2 {a, c}

For an exception block B that consists of nodes: n1, n2,..., nm, we can relate
the block and its nodes by the following equations:

in(B)=in(n1)

out(B)=out(nm)

Also, if a node n has an array, a qualified expression, a divide operation,
and a class cast expressions, we can consider it as a PES node. We describe
the propagation rules in the following sections according to the CFG node
types.

6.1. Rules for Intraprocedural Analysis

The intraprocedural analysis rule consists of premises and conclusions
divided by a horizontal line. The premises are a set of equations that define
an input alias set, information about a node, and intermediate sets. When
all premises hold, the equations in the conclusions are solved for out(n).

First, we define a flow construct node rule that has several out going
edges with the same out information:

in(n)=out(npred)
npred : predecessor node of n or predecessor block of n
|||||||||||||||||||||||| [Flow Construct Node]
out(n)=in(n)

The merging node rule is as follows:

in(n)= 0
p ¥ npred

out( p)

npred: predecessor node of n or predecessor block of n
||||||||||||||||||||||||| [Merging Node]
out(n)=in(n)
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In the rule, npred is a predecessor set of node n. Given npred, out(n) of node n
is the union of all predecessor node sets.

The next rule concerns the node type of an assignment statement.

in(n)=out(npred)

npred: predecessor node of n

x=LHS,

y=RHS,

-i, j R i, Rj ¥ in(n) Q [Modkill(in(n))={R i | kill x ¥ R i}

2 {Ri | kill Rj.f ¥ R i when q ¥ Rj and x=q.f}]

N [in(n)=in(n)− Modkill(in(n))]

N [KILL(in(n))={x, Rj.f}], (1)

-k Rk ¥ in(n) Q [Modgen(in(n))

={Rk | Rk=Rk 2 KILL(in(n)) when y ¥ Rk}]

N [in(n)=in(n)− Modgen(in(n))], (2)

n: the first node of an exception block B Q in(B)=in(n),

n is a Potential Exception Statement Q PES=PES 2 {n}

|||||||||||||||||||||||||| [Assignment Node]

out(n)=Modkill(in(n)) 2 Modgen(in(n)) 2 in(n)

In this rule, LHS and RHS respectively stand for the left and the right
hand side of an assignment statement. KILL(in(n)) is a reference-set of
references killed by Modkill(in(n)). Also, out(B)=out(n) if n is the last
node of the block B. This out equality between a block and a node can be
applicable for all of the rules in this paper. If the node n is one of the
PESs: an array, a qualified expression, a divide operation, and class cast
expressions, the node n becomes an element of a set PES for all of the
rules.

For example, when there is an assignment statement a.e=f.h in the
catch block B2 of Fig. 4(b), alias set out(B1) and in(B2) are expressed with
must alias reference-set R1, R2, R4 in the try block B1 of Figs. 4(a) and (b)
as follows:

R1={a, b}, R2={R1 .e, c, d}, R4={f.h, g}

in(B2)=out(B1)={R1, R2, R4}
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Because LHS is a qualified expression related to both R1 and R2,
Modkill(in(B2)), in(B2), and KILL(in(B2)) are computed based on (1) of
Assignment Node rule as follows:

R1={a, b} and R2={R1 .e, c, d} then R2={c, d}

Modkill(in(B2))={R2} in(B2)={R1, R4} KILL(in(B2))={R1 .e}

Since R4 includes RHS, Modgen(in(B2)) and in(B2) are computed based on
(2) of Assignment Node rule as follows:

Modgen(in(B2))={R4 | R4=R4 2 {R1.e}={R1.e, f.h, g}}

={R4} in(B2)={R1}

Thus, out(B2) is the union set of Modkill(in(B2)), Modgen(in(B2)), and
in(B2) as follows:

out(B2)=Modkill(in(B2)) 2 Modgen(in(B2)) 2 in(B2)={R1, R2, R4}

when R1={a, b}, R2={c, d}, R4={R1.e, f.h, g}

Finally, in(n) for the merging node n is the union set of out(B1) and
out(B2) based on Merging Node rule as follows:

in(n)=out(B1) 2 out(B2)={R1, R2, R4}

where R1={a, b}, R2={c, d, R1.e}, R4={f.h, g, R1.e}

Each reference-set of in(n) consists of may alias elements; R1 consists
of must alias element; R2 may contain an aliased element R1.e from the
block B1; R4 may contain an aliased element R1.e from the block B2.

Following is the another example to detect reference-set of Fig. 3(b)
by assuming the current block of the assignment statement p.d=w as B1:

R1=r={p, q}, R2=v={p.d, q.d}={R1.d}, R3={w}

in(B1)={R1, R2}

Because LHS is a qualified expression related to R1, Modkill(in(B1)),
in(B1), and KILL(in(B1)) are computed based on (1) of Assignment Node
rule as follows:

R1={p, q} and R2={R1.d} then R2={ }

Modkill(in(B1))={R2} in(B1)={R1} KILL(in(B1))={R1.d}
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Since R3 includes RHS, Modgen(in(B1)) and in(B1) are computed based on
(2) of Assignment Node rule as follows:

Modgen(in(B1))={R3 | R3=R3 2 {R1.d}={w, R1.d}=R3 in(B1)={R1}

Thus, out(B1) is the union set of Modkill(in(B1)), Modgen(in(B1)), and
in(B1) as follows:

out(B1)=Modkill(in(B1)) 2 Modgen(in(B1)) 2 in(B1)={R2, R3, R1}

when R1={p, q}, R2={ }, R3={w, R1.d}

Finally, out(B1) has the following reference set because R2 has no element,
which has the correct aliased elements:

out(B1)={R1, R3} when R1={p, q}, R3={w, R1.d}

With this example for Fig. 3(b), we have shown that our reference set of
out(B1) is more precise than the aliased elements AOUT of the compact
representation shown in Section 4.

The rule for the return statement node type is presented with the
reference-set of a return variable r. LOCAL stands for a local variable set
defined in a method M such as local and formal parameter variables.

in(n)=out(npred)

npred: predecessor node of n

M: callee, LOCAL(M)={v | v is a local variable of M}

-i R i ¥ in(n) for r: return reference

Q [Modkill(in(n))={R i | kill x ¥ R i for x ¥ LOCAL(M)}]

N [Rr={Rr | kill x ¥ Rr for x ¥ LOCAL(M) when r ¥ Rr}],

n is a Potential Exception Statement Q PES=PES 2 {n}

||||||||||||||||||||||||||| [Return Node]

out(n)=Modkill(in(n))

The next is the rule for an exit node type.
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in(n)= 0
p ¥ npred

out(p)

npred: predecessor node of n

PES= 0
p ¥ PES

out(p)

PES: Potential Exception Statement

M: callee, LOCAL(M)={v | v is a local variable of M}

-i R i ¥ in(n)

Q [Modkill(in(n))={Ri | kill x ¥ R i for x ¥ LOCAL(M)}]

N [in(n)=in(n)− Modkill(in(n))],

||||||||||||||||||||||||||||| [Exit Node]

out(n)=Modkill(in(n)) 2 in(n) 2 PES

6.2. Rules for Interprocedural Analysis

We build our system based on Context-Insensitive CG to compare with
the existing system. (5, 6, 10, 15, 19, 26, 35, 39) We virtually divide a call node into a
precall and a postcall node to simplify the computation of a call statement.
A precall node collects an alias set from the predecessor node of a current
call node and computes its own alias set out(n) with the collected set.
This alias set is propagated to the entry node of the called method and
killed in the calling method. It reduces the inefficiency of the previous
approaches (19, 39) which compute redundant alias relations to be modified in
a called method.

A postcall node collects the modified kill set of the precall node and
exit nodes alias sets of all possible called methods as in Fig. 8. By selecting
references accessible from the calling method, we can compute the result
alias set of the postcall node which is the out alias set of the call node as
follows:

in(n)=out(npred),

npred: predecessor node of n

RHS=Ec.Mc, (1)

RHS=Mc,
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-i, a i=the ith actual parameter of the callee Mc,

-i, fi=the ith formal parameter of the callee Mc,

-i, R(ai) ¥ in(n) Q [Rpass(ai)={ai, fi}] N [R(ai)=R(ai) − Rpass(a i)], (2)

RHS=Mc, -i, R(ai) ¥ in(n), v is a nonlocal variable in the callee Mc,

-f -v R(v.f) ¥ in(n)

Q [R(v)=R(v) − {v}] N [R(v.f)=R(v.f) − {v.f}]

N [Rpass(v)={v}] N [Rpass(v.f)={v.f}]

N [PASS(Mc)=1 {Rpass(a i), Rpass(v), Rpass(v.f)}],

RHS=Ec.Mc, -i, R(ai) ¥ in(n), -f -ai, R(ai.f) ¥ in(n), -f, R(Ec.f) ¥ in(n)

Q [R(Ec.f)=R(Ec.f) − {Ec.f}] N [Rpass(Ec.f)={Ec.f}]

N [R(ai.f)=R(ai.f) − {ai.f}] (3)

N [Rpass(a i.f)={ai.f}] N [PASS(Mc)

=1 {Rpass(ai), Rpass(ai.f), Rpass(Ec.f)}],

n: the first node of an exception block B Q in(B)=in(n)

|||||||||||||||||||||||||||| [Precall Node]

out(n)=in(n)

PASS(Mc) represents the set of actual, formal parameters and nonlocal
variables in a called method Mc. Rpass(a i) is a set of actual parameters
accessible by a called method when passing from a caller to the called
method Mc. Rpass(v) is a set of nonlocal variables accessible by a called
method Mc.

PRECALL(Mc) is the precall node of a call statement node that
invokes this called method. An entry node merges alias sets from the
precall nodes and then propagates the merged set to its subsequent node in
the called method.

PRECALL(Mc): a precall node of the callee Mc,

in(n)= 0
p ¥ PRECALL(Mc)

PASS(p),

n: the first node of an exception block B Q in(B)=in(n)

|||||||||||||||||||||||||||| [Entry Node]

out(n)=in(n)
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The rule of the postcall node is defined as follows.

in(n)= 0
p ¥ nprecall

out(nprecall) (1)

nprecall : a precall node of n
RHS=Ec.Mc Q FIELD(Ec)

={f | f is a field name in an object referred by Ec}, (2)
RHS=Mc Q FIELD(Ec)=”,
RHS=new Mc Q FIELD(Ec)=” N A(r),
EXIT(Mc)={e | e is an exit alias set from a possible callee method Mc},

(3)
LHS=”, -Rpassb ¥ EXIT(Mc)

Q [Rpassb=Rpassb − {v | v is a local variable in the callee Mc}]

N5EXIT(Mc)= 0
for all Mc

Rpassb
6 , (4)

LHS ] ”, -Rpassb ¥ out(return node)
Q [Rpassb=Rpassb − {v | v is a local variable in the callee Mc}]

N5EXIT(Mc)= 0
for all Mc

Rpassb
6 ,

-i R i ¥ EXIT(Mc), -j Rj ¥ in(n)
Q [Ri | R i=Ri 2 Rj when i=j] N [EXIT(Mc)=EXIT(Mc) − R i]

N [in(n)=in(n)− Rj], (5)

exit(RHS)= 0
e ¥ EXIT(Mc)

out(e) 2 0
p ¥ nprecall

out( precall node) 2 0
for all i

R i,

LHS=” Q out=exit(RHS),
LHS=x, -i, j R i, Rj ¥ exit(RHS), R(RHS) ¥ exit(RHS)

Q [Modkill(exit(RHS))={Ri | kill x ¥ R i}
2 {Ri | kill Rj.f ¥ R i when q ¥ Rj and x=q.f}]
N [exit(RHS)=exit(RHS) − Modkill(exit(RHS))]
N [KILL(exit(RHS))={x, Rj .f}],

R(RHS) ¥ exit(RHS)
Q [Modgen(exit(RHS))={R(RHS) | R(RHS)

=R(RHS) 2 KILL(exit(RHS))]
N [exit(RHS)=exit(RHS) − Modgen(exit(RHS))]
N [out=Modkill(exit(RHS)) 2 Modgen(exit(RHS)) 2 exit(RHS)],

n is a Potential Exception Statement Q PES=PES 2 {n}
||||||||||||||||||||||||||| [Postcall Node]
out(n)=out
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exit(RHS) is a set of exit nodes of all possible called methods. We can
compute exit(RHS) in a CG by integrating all out( precall node) and out-
going edges from callers and their exit nodes.

Figure 9 is the example where we compute the alias set by following
the interprocedural analysis rule; reference variable c might refer to the
object 2 or 3. If we assume that Fig. 9(a) represents the state at try block B1,
the out alias set of the block B1 is:

out(B1)={R2, R3}

where R2={a.f, b, c, R3.f} and R3={R2.f, c}

After executing the call statement t at the block B2 in Fig. 9(c), the alias set
of its precall node becomes as follows:

in(t)=in(B2)={R2, R3},

RHS=a.update(c), (1) of precall node

a i=c, fi=i,

Rpass(a i)={c, i}, R(ai)=R2=R2 − {c}={a.f, b, R3.f}

or R(ai)=R3=R3 − {c}={R2.f}, (2)

R(a.f)=R2=R2 − {a.f}={b, R3.f}

and Rpass(a.f)={a.f}, (3)

PASS(a.update)={Rpass(a i), Rpass(a.f)},

out(tprecall)={R2, R3}

a

b

1 2f

void update(Obj i){

     b = i.f;   // statement u

3f f

c c

(a) Object relations at Block B1

(b) A function called at Block B2  

try Block B1

catch Block B2

merging Node n

a.update(c);
 // statement t

...

...

(c) CFG of an example

Fig. 9. Example of an interprocedural Analysis.
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In this computation, (1) of precall node is selected because a.update(c) is a
qualified call statement. (2) of precall node is to make pairs between formal
parameter i and actual parameter c. Thus, we can compute safe reference
sets R(ai) for either block B1 and B2. (3) of precall node computes
Rpass(a.f) accessible by a called method a.update(c). Rpass(a.f) is com-
puted as a set of nonlocal variables accessible by a called method
a.update(c). The PASS(a.update) of the precall node propagates to the
entry node of the callee update( ). The result alias set of the exit node can
be computed as follows:

Rpass(a i)={c, i}, Rpass(a.f)={a.f},

Rpass(a i)=Rpass(a.f)={c, i, a.f}=Rpass(R2) for R2,

Rpass(a i)={c, i}=Rpass(R3) for R3,................... computed in Precall Node

in(u)={Rpass(R2), Rpass(R3)},

R(b)={b, i .f, c.f},................................... computed in Assignment Node

out(u)=updateexit

={R(b), Rpass(R2), Rpass(R3)}...................... computed in Exit Node

The result set of the postcall node at the statement t is computed with the
exit alias set of the update( ) and the propagation rule of the postcall node
as follows:

in(tpostcall)=out(tprecall)={R2, R3}

where R2={b, c.f}, R3={c.f}, (1)

FIELD(a)={a.f}, (2)

EXIT(update)=updateexit={R(b), Rpass(R2), Rpass(R3)}, (3)

where Rpass(R2)={c, i, a.f} and Rpass(R3)={c, i},

R(b)=Rpassb={b, c.f}, Rpassb(R2)={c, a.f},

Rpassb(R3)={c} for the caller,

EXIT(update)={R(b), Rpassb(R2), Rpassb(R3)}, (4)

R2=R2 2 Rpassb 2 Rpassb(R2)={b, R3.f, c.f, c, a.f},

R3=R3 2 Rpassb 2 Rpassb(R3)={R2.f, b, c.f, c}, (5)

Thus, out(B2)=out(t)=out(tpostcall)={R2, R3}

Finally, in(n)=out(B1) 2 out(B2)={R2, R3}

where R2={a.f, b, c, R3.f} and R3={R2.f, b, c}
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The propagation rule (1) of postcall node computes an input reference set
with its precall node. (2) of postcall node presents FIELD(a), a set of field
names, in an object referred by a reference a of a.update(c). (3) exit(update)
is a set of exit nodes of the called method update and computed in a CG by
integrating all out(u) and outgoing edges from callers and their exit nodes.
(4) is to pass back to the caller the elements of the reference set exit(update)
accessible from the caller. (5) updates reference sets R2 and R3 by consid-
ering elements computed in the caller a.update(c). Finally, we can compute
in(n) of the node n.

7. ALIAS ANALYSIS ALGORITHM

7.1. Algorithm

Our alias analysis algorithm in Fig. 10 visits all nodes of a CG until a
fixed point is reached. The algorithm traverses each node of a CG in topo-
logical and reverse topological order so as to possibly shorten the running
time in reaching a fixed point. (6, 10, 20) The set TYPES has all possible class
types as elements for a callee to build a safe CG. We define TYPEStable(r)
as a set of dynamic types of a reference variable r in a type table. While
processing the algorithm, resolved methods with the possible class types of
each reference make the CG grow.

Each node in our algorithm is visited in structural order; while visiting
nodes from an entry node to an exit node, for the if flow construct node,
each branch is traversed then finally its merging node is visited; for the
exception blocks, each block is traversed then finally its merging node is
visited. With the structural order, we do not only maintain the safety of the
alias computation, including exception constructs, but also we improve the
efficiency in Java over previous work (20) without losing the accuracy of a
resulting set.

7.2. Complexity of the Algorithm

For the outermost loop, Rn and Ar are the number of reference-sets
and the maximum number of aliased reference variables for each reference-
set. Rn × Ar means the maximum number of refer-to relations between
references and objects existing in each node of a CFG except its exit node.
We can estimate the worst time complexity of the loop as O(Rn × Ar ×
Npes × Ecg); Npes is the number of potential exception statements in a CFG;
Rn × Ar × Npes denotes the maximum number of refer-to relations between
references and objects existing in the exit node of a CFG; Ecg is the number
of edges in a CG since each relation from an entry node to an exit node is
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1 Algorithm Alias Analysis

2  construct an initial CG with main method;

3  repeat {

4 for each method T.M ∈ Ncg, 

5  alternating between topological and reverse topological order {

6 for each node n ∈ Ncfg (T.M) in structural order {

7 if n is a call statement node {

8 if (RHS = Ec.Mc) {

9 compute the set of inferred types from the reference-set for Ec;

10 compute the set TYPES resolved 

11 from the inferred types and class hierarchy;

12 } else if (RHS = Mc) {

13  TYPES:= {T};

14 } else if (RHS = new Mc) {

15  TYPES:= {Mc};

16 }

17 if LHS exists

18  TYPEStable(LHS) = TYPEStable(RHS);

19 for each type t ∈TYPES {

20 if t.Mc is not in CG

21 create a CG node for Mc;

22 if no edge from T.M to t.Mc with a label n 

23 connect an edge from T.M to t.Mc with a label n;

24 }

25 compute out(nprecall) for a precall node nprecall;

26 compute out(npostcall) for a postcall node npostcall;

27 } else {

28 if n is an assignment statement node

29 TYPEStable(LHS) = TYPEStable(RHS);

30 if n is a merging statement node

31 TYPEStable(LHS) = TYPEStable(LHS) + TYPEStable(RHS);

32 compute out(n) using data-flow equation and propagation rule;

33 }

34 }

35 }

36 } until CG and alias set for every CFG node converge

Fig. 10. Alias analysis algorithm.

traversed once per each iteration. For the second-to-outer loop (line 4), the
time complexity becomes O(Ncg) if Ncg is the final number of nodes in a
CG. For the most inner loop (line 6), the time complexity is O(Ncfg) if Ncfg

is the maximum number of nodes in a CFG that consists of the maximum
number of nodes.
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The dominant parts of the running in the inner loops are the call
statement nodes, so the worst time complexity depends on the number of
call statements. The time complexity of a set of inferred types is O(Rm)
where Rm is the number of reference variables in a program code and a
type table contains all possible types of a reference variable.

The time complexity for the possible method resolution is O(Ti × H);
Ti is the maximum number of subclasses for a superclass and H is the
maximum number of the levels in its hierarchy. The time complexity for
the resolution of overridden methods and the updating of a CG is
O(Ti × (H+Ncg+Cc)) when Cc is the maximum number of call statements
to invoke same called meth-ods in a calling method. The worst time com-
plexity of a precall and a postcall node is O(Rp × R); Rp is the maximum
number of reference-sets propagated; R is the maximum number of refer-
ence variables in Rp on a call statement.

Therefore, the worst time complexity of the main algorithm is
O(Rn × Ar × Npes × Ecg × Ncg × Ncfg × (Rp × R × Rm+Ti × (H+Ncg+Cc))).
The worst space complexity becomes O(Rn × Ar × Npes × Ncg × Ncfg) to
include an alias set and O(Rm) for a type table. The worst space complexity
of the outgoing edges for a call statement is O(Ti × H) and then the worst
space complexity of a CG is O(Ncg × Cs × Ti × H); Cs is the maximum
number of call statements in a method.

Existing alias relations for C++ generate the number of aliased ele-
ments in an exit node as ((O × Ao+O) × Npes) for Java; O is the number of
objects in a program; Ao is the maximum number of aliased element for an
object. For the outer most loop with the same iterative algorithm as in
Fig. 10, we can estimate the worst time complexity as O((O × Ao+O) ×
Npes × Ecg). The number of columns of a type table are the number of
object names O. The time complexity of a set of inferred types is
O((O × Ao+O)+O); O((O × Ao+O)) is the time to search the aliased
elements; O(O) is the time to search the type table for all possible types of
an object name. The worst time complexity of a call statement node is
O((O × Ao+O) × Npes) when a caller propagates an alias set to both the
callee and next node. Therefore, the worst time complexity of existing
work (10, 19, 20) is O((O × Ao+O) × Npes × Ecg × Ncg × Ncfg × (O × Ao+O) ×
(O × Ao+O)+O)+Ti × (H+Ncg+Cc))).

Practically, Rn is much less than O even though Ar equals to Ao so
that our O(Rn × Ar) is less than O(O × Ao+O). For the type inference,
our constant time complexity O(Rm) is less than the time complexity of
O((O × Ao+O)+O). For the call statement, our O(Rp × R) is larger than
the O(O × Ao+O) but it reduces the redundant aliased elements of the
caller. As a result, our worst time complexity of the main algorithm is less
than that of prior work. (6, 10, 20)
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8. EXPERIMENTAL METHOD

8.1. Alias Detector Framework

Figure 11 shows a framework detecting aliases while examining appli-
cation codes written in Java as benchmarks. It mainly consists of three
parts: parser, syntax tree builder, and alias analysis.

Sun Microsystems gives a basic parser for a JDK-1.0.2 grammar in
JavaCC (32) which can be converted to Java programs. Purdue university
built JTB, (33) a Java syntax tree builder. The alias analysis systems are built
on JavaCC and JTB. It automatically generates a JavaCC grammar with
the proper annotations to build the syntax tree during parsing. The syntax
tree is extended by adding the data structures of reference-set and object-
pair representations with class structures of TT and CFG. (45) Our system
adds to these parser and syntax tree builder semantic actions such as type
and scope checking. Based on this, during executing alias analysis algo-
rithm, the CFG and CG are built; dynamic type information is stored in
the type table; alias set is detected on alias computing rules.

As shown in Fig. 11, the parser reads the example input classes and
stores attribute information of the classes. Also, type and scope check
operations are done during parsing. The syntax tree builder builds a syntax
tree of each input and modifies the class information. Our alias analysis
algorithm shown in Fig. 11 uses the information of classes constructed on

JavaCC 

libraries

Alias Analysis
 Algorithm

Benchmark codes 

CFG Builder

in JDK-1.0.2

Alias Detector

Parser

JTB 

libraries

Syntax Tree Builder

CG Builder

Alias DetectorType Inference

Parsing

TypeTable Builder

Alias Set

Fig. 11. Alias detection for Java codes.
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Table I. Characteristics of Benchmark

Num of Num of Num of methods/ Num of overridden
classes lines constructors methods

Dynamic CG 5 54 7 4
Binary Tree 5 154 8/2 1
Ray Tracer 12 1,213 53/13 4
Exception Block 4 67 4/6 0
Recursive Call 5 160 10/2 1

parsing so that it builds CFG and CG. The algorithm converges all hidden
alias sets of each class and then collects final alias set. As a result, our alias
detector detects alias set of given Java codes (Kottos, Ceng, and Asadal are
the names of hosts used in the experiment).

We have executed alias analysis algorithms on benchmark codes with
the reference-set and the existing object-pair representations. (6, 19, 20, 39) We
only focus on the running time for the experiment because the aliases
detected for these two executions are implicitly the same—the benchmark
does not have the indirect object relations that may generate imprecise
aliases with the existing work. We have executed five benchmark codes on
the systems: Dynamic CG, Binary Tree, Ray Tracer, Exception Block, and
Recursive Call. The characteristic of each code is presented in Table I.
Dynamic CG is written in C++ initially by Carini (5) and adapted in Java
by ourselves. It has conditional statements and overridden methods. Binary
Tree is provided by Pro-active group. (41) The binary tree contains many
conditional statements and recursive calls that generate potential aliases
dynamically. Both can be used to measure the safety, preciseness, and effi-
ciency of the algorithms. Ray Tracer is one of Java Grande’s benchmarks
to measure the performance of a 3D raytracer. (34) We adapt to this work
Exception Block built by Flanagan. (27) It contains try/catch and try/catch/
finally constructs for Java exceptions. It is used to measure the safety of the
exception blocks in type inference and alias set. Recursive Call, modified
from Binary Tree, includes more calling statements to extend a tree so that

Table II. Characteristics of Hosts

Kottos Ceng Asadal

Host Type RS6000 Sun4 Windows 2000
OS AIX4 SunOS5.6 Windows NT
Java VM JDK-1.1.1 JDK-1.2.1_02 JDK-1.2.2
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it will show whether our approach can yield an improvement in perfor-
mance for dynamic calls. Table II presents properties of the hosts to
execute those benchmark codes.

8.2. Experimental Results

Figure 12 presents the running times of Dynamic CG. For all hosts, the
running time of reference-set is faster than object-pair because our Type
Table has a more efficient structure to search possible types of methods
than Carini’s. (15) Figure 13 is the running times of Ray Tracer. It implies
that the benchmark codes such as Ray Tracer, which do not contain many
aliased references among objects and which are for JVM performance
measurement, do not have any big difference in the running time of alias
analysis for any alias representation. Figure 14 presents the running times
of Exception Block. For all hosts, the running time of object-pair is almost
same as or 4% faster than Reference-Set. These differences come from the
usage of the different alias representations. It means that our algorithm will
take longer to compute aliases if a code does not contain possible dynamic
types for references. Figures 16 and 17 shows that the running time of
reference-set is faster than object-pair. Figure 17 presents that the running
time of reference-set is much faster than object-pair on Ceng and Asadal

Fig. 12. Running time of Dynamic CG.

Table III. The Relative Speed of Fig. 12

Kottos Ceng Asadal

Object-Pair 1.02 2.23 1.42
Reference-Set 1 2.19 1.38
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Fig. 13. Running time of Ray Tracer.

Table IV. The Relative Speed of Fig. 13

Kottos Ceng Asadal

Object-Pair 0.95 1.65 1.45
Reference-Set 1 1.64 1.45

Fig. 14. Running time of Exception Block.

Table V. The Relative Speed of Fig. 14

Kottos Ceng Asadal

Object-Pair 1 1.94 1.45
Reference-Set 1 2.02 1.48
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Fig. 15. Running time of Binary Tree at depth 1.

Table VI. The Relative Speed of Fig. 15

Kottos Ceng Asadal

Object-Pair 1.44 1.57 1.61
Reference-Set 1 1.57 1.53

Fig. 16. Running time of Binary Tree at depth 2.

Table VII. The Relative Speed of Fig. 16

Kottos Ceng Asadal

Object-Pair 3.13 1.51 1.51
Reference-Set 1 1.43 1.29
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Fig. 17. Running time of Binary Tree at depth 6.

Table VIII. The Relative Speed of Fig. 17

Kottos Ceng Asadal

Object-Pair NA 357.63 67.87
Reference-Set 1 1.09 1.23

Fig. 18. Running time of Recursive Call at depth 1.

Table IX. The Relative Speed of Fig. 18

Kottos Ceng Asadal

Object-Pair 2.03 1.69 1.56
Reference-Set 1 1.68 1.16
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Fig. 19. Running time of Recursive Call at depth 2.

Table X. The Relative Speed of Fig. 19

Kottos Ceng Asadal

Object-Pair 6.29 1.98 1.56
Reference-Set 1 1.55 1.14

Fig. 20. Running time of Recursive Call at depth 6.

Table XI. The Relative Speed of Fig. 20

Kottos Ceng Asadal

Object-Pair NA 1292.92 140.53
Reference-Set 1 1.87 0.94

Alias Analysis in Java with Reference-Set Representation 71



respectively. For Kottos, object-pair is not measurable because the running
time is too long. From Fig. 18 to Fig. 20, it presents the similar result to in
Binary Tree. It shows that our algorithm with Reference-set representation
has better performance comparing to existing object-pair representation in
particular for benchmark codes such as Binary Tree and Recursive Call,
which contains accumulated aliased objects inside many conditional and
recursive call statements.

Also, benchmark results (8, 34, 44) show that JVM of Windows NT has
the best score and JVM of AIX has the worst score among AIX, Sparc,
and NT. Our results meet with the results particularly in object-pair repre-
sentation for Binary Tree and Recursive Call when those have the larger
depths such as depth 2 and 6 that make those codes iterate much longer.

9. CONCLUSION

There is considerable interest in Java as a language for high perfor-
mance computing, in good part due to its portability, increasingly wide-
spread use, and its support for distributed computation; the latter point is
especially significant as internet and grid-based computing becomes more
widespread. Hence, it is important to investigate, in the context of high
performance computing applications, the object-based parallelism which is
the natural idiom of object-oriented Java programming. We have shown
our work makes advances in the area of detecting aliased references stati-
cally in a Java environment. This contributes to the effective use of Java
in HPC by: making it possible to exploit instruction level parallelism; to
detect side effects, and avoid their adverse effects of; to better analyze
programs for parallelism and distribution, and thereby context switch
overhead, and communication overhead for distributed and cluster com-
puting. Our alias analysis among objects in Java is applicable to the
parallelizing of Java by detecting possible side effects.

We have presented a reference-set alias representation for Java, and we
showed that it is a better representation for Java than earlier representa-
tions developed for C++, because it takes into account the fact that Java
has only object references, rather than arbitrary pointers. Further, we have
proposed our flow sensitive alias analysis algorithm by adapting existing
alias analyses (6, 20) for C/C++ to for Java. The algorithm is more precise
and efficient than previous work (6, 10, 19, 20, 26, 39, 49) based on the reference-set
alias representation and its associated type table and data propagation
rules. Besides, the algorithm is the safe alias analysis including exception
statements.

By proposing our additional type information, and by combining
an alias analysis algorithm with that type information, we can detect
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shadowed variables which cannot be detected through conventional means
or overridden methods. This algorithm detects more precise alias sets
for both shadowed variables and overridden methods. Our algorithm
also regards a constructor as a procedure in order to analyze shadowed
variables so that calling graph contains constructors to compute the alias
set of each constructor by using our proposed equation. Its efficiency is not
negatively affected even though the precision is improved by adding extra
type information. Our work is the first implementation of alias analysis
with type inference for Java. The type information and rules for reference-
set representation presented in this paper are applicable to C++. In the
complexity analysis, we have shown that our reference-set alias representa-
tion is more precise and efficient for the case of type inference and data
propagation rules combined together in the alias analysis algorithm. By
using a structural traversal of a CFG, the algorithm achieves additional
efficiency, surpassing previous work. Further, a possible multithreading
solution has been proposed.

Finally, we have built our alias algorithm in Java with the JavaCC
parser and JTB syntax tree builder and executed benchmark codes. The
benchmark does not have the indirect object relations that may generate
imprecise aliases in the object-pair relations so that we only focus on the
running time. The first experimental result on Dynamic CG shows that our
dynamic type determination is as safe as object-pair representation. The
second result on Ray Tracer shows that our alias analysis does not show
any improvement of efficiency in regular application codes which do not
contain many aliases. The third result on Exception Block shows that our
analysis succeeds in analyzing exceptions in Java. But, it also shows that if
a code does not have references with many dynamic types and aliases, our
analysis might be less efficient than object-pair representation. The final
result on Binary Tree and Recursive Call shows that if a code does have
references with many aliases and objects generation, our analysis should be
much more efficient than object-pair representation.
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