
Softw Syst Model (2014) 13:301–321
DOI 10.1007/s10270-012-0250-3

THEME SECTION PAPER

GReTL: an extensible, operational, graph-based transformation
language

Jürgen Ebert · Tassilo Horn

Received: 4 April 2011 / Revised: 6 March 2012 / Accepted: 13 April 2012 / Published online: 8 May 2012
© Springer-Verlag 2012

Abstract This article introduces the graph-based transfor-
mation language GReTL. GReTL is operational, and trans-
formations are either specified in plain Java using the GReTL
API or in a simple domain-specific language. GReTL follows
the conception of incrementally constructing the target meta-
model together with the target graph. When creating a new
metamodel element, a set-based semantic expression is spec-
ified that describes the set of instances that have to be created
in the target graph. This expression is defined as a query on
the source graph. GReTL is a kernel language consisting of a
minimal set of operations, but it is designed for being extensi-
ble. Custom higher-level operations can be built on top of the
kernel operations easily. After a description of the founda-
tions of GReTL, its most important elements are introduced
along with a transformation example in the field of metamod-
el integration. Insights into the design of the GReTL API are
given, and a convenience copy operation is implemented to
demonstrate GReTL’s extensibility.

Keywords Model transformation · Graph transformation ·
Metamodel merging

1 Introduction

With the advent of model-driven development (MDD
[1–3]), models and modeling languages have gained

Communicated by Dr. Andy Schürr and Arend Rensink.

J. Ebert · T. Horn (B)
Institute for Software Technology, University Koblenz-Landau,
Koblenz, Germany
e-mail: horn@uni-koblenz.de

J. Ebert
e-mail: ebert@uni-koblenz.de

considerable attention. Models are viewed as the key soft-
ware development artifacts which are created, analyzed,
refactored, versioned, and maintained like code, the latter
being just viewed as yet another model.

Models are written in modeling languages which are
defined by metamodels. They are instances of these meta-
models in the sense that models of a given modeling lan-
guage have to conform to the language’s metamodel in their
abstract syntax.

Modeling languages are being developed and adapted to
optimally fit to given domains, which lead to lots of domain-
specific languages (DSLs [4]), each of which is defined by its
own metamodel, concrete syntax, and semantics. With this
new trend, the area of metamodel engineering has emerged,
which treats metamodels as first class entities and deals with
their design, refactoring, versioning, and maintenance.

Several graph and model transformation languages pro-
vide a well-established means for transforming models and
are widely used for automating transformation chains in the
course of MDD. Consequently, metamodel engineering gen-
erates the need for metamodel transformation languages,
which support the transformation of metamodels including
the migration of their instance models.

In this paper, we introduce the Graph Repository Transfor-
mation Language (GReTL) [5], an operational graph-based
transformation language that allows the transformation of
a source metamodel to a target metamodel by a sequence
of create-operations, thereby also migrating existing source
instances into corresponding target instances. In this respect,
GReTL combines metamodeling with model transformation.
If the target metamodel already exists, GReTL can also be
used to transform only the instances.

In essence, GReTL is a kernel language defined by a Java
API that provides a minimal set of elementary transforma-
tion operations for constructing metamodels and conforming

123

302 J. Ebert, T. Horn

models in parallel. These API operations are used as transfor-
mation objects referencing the relevant context information.
Since the corresponding transformation classes follow the
command pattern [6], they can be manipulated and combined
to higher-level transformations easily. Thus, it is possible and
even encouraged to develop packages of suitable transforma-
tions for given (domain-specific) languages by extending and
combining the set of transformation operations provided by
the API. An example of such an extended transformation
operation is illustrated in Sect. 4.3.

The usage of GReTL as a Java API enables exploita-
tion of all Java facilities for the definition and structur-
ing of complicated transformation tasks. Thus, Java can
be used to perform extensive intermediate computations to
derive powerful comprehensive transformations for larger
tasks. For simpler cases, also a concrete DSL for notat-
ing GReTL transformations is provided, where transforma-
tions are composed as sequences of single transformation
operations.

GReTL was developed for the TGraph technological
space [7,8], where typed, attributed, and ordered directed
graphs are used to represent models. In TGraphs, edges are
first class elements. They are typed and attributed and can
be traversed in both directions. Moreover, there is an order
between all vertices and edges in a TGraph, and for each ver-
tex, there is a local order between all incident edges. This fact
entails useful properties of TGraphs and makes them ame-
nable for describing global interrelationships between model
elements.

GReTL is by no means a rule-based graph transformation
language with match–replace semantics. GReTL transforma-
tions are usually performed out-place, they are guaranteed to
terminate, and running a transformation twice on the same
source model produces identical target models.

GReTL’s conception is to construct a new target metamod-
el and thereby specify the target graph in terms of extensions
(i.e., instance sets) of the new target metamodel’s constit-
uents. Since GReTL builds on the formally defined graph
query language GReQL [9] for defining these extensions, it
is mathematically well founded.

The usage of GReTL as a transformation language and
its capabilities are explained along a typical task from meta-
model engineering, namely metamodel merging. Given two
different but related domain-specific languages from the tele-
communication domain, we show how their metamodels may
be merged into one using GReTL operations, thereby also
fusing corresponding pairs of instances of both languages.
Applications like this occur when models developed con-
currently by different partners in different DSLs have to be
merged to enable further cooperative work.

Although GReTL is still under development, the kernel
of the language described in this paper can be assumed to
be stable. First experiences with GReTL in a architecture

migration project1 have shown that the approach is applica-
ble in practice for transforming graphs consisting of several
millions of elements. Furthermore, the live contests of the
Transformation Tool Contest (TTC) 20102 and 20113 could
be won. In 2011, the GReTL solution for the TTC reengi-
neering case [10,11] submitted by the second author has won,
and GReTL also scored as the second-best solution after the
reference solution for the TTC compiler optimization case
[12,13]. The solutions can be reproduced online using the
excellent SHARE research cloud [14,15].

The remainder of this article is organized as follows:
Sect. 2 describes the TGraph technical space with its com-
positional semantics and gives a first sketch of the con-
ception behind GReTL. In Sect. 3, the use of the GReTL
DSL is explained along a non-trivial example of merging
two domain-specific modeling languages. Section 4 intro-
duces the GReTL Java framework and its use, describes the
execution semantics of GReTL, and exemplifies its extensi-
bility by defining a custom higher-level transformation oper-
ation. Section 5 compares GReTL to other transformation
languages and Sect. 6 concludes the article.

2 Foundations

GReTL is the transformation language of the TGraph techno-
logical space [8], where models are represented using a very
general and expressive kind of graphs. This section intro-
duces the concept of TGraphs, their schemas, and the relation
between schemas and their corresponding graphs.

2.1 Overview

GReTL is defined on typed, attributed, and ordered directed
graphs (TGraphs). In this article, the ordering is ignored.

A TGraph metamodel (grUML schema) specifies sets of
conforming TGraphs (a graph class) by defining the abstract
syntax of graph instances. grUML (graph UML) is a large
subset of UML class diagrams4 comprising only elements
that can be given a graph semantics [16].

Figure 1 depicts a TGraph that conforms to the grUML
schema in Fig. 2. This graph is used as one of the source
graphs for the example transformation discussed in Sect. 3.
It is the abstract syntax graph of a model written in BEDSL
(Fig. 4 on page 307), a domain-specific modeling language
which will be explained in more detail, later.

1 http://www.soamig.de.
2 http://planet-research20.org/ttc2010.
3 http://planet-research20.org/ttc2011.
4 The readers are expected to have basic knowledge about UML class
diagrams.

123

http://www.soamig.de
http://planet-research20.org/ttc2010
http://planet-research20.org/ttc2011

GReTL: extensible, operational, graph-based transformations 303

Fig. 1 A TGraph conforming to the schema in Fig. 2

Fig. 2 A schema (source schema) conforming to the metaschema in
Fig. 3

In Fig. 1, the TGraph properties (except ordering) are
clearly visible. All elements have a type, the edges are
directed, and the vertices are attributed. For example, ver-
tex v1 has the type Entity, and its name attribute is set
to the string “Cisco”. It is connected to vertex v5 of type
ReferenceAttribute via the edge e3 of type HasAttribute.
The name attribute of v5 is set to “HasConfig”. In this exam-
ple, there are no attributes on the edges.

Figure 2 shows the schema defining the graph class
BedslGraph. The vertex types (VertexClasses) are modeled
as UML classes, and edge types (EdgeClasses) are mod-
eled as associations. The incidences between associations
and classes prescribe the relation between the edge types
and the types of their start and end vertices for instance
graphs. An additional UML class with a <<graphclass>>
stereotype specifies the type of the graph, BedslGraph. Clas-
ses and associations may contain attributes specified in the
usual UML style, e.g., by using association classes for attrib-
uted associations. They prescribe the attribute names and
the value domains for instance elements. Supported attribute
types (Domains) include all common basic types (booleans,

numbers, strings, etc.), enumerations and records (also spec-
ified in the schema), and homogenous collections of arbitrary
other domains (lists, sets, maps). Both vertex and edge clas-
ses may specialize other vertex or edge classes, respectively.

2.2 Definitions

Unordered TGraphs consist of five components: (i) a non-
empty finite set V of vertices, (ii) a finite set E of edges,
(iii) an incidence function φ assigning a start and an end ver-
tex to each edge, (iv) a type function t ype assigning a type
to each vertex and edge, and (v) an attribute function value
assigning to each vertex and edge a set of attribute-value
pairs (i.e., a finite partial function from attribute identifiers
to values), according to the following definition:

Definition 2.1 (Unordered TGraph) Let

– V ertex be a universe of vertices,
– Edge be a universe of edges,
– T ypeI d be a universe of type identifiers,
– Attr I d be a universe of attribute identifiers, and
– V alue be a universe of attribute values.

Then, G =(V, E, φ, t ype, value) is an unordered TGraph,
iff

(i) V ⊆ V ertex is a non-empty finite vertex set,
(ii) E ⊆ Edge is a finite edge set,

(iii) φ : E → V × V is an incidence function assigning
a start and target vertex to each edge,

(iv) t ype : V ∪ E → T ypeI d is a type function, and
(v) value : V ∪E → (Attr I d � �→ V alue) is an attribute

function, where ∀x, y ∈ V ∪ E :
t ype(x) = t ype(y) �⇒ dom (value(x)) = dom
(value(y)).

123

304 J. Ebert, T. Horn

Fig. 3 grUML metaschema, describing all schemas such as in Fig. 2

2.3 Schemas and their constituents

The structure of grUML schemas is defined by the
grUML metaschema (Fig. 3), which contains four important,
non-abstract constituents5 that define a schema S:
(1) VertexClasses, (2) EdgeClasses, (3) Attributes,
and (4) specialization hierarchies. Since an EdgeClass
uniquely determines two IncidenceClasses and an
Attribute uniquely determines a Domain, the latter are sub-
sumed as parts of the former. All other elements of the meta-
schema are not essential for conforming schemas.

These four constituents have the following properties:
1. A VertexClass has a qualified name and may be

abstract. With reference to Fig. 2, Entity is a non-abstract
VertexClass where the qualifiedName is set to “Entity”,
and Attribute is an abstract VertexClass with
qualifiedName “Attribute”.

2. An EdgeClass also has a qualified name and may be
abstract. It owns exactly two IncidenceClasses holding
the association end properties (multiplicities, role name,
aggregation kind) with respect to the VertexClass it ends
at. The aggregation kind may be NONE, SHARED, or
COMPOSITE. In Fig. 2, References is an EdgeClass
between the vertex classes ReferenceAttribute and
Entity where the endpoints are IncidenceClass objects
whose min and max multiplicity and roleName attributes
are set accordingly.

5 Some metaschema elements, e.g., GraphClass, Schema, and
Package, are used for structuring grUML diagrams and are not dis-
cussed further in this paper.

3. An Attribute has a name, an optional default value, and
exactly one associated Domain, and it belongs to exactly
one vertex or edge class. In Fig. 2, value is an Attribute of
the VertexClass with the qualifiedName “SimpleAttrib-
ute” and with name set to “value” and no defaultValue.

4. There are two separate (acyclic) specialization
hierarchies defined by SpecializesVertexClass and
SpecializesEdgeClass. In Fig. 2, the specializations
from Attribute to SimpleAttribute and Reference-
Attribute are both of type SpecializesVertexClass, and
there are no specializations among edge classes.

With these constituents, a schema describes the avail-
able vertex types (as VertexClasses) and edge types (as
EdgeClasses), and for each edge type, the valid start and
end vertex types including their association end properties
are defined. Furthermore, the schema specifies the attributes
of all element classes, i.e., vertex or edge classes. The special-
ization hierarchies imply (transitive) inheritance of attributes
and allowed incidences from superclasses to subclasses.

The implementation of the TGraph approach (JGraLab)
guarantees the conformance of a graph to its schema. Like-
wise, the implementation guarantees the conformance of a
schema to the grUML metaschema.

2.4 Defining a graph

There may be an infinite number of instance graphs con-
forming to a given grUML schema S. But, assuming S is
the target schema of a model transformation, one specific

123

GReTL: extensible, operational, graph-based transformations 305

instance graph has to be created as target graph for a given
source graph.

To describe such a specific TGraph G conforming to S,
all five components (i)–(v) of G (according to Def. 2.1) have
to be defined. We do this in a compositional way by defining
the extensions (instance sets) of the four respective schema
constituents (1)–(3) of S respecting (4).

Let V ertexClass and EdgeClass be the sets of vertex
and edge classes defined by a schema S, let subtypes be a
reflexive function that returns all subclasses for a given class,
and let G be any graph conforming to S.

Then, the extensions in G of the constituents of S are sim-
ple mathematical objects, namely sets and functions:

1. There is a set Vc ⊆ V for every vertex class c ∈
V ertexClass.

2. There is a set Er ⊆ E for every edge class r ∈
EdgeClass.
Assuming that r connects a vertex class c to a ver-
tex class c′, there is a function φr : Er → V × V ,
which assigns a tuple (u, w) to every e ∈ Er with
t ype(u) ∈ subtypes(c) and a t ype(w) ∈ subtypes(c′).

3. There is a function valA : ∪c′∈subtypes(c)Vc′ → V alue
for every A ∈ Attribute of c ∈ V ertexClass ∪
EdgeClass.
If the attribute A has the domain D and assuming that
D denotes a set TD ⊂ V alue, valA assigns only values
from TD .

For example, the extension of the vertex class Reference-
Attribute in the graph in Fig. 1 is VRef erenceAttribute =
{v5, v7, v12}, the extension of the edge class HasSupertype
is EHasSupertype = {e1, e7, e8, e9, e10}, and the extension
of the value attribute of the SimpleAttribute vertex class is
valSimpleAttribute.value = {v3 �→ “1299 EUR”}.

Given these sets and functions, the corresponding TGraph
is uniquely determined by G = (V, E, φ, t ype, value) with

(i) V =
⋃

c∈V ertexClass
Vc, (i i) E =

⋃
r∈EdgeClass

Er ,

(i i i) φ =
⋃

r∈EdgeClass
φr , (iv) t ype : V ∪ E → T ypeI d

with ∀v ∈ V : t ype(v) = c ⇐⇒ v ∈ Vc

∧∀e ∈ E : t ype(e) = r ⇐⇒ e ∈ Er

(v) value : V ∪ E → (Attr I d � �→ V alue)

with ∀x ∈ V ∪ E : value(x)(A) = t ⇐⇒ valA(x) = t

These definitions are compatible with the model-theoretic
semantics of grUML, since the set of all TGraphs conforming
to a schema S equals the set of TGraphs composable from
extensions of the schema constituents [16].

2.5 Specifying extensions

Archetypes and images In GReTL, the extensions of vertex
classes, edge classes, and attributes are specified by so-called
semantic expressions which are assigned to the create-opera-
tions of the respective metamodel constituents as parameters,
e.g., a vertex class with three vertices may be described by
the expression {1, 2, 3}.

The semantic expressions define archetype sets for vertex
and edge classes. For every member of such a set (an arche-
type), a new element is created in the target graph. Thus,
every newly created vertex or edge is an image of exactly
one archetype. It has to be stressed that there is no restriction
on what may be chosen as archetype. Although mostly source
graph elements are used, archetypes may as well be primi-
tive values (numbers, strings) or composite values thereof
(tuples, sets, lists). This also enables the use of GReTL to
build new graphs without any source graph at all.

More precisely, the semantic expressions define

1. for each set Vc a set of vertex archetypes v,
2. for each set Er a set of triples (e, u, w) denoting an edge

archetype e together with two vertex archetypes u and w

of its start and end vertex,
3. for each attribute function valA a function assigning a

value t to an archetype x , with the constraints that t has to
conform the domain (attribute type) of A, and the image
of x is a target graph element whose type defines or
inherits the attribute A.

Thus, any target graph element is the image of exactly one
archetype.

Maps During the creation of the images for a target schema
element class X , two fine-grained functions (img_X from
archetypes to images and its inverse function arch_X from
images to archetypes) are constructed implicitly. The func-
tions for the element class X also include the mappings of
all functions corresponding to an element class Y , iff Y is a
specialization of X . Therefore, we can also say that an arche-
type is an arbitrary object that unambiguously identifies some
target graph element within its type hierarchy.

These functions are implemented according to the
java.util.Map interface. These maps may be accessed
by other transformation operations in their semantic expres-
sions. They may also be persisted to keep the information for
traceability purposes.

Because the functions img_X and arch_X are viewed as
maps, they are accessed using methods compatible with the
Map interface, i.e., containsKey returns true, iff the map
contains an entry for the specified key, and keySet returns a
set view of the keys contained in the map.

123

306 J. Ebert, T. Horn

GReQL In GReTL operations, the semantic expressions
are described using the Graph Repository Query Language
GReQL [9]. GReQL is a sophisticated, dynamically typed
graph query language based on set theory and predicate log-
ics, giving access to all TGraph properties and to the schema
information.

An important kind of composite expressions in GReQL
are from-with-report comprehensions as used in the follow-
ing example query:

1 from e: V{ Entity } , a: V{ Attribute }
2 with e.name = "Cisco7603"
3 and e −−>{HasSupertype}∗ −−>{HasAttribute} a
4 reportSet a, a.name end

This query delivers a set of tuples, where the first compo-
nent is an Attribute vertex and the second component is the
value of that Attribute’s name. The reported attributes are
restricted to those contained by an Entity named “Cisco7603”
and all its supertypes, i.e., those attributes which are reach-
able by traversing a path consisting of an arbitrary number
of HasSupertype edges in forward direction followed by
exactly one HasAttribute edge. When run on the source
graph of Fig. 1, the query returns the tuples (v3, “price”),
(v5, “HasConfig”), (v7, “HasConfig”), and (v12, “DoesNot-
WorkWith”).

This query also highlights one of GReQL’s most power-
ful features, namely regular path expressions [9] which allow
for describing complex correlations between vertices using
regular operators (sequences, options, alternatives, and iter-
ations). In the example query, the ∗ denotes the transitive
closure with respect to edges of type HasSupertype in the
outgoing direction with respect to the Entity vertex bound
to e.

2.6 Creating the target graph

The conception of GReTL is to create the new target schema
operationally, thereby specifying the extensions of each
schema element in order to define the target graph. For
that purpose, GReTL supplies a set of elementary create-
operations, one for each kind of constituent of a grUML
schema:

(1) CreateVertexClass, (2) CreateEdgeClass, and
(3) CreateAttribute.

These operations create the constituents of the target
schema and their extensions, the latter being given as a set- or
function-valued GReQL semantic expression, respectively.
Besides that, the hierarchy information has to be given by
additional operations:

(4) AddSuperClass or AddSubClass.
For example, to create a new vertex class Property in

the target schema, with one Property vertex per Attribute

vertex computed above, one could write the following state-
ment using the GReTL DSL:

1 CreateVertexClass Property
2 <== #bedsl# from e: V{ Entity } , a: V{ Attribute }
3 with e.name = "Cisco7603"
4 and e −−>{HasSupertype}∗ −−>{HasAttribute} a
5 reportSet a end;

Here, line 1 describes the necessary syntactic parame-
ters (the name Property) to create a vertex class accord-
ing to Fig. 3, and lines 2–5 contain the semantic GReQL
expression which has to be evaluated on the graph with
alias bedsl.

Using the Java API, the same effect would be achieved
by the creation and execution of a CreateVertexClass
object:

1 VertexClass property =
2 new CreateVertexClass(context , "Property " ,
3 "#bedsl# "
4 + "from e: V{ Entity } , a: V{ Attribute } "
5 + "with e.name = ’Cisco7603’ "
6 + " and e −−>{HasSupertype}∗ −−>{HasAttribute} a "
7 + "reportSet a end ") . execute () ;

Here, the (single) syntactic parameter follows the context
parameter in line 2, and the semantic expression is given
as string as the last parameter in lines 3–7. Both forms of
operations, including their parameters and conventions, are
introduced in more detail in the following sections.

3 GReTL for schema merges

As stated in Sect. 1, the usage of models in software develop-
ment can be considered a standard. During the development
of a system, a multitude of models are created on differ-
ent layers of abstraction and focusing on different aspects.
Today, domain-specific modeling languages are widely used
for code generation purposes and to restrict the available con-
cepts to those that are supported by a domain.

In this section, the elementary GReTL transformation
operations are introduced in the context of a schema merg-
ing scenario. Two graphs conforming to two different DSLs
(defined by their schemas) are given, and the transforma-
tion creates an integrated schema and merges the elements
of these source graphs into one target graph.

3.1 A schema merge use case

Comarch6 is a Polish IT company that is specialized in inno-
vative solutions for the telecommunication industries and
uses different domain-specific modeling languages during

6 http://www.comarch.com.

123

http://www.comarch.com

GReTL: extensible, operational, graph-based transformations 307

Fig. 4 The source BEDSL model of Fig. 1 in concrete syntax

their development process. Two of them will be considered
in a simplified form in this section [17].

BEDSL The Business Entities Domain-Specific Language
(BEDSL) is a platform-independent modeling language,
abstracting from any specific technology and focusing on
representing business objects, like entities their attributes and
relationships, in a generic manner.

The description is done on the instance level, but the enti-
ties are only placeholders of objects in the context of product
management and decision support. A simple BEDSL model
in a concrete syntax is shown in Fig. 4.

The BEDSL schema describing the abstract syntax has
already been depicted in Fig. 2 on page 303: An Entity has a
name and may have an arbitrary number of Attributes. Each
Attribute has a name, and it may either be a SimpleAttribute
carrying a value or a ReferenceAttribute referencing
another Entity. At last, an Entity may be specialized, but
only single inheritance is supported. Figure 1 on page 303
shows the abstract syntax graph corresponding to the model
of Fig. 4. It is one of the two source graphs used by the
example integration transformation in the following.

Figure 4 models an Entity Cisco with one subtype
Cisco7603. The Cisco entity has a ReferenceAttribute
HasConfig. It specifies, that a Cisco entity has a CiscoCon-
figuration. Likewise, the entity Cisco7603 has a CiscoCon-
figuration7603, which is a subtype of CiscoConfiguration.
For the Cisco subtype Cisco7603, its price of 1299 EUR
is given by the SimpleAttribute price, and an additional
ReferenceAttribute states that this entity does not work with
HotSwappable CiscoCards. The Entity CiscoCard has three
subtypes: HotSwappable, SPAInterface, and Supervisor.

PDDSL The other domain-specific language used is the
Physical Device Domain-Specific Language (PDDSL). It
is used to describe possible connections between physical
device elements for a concrete customer in the context of con-
crete planning of network infrastructures. Here, the descrip-
tion is also on the instance level, but concrete sellable devices
are addressed. An example model in a tree-like representa-
tion is depicted in Fig. 5.

The PDDSL schema is shown in Fig. 6.

Fig. 5 A sample PDDSL model presented as tree

Fig. 6 The PDDSL schema

Fig. 7 The PDDSL source graph

Each PDDSL Element has a name. A Chassis has a
Configuration, which may have one or many Slots. Each
Slot contains exactly one Card.

Figure 7 shows the abstract syntax graph corresponding
to the PDDSL model of Fig. 5. In this graph, the Chassis
Cisco has a Configuration CiscoConfiguration, which has
two Slots, CiscoSlot and CiscoSlot2. The former has one
Card CiscoCard, and the latter has another card CiscoCard2.

The two modeling languages describe different aspects of
the same things on different levels of abstraction. While the
BEDSL model describes relationships between business enti-
ties in terms of arbitrary reference attributes and allows for
arbitrary simple attributes, the PDDSL model specifies how
concrete elements may be plugged together to gain a work-
ing configuration. In general, different people with different

123

308 J. Ebert, T. Horn

Fig. 8 The target schema the transformation should construct

technical backgrounds and different viewpoints are respon-
sible for creating the models.

3.1.1 Merging BEDSL and PDDSL

In the following, we derive a GReTL integration transfor-
mation that merges the two schemas and graphs to gather a
complete view on all relevant artifacts of the domain with-
out duplicating or losing information. The intention behind
this merging is to achieve an amalgamation of both views,
the product management view and the installation planning
view.

A target schema which fulfills this intention is visualized
in Fig. 8. The transformation exemplified in this section will
construct this target schema on its own. The grUML diagram
given here for explanation purposes was generated from the
target schema constructed by the transformation, and not the
other way round.

In the target schema, the PDDSL schema (printed with
gray background color) is integrated unchanged, except for
leaving out the name attribute of Element which is inher-
ited from Entity here. The rationale for this decision is that
PDDSL is the more specific schema, i.e., the different kinds
of network devices and their relationships should preferably
be modeled with PDDSL instead of the more lax BEDSL.
This also adds the requirement that the transformation should
identify entities in the BEDSL graph that actually model net-
work devices and represent them using one of the PDDSL
types in the target graph. In this example, we assume that
entities whose name equals some PDDSL element actually
represent the same thing, but in general, this identification
may be much more sophisticated.

The BEDSL models may also contain entities that are
unrelated to network devices and cannot be represented
appropriately as an instance of Element’s subclasses; thus,
the Entity vertex class is also present in the target schema.
Because entities that the transformation identified as a
network device, and thus are represented using a sub-
class of Element in the target graph, might have taken

part in HasSupertype relationships or were connected to
Attributes, Element must be a specialization of Entity in
order not to lose this information. One could argue that the
abstract vertex class Element is not needed and Chassis,
Configuration, Slot, and Card should specialize Entity
directly. This is a justified claim, but by keeping Element
one can distinguish network devices from other entities sim-
ply by testing if it is an Element instance.

3.2 The schema merge transformation

As described in Sect. 2, the conception of GReTL is to spec-
ify the transformation’s target schema in conjunction with
the extensions of the individual schema element instances
which have to be created in the target graph. This means
that GReTL combines modeling with transformation. The
general guidance to define GReTL transformations is to
think about metamodeling the target domain in terms of a
class diagram. Before an association (i.e., an edge class)
can be defined using CreateEdgeClass, its connecting ver-
tex classes have to be created using CreateVertexClass.
Before adding attributes to the classes and associations using
CreateAttribute, it makes sense to define the type hierar-
chies using AddSubClass, because specialized classes and
associations inherit their parents’ attributes.

All elementary transformation operations in the schema
merge transformation example are expressed in GReTL’s
simple DSL. The use of the Java API in order to extend the
language with a higher level operation will be discussed in
Sect. 4.

Defining the transformation Any transformation starts by
declaring its name.

1 transformation BedslPddslMerge;

Declaring the source graphs The two source graphs are
loaded from files, and to each of them a unique alias is

123

GReTL: extensible, operational, graph-based transformations 309

assigned that can be used throughout the transformation to
refer to it.

2 AddSourceGraph #pddsl# "pddsl−graph. tg " ;
3 AddSourceGraph #bedsl# "bedsl−graph. tg " ;

Usually, the setting of source graphs is done externally by a
GReTLRunner class that provides a convenient command
line interface and allows for batch processing transforma-
tions.

Creating a vertex class and vertices The first class created
is the abstract vertex class Element.

4 CreateAbstractVertexClass Element;

Since abstract classes do not have instances, the
CreateAbstractVertexClass operation does not have a
semantic expression.

The next operation creates the vertex class Chassis orig-
inating from the PDDSL schema.

5 CreateVertexClass Chassis
6 <== #pddsl# from c : V{Chassis} reportSet c.name end;

The semantic expression is evaluated on the PDDSL graph
as indicated by the pddsl alias and evaluates to the set of
chassis names. These string values are used as the arche-
types of new chassis vertices in the target graph. For each
archetype, a new chassis vertex (its image) is created in the
target graph. The functions from archetypes to images and
the inverse functions are automatically saved by the trans-
formation framework. In all following semantic expressions,
these functions are accessible via the maps img_Chassis
and arch_Chassis. In later operation calls, we can then
access any target graph chassis vertex using the function
img_Chassis applied to a source model chassis name.

Creating vertices When looking at the PDDSL graph in
Fig. 7, the target graph now consists of a single chassis ver-
tex, which is the image of the string “Cisco”, the value of
the name attribute of vertex v1. Note that “Cisco” is also
the name of vertex v1 in the BEDSL model, and thus can
be identified as a chassis. Furthermore, the BEDSL graph’s
Cisco7603 entity v2 in Fig. 1 can be considered a chassis too,
because it is a subtype of the entity v1, for which we know
the type from the PDDSL graph.

The following operation call creates a target graph chassis
vertex for any BEDSL entity standing in a subtype relation-
ship to another entity for which we know it is a chassis. The
CreateVertices operation only works on the instance level
and requires the existence of the given vertex class Chassis
which was created by the previous operation.

7 CreateVertices Chassis
8 <== #bedsl# from e : V{ Entity } , se : e <−−{HasSupertype}+
9 with containsKey(img_Chassis, e.name)

10 and not containsKey(img_Chassis, se.name)
11 reportSet se.name end;

The variable e iterates over all entities, and se iterates
over e’s subtypes. The predicate in line 9 restricts e to those
entities already identified as chassis by the last operation, and
the predicate in line 10 ensures that se’s name has no image
yet. For all bindings of se, for which the predicates in the
with-part hold, the value of the name attribute is chosen as
an archetype.

With respect to the BEDSL example graph (Fig. 1),
the only archetype contained in the result set is the string
“Cisco7603” for which a new target graph chassis is cre-
ated. Again, the mappings are added to img_Chassis and
arch_Chassis. This means that the names of BEDSL enti-
ties that we can identify as being a chassis because of
their specialization relationships also resolve into a target
graph chassis vertex when applied to the img_Chassis
function.

Further operations The exact same idiom of a Create-
VertexClass operation followed by a CreateVertices oper-
ation, where the former creates a vertex class in the target
schema and creates vertices for archetypes in the PDDSL
graph and the latter creates vertices for BEDSL entities
related by subtype relationships is applied for Configuration,
Slot, and Card, as well.

The next operation registers the four target schema vertex
classes Chassis, Configuration, Slot, and Card as special-
izations of Element.

12 AddSubClasses Element Chassis Configuration Slot Card;

This operation has no direct effect on the instance level.
However, this specialization relationship specifies that the
image and archetype functions of Element are the union of
the respective functions of its subclasses. This requires that
in each type hierarchy, all archetypes must be disjoint and
the GReTL framework will throw an exception if a transfor-
mation violates this contract.

Creating an edge class and edges The next operation copies
the HasConfig edge class into the target schema. Instances
have to start at a Chassis vertex and end at a Configuration
vertex. Any chassis must have exactly one configuration and
vice versa. The new edge class is defined with aggregation
semantics, where the chassis is the whole and the configura-
tion is the part. This schema information is added in textual
form to the respective syntactic part in line 14 of the create-
operation:

123

310 J. Ebert, T. Horn

13 CreateEdgeClass HasConfig
14 from Chassis (1 ,1) to Configuration (1 ,1) role config aggregation shared
15 <== #pddsl# from e: E{HasConfig}
16 reportSet t , t [0] , t [1] end
17 where t := tup(startVertex (e) .name, endVertex(e) .name) ;

The semantic expression for the CreateEdgeClass oper-
ation has to result in a set of triples. The first component in
each triple is the archetype of a new edge that will be cre-
ated in the target graph as its image. The second and third
components are the archetypes of the start and the end vertex,
respectively. Here, they are the names of the original PDDSL
source graph chassis and configuration vertices. Internally,
the CreateEdgeClass operation looks up the correspond-
ing images in img_Chassis and img_Configuration and
creates new edges connecting them.

Creating edges The BEDSL graph might also contain sim-
ilar has-configuration relationships modeled as Reference-
Attributes named HasConfig. The next operation identifies
those and creates further HasConfig target graph edges.

18 CreateEdges HasConfig
19 <== #bedsl# from ra : V{ReferenceAttribute }
20 with ra .name = "HasConfig"
21 and not containsKey(img_HasConfig, t)
22 reportSet t , t [0] , t [1] end
23 where t := tup(theElement(<>−−{HasAttribute} ra) .name,
24 theElement(ra −−>{References }) .name) ;

The variable ra iterates over all ReferenceAttributes.
The predicate in line 20 restricts those to reference attributes
with name “HasConfig”, and the predicate in line 21 enforces
the bijection property of img_HasConfig. If the previous
operation already created a HasConfig edge for an arche-
type tuple (Chassis-name, Configuration-name) and thus this
tuple is in the domain of the img_HasConfig function, then
for the tuple (Entity1-name, Entity2-name), consisting of the
name of the entity containing the reference attribute ra and
the name of the entity referenced by ra, no new HasConfig
edge must be created.

Further operations The same idiom of one CreateEdge-
Class followed by a CreateEdges operation call is applied
in the same manner for the edge classes HasSlot and
HasCard with the respective multiplicities.

Up to this point, the target schema equals the PDDSL
schema (without attributes) and the target graph contains
all elements of the PDDSL graph and additional Chassis,
Configuration, Slot, and Card vertices transformed from
BEDSL entities which could be identified as belonging to
one of those four types because of subtype relationships in
the BEDSL graph.

Besides those entities identified by their names, the
BEDSL graph may also contain entities that do not belong
to one of these four types. The next operation creates the

Entity vertex class in the target schema and vertices for these
leftovers in the target graph.

25 CreateVertexClass Entity
26 <== #bedsl# from e : V{ Entity }
27 with not containsKey(img_Element, e.name)
28 reportSet e.name end;

As archetypes, the semantic expression selects the names
of all entities in the BEDSL graph that are not already used
as an archetype of some target graph Element vertex.

Next, we make Entity the superclass of Element.

29 AddSuperClass Element Entity ;

Creating an attribute and setting attribute values Having
created the vertex and edge classes, the attributes of these
classes may be defined and the attribute values of their ele-
ments can be assigned.

The following operation creates the name attribute of type
String for the Entity class. The semantic expression has to
define a function that assigns a value to all Entity archetypes.
For each of those archetypes, the corresponding image in
the target graph (an Entity vertex) gets the attribute value
assigned.

30 CreateAttribute Entity .name : String
31 <== #bedsl# from en : keySet(img_Entity)
32 reportMap en −> en end;

Because Entity is the top-level class of the created ver-
tex class hierarchy, this operation sets the names of all enti-
ties, chassis, configurations, slots, and cards in one go. Since
we chose the name attribute values as archetypes, the map
assigns each archetype to itself.

Further operations Now, we create the edge class
HasSupertype originating from the BEDSL schema.

33 CreateEdgeClass HasSupertype
34 from Entity role subType to Entity (0 ,1) role superType
35 <== #bedsl# from e : E{HasSupertype}
36 reportSet e, startVertex (e) .name, endVertex(e) .name end;

Again, for each HasSupertype instance in the BEDSL
source graph, a HasSupertype edge is created in the target
graph, starting at the image of the original start entity’s name
and ending at the image of the original end entity’s name.

The next three operation calls create the abstract Attribute
vertex class in the target schema, and one of its subclasses,
namely SimpleAttribute.

37 CreateAbstractVertexClass Attribute ;
38 CreateVertexClass SimpleAttribute
39 <== #bedsl# V{SimpleAttribute } ;
40 CreateAttribute SimpleAttribute .value : String
41 <== #bedsl# from sa : V{SimpleAttribute }
42 reportMap sa −> sa.value end;

123

GReTL: extensible, operational, graph-based transformations 311

The SimpleAttributes are copied from the BEDSL source
graph by creating a target graph SimpleAttribute for any
simple attribute in the source graph and setting the value
attribute according to the archetype values.

The ReferenceAttribute vertex class including its corre-
sponding edge classes are the last parts missing in the merged
schema.

43 CreateVertexClass ReferenceAttribute
44 <== #bedsl# from ra : V{ReferenceAttribute }
45 with not(ra .name =~ ’Has(Card| Slot |Config) ’)
46 reportSet ra end;

As archetypes for new reference attribute vertices in the
target graph, the given semantic expression selects those
BEDSL source graph reference attributes whose name does
not match the regular expression “Has(Card|Slot|Config)”,
because for those, we have already created edges of the
corresponding PDDSL types. The =~ operator tests if the
string given as first operand matches the regular expression
given as second operand. Because GReQL is implemented in
Java, the regular expressions are represented as strings that
are passed to the java.util.regex.Pattern.compile() factory
method. The API documentation of this class defines the
exact syntax of regular expressions.

The next two operations declare SimpleAttribute and
ReferenceAttribute as subclasses of the abstract Attribute
vertex class, and the name attribute declared for all Attributes
is set.

47 AddSubClasses Attribute SimpleAttribute ReferenceAttribute ;
48 CreateAttribute Attribute .name : String
49 <== #bedsl# from a : keySet(img_Attribute)
50 reportMap a −> a.name end;

The semantic expression results in a function assigning to
each Attribute archetype the value of its name attribute.
Thus, all target graph Attribute vertices get assigned the
name of their source graph counterparts.

Both simple and reference attributes have in common that
they are contained by exactly one entity. Thus, in the follow-
ing operation call, the containment is specified by declaring
the edge class’ HasAttribute target vertex class Attribute as
composite in this relationship.

51 CreateEdgeClass HasAttribute
52 from Entity to Attribute role attributes aggregation composite
53 <== #bedsl# from a : keySet(img_Attribute)
54 reportSet a, theElement(−−>{HasAttribute} a) .name, a end;

The semantic expression results in a set of triples. The
Attribute archetypes are used as archetypes for the new
edges. The target graph edges start at the image of the name
of the given attribute a’s container (some BEDSL source
graph Entity) and end at the image of a.

Finally, the edge class References from Reference-
Attribute to Entity is created.

55 CreateEdgeClass References
56 from ReferenceAttribute to Entity (1 ,1) role entity
57 <== #bedsl# from ra : keySet(img_ReferenceAttribute)
58 reportSet ra , ra , theElement(ra −−>{References }) .name end;

The ReferenceAttribute archetypes are used as arche-
types for the new edges. The edges start at the image of ra
and end at the image of the name value of the source graph
entity referenced by ra.

Summary The transformation’s final merged target graph is
shown in Fig. 9.

Summarizing on the schema level, the BEDSL and
PDDSL schemas have been merged resulting in the merged
schema shown in Fig. 8. The essence of the schema merge
is the declaration of the abstract Element vertex class orig-
inating from the PDDSL schema as a subclass of the Entity
class from the BEDSL schema. As a result, the possibility of
attributing elements is opened up also for PDDSL elements.

At the instance level, the transformation does several
actions.

1. The more specific types from the PDDSL graph are pre-
ferred. For example, there was a “Cisco” entity in the
BEDSL graph (v1 in Fig. 1), and a “Cisco” chassis in
the PDDSL graph (v1 in Fig. 7). Because both represent
the same thing, the two elements result in exactly one
Chassis vertex v1.

2. The PDDSL types of elements that occur only as entities
in the BEDSL graph have been inferred by inspecting the
HasSupertype relationships. For example, the BEDSL
entities “HotSwappable”, “SPAInterface”, and “Super-
visor” (v9, v10, and v11 in Fig. 1) have no counterpart
in the PDDSL graph (Fig. 7). However, their supertype
“CiscoCard” (v8) is known to be a Card there. Thus,
in the target graph, those three vertices are also Card
instances.

3. All information added as attributes of BEDSL entities
has been transferred into the target graph. For example,
the price of the source entity “Cisco6703” (v2 in Fig. 1)
is the price of the corresponding chassis v2 in the target
graph. Additionally, the information that this entity is
known not to work correctly with hot-swappable devices
(v9 in Fig. 1) is manifested in the target reference attri-
bute v13.

The target graph contains all information provided by the
two source graphs without any duplication. To achieve this,
the key points were the use of set- or function-valued seman-
tic expressions and the fact that archetypes can be chosen
arbitrarily. Since we used the string values assigned to the
name attributes of entities and elements as archetypes here,

123

312 J. Ebert, T. Horn

Fig. 9 The final target graph

Fig. 10 Transformations as objects

we simulated the key concept known from QVT Relations
[18] without the need of a new language construct.

4 GReTL as an extensible language

As mentioned in the introduction and in Sect. 2.6, GReTL is
implemented as a Java API, which can easily be extended.
This section introduces the overall design of the GReTL
transformation framework, describes the runtime execution
of GReTL transformations, and presents an example of
GReTL’s extensibility.

4.1 GReTL core design

The structure of the GReTL transformation framework is
depicted in Fig. 10.

Transformation is the top-level class of this framework
providing a very slim public interface consisting only of the
method execute() for executing a transformation. Addition-
ally, it declares an abstract, protected transform() method.
This method has to be overridden by concrete subclasses
where the transformation’s behavior is to be implemented.
The Transformation class is defined with a type parame-
ter T, which specifies the return type of its transform() and
execute() methods.

123

GReTL: extensible, operational, graph-based transformations 313

The elementary transformation operations CreateVertex-
Class, CreateEdgeClass, CreateAttribute, and AddSub-
Class used in the GReTL DSL example transformation
in Sect. 3 are such concrete Transformation subclasses.
The operations CreateAbstractVertexClass and AddSub-
Classes are not shown here, because they are only
convenience operations built on top of CreateVertexClass
and AddSubClass, respectively. Furthermore, even Create-
VertexClass and CreateEdgeClass are in fact composites:
they perform the target schema element construction
themselves, but create and invoke CreateVertices and
CreateEdges transformation objects for the instantiation
of vertices and edges in the target graph.

Every transformation is executed in some Context. The
context is an object that keeps track of the transformation’s
state, holds the source graphs, and manages the creation of
the target schema and the target graph. Since all state infor-
mation is managed by the transformation’s Context, a trans-
formation itself is stateless.

To invoke such a transformation, a transformation object
is instantiated and executed using the execute() method. The
constructor gets as its first parameter the context object, fol-
lowed by the schema-relevant (syntactical) parameters and
the instance-relevant semantic expression. As an example,
the following statement depicts the creation of the Chassis
vertex class and its extension and is completely equivalent to
the lines 5 and 6 of the example transformation in Sect. 3.2.:

1 VertexClass chassis = new CreateVertexClass(context , "Chassis" ,
2 "#pddsl# from c: V{Chassis} reportSet c.name end") . execute () ;

Besides the elementary transformations, also larger com-
posite transformations may be implemented directly in Java
code. As an example, the whole transformation described
in Sect. 3 could been implemented by a class extending
Transformation.

1 public class BedslPddslMerge extends Transformation<Graph> {
2 public BedslPddslMerge(Context c) { super(c) ; }
3

4 @Override protected Graph transform () {
5 VertexClass element = new CreateAbstractVertexClass(context ,
6 "Element") . execute () ;
7 VertexClass chassis = new CreateVertexClass(context , "Chassis" ,
8 "#pddsl# from c: V{Chassis} reportSet c.name end") . execute () ;
9 / / . . .

10 / / . . . other operation calls follow here . . .
11 / / . . .
12 return context .getTargetGraph () ;
13 }
14

15 public static void main(String . . . a) {
16 Context c = new Context("bedsl_pddsl .MergedSchema" , "MergedGraph") ;
17 c.addSourceGraph("bedsl " , BedslSchema. instance () . loadGraph(a[0])) ;
18 c.addSourceGraph("pddsl " , PddslSchema. instance () . loadGraph(a[1])) ;
19 GraphIO.saveGraphToFile(a[2] , new BedslPddslMerge(c) .execute ()) ;
20 }
21 }

Here, the sequence of operations is specified in the
transform() method (lines 4–13). The type parameter of the

Transformation class is set to Graph, and the transform()
method returns the target graph.

For convenience, also a main() method (lines 15–20) is
shown, which gets the source BEDSL and PDDSL graph
files as its first and second parameter and the file name for
the target graph as its third parameter. It creates a context
object, which receives the qualified name of the schema to
be created and that schema’s graph class name. Then, the two
source graphs are assigned to the context with their aliases.
Finally, an instance of the BedslPddslMerge transforma-
tion is created and executed, and the resulting target graph is
saved to a file.

Compared to the GReTL DSL, there are only a few
differences:

1. All transformations are instantiated using the new key-
word.

2. The context is passed explicitly as a parameter.
3. The names of the new schema elements and the semantic

expressions are provided as Java strings.
4. The transformations are executed explicitly.

Note that the composite BedslPddslMerge transforma-
tion is technically not different from the elementary trans-
formations like CreateVertexClass, because they share the
same interface inherited from Transformation. The differ-
ence is only conceptual: BedslPddslMerge performs a com-
plete transformation use case with a fixed number of source
graphs conforming to fixed schemas and producing a target
graph conforming to a complete target schema it creates on
its own. In contrast, CreateVertexClass performs only one
single step in such a use case and is completely generic.

Executing GReTL transformations The GReTL user should
be able to specify a transformation in the DSL, Java, or even
a mix of both. Therefore, the DSL interpreter can be invoked
from within a transformation.

This interpreter for the GReTL DSL (class Execute-
Transformation) simply parses the file, instantiates trans-
formation objects using reflection, and executes them. The
interpreter is a transformation itself, which makes it possi-
ble to execute transformations from within other transforma-
tions, passing the context of the calling transformation to the
called transformation.

1 new ExecuteTransformation(context ,
2 new File ("~/My Transforms/Example. gret l ")) . execute () ;

Since all transformation classes of the API are also avail-
able in the DSL, the possibility of calling DSL transforma-
tions from within other DSL transformation is given as well.

1 ExecuteTransformation "~/My Transforms/Example. gret l " ;

123

314 J. Ebert, T. Horn

For executing a transformation written in the GReTL DSL
from the command line, a GReTLRunner class exists which
requires all context information (source graphs, name of
target schema/graph class) by command line options. This
allows for executing complex chains of transformations in
terms of batch processing.

4.2 Execution semantics

As already discussed in Sect. 2.6, GReTL’s conception is to
create the target schema incrementally, while specifying the
extensions of the new schema elements in order to define the
target graph. Thus, the execution of GReTL transformations
distinguishes two phases:

– The first phase (Schema phase) creates the target schema
constituents.

– The second phase (Graph phase) creates the extensions
of the target schema constituents in the target graph.

The current phase is encoded in the transformation’s Context
object. The transform() method is called twice, once for the
Schema phase and the other for the Graph phase. The ele-
mentary transformation operations’ transform() methods act
differently depending on the current phase.

– In the Schema phase, the elementary transformations
create the target schema constituents according to the
(syntactical) schema information given as their first
parameters. The semantic expressions are not evaluated.
After this phase, the target schema is fully defined. All
vertex and edge classes exist, all attributes are assigned to
their classes, and the specialization relationships between
vertex and edge classes are established.

– The Graph phase starts with generating Java code for the
target schema created in the previous phase. This gener-
ation is initiated by the switch between the phases. The
generated code is compiled in memory, and the target
graph is instantiated as an instance of the graph class
specified by the schema.
Then, the elementary transformation operations retrieve
the schema element they have created in the Schema phase
by the qualified name provided to all operations as param-
eter. The other parameters specifying schema properties
are ignored. The semantic expressions are evaluated on
the respective source graph, and the creation of vertices
and edges and the assignment of attribute values are per-
formed.

This two-phase execution is fully transparent to users if
the transform() method only contains invocations of elemen-
tary transformation operations. If the transform() method of
a composite transformation should also contain other code

besides pure transformation invocations, it should be con-
sidered that the method will be run twice, e.g., expensive
calculations should run only in the phase where the result
of the calculations are needed by checking the value of
context.getPhase().

It should be noted that the Schema phase is skipped if the
target schema already exists. For example, when transform-
ing a set of graphs in a sequence, then only the first execution
creates the target schema and all following executions simply
reuse it.

4.3 Extension operation: copying vertex classes

The encapsulation of transformations in transformation clas-
ses allows defining composite transformations which deliver
higher level transformation services.

As an example, imagine a CopyVertexClass operation,
which can be used to copy a source schema vertex class
into the target schema, where all attributes defined for the
source vertex class shall be copied as well. At the instance
level, this operation should create one target graph vertex
for every source graph vertex, using the source vertices as
archetypes.

This operation allows for replacing one CreateVertex-
Class operation call followed by arbitrary many
CreateAttributes operation calls with one single instruction.
For example, the sequence of operation calls

1 CreateVertexClass SimpleAttribute
2 <== #bedsl# V{SimpleAttribute } ;
3

4 CreateAttribute SimpleAttribute .value : String
5 <== #bedsl# from sa : V{SimpleAttribute }
6 reportMap sa −> sa.value end;

specified in the example in Sect. 3.2 could be replaced with
one single operation call:

1 CopyVertexClass #bedsl# SimpleAttribute ;

The operation expects the alias of the source graph, whose
schema contains the vertex class to be copied. The qualified
name of the vertex class itself is given as the second para-
meter.

Specifying the operation’s semantics in Java Given the DSL
syntax for the new operation, it can be implemented as
a Java transformation class. We derive the new operation
class from Transformation, and we set its type parameter to
VertexClass in analogy to CreateVertexClass.

1 public class CopyVertexClass extends Transformation<VertexClass> {
2 private VertexClass sourceVC; private String alias ;
3 public CopyVertexClass(Context c , VertexClass sourceVC, String alias) {
4 super(c) ; this .sourceVC = sourceVC; this . alias = alias ;
5 }

123

GReTL: extensible, operational, graph-based transformations 315

The constructor requires the mandatory context object, the
source vertex class to be copied, and the alias of the source
graph which contains the vertex instances to be copied.

The behavior of the new operation is specified in its
transform() method. The important point here is that we
implement it by composing already existing elementary oper-
ations.

6 @Override protected VertexClass transform () {
7 String qname = sourceVC.getQualifiedName () ;
8 VertexClass targetVC = new CreateVertexClass(context , qname,
9 "#" + alias + "# V{ " + qname + " ! } ") . execute () ;

10 for (Attribute sourceAttr : sourceVC. getOwnAttributeList ()) {
11 Domain d = new CopyDomain(context , sourceAttr .getDomain()) . execute () ;
12 new CreateAttribute (context ,
13 new AttributeSpec(targetVC, sourceAttr .getName() , d) ,
14 "from v: keySet(img_" + qname + ") "
15 + "reportMap v −> v. " + sourceAttr .getName() + " end") . execute () ;
16 }
17 return targetVC;
18 }

First, CreateVertexClass creates a vertex class with the
same qualified name in the target schema. The semantic
expression expands into V{QName!} where QName is the
qualified name of the source vertex class. This expression
evaluates to the set of vertices which are direct instances
(note the exclamation mark) of the vertex class QName.

Thereafter, one CreateAttribute operation is executed for
each attribute defined for the copied vertex class. The seman-
tic expression evaluates to a function that assign to every
archetype vertex v its attribute value in the source graph.
Thus, the attributes are simply copied over, and the same
applies to the attribute values on the instance level.

Note that the implementation of transformations as Java
classes allows to use the full power of Java to compute any
relevant information. Every elementary transformation oper-
ation has a constructor that receives a semantic expression
as GReQL string, which is evaluated by the transforma-
tion object when it is executed. Additionally, all GReTL
operations have another constructor that directly receives
an already calculated result. Thus, instead of using GReQL
to specify the vertex archetypes and the value assignment
function for attributes, it is possible to compute those algo-
rithmically in Java and pass the calculated results to the trans-
formation constructor.

Making the operation callable from the GReTL DSL Until
now, the implementation of CopyVertexClass is complete
with respect to the Java API. To make it also usable in
the GReTL DSL, the operation has to provide an addi-
tional parseAndCreate() factory method that parses the
operation arguments and returns a transformation instance.
The method receives the current GReTL interpreter of type
ExecuteTransformation as a parameter which provides a
set of matching methods.

19 public static CopyVertexClass parseAndCreate(ExecuteTransformation et) {
20 String alias = Context .DEFAULT_SOURCE_GRAPH_ALIAS;
21 i f (et . tryMatchGraphAlias ())
22 alias = et .matchGraphAlias () ;
23 String qname = et .matchQualifiedName() ;
24 VertexClass sourceVC = et . context .getSourceGraph(alias) .getSchema()
25 .getGraphClass () . getVertexClass(qname) ;
26 return new CopyVertexClass(et . context , sourceVC, alias) ;
27 }

Because the CopyVertexClass operation is generally
useful, the source graph alias is made optional here, so that
it can be omitted if there is only one source graph. In that
case, the default alias is used. The vertex class to be cop-
ied is retrieved from the source graph’s schema, and finally
a new CopyVertexClass instance is instantiated with the
interpreter’s context and returned.

In only 27 lines of code, we have added a completely
new transformation operation to the GReTL framework by
composing it using the elementary operations CreateVertex-
Class and CreateAttributes. The new CopyVertexClass
operation is convenient, whenever a transformation scenario
requires the unmodified transfer of several vertex classes
from source schemas into the target schema including the
migration on the instance level.

Except that a custom transformation has to extend the
Transformation class and override its abstract transform()
method, GReTL does not place any restrictions on its behav-
ior. For most cases, it suffices to compose the elementary
operations in some way, but it may also introduce completely
new semantics and even a new syntax for its arguments.

Although not the topic of this article, it should be men-
tioned that the GReQL query language is also extensible. To
add a new function to GReQL, one has to extend an abstract
Function class and implement an evaluate() method with
arbitrary arguments, returning an arbitrary object as a result.
So if some information needed in the semantic expressions
given to the GReTL operations can better be calculated algo-
rithmically or even requires communication with auxiliary
services, there is nothing hindering users from doing so.

The complete power of Java with its huge ecosystem and
thousands of libraries can always be exploited in both GReQL
queries and GReTL transformations.

5 Related work

In this section, GReTL is compared to today’s most relevant
and widely used transformation languages. A coarse-grained
distinction can be made between whether a transformation
language is especially targeted to a certain use case (special-
purpose) or whether it is general enough to preform arbitrary
transformations (general-purpose).

First, we give a brief overview of the field of coupled evo-
lution which is related to GReTL’s idea of transformations

123

316 J. Ebert, T. Horn

on both metamodels and models. We then outline the gen-
eral concepts of graph rewriting systems pointing out the
major differences compared to GReTL, and finally we com-
pare GReTL to the most prominent model transformation
languages.

Because GReTL is unidirectional and operational, we
omit a discussion on logic-based transformation languages
like QVT Relations [18]. Since triple graph grammar
approaches like the TGG Interpreter [19] or MOFLON [20]
are very similar to graph rewriting systems when applied as
forward transformations, we only discuss them briefly at the
end of the graph rewriting paragraph.

5.1 Comparison with coupled evolution approaches

Two special-purpose approaches tailored to coupled evolu-
tion of metamodels and models are Epsilon Flock [21] and
COPE [22]. Their intent is to ease the creation of transforma-
tions that migrate models conforming to a metamodel version
a to models conforming to a (usually newer) metamodel
version b. Usually, the differences between successive meta-
model versions are relatively small compared to the com-
monalities. With Epsilon Flock and COPE, transformation
developers have to specify the transformation only for the
elements whose metamodel type has been changed between
versions. Thus, the size of the transformations scales with
the amount of differences between the metamodel versions
instead of the size of the metamodels.

Epsilon Flock implements a model migration approach
named conservative copy. With that approach, all elements
that conform to both the source and the target metamodel are
implicitly copied to the target model. Rules need to be spec-
ified only for elements directly affected by the metamodel
changes.

COPE is not a separate transformation language, but a
complete modeling workbench integrated into the Eclipse
Ecore editor. It provides a set of about 60 so-called reus-
able coupled operations that are used to evolve a given
metamodel interactively. Examples for such operations are
renaming a class or extracting an abstract superclass. The
sequence of operations applied to the Ecore metamodel in
the editor is recorded in a history from which model update
transformations can be generated. Thus, when metamodel-
ing using the COPE workbench, the update transformations
from any metamodel version a to a later version b emerge as a
by-product of modeling.

GReTL is not especially targeted at coupled evolution of
metamodels and models, but its emphasis lies on the incre-
mental and parallel construction of target schema and graph
which can be seen as a generalization of coupled evolution.
In Sect. 4.3, a generic copy operation for a vertex class and
its instances has been implemented to demonstrate how to
extend the language. Likewise, a similar operation could be

implemented that copies an edge class into the target schema
and its instances into the target graph. If we wanted to evolve
a schema, we could use GReTL to do so. First, we apply the
generic copy operations to the schema elements that should
stay as is, and thereafter we can specify the changed parts
of the schema using the elementary operations introduced
in Sect. 2.6 and exemplified in Sect. 3.2. This is similar
to the COPE approach in that the evolution is specified in
terms of operations applied to the source metamodel version.
Of course, such a GReTL transformation would be specific
to exactly one source schema version and generate exactly
one target schema version with a conforming graph, whereas
COPE is capable of generating update transformations from
any metamodel version to any later version.

A coupled evolution approach more similar to Epsilon
Flock could be developed by integrating a schema compar-
ison approach into a new GReTL operation. This operation
would receive a schema of a base version, a graph conforming
to this base version, and a schema of another version. It would
calculate the schema elements that did not change between
the versions and copy the given source graph instances into
the target graph conforming to the other schema version.
Again, only operations for elements whose type has been
modified in the schema evolution would need to be speci-
fied.

5.2 Comparison with graph rewriting systems

Today, graph transformation languages in the sense of graph
rewriting systems are widely applied in the fields of model
transformation [23,24] as well as simulation and verification
[25–27], and program optimization [28,29].

The basic building blocks of graph transformations are
rules consisting of a left-hand side and a right-hand side.
The left-hand side is a graph pattern, and the right-hand side
is a replacement graph. Both sides consist of symbols for
nodes and edges connecting those nodes. When a rule is
applied, one arbitrary occurrence of a subgraph matching
the graph pattern is searched in the host graph and replaced
by an instance of the replacement graph. The symbols occur-
ring both in the graph pattern and in the replacement graph
denote nodes and edges that are preserved by a rule appli-
cation. Symbols occurring only in the graph pattern denote
nodes and edges that are deleted, and symbols occurring only
in the replacement graph denote nodes and edges that are cre-
ated by a rule application. Most languages support negative
application conditions (NAC) in the left-hand side, which for-
bid the rule’s application if they can be matched in the host
graph.

For specifying the control flow of a transformation, many
graph rewriting systems provide separate rule application
languages. For example, PROGRES [30] specifies the order

123

GReTL: extensible, operational, graph-based transformations 317

of rule applications using so-called transactions, which are
in essence transformation procedures triggering rule appli-
cations or other transactions, by using control structures like
conditional application, nondeterministic choice, and iter-
ated application. Fujaba7 and MDELab8 use story diagrams
[31], which is a visual language similar to UML activity dia-
grams. VIATRA2 [32] uses abstract state machines [33], and
GrGen.NET [34] provides a custom graph rewrite sequence
language based on logical and regular expressions. Henshin
[35,36], the successor of the Tiger EMF Transformation Pro-
ject [37], provides a visual rule application control language
similar to graph rewrite sequences, where different control
units can be nested inside each other. There are units for
sequential application, application in arbitrary order, iterated
application, conditional application, priority-based applica-
tion, and so called amalgamation units providing a forall
operator. AGG [38] supports priority-based layering of rule
application, where all rules of the layer with highest priority
are applied as long as possible, then all rules of the following
layer, etc. The transformation terminates either when no rule
of the lowest layer can be applied anymore, or optionally if
no rule of no layer can be applied. Furthermore, users can
interactively select a rule to be applied in a debugger-like
stepwise execution mode.

Graph transformation languages focusing on enumerating
all possible graphs that can be generated from a given start
graph by applying a set of rules usually execute all applica-
ble rules in parallel. These languages are used for verifica-
tion purposes, i.e., the system is modeled as a graph, and the
dynamic semantics of a system is modeled in terms of rules
that transition the system from one state into another. If two
rule application sequences result in isomorphic graphs, they
transit to the same state. For each state, invariants may be
checked, or properties like confluence can be proven. Lan-
guages used for such purposes, although not limited to this
scenario, are for example GROOVE [39], AGG, and Hen-
shin.

The kind of graphs used by the individual graph transfor-
mation tools varies from simple directed graphs with nodes
and edges over labeled graphs, graphs with attributed nodes
and/or edges to typed and attributed graphs with inheritance
between node types [40]. The types available in a graph are
defined by a type graph or schema. Often, visual metamod-
eling approaches similar to UML class diagrams are used to
define schemas. In the TGraph technological space on which
GReTL is based, graphs are ordered in addition to being typed
and attributed. Furthermore, inheritance is not restricted to
node types, but possible also for edge types.

One major difference between graph rewriting systems
and GReTL is that the former always work in-place, i.e.,

7 http://www.fujaba.de.
8 http://www.mdelab.com.

they modify their source graph directly, and source and tar-
get graphs are the same. This also means that there cannot be
many input graphs to a transformation, as it was the scenario
in the example of Sect. 3. Of course, it is possible to copy the
elements of many graphs into one, but then the identities of
the individual graphs are lost, so that additional constructs
are needed to restrict pattern matching to a subgraph that has
been a single input graph before. VIATRA2 has a special
keyword below, which can be used to restrict an element to
be contained directly or indirectly in some other element for
purposes like that.

GReTL transformations usually work out-place. They
construct a completely new target graph (including a new
target schema) out of arbitrary many source graphs, where
arbitrary many also includes zero. GReTL transformations
may also use the given source graph as target graph, but then
they are restricted to the instance level, i.e., they cannot mod-
ify the schema.

The in-place nature of graph rewriting systems has the
consequence that they are, in principle, restricted to endoge-
nous transformations, i.e., transformations whose source and
target graphs conform to the same schema. However, in prac-
tice this restriction is circumvented by the use of a combined
schema encompassing at least source and target schema plus
optionally node and edge types used only during the execu-
tion of a transformation. This makes graph rewriting systems
also applicable for typical model transformation tasks, where
the schemas of source and target model differ.

Graph rewriting systems use pattern matching to locate
one single occurrence of a rule’s left-hand side in the host
graph which is then replaced by the right-hand side. Instead of
pattern matching, GReTL uses graph querying on the source
graphs to compute sets of arbitrary archetypes, and for each
archetype a new target graph element is created. For many use
cases, this novel concept enabled us to define very concise
and elegant transformations like in [11], but it is not suited
out-of-the-box for most typical graph rewriting domains like
optimization and verification. However, because GReTL is
extensible, it can be adapted to such domains as well. For
solving the TTC 2011 compiler optimization case [12], some
custom in-place operations were developed to make GReTL
fit this purpose [13].

It should be noted that although we do not compare
GReTL with TGGs in detail here, most differences between
GReTL and graph rewriting systems apply in a similar
vein for TGGs. A TGG forward (i.e., uni-directional) trans-
formation is similar to a graph rewriting transformation,
except that it does not work in-place. However, the men-
tioned main differences apply: TGGs use pattern matching,
whereas GReTL is based on querying, and GReTL is able
to construct a new metamodel and instantiate a conform-
ing graph, whereas TGGs assume a fixed, pre-existing target
metamodel.

123

http://www.fujaba.de
http://www.mdelab.com

318 J. Ebert, T. Horn

5.3 Detailed comparison with model transformation
languages

There are only a few widely used general-purpose transfor-
mation languages, the most well known being ATL [41], the
Epsilon Transformation Language (ETL, [42,43]), and the
QVT languages Operational Mappings (QVTo) and Rela-
tions [18].

GReTL claims to be competitive to ATL, ETL, and QVTo.
Therefore, we compare GReTL to these languages in more
detail along the main language properties.

GReTL is meant to be a graph-based transformation lan-
guage. It shares with the competitors the property that trans-
formations are usually executed out-place, i.e., a new target
model is created from a given input model. The property
of transformations also constructing the target metamodel is
a novel concept of GReTL. All other model transformation
languages require a pre-existing target metamodel.

ATL, ETL, and QVTo as well as GReTL support trans-
formations using more than one input model simultaneously.
Because of its flexible archetype concept which only requires
that the semantic expressions given to the GReTL operations
evaluate to sets of arbitrary objects, GReTL also allows the
creation of a new target graph with no source graph at all.
ATL, ETL, and QVTo allow for transformations that create
more than one target model, too, whereas GReTL transfor-
mations are restricted to one single output graph at the current
point in time.

While all cited transformation languages are rule-based
with several differences in rule application semantics, e.g.,
imperative (QVTo, ATL called rules) versus declarative (rela-
tions, ATL matched rules, ETL rules), the concept of spec-
ifying the target graph of a transformation by defining the
extensions of the target schema constituents is a novel prop-
erty of GReTL.

ATL and ETL rules have a source pattern declaring iden-
tifiers with source metamodel types and a target pattern that
specifies elements to be created. In the case of ETL, rules
can only declare one input element in their source patterns.
The source pattern may also contain constraints, and for all
matches of the source pattern in the source model and ful-
filling the constraints, the elements in the target pattern are
created in the target model.

In contrast, QVTo and GReTL are based on querying.
QVTo uses the Object Constraint Language (OCL, [44])
whereas GReTL uses the GReQL language. We believe that
GReQL provides more expressive constructs than most other
querying languages and comparable components of other
transformation languages. Especially when very complex,
non-local connections of elements with arbitrary distance in
terms of edges in between have to be described, and GReQL’s
regular path expressions provide a powerful means.

When not considering the optional creation of the target
schema, GReTL’s operational execution semantics are quite
similar to those of QVTo. For the latter, starting with a top-
level mapping operation, sets of source model elements are
selected using OCL, and for each of them another mapping
is applied, creating a new target model element and possi-
bly applying further mapping operations. Usually, this call
hierarchy of mapping operations is aligned to the contain-
ment hierarchy of the source model. With GReTL, there is
no hierarchy of operation calls. The semantic expressions
define the archetype sets for each operation invocation, and
similar to QVTo, for any member in these sets, a new target
graph element is created.

The strict separation of concerns in GReTL’s concept of
compositional semantics with respect to the constituents of
a schema results in a very slim set of only four transfor-
mation operations which suffice to perform arbitrary trans-
formations. These operations have a very simple and clear
semantics, and can easily be combined to more expressive
and convenient operations, as the example in Sect. 4.3 dem-
onstrates. In contrast, all cited languages mix several con-
cerns. Rules create output elements for some input elements
and additionally set the new elements’ attribute values and
assign references or create edges between elements. This may
lead to duplicate code in rules creating instances of subclass-
es of some common superclass. Therefore, ATL, ETL, and
QVTo provide advanced concepts like rule inheritance that
allow for aligning a transformation towards the type hierar-
chy of the target metamodel. This way, inherited attributes
and references are set by some parent rule, and specialized
rules only have to deal with the direct properties of their
output elements. However, the implementation of rule inher-
itance differs across languages [45]. For example, while ETL
supports multiple inheritance between rules, ATL and QVTo
support only single inheritance.

The usual extension and reuse mechanism supported by
most transformation languages are libraries, which consist
of helper functions and sometimes even rules. These helpers
(and rules) can then be used in transformations. Beyond that
is the black-box implementation concept defined by the QVT
standard. It allows for implementing a QVTo mapping oper-
ation with an arbitrary MOF operation [46] with the same
signature and semantics. However, GReTL allows for even
more extensibility, because an extension operation developer
is mostly free both in the choice of the syntax in the GReTL
DSL and the semantics of the new operation. We acknowl-
edge that there are scenarios, where the conceptual purity of
GReTL’s elementary transformation operations is less con-
venient. But GReTL was designed with extensibility in mind.
An extended convenience operation like CopyVertexClass
discussed in Sect. 4.3 is usually implemented in only a few
lines of Java code.

123

GReTL: extensible, operational, graph-based transformations 319

With respect to traceability, the image and archetype func-
tions that are created automatically during the execution of a
GReTL transformation form a very fine-grained traceability
model. They provide the possibility for navigating from any
target graph element (image) to its archetype, and vice versa.
These functions can be persisted as an XML file after the
transformation has succeeded and loaded back later in order
to navigate between target and source graphs. ATL, ETL,
and the implementations of the QVT languages have similar
traceability concepts, in that for each rule the mappings from
input to output elements are retained and can also be per-
sisted. The main difference is that in GReTL, the archetypes
can be chosen freely and are not restricted to source graph
elements.

6 Conclusion and future work

This article introduced the graph-based GReTL transfor-
mation language with a focus on its concrete syntax.
A non-trivial example (merging the metamodels of two
domain-specific languages including the migration of their
instances graphs) was explained in detail to demonstrate the
power of the approach. (A simpler introductory example is
discussed in [5]).

Also, a brief insight into its design as a Java API was given,
and, using that, an extended copy operation was exemplarily
implemented to show GReTL’s extensibility.

Based of the concept of compositional semantics of
TGraph schemas, GReTL introduces a novel concept to
model transformations. GReTL transformations follow the
conception of constructing the target schema, while simulta-
neously creating the target graph as an extension.

GReTL’s API supplies a basis for the definition of
expressive transformations that support frequently occur-
ring transformation tasks appropriately. The encapsulation
of transformations in plain Java transformation objects sup-
ports this goal, facilitating reuse and composition in terms of
inheritance and nesting.

We see several advantages for using the GReTL transfor-
mation language:

– GReTL is operational. Thus, it can be included in arbi-
trary (Java) application code.

– GReTL is formal, since it is built on TGraphs, grUML,
and GReQL, which are formally defined.

– GReTL builds on the powerful GReQL querying lan-
guage. Thus, GReTL transformations can use arbitrary
information extracted from the source graph. Because
GReQL has proven to be highly efficient for complex
querying of large graphs, the same can be said for GReTL
for the transformation of large graphs.

– GReTL builds on a powerful conception. Since grUML
has compositional semantics, the full power expected
from a transformation language is granted by a kernel
of four elementary operations.

– GReTL DSL has an easy syntax. Thus, a quick notation
of simply structured transformations is possible.

– GReTL is embedded in Java. Thus, arbitrary computa-
tions can be executed to steer the transformation opera-
tions.

– GReTL transformations can be executed from the com-
mand line using a convenient interface which enables
batch processing of transformations.

– GReTL is extensible. Higher-level operations that pro-
vide more expressiveness or are especially suited for a
particular domain can be built on top of the provided ele-
mentary operations.

– GReTL supports full traceability, since the img/arch-
maps are available and can be persisted. Thus, traceability
information can be used inside the transformation code
and later on.

First promising experiences with GReTL have been
achieved when using it in a reengineering project, where Java
software was parsed into TGraphs representing the abstract
syntax of the source code. Here, GReTL transformations
have been used for the extraction of state machines that had
been implemented in plain Java using a set of conventions.
The input graph to this transformation had about 2.5 million
vertices and edges and it could still be executed on a usual
laptop in a few seconds.

Furthermore, the Transformation Tool Contests 2010 and
2011 were won using GReTL and other TGraph technologies
like GReQL.

In future work, further issues have to be tackled, e.g., better
applicability for endogenous in-place transformations, and
the inclusion of ordering information. Also, instead of hav-
ing transformations that construct new schemas including
conforming graphs, the concepts should be extended to sup-
port modification of existing schemas including the parallel
migration of existing graphs.

Although GReTL’s concepts were derived from the for-
mal definition of TGraphs and are aligned to the constituents
that make up a grUML schema (vertex classes, edge clas-
ses, and attributes), it seems feasible to apply them on other
technological spaces like EMF [47] as well. A grUML ver-
tex class is equivalent to Ecore’s EClass, and grUML attri-
butes correspond to Ecore EAttributes. The main difference
is that EMF does not consider edges as first class objects,
but relations between elements are expressed as (pairs of)
EReferences instead. However, it is still possible to imag-
ine an operation that creates a reference (and an opposite
reference) in an Ecore metamodel, and assigns that refer-
ence for elements in an instance model with a provided set

123

320 J. Ebert, T. Horn

of tuples specifying the archetypes of the elements that have
to be connected. Using EMF technology, the Object Con-
straint Language [44] or EMF Model Query [48,49] could
be used for specifying semantic expressions.

Because the GReTL archetype concept decouples the
retrieval of source model information from the creation of
target model elements, it seems feasible to allow for trans-
formations crossing the borders of technological spaces, e.g.,
archetypes calculated on a source TGraph using GReQL
could be passed to transformation operations creating ele-
ments in an EMF model and vice versa.

References

1. Bézivin, J.: Model driven engineering: an emerging technical
space. In: Lämmel, R., Saraiva, J.A., Visser, J. (eds.) Generative
and Transformational Techniques in Software Engineering. Lec-
ture Notes in Computer Science, chap. 2., vol. 4143, pp. 36–64.
Springer, Berlin (2006)

2. Object Management Group: MDA Guide Version 1.0.1. (2003)
3. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The

Model Driven Architecture: Practice and Promise. Addison-Wes-
ley/Longman, Boston (2003)

4. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:
an annotated bibliography. SIGPLAN Not. 35, 26–36 (2000)

5. Horn, T., Ebert, J.: The GReTL transformation language. In: Cabot
and Visser [50], pp. 183–197

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns. Addison-Wesley, Boston (1995)

7. Ebert, J., Riediger, V., Winter, A.: Graph technology in reverse
engineering. The TGraph approach. In: 10th Workshop Software
Reengineering (WSR 2008). GI Lecture Notes in Informatics, vol.
126. GI (2008)

8. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: an initial
appraisal. In: CoopIS, DOA’2002 Federated Conferences, Indus-
trial track (2002)

9. Ebert, J., Bildhauer, D.: Reverse engineering using graph queries.
In: Graph Transformations and Model Driven Engineering. LNCS,
vol. 5765, Springer, Berlin (2010)

10. Horn, T.: Program understanding: a reengineering case for the
transformation tool contest. In: Van Gorp et al. [51]

11. Horn, T.: Solving the TTC 2011 reengineering case with GReTL.
In: Van Gorp et al. [51]

12. Buchwald, S., Jakumeit, E.: Compiler optimization: a case for the
transformation tool contest. In: Van Gorp et al. [51]

13. Horn, T.: Solving the TTC 2011 compiler optimization case with
GReTL. In: Van Gorp et al. [51]

14. Horn, T.: SHARE demo related to the paper Solving the TTC
2011 Reengineering Case with GReTL. http://is.ieis.tue.nl/staff/
pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_
TTC11_gretl-cases.vdi

15. Horn, T.: SHARE demo related to the paper Solving the
TTC 2011 Compiler Optimization Case with GReTL. http://
is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi
=Ubuntu_10.04_TTC11_gretl-cases.vdi

16. Walter, T., Ebert, J.: Foundations of Graph-Based Modeling
Languages. Tech. Rep., University of Koblenz-Landau, Institute
for Software Technology (in press). http://www.uni-koblenz.de/
~horn/foundations-WE11-draft.pdf

17. Miksa, K., Kasztelnik, M., Sabine, P.: Case study design. Project
Deliverable ICT216691/CMR/WP5-D2/D/RE/b1, MOST Project
(2009)

18. Object Management Group: Meta Object Facility (MOF) 2.0:
Query/View/Transformation Specification v1.0. (2008)

19. Greenyer, J., Kindler, E.: Comparing relational model transforma-
tion technologies: implementing Query/View/Transformation with
Triple Graph Grammars. Softw. Syst. Model. 9, 21–46 (2010).
doi:10.1007/s10270-009-0121-8

20. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON:
a standard-compliant metamodeling framework with graph trans-
formations. In: Rensink, A., Warmer, J. (eds.) Model Driven
Architecture—Foundations and Applications: Second European
Conference. Lecture Notes in Computer Science (LNCS), vol.
4066, pp. 361–375. Springer, Heidelberg (2006)

21. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model
Migration with Epsilon Flock. In: ICMT. Lecture Notes in Com-
puter Science, vol. 6142, pp. 184–198. Springer, Berlin (2010)

22. Herrmannsdoerfer, M.: COPE—a workbench for the coupled evo-
lution of metamodels and models. In: Malloy, B.A., Staab, S., van
den Brand, M. (eds.) SLE. Lecture Notes in Computer Science,
vol. 6563, pp. 286–295. Springer, Berlin (2010)

23. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L.,
Levendovszky, T., Prange, U., Varró, D., Varró-Gyapay, S.: Model
transformation by graph transformation: a comparative study. In:
ACM/IEEE 8th International Conference on Model Driven Engi-
neering Languages and Systems. Montego Bay, Jamaica (2005)

24. Ehrig, H., Ehrig, K.: Overview of formal concepts for model trans-
formations based on typed attributed graph transformation. Elec-
tron. Notes Theor. Comput. Sci. 152, 3–22 (2006)

25. Aksit, M., Rensink, A., Staijen, T.: A graph-transformation-based
simulation approach for analysing aspect interference on shared
join points. In: Proceedings of the 8th ACM International Con-
ference on Aspect-Oriented Software Development, AOSD ’09,
pp. 39–50, ACM, New York (2009)

26. Gönczy, L., Kovács, M., Varró, D.: Modeling and verification
of reliable messaging by graph transformation systems. Electron.
Notes Theor. Comput. Sci. 175, 37–50 (2007)

27. Ráth, I., Vago, D., Varró, D.: Design-time simulation of domain-
specific models by incremental pattern matching. In: VL/HCC,
pp. 219–222. IEEE (2008)

28. Assmann, U.: Graph rewrite systems for program optimiza-
tion. ACM Trans. Program. Lang. Syst. 22, 583–637 (2000)

29. Schösser, A., Geiß, R.: Graph rewriting for hardware dependent
program optimizations. In: Schürr, A., Nagl, M., Zündorf,
A. (eds.) Applications of Graph Transformations with Industrial
Relevance, pp. 233–248. Springer, Berlin (2008)

30. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: lan-
guage and environment. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation: Applications, Languages, and Tools,
vol. 3, pp. 487–550. World Scientific, Singapore (1999)

31. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams:
a new graph rewrite language based on the unified modeling
language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) TAGT. Lecture Notes in Computer Science,
vol. 1764, pp. 296–309. Springer, Berlin (1998)

32. Varró, D., Balogh, A.: The model transformation language of the
VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234
(2007, special issue on Model Transformation)

33. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer, Berlin (2003)

34. Jakumeit, E., Buchwald, S., Kroll, M.: GrGen. NET. Int. J. Softw.
Tools Technol. Transf. (STTT) 12, 263–271 (2010)

35. Ermel, C., Biermann, E., Schmidt, J., Warning, A.: Visual mod-
eling of controlled EMF model transformation using HENSHIN.
ECEASST, 32 (2010)

36. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF

123

http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://www.uni-koblenz.de/~horn/foundations-WE11-draft.pdf
http://www.uni-koblenz.de/~horn/foundations-WE11-draft.pdf
http://dx.doi.org/10.1007/s10270-009-0121-8

GReTL: extensible, operational, graph-based transformations 321

model transformations. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MoDELS (1). Lecture Notes in Computer Science, vol.
6394, pp. 121–135. Springer, UK (2010)

37. Biermann, E., Ehrig, K., Ermel, C., Köhler, C., Taentzer, G.: The
EMF model transformation framework. In: Schürr, A., Nagl, M.,
Zündorf, A. (eds.) AGTIVE. Lecture Notes in Computer Science,
vol. 5088, pp. 566–567. Springer, Berlin (2007)

38. Taentzer, G.: AGG: a graph transformation environment for mod-
eling and validation of software. In: Kanade, T., Kittler, J.,
Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B. (eds.) Applications of
Graph Transformations with Industrial Relevance. Lecture Notes
in Computer Science, chap. 35, vol. 3062, pp. 446–453. Springer,
Berlin (2004)

39. Kastenberg, H., Rensink, A.: Model checking dynamic states in
GROOVE. In: Valmari, A. (ed.) SPIN. Lecture Notes in Computer
Science, vol. 3925, pp. 299–305. Springer, Berlin (2006)

40. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taent-
zer, G.: Attributed graph transformation with node type inheri-
tance. Theor. Comput. Sci. 376, 139–163 (2007)

41. ATLAS Group: ATL: User Guide. http://wiki.eclipse.org/ATL/
User_Guide (2011)

42. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book. http://
dev.eclipse.org/svnroot/modeling/org.eclipse.gmt.epsilon/trunk/d
oc/org.eclipse.epsilon.book/EpsilonBook.pdf. Accessed June
2011

43. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transforma-
tion language. In: Proceedings of the 1st International Conference
on Theory and Practice of Model Transformations, ICMT ’08,
pp. 46–60. Springer, Berlin (2008)

44. Object Management Group: Object Constraint Language, Version
2.2. (2010)

45. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schön-
böck, J., Schwinger, W., Kolovos, D.S., Paige, R.F., Lauder, M.,
Schürr, A., Wagelaar, D.: A comparison of rule inheritance in
model-to-model transformation languages. In: Cabot and Visser
[50], pp. 31–46

46. Object Management Group: Meta Object Facility (MOF) Core
Specification, Version 2.4.1. (2011)

47. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, 2nd edn. Addison-Wesley/Long-
man, Amsterdam (2009)

48. The Eclipse Project: EMF Model Query. http://www.eclipse.org/
modeling/emf/?project=query

49. The Eclipse Project: EMF Model Query2. http://www.eclipse.org/
modeling/emf/?project=query2

50. Cabot, J., Visser, E. (eds): Proceedings of the 4th International Con-
ference on Theory and Practice of Model Transformations, ICMT
2011, Zurich, Switzerland, June 27–28, 2011. Lecture Notes in
Computer Science, vol. 6707. Springer, Berlin (2011)

51. Van Gorp, P., Mazanek, S., Rose, L. (eds): Post-Proceedings of the
TTC 2011: Fifth Transformation Tool Contest, Zürich, Switzer-
land, June 29–30 2011. EPTCS (2011)

Author Biographies

Jürgen Ebert holds the Chair
of Software Engineering at the
University of Koblenz-Landau
since 1982. His research areas
include software engineering,
focusing on modeling, software
architecture, and construction of
generic tools, especially using
graph-based methods. In the last
decade, he published primarily
in the area of graph technology,
metamodeling, metaCASE, and
software reengineering. He was
an organizer or program commit-
tee chair for several workshops

and conferences in the area of software engineering environments and
reengineering.

Tassilo Horn is a researcher
at the Institute for Software
Technology at the University
of Koblenz-Landau. He is cur-
rently working on his Ph.D. in
which he explores the usage of
the functional programming par-
adigm for model querying and
transformation. His further inter-
ests include graph technology in
general, software reengineering,
metamodeling, relational pro-
gramming, metaprogramming,
API design, and free software,
where he is a contributor to a

diversity of projects.

123

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
http://dev.eclipse.org/svnroot/modeling/org.eclipse.gmt.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.gmt.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.gmt.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emf/?project=query2
http://www.eclipse.org/modeling/emf/?project=query2

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	GReTL: an extensible, operational, graph-based transformation language
	Abstract
	1 Introduction
	2 Foundations
	2.1 Overview
	2.2 Definitions
	2.3 Schemas and their constituents
	2.4 Defining a graph
	2.5 Specifying extensions
	2.6 Creating the target graph

	3 GReTL for schema merges
	3.1 A schema merge use case
	3.1.1 Merging BEDSL and PDDSL

	3.2 The schema merge transformation

	4 GReTL as an extensible language
	4.1 GReTL core design
	4.2 Execution semantics
	4.3 Extension operation: copying vertex classes

	5 Related work
	5.1 Comparison with coupled evolution approaches
	5.2 Comparison with graph rewriting systems
	5.3 Detailed comparison with model transformation languages

	6 Conclusion and future work
	References

