
Fundamenta Informaticae 67 (2005) 29–44 29

IOS Press

Higher order Programming in Java: Introspection, Subsumption and
Extraction

Marco Bellia
�

Dipartimento di Informatica, Università di Pisa,

Largo B. Pontecorvo 3, I-56127 Pisa, Italy

bellia@di.unipi.it

M. Eugenia Occhiuto

Dipartimento di Informatica e Scienze dell’Informazione,

Universit̀a di Genova, via Dodecaneso 35, I-16146 Genova, Italy

occhiuto@di.unipi.it

Abstract. Higher order programming is considered a good methodology for program design and
specification, furthermore it is fundamental for rapid prototyping. The paper is devoted to higher
order programming in Java and, more in general, in the OO programming paradigm. We discuss
introspection to write higher order programs and compare this technique with other different, in-
teresting approaches, including function emulation and function integration. Finally, we address
the problem of embedding, in the OO paradigm, the mechanismsfor method passing and method
extraction that are basic to the higher order programming methodology.

1. Introduction

Higher order programming,HO, is considered the main programming methodology of functional lan-
guages [2]. In this class of languages, in fact, programs arefunctions and functions are first class values
of the language. This means that functions can be passed as parameters to other functions, returned as
result of the computation and furthermore, functions can bevalues in data structures (i.e. we can have
lists, records and arrays of functions). The benefits obtained by HO programming are in the expressiv-
ity of the code, which becomes more concise, clear and well structured and can be reused more easily.
�

Address for correspondence: Dipartimento di Informatica,Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

30 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

These topics are extensively discussed in the literature onfunctional programming. References, that are
a starting point, are [9, 8, 18].

The drawback of higher order is the inefficiency of the implementation, for this reason functional
languages have never become an effective alternative to theimperative ones, instead limited HO pro-
gramming features have been added to imperative, first orderlanguages to improve their expressivity.
Examples in this direction are Pascal [12], C [13] and C++ [16]. Such languages have been defined pro-
viding features to allow to pass programs (i.e. procedures or functions) as parameters to other programs.
In fact, in this way an important abstraction mechanism is added to the language, in particular, programs
are abstracted with respect to the programs they invoke in their body.

In a sense, also object-oriented languages originate from an attempt to add higher order features to
imperative languages. In fact, in this case, objects are first class values of the language. Objects contain
values (instance variables) and methods (instance methods), both are bound to names. Hence objects
are environments, a particular kind of functions of type (Ide �� �Val � Methods�). Methods, in this
case, are not themselves values, but are contained in objects which are values, hence can be passed as
parameters, returned as result and stored in data structures by passing, returning and storing the object
containing the method. In this way the language provides a kind of higher order, [15], which helps in
getting some higher order programs but does not cope with general HO programming, i.e. functionals
typically used and defined in functional languages. In the first part of the paper we show how it is
possible to write general higher order programs in Java. Several approaches are considered starting from
those based onintrospection, which is obtained using the package java.lang.reflect, forJava reflection.
Another approach is based onemulationof a function calculus through anonymous inner classes of
Java [17]. The introduction of function abstractions in object-oriented programming is pursued in Pizza
[15]. Finally delegates in J++ [6] are considered. All the analyzed approaches are valid techniques to
support the methodology but none of them is definitely betterthan the others. Furthermore, all of them
provide only an indirect way, to support the HO methodology,which limits the program expressivity
and makes the use of HO programming a bit tricking. The use of method passing, in HO programming,
calls the mechanism of method extraction and its conflictingrelation with subsumption subtyping in the
OO programming paradigm. Then, we investigate a way, in the first order�-calculus [1], to extend the
OO paradigm with method passing and method extraction. Subsumption states that any object of a class
is also one object of its superclass(es), hence it can be usedin any context in which an object of the
superclass(es) can be used. In other words, such an object could have the type of the objects of (each of)
its superclass too. In particular, a method, once it has beenextracted from an object, has the type that
makes its invocation from objects, of the superclasses, well typed. However, since such a method was
defined in the environment of an object of a subclass, the method body can contain references that have
been introduced in the subclass but not in the superclass(es). Hence, at static time, the typing system
says that it is correct”O, but, at run time, the application can go into one fatal error”O in trying to select
components that are not defined in objects of the superclass(es). This conflict is well exemplified in [1],
see pages 106-108. A way to overcome the situation is discussed in section 5 where we limit subsumption
when terms are using extraction.

In Section 2 we introduce a problem and show a solution in Javausing only first order methods. In
Section 3 we show three solutions in pure Java defining higherorder functions, all use reflection but in
different ways. In Section 4 three different approaches to the problem are considered they are anony-
mous inner classes 4.1, delegates 4.2 and the Pizza language4.3, a Java extension providing parametric
polymorphism and higher order functions. Section5 addresses the embedding, in the OO paradigm, of

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 31

public class FList �/*Aim: define list of elements with the usual methods insert, val and tail*/
private Object elem; private FList next; private int sz;
/*Implementation: using next of type FList and sz to represent the length
of the rest of the list*/
public FList () �sz=0;�
/*Constructor: The empty list has all instance variables null except sz which is 0*/
public void insert (Object x) �/*Effects: modifies this inserting a new element*/

if (sz==0) �elem=x; sz=1; next= new FList();�
else�sz++; next.insert(x);��

public Object val () �return elem;�
public FList tail () �return next;�
public int size () �return sz;� �

Figure 1. ClassFList

mechanisms for method passing and method extraction. The last section concludes the paper.

2. Why higher order programming in object-oriented languages?

Suppose we want to define collections of geometric shapes with methods to compute areas and perimeters
of such shapes, and also collections of areas and perimeters. In Figure 1 we start defining generic collec-
tions ofObjects in the classFList. Then we define the abstract classShapes and several subclasses for
specific geometric shapes, Figure 2 and the extensionShapeList.

As it is clear, examining the code, the methodareaList and the methodperimeterList are constituted
by the same code except for the name of the method in the invocation. Such a code repetition could
be avoided if the language allowed to pass methods as arguments to other methods, hence to use HO
programming methodology to write programs. Suppose this ispossible and hence we can write a higher
order method, with a method as argument. In functional languages such a functional is calledmap and
has two arguments, the first one is a function, the second one is a list, it computes the list of the values
obtained applying the function to each element in the list. Afirst tentative definition ofmap is given in
Figure 3. Sincemap is defined as an instance method ofFList, it has one parameterF, which is a method.
ShapeList is still defined with its two methods but these are mere invocations ofmap. Allowing to pass
programs (i.e. procedures, functions or methods dependingon the language) as parameters to other
programs, is adding an important abstraction mechanism to the language, in particular, programs are
abstracted with respect to the programs they invoke in theirbody. In factmap is the abstraction of
areaList andperimeterList with respect to the methodsarea andperimeter they invoke in their body.
Unfortunately, this solution does not work, becauseval().F()) is not recognized as a legal Java expression.
F in fact is the formal parameter ofmap hence a value (of typeMethod) and not a method identifier. In
section 5, it is shown how this problem can be overcome in a calculus of objects.

32 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

public abstract class Shape �
/*Aim: define geometric shapes with methods area , val and perimeter*/
public abstract double area();
public abstract double perimeter();�

public class Rectangle extends Shape �
/*Aim: define rectangles as extension of Shape*/
private double base;
private double height;
public Rectangle (double b, double h)�base=b; height=h;�
public double area() �return base * height; �
public double perimeter()�return 2*base+2*height;��

public class Circle extends Shape �
/*Aim: define circles as extension of Shape defining the methods area and perimeter*/
private double radius;
public Circle(double r)�radius=r;�
public double area() �return new Double(radius *radius*PI);�
public double perimeter() �return new Double(radius*2*PI);��

public class ShapeList extends FList �
/*Aim: define lists of shapes as extension of FList with methods areaList and
perimeterList*/
public FList areaList()�
/*Effects: construction of the list of areas of the shapes elements of this*/

FList L= new FList();
if (size()!=0) �L=((ShapeList)tail()).areaList();

L.insert(((Shape) val()).area());�
return L; �

public FList perimeterList()�/*Effects: analogous to areaList*/
FList L= new FList();
if (size()!=0) �L=((ShapeList) tail()).perimeterList();

L.insert(((Shape) val()).perimeter());�
return L; ��

Figure 2. The first order solution in Java

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 33

public class FList � . . . same as above for instance variables, methods etc.
public FList map(Method F)�
/*Effects: construction of the list of values obtained evaluating F
on each element of this*/

FList L= new FList();
if (size()!=0) �L=tail().map(F);

L.insert(val().F()));�
return L; ��

public class ShapeList extends FList �
/*Aim: define lists of shapes as extension of FList*/

public FList areaList() �return map(area);�
public FList perimeterList() �return map(perimeter);��

Figure 3. A first higher order program

3. Solutions in Java

In this section we show how higher order functions can be defined in Java through the reflection package
in java.lang. Firstly, we briefly illustrate few features, not commonly used in Java programs, that are
used in this paper:

Class is the class of all classes in a Java application. It is definedin java.lang

Method is the class of all the methods both static and of instance. Itis defined in java.lang.reflect

Class getClass () is the instance method ofObject, which returns the class of the object.

Method getMethod(String name, Class [] parameterType) is the instance method ofClass that re-
turns the method, among those of the class , whose name is equal to name and whose parameters
are equal toparameterType.

Object invoke(Object obj, Object [] args) instance method ofMethod, which allows the invocation
of the method on which it is issued.Invoke has two parameters, obj of typeObject, which is
the object of the invoked method andargs of type Object [] an array of objects that are the
parameters to be passed to the method.Invoke may generate exception (IllegalAccessException,
IllegalArgumentException, InvocationTargetException).

The classes contained in the package java.lang.reflect can be used to define all kinds of higher level meth-
ods, that is either methods with methods as parameters and also methods returning methods as result and
even data structures containing methods. Nevertheless, the language is not higher order and the only
expression that can return a value of typeMethod is an invocation togetMethod. The invocation to
getMethod must be issued on the class of the object, providing the method name and the type of its pa-
rameters. This is concerned with the Java overloading and overriding mechanisms which allow to define
several static or non-static methods with the same name in different levels of the class hierarchy. Another
problem is concerned with static type checking of types of the methods used as formal parameters. In
fact, supposem is declared to be a method with an argumentx of typeMethod. In no way domain and

34 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

public class FList � . . . same as above for instance variables, methods etc.
public FList map(String F)�
/*Effects: construction of the list of values obtained evaluating the
method of name F on each element of this*/

Object [] Arg=��;
FList L= new FList();
try �if (size()!=0)� L=tail().map(F);

Method M=val().getClass().getMethod(F,Arg);
/*M is evaluated through getClass and getMethod */

L.insert(M.invoke(val(),Arg));�
catch (Exception e)��
return L; �
�

public class ShapeList extends FList �
public FList areaList() �
return map(”area”); ��

Figure 4. A first Java definition ofmap and its application

range type ofx can be declared, hence a complete type checking cannot be performed in the body ofm.
As a consequence run time exception may occur if a method of the specified name and type does not
exist or the type of the actual parameter is not compatible with its use.

A critical aspect in object-oriented languages, related with the problem of HO programming, is the
fact that methods can be either static or instance methods. Higher order functions likemap behave
differently whether their parameters are static or instance methods. In this paper we privilege solutions
based on instance methods since the OO paradigm is based on objects with instance methods. In some
case, any way, resorting to static methods provides interesting different solutions as the one in Figure 5.

A first solution, which uses only instance methods, is shown in Figure 4. In this casemap argument
is aString which is passed to each recursive invocation, hence a class and a method are computed for
each element in the list. This is necessary because of hierarchies and overriding mechanisms. In fact, in
this case, the list contains elements of typeShape which can beCircle or Rectangle and the methods
to compute thearea of circles and rectangles are different and are defined in each subclass. The benefits
of such a solution are simplicity and clearness of the code ofthe extended class, e.g.ShapeList. In fact
all the ugly code needed to invoke and access the method is hidden inmap definition, once and forall.
This is due to the choice to definemap with a String argument instead of aMethod argument, as for
instance in the solution presented in Figure 5. Reader can compare this solution with the one in 5.2

Another version of this first solution is shown in [3], Such solution has the benefit to provide a library
of higher order methods which can be used on any kind of data type which generates an enumeration of
homogeneous values.

A different solution which perhaps more strictly resemblesmap in functional languages is shown in
Figure 5. This solution is quite similar to the solution in Figure 4, it does not resort toEnumerator, but

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 35

public class FList � . . . same as above for instance variables, methods etc.
public FList map(Method F)�
/*Effects: returns the list of the values obtained evaluating the method F
on each element in this. It doesn’t resort to getClass and getMethod*/

FList L= new FList();
try � if (size()!=0)� L=tail().map(F);

Object [] Arg=�this.val()�;
L.insert(F.invoke(null,Arg));� �

catch (Exception e)��
return L; ��

public class ShapeList extends FList �
public static double myArea(Shape s) � return s.area();�
public FList areaList() throws NoSuchMethodException, EmptyException�

Class [] Arg=��;
return map(getStaticMethod(Class.forName(”ShapeList”),”myArea”)); �
/* Since parameters of map are static methods, getStaticMethhod
and forName are necessary*/

Figure 5. A solution which uses static methods

defines methodmap having an argument of typeMethod. The problem to invoke the correct method
to compute the area of the geometric shapes is solved using a static methodmyArea which simply
invokes the instance methodarea on the arguments thus obtaining the invocation of the correct method,
through dispatching. Note also the use ofgetStaticMethod andforName to cope with static methods.
This solution is slightly more complex than the one in Figure4, mainly for the additional static method
definition.

4. Comparison with other approaches

In this section we analyze three other proposals which provide solutions for HO programming of Java-
like languages. They are: anonymous inner classes, delegates in Visual J++ and the Pizza language.

4.1. Anonymous inner classes

The idea underlying this approach is to emulate functions using objects of a particular kind of class(es).
Each function is represented by one class and all the classesrepresenting functions have a unique method
apply which must be invoked to apply the function to its arguments.In this approach anonymous inner
classes are a convenient way to express function values, which are passed to or returned by other func-
tions. In [17], such an approach is used to model a calculus of�-terms with a by-value evaluation. In
[3] it is shown how anonymous inner classes can be used to provide a solution of the problem defined in
Section 2.

36 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

In our opinion this approach has two main drawbacks:

� It applies only to static methods. In fact, instance variable names should be passed as parameters
and access to the value of the instance variable could be obtained only through reflection. In this
casecomputeArea is defined as a static method of classRectangle.

� Arguments to higher order methods are not methods, but special values, in this case objects of class
Compute. Hence only those functions, defined of typeCompute can be passed as arguments to
higher order methods. The program designer has to decide in advance which functions will be
passed as arguments to higher order methods. This is a severelimitation, which vanishes HO
programming benefits.

4.2. Delegates

Visual J++ is a development environment [6] for Java which provides delegates as a new feature. Dele-
gates are objects which encapsulate methods. Two kinds of bounds are possible: early bound at the time
of delegate creation, and late bound at invocation time. Twosolutions of the problem defined in 2 are
defined in [3], one using early bound and static methods, the other one using late bound and instance
methods. Such solutions are very similar to those using reflection.

4.3. Pizza

Pizza is an extension of Java providing, beyond other features, function abstractions and parametric
polymorphism which has been included in Java 1.5 [11] Since parametric polymorphism is rather stan-
dard, we will not further describe such a feature. On the contrary, functions abstractions require some
comments. The language is extended either to define functiontypes through ((TypeList) � Type) and
also function values can be constructed through(fun TypeFun Body). Furthermore every method is a
function hence can be passed as an actual parameter for a corresponding formal parameter defined as an
abstract function. Methods can be defined having functions as parameters.

A nice solution in Pizza of the problem defined in section 2 is shown in [3]. It uses the abstract class
Enumerator defined in [14].

In our opinion this approach has the drawback of adding a new mechanism to define functions which
already can be defined through methods. Furthermore, using function abstraction types, to define argu-
ments types in method definitions, has the benefit to allow static type checking. On the other hand, in
this way, the actual parameters are constrained to match theformal parameter types. For this reason, in
the example the static methodmyArea had to be defined.

5. A calculus of objects with method passing and method extraction

The use of methods as parameters, in the methodology, requires two distinct mechanisms: method pass-
ing and method extraction. In this section, we address the problem of embedding such mechanisms
in object oriented languages, extending the�-calculus [1] with constructions for the two. In the se-
quel, in order to simplify the reading, we use the definitionsand the notations of [1] with the following
typographic changes:� for the weak reduction�, � for judgment

�
, ���� � � � ��� for substitution

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 37

����� � � � ���� of �� for �� � � � �� for �� in term ���� � � ����, namely the term� with, possibly free
occurrences of letters�� � � ���.

Method passingis the ability to refer, within a method body, to one (or more)abstraction that is
instantiated, i.e. bound, to a, possibly different, methodeach time the body is evaluated. From a syntactic
point of view, method passing comes in the�-calculusby allowing methods to have methods, of a suitable
kind, as parameters. We extend the�-calculusin the calculus��-calculus, as in figure 6, by providing:

� one additional (clause 3) type structure,M-types, in order to assign more complex types to meth-
ods;

� parameters in the methods (clause 5): in the�-calculus, methods have no parameter in addition to
the parameterself;

� parameter passing in method invocation (clause 6): in the�-calculus, the parameter passing ofself
is implicit so we add a construct for general parameter passing;

� actual parameters (clauses 8): for brevity sake, we limit the structure of actual parameters to
methods only ;

� method extraction (clause 10): in the�-calculus, operations on methods areselectionandabstrac-
tion only, henceextractionbecomes an additional operation;

� formal parameters: clauses 12 and 7 distinguish the parameter self, which is always the first of
the tuple, and is of object type,O-types, from the remaining parameters which must be of method
type,M-types.

Figure 6. Syntax of��-calculus

38 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

Method Extractionis the ability to select a fragment of code, in a program, and to abstract it into
a new method that has the same (observable) behavior. To support the HO methodology, we can limit
the extent of the selectable code to methods that are correctly defined within objects. From a syntactic
point of view, the construct comes in the calculus by clause 12 of figure 6. Though simplified in this
way, method extraction does not turn out simple at all. In effect, a method has meaning in environments
which conform to the one of the object it belongs to. The notion of ”conform” must guarantee enough
bindings, of the right type, for the identifiers that occur free in the method body (and will implicitly be
bound by the method self parameter). So the treatment of method extraction depends on the one that the
calculus provides tosubtyping, inheritanceandsubsumption. Following the principle that inheritance-is-
subtyping, as it is in case of Java, a method that has been extracted from an object of type� can occur in a
call from objects of type�

�
, provided that�

�
is subtype of� . Hence, the main problem is the conflict”O

between subsumption and method extraction in asound type systemas it emerged in [1], pag. 106-108.
We will overcome such a problem by limiting subsumption to objects and to object components that are
not methods.

5.1. Operational semantics

We extend the reduction relation,�, of �-calculusto cope with method passing and method extraction.
What”cs new? Method passing is pervasive to the new calculus, in particular method invocation inRed-
Selectis extended: in addition toself parameter�, the substitution����� � � ����, in the premises, is
considering methods��. Red-Abstractis a new rule that allows method introduction, in the invocation. It
behaves exactly as Red-Select but the method� is bound only to the invocation instead of to the object.
Red-Extractallows to take the method of selection��� of an object	 and puts it into another object� as
one additional method: in doing so,Red-Extractextends� into a new object�.

Noting that the new rules preserve the main properties of�, in particular the rules system is Church-
Rosser confluent and the relation� can be extended into a conguence on the terms.

Theorem 5.1. (Confluence)
Let ��

be the reflexive, transitive, closure of�, and
,
�,
�, � terms:

if
 ��
� �
 ��
� then
� �� � �
� �� �

Red-Abstract, as well asRed-Extract, requires that the objects, that are involved in the ultimate
invocation, i.e.� and�, respectively, extend the protocol, i.e. the binding environments, of the respective
objects
. In order to guarantee it, we need to extend thetype systemas it will be discussed in 5.3.

5.2. Example

To illustrate the calculus, we consider objects of the following type
����.

����
�� �

val �
���� �� ��
tail �
���� ��
 �����

insert �
���� � ��
 �����
map �
���� � ���

������

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 39

Figure 7. ��-calculus: Operational Semantics

The objects have methodsinsert, val, tail, of the expected behaviours for ordinary computation with lists
of objects of type�, and methodmapdefined as below:�
�

�� � �� �
 ������ � � �� �����
����
� ��������	�����
���� 1

Suppose that type� is typeShape, for objects that are representing, in�-calculus, geometric shapes
of Section 2, and that
 is an object of typeShape, area is a method of
, and thatlist-a is a list of objects
of typeShape. Then,

list-a��
� �
�
	�
�
results into a list,list-b, of objects:i-th object oflist-b is equal to the object that�� �
	�
 computes,

where�� is thei-th object oflist-a. Note that each object oflist-a is invoking one identical method, that
of object
. A different situation happens when we consider:

list-a��
� �� �� � �� ��
	�
�
In this case, each object oflist-a is invoking the, possibly different, method that is bound tothe

1Method insert, as well as methodsval, tail, could be entirely defined in standard�-calculus. In this case,
��������, noting
round parentheses, is invocation withmethod passing through emulation of functions with objects(see [1] pag 66-69).

40 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

selectionarea in the object. We show it. Supposelist-a is the object for the list�
�
�� that contains the
two objects of typeShape:
� � �� � � �
	�
 � ��� � � � � and
� � �� � � �
	�
 � ��� � � � �. Then, we obtain
the sequence of figure 8.

Figure 8. The sequence of reductions of an invocation of the methodmap

5.3. The type System: Inheritance, Subsumption and Subtyping

We now equip the��-calculuswith a first order type system that contains axioms for subtyping with
inheritance and subsumption. In order to constraintsubsumption, when dealing with method extraction,
the system uses two distinctinferences: �� and�. Inference� is defined by all the axioms of inference
��, table A in figures 9-10, but ruleSubsume, in figure 9, which concerns subsumption subtyping. In
particular, in order to obtain the complete set of rules of the inference�, it suffices to replace�� with
�, everywhere in table A.

In the table A-a, we have collected the basic rules for subtyping introduction,Sub-Int, the transitivity
of subtyping,Sub-Tran, and the rule for inheritance,Inherit, and for subsumption,Subsume. In particular,
Inherit states that a subtype is a type which extends another one, so going down in the type hierarchy,
while the rule of subsumption goes up in the hierarchy. In this way, subsumption allows to assign
supertypesto objects. This works well in the object oriented paradigm quite everywhere. In particular,
type unicitybecomes the unicity of theminimumamong the assignable types. We use the minimum to
allow that the program works well with objects, of whatever type, in the entire hierarchy of the supertypes

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 41

Figure 9. Table A-a: Subtyping, inheritance and subsumption in ��-calculus

of that minimum. This is what happens in the terms, of the calculus, by using the rulesObject, Update
andSelect.

For the other two rules, we have to be more careful. We must arrange two distinct requirements.
The first one demands that the type�� of the object
, from which the method is imported (in the case
of Extract, or from which the method can be invoked, in the case of Abstract), must be a supertype of
the type

��, of the object
 to which such method is applied. This restricts the classes of objects, i.e.
of
’s, that can invoke the method to only those classes that, by extending the type of
, contain all the
selectionsthat the object
 can invoke, namely all the ones that the body of a method whichis invoked
from
 can contain. This is expressed by imposing

�� ���� in the premises of the rules. The second
one demands that the type��, considered in the previous comparison, is the effective type of the object

 and not one of its supertypes. This is expressed, in ruleExtract, by imposing that the type�� has been
inferred without resorting to the axiomSubsum, i.e. using inference�. In rule Abstrat, the requirement
that �� is the effective type is guaranteed by the type annotations of the method, in particular from the
fact that� ������ ��

�� � � � ��� � �� is a correct annotation, in�, for inferring a type for the body�.
Before to prove that the system of types of table� assigns correct types to terms of the��-calculus, we
consider some basic lemmas.

Lemma 5.1. (Subsumption)
For term
 and type� :

if �
 �� then��� � ��
 ��� � �� � �� ��

Lemma 5.2. (Substitution)
For environment�, term
���, possibly having� free, term� and types��, ��:

if � �� ��� ��
��� � �� � � �� � ��� then� ��
��� ���

Lemma 5.3. (Contravariance)
For environment�, term
���, possibly having� free, and types��, ��, ��:

if � �� ��� ��
��� ��� � � �� �� ���� then� �� ��� ��
��� ���

42 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

Figure 10. Table A-b: The typing rules of��-calculusterms

Theorem 5.2. (Subject reduction)
For closed terms
, �, and type� :

if ��
 � � � ��
 �� then�� � ��
Proof.

The proof is by induction on the derivation steps of the sentence��
 � �, and it follows that of
Abadi and Cardelli (see[1] pag. 87) for axiomsRed-Object, Red-SelectandRed-Updateof �-calculus.
In particular, that proof can be easily rephrased for the three corresponding axioms of��-calculus. So,
here, we limit only to consider the caseRed-AbstractandRed-Extract.

Case Red-Abstract. We suppose that��
�� ������ � � � ��������� � � � ���� � ������� � � � ���� be-
cause (*)��
 � � for some object� of type ��. By premises ofAbstract,
 has type

��, � has
type� for

�� �� ��, for each� � � � �
, �� has the type

�� of method�� and, both term� and term

�� ������ � � � ��������� � � � ���� have type�. But, by inductive hypothesis,�����, since (*), hence, by
lemma on substitution, term������� � � � ���� has type�.

M. Bellia and M.E. Occhiuto / Higher order Programming in Java 43

Case Red-Extract. We suppose that��
�
���� ��� � �
��� � ��� ��

���� , ���� � ��� ���������
because (**)��
 � � � �

��� ���� ��
����� and��
 � 	 � ���� ���� ��

����� for � � � � �
. By

premises ofExtract,
 has type
��,
 has type�� � �

��� ��� ��
�
� � � ������ �� ��� ��

�����, �� �� ��, and

�
���� ��� has type���. By inductive hypothesis,

�� � �� and�� � ��, since (**), and, byInherit,�
��� � ��� ��

���� , ���� ���� � has type�� such that�� �� ��. Hence, by lemma oncontravariance
and byObject, ���� has type�� ��

�� � � � ����� �� ��� as its associated type in��, and
�
��� � ��� ��

����
, ���� � ��� ��������� has type��� .

We conclude considerations on�-calculusby remarking that a calculus of object can be extended
in order to allow, in a reasonable way, the use ofmethod passingand method extraction. Although,
��-calculusstill lacks some important characteristics of Java, we think that this result can be adapted to
the other calculi [7, 10, 5, 4] that are nearest to the language and, next, to Java itself.

6. Conclusions

We have motivated and exemplified resorting, in Java and in OOprogramming, to the HO programming
methodology.

For all the analyzed approaches, we succeeded in providing higher order solutions resorting to static
methods, but only the approaches which extend the expressivity of the language, throughreflectionor
delegates, succeed in providing real object oriented, higher order solutions, using instance methods.

Hence, we have investigated, in the first order calculus�-calculus, a way to extends the OO pro-
gramming language paradigm with the basic mechanisms that support HO programming. This lead to
embeddingmethod passingandmethod extractionin a calculus equipped withsubsumptionas one sub-
typing axiom. To overcome the conflict arising from the combination of extraction and subsumption, we
reformulated the calculus in a way that it limits subsumption when the term is using method extraction.

Future work could be devoted to consider the expressivity that the various techniques, we have con-
sidered, offer in writing OO programs using HO programming methodology. Again, it is interesting to
understand how our solution could be extended to other calculi and to Java. Again, the combination of
method extraction and inheritance could exploit new applications for the combination of OO and HO
programming. As a matter of fact, consider the termlist-a��
� �
�
	�
� of the example in 5.2 and sup-
pose that
 is an object of a superclass of the classes of the objects occurring in list-a, suppose also that
all such classes have a new, possibly, all different definition of the methodarea. Then, the evaluation of
the term behaves as a brute force invocation of the method of the superclass instead of those the classes
have redefined.

References

[1] Abadi., M., Cardelli, L.:A theory of objects, Springer-Verlag, 1996.

[2] Backus, J.: Can programming be liberated from the von Neumann style? A functional Style and its algebra
of programs,Communication ACM, 21, 1978, 613–641.

[3] Bellia, M., Occhiuto, M.: Higher Order Programming through Java Reflection,CS&P, 2004, 447–459.

[4] Bierman, G., Parkinson, M.: Effects and effect inference for a core Java Calculus,Electronic Notes TCS,
82(8), 2003, 1–29.

44 M. Bellia and M.E. Occhiuto / Higher order Programming in Java

[5] Clark, D.: An Object Calculus with Ownership and Containment,8th. FOOL, 2001.

[6] Microsoft Corporation, M.: Delegates in Visual J++, 2004, Msdn.microsoft.com/vjsharp/productinfo/visualj-
/visualj6/technical% -/articles/general/delegates/default.aspx.

[7] Drossopoulou, S., Eisenbach, S.: Is the Java Type SystemSound?,Journal of Theory and Practice of Object
Systems, 5, 1999, 3–24.

[8] Hudak, P.: Conception, evolution , and application of functional programming languages,ACM Computing
Surveys, 21, 1989, 359–411.

[9] Hudak, P.:The Haskell school of Expression, Cambridge University Press, 2000.

[10] Igarishi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and GJ.,ACM
TOPLAS, 23, 2001, 396–450.

[11] Sun Inc., S. M.: A Sun Developer Network Site, 2004, Http://java.sun.com/j2se /1.5.0/download.jsp.

[12] Jensen, K., Wirth, N.:Pascal User Manual and Report, second edition, Springer, 1975.

[13] Kernighan, B. W., Ritchie, D. M.:The C programming Language, Prentice-Hal, 1988.

[14] Odersky, M., Runne, E., Wadler, P.: 2002, Pizzacompiler.sourceforge.net /examples/enumerator.html.

[15] Odersky, M., Wadler, P.: Pizza into Java: translating theory into practice,Proc. 24th Symposium on Principles
of Programming Languages, 1997, 146–159.

[16] Schildt, H.:C++ The Complete Reference, McGraw Hill, Inc, 1995.

[17] Setzer, A.: Java as a Functional Programming Language,TYPES 2002,LNCS 2646., 2003, 279–298.

[18] Wadler, P.: The essence of functional programming,Proc. 19th Symposium on Principles of Programming
Languages, 1992, 1–14.

