Fundamenta Informaticae 67 (2005) 29-44 29
10S Press

Higher order Programming in Java: Introspection, Subsumption and
Extraction

Marco Bellia*

Dipartimento di Informatica, Universitdi Pisa,
Largo B. Pontecorvo 3, I-56127 Pisa, Italy
bellia@di.unipi.it

M. Eugenia Occhiuto

Dipartimento di Informatica e Scienze dell'Informazione,
Universit di Genova, via Dodecaneso 35, 1-16146 Genova, Italy
occhiuto@di.unipi.it

1.

Abstract. Higher order programming is considered a good methodologyfogram design and
specification, furthermore it is fundamental for rapid ptgping. The paper is devoted to higher
order programming in Java and, more in general, in the OOrproming paradigm. We discuss
introspection to write higher order programs and compaigetdthnique with other different, in-
teresting approaches, including function emulation anttfion integration. Finally, we address
the problem of embedding, in the OO paradigm, the mechanismaethod passing and method
extraction that are basic to the higher order programmintipat®logy.

Introduction

Higher order programming;O, is considered the main programming methodology of funetidan-

guages [2]. In this class of languages, in fact, program$usmetions and functions are first class values
of the language. This means that functions can be passedasqiars to other functions, returned as
result of the computation and furthermore, functions candlees in data structures (i.e. we can have
lists, records and arrays of functions). The benefits obthlyy HO programming are in the expressiv-
ity of the code, which becomes more concise, clear and weittsired and can be reused more easily.

* Address for correspondence: Dipartimento di Informatidgaiyersita di Pisa, Largo B. Pontecorvo 3, 1-56127 Pisalylt

30 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

These topics are extensively discussed in the literatufermstional programming. References, that are
a starting point, are [9, 8, 18].

The drawback of higher order is the inefficiency of the impbetation, for this reason functional
languages have never become an effective alternative tonjberative ones, instead limited HO pro-
gramming features have been added to imperative, first dadguages to improve their expressivity.
Examples in this direction are Pascal [12], C [13] and C+4.[8&ich languages have been defined pro-
viding features to allow to pass programs (i.e. procedurdsrtions) as parameters to other programs.
In fact, in this way an important abstraction mechanism deado the language, in particular, programs
are abstracted with respect to the programs they invokeein ody.

In a sense, also object-oriented languages originate froattampt to add higher order features to
imperative languages. In fact, in this case, objects arecfiss values of the language. Objects contain
values (instance variables) and methods (instance methoath are bound to names. Hence objects
are environments, a particular kind of functions of typee(lé {Val U Methods). Methods, in this
case, are not themselves values, but are contained in shjbith are values, hence can be passed as
parameters, returned as result and stored in data strediyrpassing, returning and storing the object
containing the method. In this way the language providesd &f higher order, [15], which helps in
getting some higher order programs but does not cope witargeRlO programming, i.e. functionals
typically used and defined in functional languages. In th& foart of the paper we show how it is
possible to write general higher order programs in Javaei@eapproaches are considered starting from
those based omtrospection which is obtained using the package java.lang.reflectJdwa reflection.
Another approach is based @mulationof a function calculus through anonymous inner classes of
Java [17]. The introduction of function abstractions inembjoriented programming is pursued in Pizza
[15]. Finally delegates in J++ [6] are considered. All thalgmed approaches are valid techniques to
support the methodology but none of them is definitely bektan the others. Furthermore, all of them
provide only an indirect way, to support the HO methodologijch limits the program expressivity
and makes the use of HO programming a bit tricking. The useathau passing, in HO programming,
calls the mechanism of method extraction and its confliatelgtion with subsumption subtyping in the
OO programming paradigm. Then, we investigate a way, in teedrder(-calculus [1], to extend the
OO0 paradigm with method passing and method extraction. uBnjpigson states that any object of a class
is also one object of its superclass(es), hence it can beiosmay context in which an object of the
superclass(es) can be used. In other words, such an objgdtt@ve the type of the objects of (each of)
its superclass too. In particular, a method, once it has bgacted from an object, has the type that
makes its invocation from objects, of the superclassed, twetd. However, since such a method was
defined in the environment of an object of a subclass, theaddibdy can contain references that have
been introduced in the subclass but not in the superclassfisce, at static time, the typing system
says that it is correct’O, but, at run time, the applicatian go into one fatal error’O in trying to select
components that are not defined in objects of the superelgssthis conflict is well exemplified in [1],
see pages 106-108. A way to overcome the situation is disdussection 5 where we limit subsumption
when terms are using extraction.

In Section 2 we introduce a problem and show a solution in Oaireg only first order methods. In
Section 3 we show three solutions in pure Java defining higrdear functions, all use reflection but in
different ways. In Section 4 three different approachesh&oproblem are considered they are anony-
mous inner classes 4.1, delegates 4.2 and the Pizza landgulageJava extension providing parametric
polymorphism and higher order functions. Section5 adésetize embedding, in the OO paradigm, of

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 31

public class FList {/*Aim: define list of elements with the usual methods insert, val and tail*/
private Object elem; private FList next; private int sz;
[*Implementation: using next of type FList and sz to represent the length
of the rest of the list*/
public FList () {sz=0;}
[*Constructor: The empty list has all instance variables null except sz which is 0*/
public void insert (Object x) {/*Effects: modifies this inserting a new element*/
if (sz==0) {elem=x; sz=1; next= new FList();}
else{sz++; next.insert(x);} }
public Object val () {return elem;}
public FList tail () {return next;}
public int size () {return sz;} }

Figure 1. Clas$List

mechanisms for method passing and method extraction. Shedation concludes the paper.

2. Why higher order programming in object-oriented languages?

Suppose we want to define collections of geometric shapéswédthods to compute areas and perimeters
of such shapes, and also collections of areas and perimiidfgure 1 we start defining generic collec-
tions of Objects in the clasg-List. Then we define the abstract cl&sapes and several subclasses for
specific geometric shapes, Figure 2 and the exteri@mpelList.

As itis clear, examining the code, the mettardal.ist and the methogerimeterList are constituted
by the same code except for the name of the method in the itiwacaSuch a code repetition could
be avoided if the language allowed to pass methods as argsinenther methods, hence to use HO
programming methodology to write programs. Suppose thpessible and hence we can write a higher
order method, with a method as argument. In functional lagga such a functional is calledap and
has two arguments, the first one is a function, the secondsoadist, it computes the list of the values
obtained applying the function to each element in the lisfirg tentative definition ofmap is given in
Figure 3. Sincanap is defined as an instance method-tist, it has one parametéy, which is a method.
ShapelList is still defined with its two methods but these are mere inttona ofmap. Allowing to pass
programs (i.e. procedures, functions or methods depenatinthe language) as parameters to other
programs, is adding an important abstraction mechanisrhedanguage, in particular, programs are
abstracted with respect to the programs they invoke in thedly. In factmap is the abstraction of
arealist andperimeterList with respect to the methodsea andperimeter they invoke in their body.
Unfortunately, this solution does not work, becaval).F()) is not recognized as a legal Java expression.
F in fact is the formal parameter afiap hence a value (of typ®lethod) and not a method identifier. In
section 5, it is shown how this problem can be overcome in@uti# of objects.

32 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

public abstract class Shape {
/*Aim: define geometric shapes with methods area , val and perimeter*/
public abstract double area();
public abstract double perimeter();}
public class Rectangle extends Shape {
/*Aim: define rectangles as extension of Shape*/
private double base;
private double height;
public Rectangle (double b, double h){base=b; height=h;}
public double area() {return base * height; }
public double perimeter(){return 2*base+2*height;} }
public class Circle extends Shape {
/*Aim: define circles as extension of Shape defining the methods area and perimeter*/
private double radius;
public Circle(double r){radius=r;}
public double area() {return new Double(radius *radius*Pl);}
public double perimeter() {return new Double(radius*2*PI);} }
public class ShapeList extends FList {
/*Aim: define lists of shapes as extension of FList with methods arealList and
perimeterList*/
public FList areaList(){
[*Effects: construction of the list of areas of the shapes elements of this*/
FList L= new FList();
if (size()!=0) {L=((ShapeList)tail()).areaList();
L.insert(((Shape) val()).area());}
return L; }
public FList perimeterList(){/*Effects: analogous to areaList*/
FList L= new FList();
if (size()!=0) {L=((ShapeList) tail()).perimeterList();
L.insert(((Shape) val()).perimeter()); }
returnL; }}

Figure 2. The first order solution in Java

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 33

public class FList { ...same as above for instance variables, methods etc.
public FList map(Method F){
[*Effects: construction of the list of values obtained evaluating F
on each element of this*/
FList L= new FList();
if (size()!=0) {L=tail().map(F);
L.insert(val().F()));}
returnL; }}
public class ShapelList extends FList {
/*Aim: define lists of shapes as extension of FList*/
public FList arealList() {return map(area);}
public FList perimeterList() {return map(perimeter);}}

Figure 3. Afirst higher order program

3. Solutions in Java

In this section we show how higher order functions can be ddfin Java through the reflection package
in java.lang. Firstly, we briefly illustrate few featuresgtrcommonly used in Java programs, that are
used in this paper:

Class is the class of all classes in a Java application. It is defimgala.lang
Method is the class of all the methods both static and of instands.difined in java.lang.reflect
Class getClass () is the instance method @bject, which returns the class of the object.

Method getMethod(String name, Class [] parameterType) is the instance method @flass that re-
turns the method, among those of the class , whose name istegquane and whose parameters
are equal tgparameterType.

Object invoke(Object obj, Object [] args) instance method dflethod, which allows the invocation
of the method on which it is issuednvoke has two parameters, obj of tyggbject, which is
the object of the invoked method aradgs of type Object [] an array of objects that are the
parameters to be passed to the methiodoke may generate exceptiolllégalAccessException,
lllegalArgumentException, InvocationTargetException).

The classes contained in the package java.lang.reflectecasda to define all kinds of higher level meth-
ods, that is either methods with methods as parameters smdhathods returning methods as result and
even data structures containing methods. Neverthelesdatiguage is not higher order and the only
expression that can return a value of tydethod is an invocation tagyetMethod. The invocation to
getMethod must be issued on the class of the object, providing the rdatame and the type of its pa-
rameters. This is concerned with the Java overloading aadiding mechanisms which allow to define
several static or non-static methods with the same naméf@retit levels of the class hierarchy. Another
problem is concerned with static type checking of types efrttethods used as formal parameters. In
fact, supposen is declared to be a method with an argumenf type Method. In no way domain and

34 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

public class FList { ...same as above for instance variables, methods etc.
public FList map(String F){
[*Effects: construction of the list of values obtained evaluating the
method of name F on each element of this*/
Object [] Arg={};
FList L= new FList();
try {if (size()!=0){ L=tail().map(F);
Method M=val().getClass().getMethod(F,Arg);
/*M is evaluated through getClass and getMethod */
L.insert(M.invoke(val(),Arg)); }
catch (Exception e){}
return L; }

}

public class ShapeList extends FList {
public FList areaList() {
return map("area”); }}

Figure 4. A first Java definition ahap and its application

range type ok can be declared, hence a complete type checking cannot floerped in the body om.
As a consequence run time exception may occur if a methodeo$plecified name and type does not
exist or the type of the actual parameter is not compatibtk itd use.

A critical aspect in object-oriented languages, relateith Wie problem of HO programming, is the
fact that methods can be either static or instance methodgheHorder functions likenap behave
differently whether their parameters are static or instamethods. In this paper we privilege solutions
based on instance methods since the OO paradigm is basedeatsabith instance methods. In some
case, any way, resorting to static methods provides irttegedifferent solutions as the one in Figure 5.

A first solution, which uses only instance methods, is shawigure 4. In this casmap argument
is a String which is passed to each recursive invocation, hence a amba enethod are computed for
each element in the list. This is necessary because of tieearand overriding mechanisms. In fact, in
this case, the list contains elements of t@glgape which can beCircle or Rectangle and the methods
to compute tharea of circles and rectangles are different and are defined in saloclass. The benefits
of such a solution are simplicity and clearness of the codbeéxtended class, e.§hapelList. In fact
all the ugly code needed to invoke and access the methoddemid map definition, once and forall.
This is due to the choice to defimeap with a String argument instead of Klethod argument, as for
instance in the solution presented in Figure 5. Reader caipare this solution with the one in 5.2

Another version of this first solution is shown in [3], Suclhution has the benefit to provide a library
of higher order methods which can be used on any kind of da@which generates an enumeration of
homogeneous values.

A different solution which perhaps more strictly resembtesp in functional languages is shown in
Figure 5. This solution is quite similar to the solution ilg&ie 4, it does not resort ®&nhumerator, but

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 35

public class FList { ...same as above for instance variables, methods etc.
public FList map(Method F){
[*Effects: returns the list of the values obtained evaluating the method F
on each element in this. It doesn’t resort to getClass and getMethod*/
FList L= new FList();
try { if (size()!=0){ L=tail().map(F);
Object [] Arg={this.val()};
L.insert(F.invoke(null,Arg));} }
catch (Exception e){}
returnL; }}

public class ShapeList extends FList {
public static double myArea(Shape s) { return s.area();}
public FList areaList() throws NoSuchMethodException, EmptyException{
Class [] Arg={};
return map(getStaticMethod(Class.forName("ShapeList”),"myArea”)); }
[* Since parameters of map are static methods, getStaticMethhod
and forName are necessary*/

Figure 5. A solution which uses static methods

defines methodnap having an argument of typelethod. The problem to invoke the correct method
to compute the area of the geometric shapes is solved usitgfia methodmyArea which simply
invokes the instance methadea on the argumenrd thus obtaining the invocation of the correct method,
through dispatching. Note also the usegetStaticMethod andforName to cope with static methods.
This solution is slightly more complex than the one in Figdrenainly for the additional static method
definition.

4. Comparison with other approaches

In this section we analyze three other proposals which geogblutions for HO programming of Java-
like languages. They are: anonymous inner classes, detegaYisual J++ and the Pizza language.

4.1. Anonymous inner classes

The idea underlying this approach is to emulate functiomsgusbjects of a particular kind of class(es).
Each function is represented by one class and all the clesgessenting functions have a unique method
apply which must be invoked to apply the function to its argumefrighis approach anonymous inner
classes are a convenient way to express function valueshvainé passed to or returned by other func-
tions. In [17], such an approach is used to model a calculustefms with a by-value evaluation. In
[3] it is shown how anonymous inner classes can be used taderevsolution of the problem defined in
Section 2.

36 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

In our opinion this approach has two main drawbacks:

e It applies only to static methods. In fact, instance vagaldmes should be passed as parameters
and access to the value of the instance variable could b&ebtanly through reflection. In this
casecomputeArea is defined as a static method of cld&sctangle.

e Arguments to higher order methods are not methods, butapedies, in this case objects of class
Compute. Hence only those functions, defined of typempute can be passed as arguments to
higher order methods. The program designer has to decidévanae which functions will be
passed as arguments to higher order methods. This is a dewéetion, which vanishes HO
programming benefits.

4.2. Delegates

Visual J++ is a development environment [6] for Java whiabvjates delegates as a new feature. Dele-
gates are objects which encapsulate methods. Two kindsuoidscare possible: early bound at the time
of delegate creation, and late bound at invocation time. Swlations of the problem defined in 2 are
defined in [3], one using early bound and static methods, ther@ne using late bound and instance
methods. Such solutions are very similar to those usingatédie

4.3. Pizza

Pizza is an extension of Java providing, beyond other feafuiunction abstractions and parametric
polymorphism which has been included in Java 1.5 [11] Siraampetric polymorphism is rather stan-
dard, we will not further describe such a feature. On theraoytfunctions abstractions require some
comments. The language is extended either to define funtyms through (fypelist) — Type) and
also function values can be constructed thro(figh TypeFun Body). Furthermore every method is a
function hence can be passed as an actual parameter foreapanding formal parameter defined as an
abstract function. Methods can be defined having functisnsasameters.

A nice solution in Pizza of the problem defined in section zhisven in [3]. It uses the abstract class
Enumerator defined in [14].

In our opinion this approach has the drawback of adding a neashamism to define functions which
already can be defined through methods. Furthermore, usitajién abstraction types, to define argu-
ments types in method definitions, has the benefit to alloticdige checking. On the other hand, in
this way, the actual parameters are constrained to matdiortimal parameter types. For this reason, in
the example the static methoayArea had to be defined.

5. A calculus of objects with method passing and method extidion

The use of methods as parameters, in the methodology, esquio distinct mechanisms: method pass-
ing and method extraction. In this section, we address thblgm of embedding such mechanisms
in object oriented languages, extending thealculus[1] with constructions for the two. In the se-
quel, in order to simplify the reading, we use the definitiang the notations of [1] with the following
typographic changes:— for the weak reduction, = for judgmentt-, b{v; ... v, } for substitution

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 37

b{{vi...vp}} of vy for z; ... v, for z, in termb[z; ... z,], namely the termb with, possibly free
occurrences of letters; ... z,,.

Method passings the ability to refer, within a method body, to one (or moabkstraction that is
instantiated, i.e. bound, to a, possibly different, metbach time the body is evaluated. From a syntactic
point of view, method passing comes in trealculusby allowing methods to have methods, of a suitable
kind, as parameters. We extend trealculusin the calculug,-calculus as in figure 6, by providing:

e one additional (clause 3) type structukdstypes in order to assign more complex types to meth-
ods;

e parameters in the methods (clause 5): in¢kmlculus methods have no parameter in addition to
the parameteself,

e parameter passing in method invocation (clause 6): il ibalculus the parameter passing sé|f
is implicit so we add a construct for general parameter pgssi

e actual parameters (clauses 8): for brevity sake, we lingtgtructure of actual parameters to
methods only ;

e method extraction (clause 10): in thecalculus operations on methods aselectionandabstrac-
tion only, henceextractionbecomes an additional operation;

o formal parameters: clauses 12 and 7 distinguish the paearsef which is always the first of
the tuple, and is of object typ&-types from the remaining parameters which must be of method
type, M-types

T, Ti€ Types :=A | B
A, A, A; € O-types =
(1) k&€ Constants -ground types act € Actuals =
)| [:Bi € -object type (1; distinct) (8) &|{pact)
B, "B, B;€ M-types := p, pi € Method operations :=
(3) Ao By... Bh-> A -method type 9 1 -selection
a, b,0,b, € Terms := (10) a’l -extraction
(4) x,y,yi€ Var -variables (11) T(x:A par) b -abstraction
(5) | [l = &(x;:A par) b; '] -object former ~ par € Parameters :=
(6) | a.p act -method invocation (12) €|y:Bpar
(7) | al <=T(x:A par) b -method update | € method selectors

Figure 6. Syntax of,-calculus

38 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

Method Extractioris the ability to select a fragment of code, in a program, andlstract it into
a new method that has the same (observable) behavior. Torsupp HO methodology, we can limit
the extent of the selectable code to methods that are dgraefined within objects. From a syntactic
point of view, the construct comes in the calculus by claueflfigure 6. Though simplified in this
way, method extraction does not turn out simple at all. Iectffa method has meaning in environments
which conform to the one of the object it belongs to. The motd "conform” must guarantee enough
bindings, of the right type, for the identifiers that occlediin the method body (and will implicitly be
bound by the method self parameter). So the treatment ofadetktraction depends on the one that the
calculus provides teubtypinginheritanceandsubsumptionFollowing the principle that inheritance-is-
subtyping, as itis in case of Java, a method that has beactdrfrom an object of tygE can occur in a
call from objects of typd™ , provided thafl” is subtype ofl’. Hence, the main problem is the conflict"O
between subsumption and method extraction $oand type systeas it emerged in [1], pag. 106-108.
We will overcome such a problem by limiting subsumption tgects and to object components that are
not methods.

5.1. Operational semantics

We extend the reduction relation;, of (-calculusto cope with method passing and method extraction.
What"cs new? Method passing is pervasive to the new calcudysarticular method invocation iRed-
Selectis extended: in addition teelf parameter, the substitutiorb{up; ... px}, in the premises, is
considering methods;. Red-Abstracis a new rule that allows method introduction, in the invarat It
behaves exactly as Red-Select but the meghizdbound only to the invocation instead of to the object.
Red-Extractllows to take the method of selectiéih; of an objectw and puts it into another objeatas
one additional method: in doing sRed-Extracextendsu into a new object.

Noting that the new rules preserve the main properties oih particular the rules system is Church-
Rosser confluent and the relatien can be extended into a conguence on the terms.

Theorem 5.1. (Confluence)
Let —* be the reflexive, transitive, closure of, anda, a1, as, b terms:

if a—*aiANa—*ay then a3 =*bAay—=*b

Red-Abstragtas well asRed-Extract requires that the objects, that are involved in the ultemat
invocation, i.ew andv, respectively, extend the protocol, i.e. the binding emvwmnents, of the respective
objectsa. In order to guarantee it, we need to extendtfpe systenas it will be discussed in 5.3.

5.2. Example

To illustrate the calculus, we consider objects of the feilgy type List.

AList=[val : “List— A,
tail : “List — List,
insert: “List A~ List,
map: “List B—? List].

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 39

(where v=[l=p,=-"])
Red-Object

=y —V

(Whéré’ u'E[[“!.: pul_ r'E,'.‘n], 1?5[]“[.: pul_ iEU..n;-j, i”_,:P]}

= d— =1..
Red-Update a 4 j=1.n

= all<=p—v

(where u=[l=C(x,y' ...)b 1))
=a—=u =b{up,..p}—=>v j=l.n

Red_Select
= al(p....pp >V

(where p=C(x,y,,...y.)b)

=a—=u =b{up,..pr—v

= ap(p...pY >V

Red-Abstract

(where us["1,="p, "S-+, ws["l=Vp,iel-n] y=[ul=tpicl.k [=vp.] . r=p;....p,)

=a—u =o0—w |=l.n

Red-Extract -
= a.0"1{r) = vl ()

Figure 7. (,-calculus Operational Semantics

The objects have methodssert, val, tail, of the expected behaviours for ordinary computation wats |
of objects of typed, and methoanapdefined as below:
map = ((z :A List, f : A B)a.tail.map(f).insert(z.val.f) *

Suppose that typd is typeShapefor objects that are representing,dircalculus geometric shapes
of Section 2, and thatis an object of typ&hapeareais a method 06, and thatist-a is a list of objects
of type Shape Then,

list-a.map(o”area)

results into a listlist-b, of objects:i-th object oflist-b is equal to the object that.area computes,
wherev; is thei-th object oflist-a. Note that each object dist-a is invoking one identical method, that
of objecto. A different situation happens when we consider:

list-a.map(((z : A) z.area)
In this case, each object tit-a is invoking the, possibly different, method that is boundte

IMethodinsert as well as methodeal, tail, could be entirely defined in standagecalculus In this cas@nsert(a), noting
round parentheses, is invocation wittethod passing through emulation of functions with objésge [1] pag 66-69).

40 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

selectionareain the object. We show it. Suppoéist-a is the object for the lista;a9) that contains the
two objects of typeShape a, = [...,area = p1,...] andag = [...,area = po,...]. Then, we obtain
the sequence of figure 8.

List-a.map(C(x:A) x.area)
by Red-Select:
— x.taill. map (f).insert(x.val.f) {list-a, T(x:A) x.area}
by repeated Red-Select - invocation of tail and introduction of letter list-a,
Jor the object that results from:
—* list-a,.map(C(x:A) x.area).insert(a,.C(x:A) x.area)
by Red-Select and by letter empty for the empty list:
— empty.map(C(x:A) X.area).insert(a,.C(x:A) X.area).insert(a,.C(x:A) X.area)
by Red-Select - invocation of map:
—* empty.insert(a,.C(x:A) x.area).insert(a,.C(x:A) x.area)
by Red-Abstract:
— empty.insert(x.area {a,}).insert(a,.C(x:A) x.area)
by Red-Select:
— empty.insert(a,.p,).insert(a,.C(x:A) x.area)
by repeated reductions:.
— empty.insert(a,.p,).1nsert(a,. p;)

Figure 8. The sequence of reductions of an invocation of tehadmap

5.3. The type System: Inheritance, Subsumption and Subtypg

We now equip the&,-calculuswith a first order type system that contains axioms for subtypvith
inheritance and subsumption. In order to constrautisumptionwhen dealing with method extraction,
the system uses two distiniciferences O, andD. InferenceD is defined by all the axioms of inference
Ds, table A in figures 9-10, but rul8ubsumein figure 9, which concerns subsumption subtyping. In
particular, in order to obtain the complete set of rules efitiferenceD, it suffices to replace>; with
D, everywhere in table A.

In the table A-a, we have collected the basic rules for subtymtroduction,Sub-Int the transitivity
of subtyping,Sub-Tran and the rule for inheritancé&herit, and for subsumptiorfubsumeln particular,
Inherit states that a subtype is a type which extends another onairsg down in the type hierarchy,
while the rule of subsumption goes up in the hierarchy. Is thiay, subsumption allows to assign
supertypedo objects. This works well in the object oriented paradigmtegeverywhere. In particular,
type unicitybecomes the unicity of theminimumamong the assignable types. We use the minimum to
allow that the program works well with objects, of whatewgrd, in the entire hierarchy of the supertypes

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 41

Sub-Int ﬂ Sub-tran EDoT<T, EST, <T,
ED;T<T EDT< T,
E D¢ B, (Vi€l..n+m)
Inherit _ :
E DS [li:Bi 1El..n+m] < [li:Bi 1El..n]
EDga:*A EDg%A<:PA
Subsume

E Dga: "A

Figure 9. Table A-a: Subtyping, inheritance and subsumpti@,-calculus

of that minimum. This is what happens in the terms, of theuwtaf; by using the rule®bject Update
andSelect

For the other two rules, we have to be more careful. We muanhge two distinct requirements.
The first one demands that the typé of the objecto, from which the method is imported (in the case
of Extract, or from which the method can be invoked, in theecaflsAbstract), must be a supertype of
the type®A, of the objecta to which such method is applied. This restricts the clas$ebjects, i.e.
of a’s, that can invoke the method to only those classes thatxtanding the type o0é, contain all the
selectionghat the objecb can invoke, namely all the ones that the body of a method wisigihoked
from o can contain. This is expressed by imposfy <:°A in the premises of the rules. The second
one demands that the typd, considered in the previous comparison, is the effectipe tyf the object
o and not one of its supertypes. This is expressed, inExteact by imposing that the typeA has been
inferred without resorting to the axio®ubsumi.e. using inference. In rule Abstrat the requirement
that®A is the effective type is guaranteed by the type annotatibmiseomethod, in particular from the
fact thatz :°A,y; :B',...,y, : B¥ is a correct annotation, i#, for inferring a type for the body.
Before to prove that the system of types of tallassigns correct types to terms of tfjecalculus we
consider some basic lemmas.

Lemma 5.1. (Subsumption)
For terma and typeT':
if Da:TthendTy: Dsa:Ts NDs T <: Ty

Lemma 5.2. (Substitution)
For environment, terma[z], possibly havinge free, termb and typesl’;, 1,:
if B2 T, Dsalz] : Ty N E Ds b T, thenE Dy a{b} T,

Lemma 5.3. (Contravariance)
For environment, terma[z], possibly havinge free, and type§’;, T, 1y:
if B2 Ts Ds a[x] Ty N E D; T, <:TsthenE, z :T, D; alz] Ty,

42 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

(where A=[l.: AB...B¥.-> A, 'S])

E, x A vy BL ...y BE D b A (ViEl.n)
Object ; . .

E :)s [11:E_a(x‘1 :A!yli:Bli"") Yk-li:BhJ b1 161..11]): A

(where A=[l:AB! ...B" -> A '=1])
: A vl-pl Ik .k . -
Update ED a A E,XJ.A,y J.B sy Jj.B 2, bj. AJ =1l.n
- A vl-Bl ki Bk .-
ED, a.]j<_ C(xj Ay B y9iBE) bj. A
(where A= [l: A B,...B" -> A "€-"])

EDaA EDp;: B (Vielk) k=k j=l.n

Select
ED allpy,.-.. pur A,
(where °A=[°1 :°A°B’ ...°B" ->°A '€-n])
EDa®*A EDo’A ED A< A EDp:°B(Viel.k) k=k j=l.n
Extract
E D aol{p;,..., pp) °A,
(where p=C(x:°A,y ;:B',..., v,:B*) b])
EDa’A EDA<°A EDp:B(ViEl.k) Ex©°A y:B, y B<ObA
Abstract
ED ap(p.....p0 1 A

Figure 10. Table A-b: The typing rules ¢f-calculusterms

Theorem 5.2. (Subject reduction)
For closed termas, v, and typ€erl:
if =>a—vADsa:Tthendy v :T

Proof.

The proof is by induction on the derivation steps of the sede-> ¢ — v, and it follows that of
Abadi and Cardelli (see[1] pag. 87) for axiorRed-ObjectRed-Selecand Red-Updateof ¢-calculus
In particular, that proof can be easily rephrased for thedtworresponding axioms ¢f-calculus So,
here, we limit only to consider the caRed-AbstracandRed-Extract

Case Red-AbstractWe suppose that> a.C(z,y1,- - -, Yk)b{p1,- -, pr) = b{u,p1,-..,pr} be-
cause (*)=> a — u for some object, of type“A. By premises ofAbstract a has type® A, = has
type A for @A <: °A, for eachl < i < n, y; has the typeB’ of methodp; and, both termb and term
a.l(x,y1,---,yk)b{p1, ..., pr) have typeA. But, by inductive hypothesig,A’® A, since (*), hence, by
lemma on substitution, tertfu, p1, ..., pr} has typeA.

M. Bellia and M.E. Occhiuto/Higher order Programming in dav 43

Case Red-ExtractWe suppose that> a.0"°l;(m) — [“l; = Yp; 1% | 1 = Yp;]dgs1(m)
because (**)=> a — u = [%l; =p; "kl and=> 0 — w = [“I; =Vp; ‘€] for 1 < j < n. By
premises oExtract a has type’ 4, o has type@ A = [°l; :°A °B} .. °BF s 04, 1€1-1], 04 <. ° A, and
a.0"°l;(m) has type’4;. By inductive hypothesisiA = “A and®°A = * A, since (**), and, byinherit,
[“l; =%p; "€k 1,1 =¥p,] has type’ A such that A <: “A. Hence, by lemma onontravariance
and byObject /1 has type’ A °B; ... OB;“ — °A; as its associated type foi, and[“l; = “p; €1k
k1 = " pjldk1(m) has type’ 4;.

We conclude considerations grcalculusby remarking that a calculus of object can be extended
in order to allow, in a reasonable way, the usenafthod passing@nd method extraction Although,
(,-calculusstill lacks some important characteristics of Java, wekttirat this result can be adapted to
the other calculi [7, 10, 5, 4] that are nearest to the languaml, next, to Java itself.

6. Conclusions

We have motivated and exemplified resorting, in Java and irp@@ramming, to the HO programming
methodology.

For all the analyzed approaches, we succeeded in providymnghorder solutions resorting to static
methods, but only the approaches which extend the expityssfivthe language, througteflectionor
delegatessucceed in providing real object oriented, higher ordertgms, using instance methods.

Hence, we have investigated, in the first order calcghealculus a way to extends the OO pro-
gramming language paradigm with the basic mechanisms tipgiost HO programming. This lead to
embeddingnethod passingndmethod extractiorn a calculus equipped witbubsumptioras one sub-
typing axiom. To overcome the conflict arising from the conalion of extraction and subsumption, we
reformulated the calculus in a way that it limits subsumptichen the term is using method extraction.

Future work could be devoted to consider the expressiviy ttie various techniques, we have con-
sidered, offer in writing OO programs using HO programmingtimodology. Again, it is interesting to
understand how our solution could be extended to other lcaod to Java. Again, the combination of
method extraction and inheritance could exploit new apgibmis for the combination of OO and HO
programming. As a matter of fact, consider the tdistta.map(o” area) of the example in 5.2 and sup-
pose thab is an object of a superclass of the classes of the objectsrougin list-a, suppose also that
all such classes have a new, possibly, all different dedimitif the methodirea Then, the evaluation of
the term behaves as a brute force invocation of the methdueauperclass instead of those the classes
have redefined.

References

[1] Abadi., M., Cardelli, L.:A theory of objectsSpringer-Verlag, 1996.

[2] Backus, J.: Can programming be liberated from the vonrin style? A functional Style and its algebra
of programs,Communication ACM21, 1978, 613—641.

[3] Bellia, M., Occhiuto, M.: Higher Order Programming tlugh Java ReflectiorCS&P, 2004, 447-459.

[4] Bierman, G., Parkinson, M.: Effects and effect infererior a core Java Calculu€lectronic Notes TCS
82(8), 2003, 1-29.

44 M. Bellia and M.E. Occhiuto/Higher order Programming in dav

[5] Clark, D.: An Object Calculus with Ownership and Contaient, 8th. FOOL, 2001.

[6] Microsoft Corporation, M.: Delegates in Visual J++, 200Msdn.microsoft.com/vjsharp/productinfo/visualj-
Ivisualj6/technical% -/articles/general/delegatefsdit. aspx.

[7] Drossopoulou, S., Eisenbach, S.: Is the Java Type SyStamd? Journal of Theory and Practice of Object
Systemsb, 1999, 3-24.

[8] Hudak, P.: Conception, evolution , and application aidtional programming languageACM Computing
Surveys21, 1989, 359-411.

[9] Hudak, P.:The Haskell school of ExpressioBambridge University Press, 2000.

[10] lgarishi, A., Pierce, B., Wadler, P.: FeatherweightalaA minimal core calculus for Java and GACM
TOPLAS 23, 2001, 396-450.

[11] SunInc., S. M.: A Sun Developer Network Site, 2004, Hffava.sun.com/j2se /1.5.0/download.jsp.
[12] Jensen, K., Wirth, N.Pascal User Manual and Reporiecond edition, Springer, 1975.

[13] Kernighan, B. W., Ritchie, D. M.The C programming Languag®rentice-Hal, 1988.

[14] Odersky, M., Runne, E., Wadler, P.: 2002, Pizzacompgibeirceforge.net/examples/enumerator.html.

[15] Odersky, M., Wadler, P.: Pizza into Java: translathmeptry into practiceProc. 24th Symposium on Principles
of Programming Language$997, 146-159.

[16] Schildt, H.:C++ The Complete Referenc®icGraw Hill, Inc, 1995.
[17] Setzer, A.: Java as a Functional Programming LangugBES 2002,LNCS 2642003, 279-298.

[18] Wadler, P.: The essence of functional programmiBRgyc. 19th Symposium on Principles of Programming
Languages1992, 1-14.

Copyright of Fundamenta Informaticae is the property of [OS Press. The copyright in
an individual article may be maintained by the author in certain cases. Content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.

