
ACCELERATING JAVA INTERPRETATION IN

LOW-COST EMBEDDED PROCESSORS
¤

TAEK-KYU KIM

The 3rd R&D Institute, Agency for Defense Development,

Yuseong, Daejeon, Korea
teddykim@add.re.kr

JONG-SUNG LEE

R&D Center, ADChips, #1009-5 Dae Chi Dong,
Seoul 135-280, Korea

jslee@adc.co.kr

HYEONG-CHEOL OH

Dept. of Elec. & Info. Eng., Korea University,

Chungnam 339-700, Korea
ohyeong@korea.ac.kr

Received 27 April 2009

Accepted 19 February 2010

Hardware interpretation is an attractive choice for implementing the Java virtual machine

(JVM) in low-end embedded systems. However, the hardware interpretation of complex byte-

codes is so expensive that most low-end embedded systems rely on slow software interpreters in

processing complex bytecodes. This paper proposes a low-cost hardware approach for accel-
erating the interpretation of eight complex bytecodes: four object manipulation and four

method invocation bytecodes. The proposed approach occupies 204 LUTs in a Xilinx FPGA and

reduces by up to 61.5% the number of instructions executed in running the benchmarks con-
sidered in this paper.

Keywords: Java virtual machine (JVM); interpreters; embedded systems; object manipulation;

method invocation.

1. Introduction

Nowadays a long list of small embedded systems are equipped with Java Micro

Edition (JME) compatibility.1,2 As the number and the diversity of embedded sys-

tems are explosively increasing, we can expect that not only more high-end systems,

but also even more low-end systems will soon be added to the list. These low-end

*This paper was recommended by Regional Editor Krishna Shenai.

Journal of Circuits, Systems, and Computers
Vol. 19, No. 6 (2010) 1235�1244

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126610006840

1235

http://dx.doi.org/10.1142/S0218126610006840


systems, including low-cost toys and smart tools, should not require much of silicon

area for implementation. This paper focuses on low-end embedded systems with JME

compatibility.

In low-end embedded systems, hardware interpretation is popularly used for

implementing the Java Virtual Machine (JVM).3 A hardware interpreter directly

translates each bytecode into a code fragment that is a sequence of the instructions,

called native instructions, of the host processor that executes the Java program. The

code fragments are usually stored in, and fetched from, a memory for the hardware

interpreter, as in Ref. 4.

Since the direct interpretation process is very complex for some bytecode

instructions (called complex bytecodes), the hardware interpreter often resorts to a

software interpreter for processing those complex bytecodes. The software

interpretation of the complex bytecodes constitutes a large portion of the native

instructions executed in running typical Java programs.5 In order to process the

bytecode get¯eld, for example, the interpreter needs to execute a large number of

native instructions in performing symbolic resolution to obtain the pointer to the

¯eld o®set. A typical acceleration approach for processing the complex bytecodes is

to use the quick variants.6 The quick variant approach replaces the bytecode with its

variant after its symbolic resolution has been carried out. As depicted in Fig. 1, the

quick variant of get¯eld, of which the opcode is denoted as get¯eld quick, directly

supplies the resolved o®set.

Even though the process of ¯nding the object pointer is less time-consuming than

that of resolving the ¯eld o®set, it still costs the processor several tens of native

instructions and can exert a signi¯cant e®ect on the overall performance. Whereas

high-end Java processors adopt powerful approaches for accelerating this process

of ¯nding the object pointer, the low-end embedded systems often repeat the

required symbolic resolution process whenever they execute the object-dependent

bytecodes.

Fig. 1. Processing the bytecode get¯eld quick.6

1236 T.-K. Kim, J.-S. Lee & H.-C. Oh



In this paper, we propose a cost-e®ective architectural approach for accelerating

the interpretation of eight complex bytecodes: four object manipulation bytecodes,

getstatic, putstatic, get¯eld, and put¯eld; and four method invocation bytecodes,

invokevirtual, invokeinterface, invokestatic, and invokespecial. These are eight

bytecodes of the most time-consuming ten object and array manipulation bytecodes

when they are processed in their original format.2 Even though the object-oriented

operations are known to be relatively infrequent (about 10% of all operations) in

some benchmarks including Ca®einMark,2 Sec. 3 shows that the number of native

instructions executed in running some game programs can be reduced by up to 61.5%

when we e±ciently handle these operations.

Architectural supports for complex bytecodes have been proposed on various

machines (see Refs. 2 and 7�8, and the references therein). However, most existing

approaches aim at high-end application domains. Whereas many of the existing

works provide support for Java processors, the approach proposed in this paper is

devised to be used for general-purpose embedded processors that rely on small Java

interpreters. We do not assume availability of strong compilation support. Our

experimental results show that the proposed approach can reduce the number of

native instructions executed in running the benchmarks considered in this paper by

up to 61.5%, and costs the interpreter only 204 LUTs in a Xilinx FPGA.

2. The Hardware Interpreter

2.1. The base hardware interpreter

The base hardware interpreter for which we develop the proposed acceleration

approach is able to process seventy simple bytecodes only. All the other bytecodes

are processed by a small software interpreter, Wabasoft's WabaVM.9 As the host

processor for the interpreters, we adopt ADChips AE32000C processor.10 The host

processor has sixteen 32-bit general-purpose registers (GPRs), some of which are

used in the Java mode as Java stack pointer, local variable pointer, Java program

counter, and so forth.

The hardware interpreter is placed between the fetch and decode stages of the

host processor. In the Java hardware mode, the hardware interpreter fetches and

decodes each bytecode. The hardware interpreter then selects a suitable code frag-

ment stored in ROM and passes it to the host processor. The base hardware

interpreter uses a ROM of 866 bytes (or two Block RAMs) and occupies 374 LUTs

when it is implemented in a Xilinx FPGA.

2.2. Supporting object manipulation

An object in Java is a variable-sized contiguous list of words that can be considered as

a set of ¯elds.3 The object manipulation bytecodes access and manipulate the ¯elds.

As mentioned in Sec. 1, even though various powerful approaches have been proposed

Accelerating Java Interpretation in Low-Cost Embedded Processors 1237



for object manipulation in Java processors, they are not implementable at low cost in

the low-end embedded systems. As a result, many low-end JVMs that adopt the quick

variant approach repeat the time-consuming process of ¯nding an object pointer

whenever they execute an object manipulation bytecode. We propose to avoid these

repetitions at low cost by adopting a new variant, denoted as q hw, as shown in Fig. 2.

Using the approach shown in Fig. 2, the bytecode is replaced with its q hw variant

after symbolic resolution when it is processed for the ¯rst time. Figure 2(a) shows

how we use the proposed variants getstatic q hw and putstatic q hw, of which the

object pointers do not vary at runtime. The lower 16 bits of the ¯eld address are

stored in the variant, whereas the upper 16 bits are stored in a prede¯ned GPR of the

host processor. If some bytecode has a ¯eld address that di®ers in the upper 16 bits

from the one stored in the GPR, which happens rarely in small applications, we use

the quick variants instead of the new q hw variants.

For those dynamic bytecodes, get¯eld and put¯eld, of which the object pointers

can vary at runtime, we store the object reference as well, to check if the object

pointer has been changed. When the JVM processes a bytecode get¯eld or put¯eld for

the ¯rst time, it resolves the constant pool and stores the object reference and the

lower 16 bits of the resolved ¯eld address in a software table, as depicted in Fig. 2(b).

The index (denoted as idx in Fig. 2) to the software table and the resolved (¯eld)

o®set are stored in the variant. The GPR used by the static bytecodes is shared with

the dynamic bytecodes for storing the upper 16 bits of the ¯eld addresses. In Fig. 2,

we use an eight-entry software table. We use the quick variants when we need more

storage than allowed.

When the JVM fetches the q hw variant of a dynamic bytecode, it compares the

object reference in the Java stack with the corresponding entry of the software table.

Fig. 2. Accelerating object manipulation for (a) static and (b) dynamic bytecodes.

1238 T.-K. Kim, J.-S. Lee & H.-C. Oh



If it is a hit, then the JVM can save time and energy by avoiding the whole resolution

process including the process of ¯nding the object pointer. In case of a miss, the JVM

looks up the object pointer, in the same way as it does in processing the quick variant,

and it updates the corresponding table entry.

2.3. Supporting method invocation

As an object-oriented language, Java allows the same method in an inheritance

hierarchy to have di®erent implementations.3 The implementation that is to be

executed depends on the type of the object. As a time-consuming process, this

dynamic dispatching (thus the execution of the method invocation instruction) also

constitutes a large number of native instructions executed in running many Java

applications.2,5

A static call, for example invokestatic, can be processed straightforwardly: the

JVM obtains from the constant pool the class and the symbolic reference to the

method, using the index given by the bytecodes, and it then performs symbolic

resolution to ¯nd the method. The quick variant approach6 avoids this resolution

overhead by storing the result of the resolution, i.e., the pointer to the method

structure, in the constant pool.

The proposed q hw variant approach further reduces processing time by storing

the method and class addresses as shown in Fig. 3. We store the lower parts of the

addresses in a software table that has sixteen entries in Fig. 3. The table index

(denoted as Index1 in Fig. 3) is stored in the variant. We allow the q hw variant to

replace only the bytecode of which the method and class addresses share the same

upper 16 bits. We store those 16 address bits in one prede¯ned GPR of the host

processor. If they are di®erent from the stored ones, then we apply the quick variant

approach.

Fig. 3. Accelerating method invocation.

Accelerating Java Interpretation in Low-Cost Embedded Processors 1239



For those bytecodes which are dynamically dispatched, the quick variant

approach stores and uses the resolved method index. In picoJava,6 the object index is

used as an o®set to fetch from a memory table the pointer to the method address,

which is not a proper approach for low-end systems since the approach requires

the constant pool to be precompiled. In jHISC,2 the data can be encapsulated

into objects and described by the operand descriptors, which cannot be easily

implemented at low cost on a general-purpose processor.

WabaVM9 reuses the resolved method index but repeats symbolic resolution

using the object reference whenever it meets the instruction. Our proposed approach

works as follows: when the JVM processes a dynamic method invocation bytecode for

the ¯rst time, it stores the resolved class and method addresses into a software table

and the prede¯ned GPR, as it does for the static calls. In addition, the JVM stores

the method index in the current class and the object reference into an additional

software table that has eight entries in Fig. 3. The index of the entry (denoted as

Index2 in Fig. 3) is stored in the variant. Then the opcode is changed into its q hw

variant.

3. Implementation and Evaluation

We have designed and modeled in C and Verilog the hardware interpreter equipped

with the proposed acceleration approach. The design has been veri¯ed using the

AE32000C model10 ported on SimpleScalar11 and implemented in a Xilinx FPGA.

The proposed approach consumes 204 LUTs whereas the base hardware interpreter

consumes 374 LUTs and 866B of ROM (or two Block RAMs).

Tables 1 and 2 compare the implementation results of the proposed approach with

those of three Java processors, picoJava II,8 JOP,7 and jHISC.2 For the quick and

q hw variants, Table 2 shows only the cycles taken by the hardware interpreter.

Several hundreds of cycles may be taken when the software interpreter takes over the

control. It takes a non-constant time (156þ � cycles) for WabaVM to process

invokevirtual or invokeinterface using the quick variant approach. This is because

WabaVM has to associatively ¯nd out the class of the reference by comparing the

descriptors.

Table 1. Comparison of implementation costs. The data for Java processors

are adopted from Ref. 2.

picoJava II JOP jHISC Proposed

(microcode unit) (xcv800bg432-6) (xcv800bg432-6) H/W interpreter

(xc2v4000bf957-6) (xcv600bg432-6)

RAM128X1S: 42 ROM32X1: 21 Block RAMs: 28 Block RAMs: 2

ROM128X1: 6 Block RAMs: 13 — —

ROM256X1: 122 — — —

3053 LUTs 2271 LUTs 15803 LUTs 374 þ 204 LUTs

1240 T.-K. Kim, J.-S. Lee & H.-C. Oh



In order to evaluate the proposed acceleration approach, we have performed

simulations using two of three non-trivial programs in JavaBenchEmbedded V1.0,12

Sieve and K°. (UdpIp was excluded since WabaVM9 does not support threads). We

also use Dhrystone13 and Bboyes,14 which are synthetic benchmarks aiming at

integer arithmetic operations and communication applications, respectively. In

Bboyes, the part of the code that uses double and long data types is excluded since

WabaVM9 does not support those data types. We also use two game programs,

Connect415, of which only the game part is used, and Maze16 which is a program that

searches the best path among 24 mazes. (The benchmark programs can be accessed

at http://atlas.korea.ac.kr/java.)

We use jikes-1.2217 to compile the programs. For Sieve and K°, loops were exe-

cuted 1024 * 8 times. For Dhrystone, 1000 iterations were performed. The par-

ameters in Bboyes, ChunkSize and count were set to 215 and 218, respectively. The

number of iterations was set to 200,000 for non-array functions.

Figure 4 summarizes the performance gain obtained by the proposed approach.

For Connect4 and Maze, the number of native instructions depends on the game

30.00%
40.00%

50.00%
60.00%

70.00%
80.00%

90.00%
100.00%

Jbe/Sieve Jbe/Kfl Dhry Bboyes Connect4 Maze

Base Obj manip Obj manip + Method invoc

Fig. 4. Comparison of the number of native instructions executed in benchmark runs.

Table 2. Clock cycles taken for processing the bytecodes considered. The data for Java

processors are adopted from Ref. 2. For jHISC, the related instructions are shown.

Bytecode picoJava II JOP jHISC Proposed interpreter

quick quick variant q hw
original variant (Waba VM) variant

putstatic 103 3 7 6 (ps°d) 43 4

getstatic 103 3 6 6 (gs°d) 43 4

put¯eld 130 4 15 6 (p°d) 79 31

2 (pi°d)
get¯eld 114 4 12 6 (g°d) 77 26

2 (gi°d)

invokestatic 86 11 67 9 (ivkclass) 142 22

invokevirtual 195 15 88 9 (ivkintance) 156þ � 22
5 (ivkinternal)

invokespecial 208 17 67 9 (ivkintance) 151 46

invokeinterface 203 184 96 156þ � 46

Accelerating Java Interpretation in Low-Cost Embedded Processors 1241



condition, so the harmonic averages over twenty game conditions of the numbers are

presented for Connect4 and Maze in Fig. 4. The number of native instructions

executed in running Connect4 signi¯cantly varies depending on the game condition

(the number of stones) as it is presented for four selected conditions in Table 3.

Table 4 presents the number of native instructions executed in running the

remaining ¯ve benchmarks. The number of native instructions executed in running

Maze depends insigni¯cantly (standard deviation < 2%) on the game conditions

considered (the coordinates of the start and end points), so the arithmetic average

over twenty game conditions of the numbers are presented for Maze in Table 4.

Compared to the base hardware interpreter with WabaVM, the object manipu-

lation part of the proposed approach signi¯cantly reduces the number of native

instructions executed in running the benchmarks except for Bboyes which includes

few object manipulation bytecodes. We observed similar reductions of execution time

when we assume an ideal memory system. With more practical memory systems, we

would observe greater performance improvements. For Bboyes, as shown in Table 4,

we observe a slight increase in the number of native instructions due to the overhead

of preparing the table for the proposed approach.

The method invocation part of the proposed approach also signi¯cantly reduces

the number of native instructions executed in running the benchmarks, except for

Sieve. Sieve includes few method invocation bytecodes which again present a slight

overhead as is shown in Table 4. For Connect4, we have observed up to 61.5%

reduction in the number of native instructions.

When the JVM implemented in this paper operates at 40MHz, it returns 230 and

847 iterations per second for Sieve and K°, respectively. An FPGA implementation

of picoJava-II, operated at 40MHz, was reported to return 7797 and 23290 iterations

Table 3. Number of native instructions executed and its % reductions achieved by the

proposed approach, in running Connect4 for four selected conditions.

Number of stones Base Obj. manip. Obj. manip. þMethod invoc.

7 54,776,167 42,647,820 22.1% 22,035,884 59.8%

15 110,856,428 85,984,264 22.4% 42,723,360 61.5%

22 160,884,724 124,096,876 22.9% 63,420,092 60.6%
28 201,852,378 155,870,929 22.8% 79,074,551 60.8%

Table 4. Number of native instructions executed and its % reductions achieved by the

proposed approach, in running benchmarks except for Connect4.

Program Base Obj. manip. Obj. manip. þMethod invoc.

Jbe/Sieve 1,301,930,103 1,159,546,840 10.9% 1,159,565,872 10.9%

Jbe/K° 468,365,797 389,736,618 16.8% 327,669,071 30.0%

Dhrystone 71,217,207 66,018,432 7.3% 43,957,779 38.3%
Bboyes 770,933,263 771,937,342 − 0.1% 720,739,657 6.5%

Maze 105,458,885 79,716,229 24.4% 56,414,222 46.5%

1242 T.-K. Kim, J.-S. Lee & H.-C. Oh



per second for Sieve and K°, respectively, in Ref. 8 but requires much more hardware

as is shown in Table 1. Additional data including the number of memory accesses can

be found in Ref. 18.

4. Conclusion

Low-end embedded systems often cannot a®ord Java processors, but they rely on

Java interpreters. This paper presented a hardware acceleration approach for pro-

cessing eight complex bytecodes in a low-end embedded system that relies on a small

hardware interpreter supported by a small software interpreter. Our simulation and

implementation results showed that the proposed approach could be implemented at

low cost and that it could signi¯cantly improve interpretation performance.

Acknowledgments

We would like to thank the reviewers for their valuable comments and suggestions.

This work was supported in part by a research grant from Korea University, Korea

and a tool support from IDEC, Korea.

References

1. K. Glahn and E. Rysä, JSR 248: Taking Java platform, micro edition (JavaME) to the
next level, JavaOne Conference (2007), TS-5608.

2. T. Yiyu, L. W. Yiu, Y. C. Hang, R. Li and A. S. Fong, A Java processor with hardware-
support object-oriented instructions, Micropro. Microsys. 30 (2006) 469�479.

3. T. Lindholm and F. Yellin, The JavaTM Virtual Machine Speci¯cation (Addison-Wesley,
2003).

4. D. J. Seal and E. C. Nevill, Data processing using multiple instruction sets. US Patent
6,965,984, 15 November 2005.

5. V. Narayanan, Issues in the design of a Java processor architecture, PhD Dissertation,
Dept. of CSE, Univ. of South Florida, U.S.A. (1998).

6. J. M. O'Connor and M. Trembly, picoJava-I: The Java virtual machine in hardware,
IEEE Micro (1997), pp. 45�53.

7. M. Schoeberl, A Java processor architecture for embedded real-time systems, J. Syst.
Archit. 54 (2008) 265�286.

8. W. Pu±tsch and M. Schoeberl, picoJava-II in an FPGA, Proc. JTRES, Vienna, Austria
(2007), pp. 213�221.

9. Wabasoft Corp., WabaVM, http://www.wabasoft.com/download4.shtml.
10. H.-G. Kim and H.-C. Oh, A low-power DSP-enhanced 32-bit EISC processor, Proc.

HiPEAC, Barcelona, Spain (2005), pp. 302�316.
11. T. Austin, E. Larson and D. Ernst, SimpleScalar: An infrastructure for computer system

modeling, IEEE Computer 35 (2002) 59�67.
12. JavaBenchEmbedded, http://www.jopdesign.com.
13. A. R. Weiss, Dhrystone benchmark white paper, http://www.Synchro-meshcomputing.

com/pdf/dhrystoneWhitePaper.pdf.
14. Bboyes, http://www.practicalembeddedjava.com/index.html.

Accelerating Java Interpretation in Low-Cost Embedded Processors 1243



15. Connect4, http://homepages.cwi.nl/�tromp/c4/fhour.html.
16. Maze, http://en.wikipedia.org/wiki/Maze generation algorithm.
17. IBM jikes compiler for Java language, http://jikes.sourceforge.net/.
18. T.-K. Kim, Schemes for processing method invocations in a Java hardware interpreter,

MS thesis, Dept. of EIE, Korea Univ., Korea (2007).

1244 T.-K. Kim, J.-S. Lee & H.-C. Oh



Copyright of Journal of Circuits, Systems & Computers is the property of World Scientific Publishing Company

and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.


