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Abstract This study proposes a procedure for an on-line
process control system to monitor the average number of
defects using a Shewhart-like chart with two sets of limits
(viz., control and warning limits). After the production of m
units, the mth item is inspected. If the number of defects
exceeds the upper control limit or if, in a sequence of the last
h inspections, all inspected items exhibit a number of defects
between the warning and control limits, then the process is
stopped for adjustment; otherwise, production continues. The
properties of an ergodic Markov chain are used to obtain an
expression for the average cost per item produced. The in-
spection interval (m), warning and control limits (W and C,
respectively), and the sequence size (h) are determined by
minimizing the average cost per produced item. A numerical
example illustrates the proposed procedure.

Keywords Markov chain . On-line process control . Average
number of defects . Number of defects per inspected item .

Warning limit . Poisson distribution

1 Introduction

According to Taguchi [15], an on-line control system may be
usedwhen the desired target values for quality characteristics can
be economically controlled. Beginning with the pioneering con-
tributions of Taguchi [14, 15], on-line process control has been

used to monitor two parameters of production processes: the
conforming fraction (on-line process control by attributes) and
the process mean (on-line process control by variables). In the
case of on-line process control by attributes, after the production
of m items, the mth item is inspected. If the item is conforming,
production continues; otherwise, the process is stopped for ad-
justment. The problem consists of determining the optimum
inspection interval m such that the average cost of the control
system is minimized. Nayebpour andWoodall [10] provided the
main critical reference investigating Taguchi’s proposal.
Concerning on-line process control by variables, Ho and
Quinino [7] proposed a procedure using two sets of limits
(control limits and warning limits). The intervention system is
also subject to a supplementary rule: if, in the last h inspections,
the value of a monitored characteristic is between the control and
warning limits or if, in the last inspection, the monitored charac-
teristic exceeds the control limit, the process is stopped for
adjustment; otherwise, production continues. The authors obtain-
ed an analytical expression for the average cost per produced
item, which is minimized by four parameters: the interval be-
tween inspections (m), control limit (μ±C), warning limit (μ±
W), and length of sequence (h). Other contributors have de-
scribed the use of warning limits in control charts. For example,
Page [11, 12] developed a control chart for variables with upper
and lower warning limits and additional supplementary rules to
consider a process as out of control. Gordon and Weindling [6]

presented an alternative model for an X control chart with
warning limits using a set of five parameters. Papers providing
an economical perspective include contributions from Chiu and
Cheung [2] and Chung [4]. Liu et al. [9] studied the effects of
correlations in control charts with warning limits. Chou et al. [3]
evaluated the effect of non-normality in a control chart for
variables with warning limits. Lam et al. [8] proposed algorithms
for an optimized design of an integrated control chart system to
monitor a multi-stage and multi-stream manufacturing system.
Recently, Wu and Jiao [19] suggested the attribute control chart
MON with warning limits to monitor a process mean.
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In the aforementioned papers regarding on-line monitoring,
the response variable follows either a normal distribution (on-
line process control by variables) or a Bernoulli distribution
(on-line process control by attributes). The literature includes
few works regarding on-line control in which the number of
defects in the inspected item is the response variable to be
monitored and follows a Poisson distribution.

Glushkovsky [5] developed a control chart according to an
economical approach (named Chart G). In his proposal, the
number of non-conformities follows a Poisson distribution.
Vasconcelos et al. [17] developed an on-line process control
system to monitor the number of non-conformities in an
inspected item. The parameters reflecting the control limit (C)
and the interval inspection (m) are determined by optimization.

The present article extends the work of Vasconcelos et al.
[17] with two sets of limits (viz., warning and control limits)
and an additional stopping process rule based on the policies
proposed by Western Electric [18]. Properties involving finite
Markov chains with discrete state space to determine an
optimum strategy of control in a process were used. This
strategy consists of minimizing the average cost per produced
item based on the inspection interval (m), warning and control
limits (W and C, respectively), and length of sequence (h).

This paper is organized as follows. Section 2 presents the
proposed probabilistic model. Section 3 develops the model
for the average cost per unit of the control system. In Section 4,
a numerical example with a sensitivity analysis involving the
parameters of interest is presented to illustrate the proposed
procedure. Conclusions and suggestions are given in Section 5.

2 Probabilistic model of the inspection system

Consider a situation in which items are produced one by one.
The process begins under statistical control and, after a special
event, is considered out of control. Monitoring consists of
inspecting the mth item for each m produced item.
Destructive tests are conducted on the inspected item, and it
is discarded after the inspection. If the process is judged to be
out of control (according to a criterion to be established), it is
stopped immediately; otherwise, production continues. It is
assumed that no item is produced between detection and
interruption to allow for adjustment. The process starts (or
restarts) production in state I (in control, with the average
number of non-conformities λ0≥0), which, after the change,
increases to λ1, thereby operating the process in state II, which
will to return to state I only after an adjustment. The number of
time units that the process remains in state I follows a geo-
metric distribution with parameter π, 0≤π≤1. Each produc-
tion cycle corresponds to the time required for production
from the first item to the mth item. If the number of defects
meets the intervention criterion, the process is stopped, and a
new production cycle is initiated.

The inspection process can be described by a finite number
of Markov chain states. The pair of integers (s,k) describes
each state. The first index s represents the current state of the
process. For s=0, all items (including the inspected one) are
produced in state I (in control). For s=1, a change from state I
to state II has necessarily occurred in the cycle under consid-
eration, and at minimum, the inspected item is produced in
state II (out of control). For s=2, all items (including the
inspected item) are produced in state II (out of control).

Index k indicates the result of the inspection. For k=−1, the
item inspected exhibits a higher number of defects than the
control limit (C) that leads to an adjustment; that is, [Xi>C].
For k=0, the number of defects in the inspected item is lower
than the warning limit (W); that is, [Xi≤W], and there will be
no adjustment. For k=1, [W<Xi≤C] but [Xi−1>C] or [Xi−1≤
W], and no adjustment is carried out. For k=2, [W<Xi≤C], as
with the previous inspected item, and no adjustment is carried
out. For k=(h−1), [W<Xi≤C], as with the (h−2) previously
inspected items, and no adjustment is carried out, and for k=h,
[W<Xi≤C], as with the (h−1) previously inspected items, and
adjustment is initiated.

Let Xi (in which i=1, 2, 3,…,∞) be a random variable with
which the number of non-conformities detected in the ith
inspection is represented. Xi is assumed to follow a Poisson
distribution for parameter λ. The following notations will be
used to construct the model:

P X i > C=s ¼ 0ð Þ ¼ R0 ð1Þ

P X i > C=s ¼ 1ð Þ ¼ R1 ð2Þ

Expressions (1) and (2) represent the probabilities that the
item inspected in the ith inspection exhibits a higher number
of non-conformities than the control limit (C), given that the
process was operating in states I and II, respectively. In both
cases, the process is stopped to search for special causes.

P W < X i≤C=s ¼ 0ð Þ ¼ Y 0 ð3Þ

P W < X i≤C=s ¼ 1ð Þ ¼ Y 1 ð4Þ

Similarly, expressions (3) and (4) denote the probabilities
that the item inspected in the ith inspection exhibits a number
of non-conformities between the warning (W) and control (C)
limits because the process was operating in states I and II,
respectively. Expressions (5) and (6) are the probabilities that
the item inspected in the ith inspection exhibits a lower num-
ber of non-conformities than the warning (W) limit given that
the process is operating in states I and II, respectively.

P X i≤W=s ¼ 0ð Þ ¼ G0 ð5Þ

P X i≤W=s ¼ 1ð Þ ¼ G1 ð6Þ
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In addition to the criterion of process intervention
according to the control limit, a supplementary criterion
based on the result of the last sequence of h inspections
will be added. Explicitly, if a sequence of h inspections
shows a number of non-conformities between the warn-
ing and control limits, the process will be stopped for
adjustment. The use of two limits is justified because it

more rapidly detects a special cause that has a moderate
effect on the process.

Figure 1 represents the inspection procedure and process
interruption criteria for adjustment.

The inspection system can be described by a stationary
Markov chain with a set of three (h+2) discrete states repre-
sented by

Ω ¼ 0;−1ð Þ; 0; 0ð Þ; 0; 1ð Þ⋯ 0; hð Þ; 1;−1ð Þ; 1; 0ð Þ; 1; 1ð Þ⋯ 1; hð Þ; 2;−1ð Þ; 2; 0ð Þ; 2; 1ð Þ⋯ 2; hð Þf g ð7Þ

Consider the transition matrix P. The elements are
probabilities of transition from state (s, k) to (s*, k*),
with (s, k) and (s*, k*) ∈Ω denoted by P s;kð Þ; s�;k�ð Þ . For
example, P(2,h)(0,0) denotes the probability that the ith
inspection occurs in state (2,h) and that the (i+1)th
inspection occurs in state (0,0), or simply, P(2,h)(0,0)=
P(Ei+1=(0;0)|Ei=(2,h)).

In this example,

(a) All m items of the cycle are produced in state II, and the
process is stopped because there is a sequence of h
inspections with the number of defects between the
warning and control limits.

(b) After adjustment, the process restarts in control. In
the first inspection after the intervention initiated to
search for special causes, the inspected item shows
a number of defects fewer than or equal to the
warning limit—that is, Xi≤W; therefore, the process
is judged to be in control, and no adjustment is
made.

Elements of the transition matrix P are described below:

(a) The transition probabilities of P 0;kð Þ 0;k�ð Þ (i.e., the non-
null probabilities) are as follows:

p 0;kð Þ 0;−1ð Þ ¼ qR0

p 0;kð Þ 0;kþ1ð Þ ¼ qY 0 whereq ¼ 1−πð Þm
p 0;kð Þ 0;0ð Þ ¼ qG0 k ¼ 0;⋯; h−1

ð8Þ

(b) Probabilities P 0;kð Þ 1;k�ð Þ describe a change from state I to
state II in the current cycle, and at minimum, the
inspected item is produced in state II. In other words,
there is a shift in the average number of defects from λ0
to λ1>λ0. The non-null probabilities are as follows:

p 0;kð Þ 1;−1ð Þ ¼ 1−qð ÞR1

p 0;kð Þ 1;kþ1ð Þ ¼ 1−qð ÞY 1

p 0;kð Þ 1;0ð Þ ¼ 1−qð ÞG1 k ¼ 0; 1;⋯; h−1
ð9Þ

(c) If a shift occurred in previous cycles to state II, all items
are producedwith the average number of defects λ1. Thus,

p 1;kð Þ 2;−1ð Þ ¼ p s;kð Þ 2;−1ð Þ ¼ R1

p 1;kð Þ 2;kþ1ð Þ ¼ p s;kð Þ 2;−1ð Þ ¼ Y 1 s ¼ 1; 2;
p 1;kð Þ 2;0ð Þ ¼ p s;kð Þ 2;−1ð Þ ¼ G1 k ¼ 0; 1;⋯; h−1

ð10Þ

(d) For the states s=0,1 and 2 and k=−1, h, the process
always restarts in state I in the next inspection; thus, the
following equalities hold:
p s;kð Þ 0;−1ð Þ ¼ qR0

p s;kð Þ 0;1ð Þ ¼ qY 0 s ¼ 0; 1; 2;
p s;kð Þ 0;0ð Þ ¼ qG0 k ¼ −1; h

ð11Þ
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Fig. 1 Flowchart of the
inspection procedure
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(e) Similar to expression (10), in the next inspection, there
may be a transition from state I to state II. Thus,

p s;kð Þ 1;−1ð Þ ¼ 1−qð ÞR1

p s;kð Þ 1;1ð Þ ¼ 1−qð ÞY 1 s ¼ 0; 1; 2;
p s;kð Þ 1;0ð Þ ¼ 1−qð ÞG1 k ¼ −1; h

ð12Þ

For example, consider these interruption rules for interven-
tion in a production process: if the inspected item exhibits a
greater number of defects than the control limit or if h=3
consecutive inspections in which the inspected items show a
number of defects between the warning and control limits, the
set of discrete states of the Markov chain is as follows:

Ω ¼ 0;−1ð Þ; 0; 0ð Þ; 0; 1ð Þ; 0; 2ð Þ; 0; 3ð Þ; 1;−1ð Þ; 1; 0ð Þ; 1; 1ð Þ; 1; 2ð Þ; 1; 3ð Þ; 2;−1ð Þ; 2; 0ð Þ; 2; 1ð Þ; 2; 2ð Þ; 2; 3ð Þf g

Moreover, the process is stopped for adjustment in
states {(0,−1), (0,3), (1,−1),(1,3), (2,−1), (2,3)}.

Transition matrix P, for this example of h=3, is given
by the following:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) )()()(

( )

1 1 10 0 0

1 1 10 0 0

1110 0 0

1 1 1000

0, 1 0,0 0,1 0,2 0,3 1, 1 1,0 1,1 1, 2 1,3 2, 1 2,0 2,1 2,2 2,3

0, 1 1 1 10 0 0 0 0 0 0 0 0

0,0 1 1 10 0 0 0 0 0 0 0 0

0,1 1 1 1 000000000

0, 2 111 000000000

0,3

q R q G q YqR qG qY

q R q G q YqR qG qY

q R q G q YqR qG qY

YqGqRqqR qG qY

qR

P

−− −

− − − −

− − −

− − −

−−−

=

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 10 0 0

1 1 10 0 0

1 1 1

1 1 1

111

1 1 10 0 0

1 1 10 0 0

1 1 10 0 0 0 0 0 0 0 0

1, 1 1 1 10 0 0 0 0 0 0 0 0

1,0 000000000000

1,1 0 0 0 0 0 0 0 0 0 0 0 0

1, 2 0 0 0 0 0 0 0 0 0 0 0 0

1,3 1 1 10 0 0 0 0 0 0 0 0

2, 1 1 1 10 0 0 0 0

q R q G q YqG qY

q R q G q YqR qG qY

R G Y

R G Y

R G Y

q R q G q YqR qG qY

q R q G q YqR qG qY

− − −

− − − −

− − −

− − − −

( )

( )

( )

( ) ( ) ( ) ( )

1 1 1

111

111

1 1 10 0 0

0 0 0 0

2,0 000000000000

2,1 0 0 0 0 0 0 0 0 0 0 0 0

2, 2 0 0 0 0 0 0 0 0 0 0 0 0

2,3 1 1 10 0 0 0 0 0 0 0 0

R G Y

R G Y

R G Y

q R q G q YqR qG qY − − −

884 Int J Adv Manuf Technol (2015) 76:881–891



P is a matrix of an ergodic Markov chain (details in [13]),
and limn→∞ Pn ¼ Z , in which all lines in matrixZ are equal to
the line vector

Z ¼ Z 0;−1ð Þ; Z 0;0ð Þ;…; Z 0;hð Þ; Z 1;−1ð Þ; Z 1;0ð Þ;…; Z 1;hð Þ; Z 2;−1ð Þ; Z 2;0ð Þ;…; Z 2;hð Þ
� � ð13Þ

The z vector is a probability vector in the stationary state, in

which ∑
s¼0

2

∑
k¼−1

h
z s;kð Þ ¼ 1 with z (s,k)≥0. Each element of z is

interpreted as the fraction of the number of inspections that
is performed in each of the states after a sufficiently large

number of inspections. Given that P kþ1ð Þ ¼ P kð ÞPand limn→∞

P kþ1ð Þ ¼ limn→∞ P kð Þ ¼ Z; thenZ ¼ ZP . Because all lines of
Z are equal to vector z, the equation z=zP is also valid, which
can be rewritten as follows:

z ¼ zP∴z P−Ið Þ ¼ 0 ð14Þ

where I is the matrix identity and 0 is a null vector. Thus, a
single vector z can be obtained from resolving the linear

system (14) with the restriction ∑
s¼0

2

∑
k¼−1

h
zsk ¼ 1 .

3 Average cost per produced item

More assumptions are needed to determine the cost function.
As the destructive inspection is performed, every inspected
item is discarded. Moreover, it is assumed that the interruption
is instantaneous as soon as this decision is taken. After adjust-
ment, the process restarts in state I (λ=λ0), and an item is
classified as non-conforming if the number of defects is great-
er than the upper limit of specification (LE), which is specified
by the engineering team.

Costs in the current model follow a similar structure to
those reported in earlier studies by Taguchi et al. [16];
Nayebpour and Woodall [10]; Vasconcelos et al. [17]. The
following costs are defined: inspection cost per item (CI),
adjustment cost (Ca), production cost of a non-conforming
item (Cnc), and the cost of discarding an inspected item (Cd).

The cost for the state (s,k) for s=0,1,2 and k=−1,0,…,h is
described as

ψ s; kð Þ ¼ CI þ ϕ s; kð Þ þ ξ s; dð Þ þ Cd ð15Þ

where ξ(s,k) represents the cost of sending non-conforming
items to the consumer or to subsequent steps in the process
and 8(s,k) is the cost of adjusting the process. The costs of
inspection and of discarding the inspected item are fixed and
included in the states. Below, other costs are detailed:

(a) Cost of sending non-conforming items to the consumer
or to subsequent steps in the process—ξ(s,k)

– ξ(0,k)—All of the items are produced with λ=λ0
(state I); thus,

ξ 0; kð Þ ¼ Cnc m−1ð Þ 1−p1ð Þ ð16Þ

where k=−1,0,1,2,⋯,h and p1=P(Xi<LE/λ=λ0),
where LE is the specification limit;

– ξ(2,k)—All items are produced with λ=λ1 (state II),
such that

ξ 2; kð Þ ¼ Cnc m−1ð Þ 1−p2ð Þ ð17Þ

where k=−1,0,1,2,⋯,handp2=P(Xi<LE/λ=λ1);

– ξ(1,k)—In this case, some of the m items are
produced in state I (λ=λ0). It is known that, at
minimum, the last item of the cycle, the one
inspected, was produced in state II (λ=λ1).
However, for the (m−1) items not inspected,
the quantities produced in states I and II are
unknown. This change can be manifested in the
first item produced (in this case, all m−1 are
produced in state II) or may even occur only in
the last item of the cycle (in this case, all m−1
are produced in state I). Thus, considering all
possibilities,
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ξ 1; kð Þ ¼ Cnc

Xm−1
i¼02

π 1−πð Þ i−1ð Þ i−1ð Þ 1−p1ð Þ þ m−1ð Þ 1−p2ð Þ½ �

1− 1−πð Þm

2
66664

3
77775

ð18Þ
where k=−1,0,1,2,⋯,h and (i<m); i indicates

the first item produced in state II.

(b) Cost of adjusting the process (Ca)
For the states (s,k), s=0,1,2 and k=−1, h, the process

is interrupted for adjustment, such that

ϕ s; kð Þ ¼ Ca ð19Þ
for k=−1 or h; otherwise, 8(s,k)=0.

In each cycle, (m−1) items are sent to the market or to the
next production stages. For a sufficiently large number of

inspections, z corresponds to the occurrence probability vector
of each state in the chain. Therefore, the average cost per item
inspected and not discarded in each inspection cycle is as
follows:

AV m;W ;C; hð Þ ¼
X
s¼0

2 X
k¼−1

h

z s;kð Þ CI þ ϕ s;kð Þ þ ξ s;kð Þ þ Cd

h i

m−1
ð20Þ

The problem consists of determining the values ofm,W, C,
and h by an optimum control policy that minimizes (21).

m0;W 0;C0; h0
� � ¼ arg min

m;W ;C;h
AV m;W ;C; hð Þ½ � ð21Þ

The input parameters are as follows: the probability of
changing from state I to state II (π), the average number of
defects in the items produced in state I (λ0) and state II (λ1),
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and the limit of specification (LE). The cost parameters are as
follows: the inspection cost per item (Ci), the adjustment cost
(Ca), the production cost of a non-conforming item (Cnc), and
the cost of discarding an inspected item (Cd).

Because it is not possible to obtain an analytical expression
for (21), an exhaustive direct search is used to determine the
optimum parameters (m0, W0, C0, h0).

4 Numerical example

To illustrate the proposed model with a numerical example,
consider a process in which flash drives are produced with the
following costs:

CI $0.025 (inspection cost)
Ca $30 (adjustment cost)
Cnc $5 (production cost of a non-conforming item);and
Cd $1 (cost of discarding an inspected item).

The upper specification limit is considered equal to five
(LE=5), and the lower specification limit is zero. The proba-
bility of a change from state I to state II is π=0.0001. The
average number of defects follows a Poisson distribution of
parameter λ0=2.5 (state I) or λ1=6.5 (state II).

A program (using R software) was developed to obtain the
parameters of the optimum design (for access to the program,
write to the first author) as follows: sampling interval m0=62,
warning limit W0=1, control limit C0=8, and length of the
sequence between the warning and control limit h0=2. For this

Table 1 Cost variations obtained
from m0, W0, C0, and h0 varying
one of the parameters or one of
the process costs

π m W C h C($) λ1 M W C h C($)

0.000001 605 1 8 2 0.2136 3 171 1 23 2 0.2223

0.00001 192 1 8 2 0.2213 5 73 1 10 2 0.2391

0.0001 62 1 8 2 0.2463 6.5 62 1 8 2 0.2463

0.001 19 1 34 2 0.3284 13 65 1 8 2 0.2466

0.005 9 1 35 2 0.4809 26 67 1 11 2 0.2447

0.009 7 1 36 2 0.5783 70 67 1 21 2 0.2446

0.01 7 1 36 2 0.5991 90 67 22 27 2 0.2446

0.05 4 1 36 2 1.1277 100 67 22 33 2 0.2446

0.09 3 1 36 2 1.4759 150 67 16 23 2 0.2446

0.1 3 1 36 2 1.5454 300 67 16 23 2 0.2446

Ci m W C h C($) Ca m W C h C($)

0.000025 61 1 8 2 0.2459 0.05 85 1 1 2 0.2354

0.0025 61 1 8 2 0.2459 0.5 83 1 3 2 0.2382

0.025 62 1 8 2 0.2463 3 74 1 5 2 0.2420

0.25 68 1 8 2 0.2498 15 65 1 7 2 0.2452

0.5 74 1 8 2 0.2534 30 62 1 8 2 0.2463

2.5 129 1 6 2 0.2737 300 57 1 34 2 0.2470

25 400 1 4 2 0.3607 3,000 57 1 37 2 0.2470

50 598 1 3 2 0.4097 30,000 57 1 34 2 0.2470

100 881 1 2 2 0.4768 300,000 57 1 37 2 0.2470

200 1,271 1 1 2 0.5692 30,000,000 57 1 37 2 0.2494

Cnc m W C h C($) Cd m W C h C($)

0.25 256 1 33 2 0.0186 0 10 1 33 2 0.2161

0.5 180 1 35 2 0.0325 1 62 1 8 2 0.2463

2 94 1 9 2 0.1071 2 91 1 7 2 0.2597

5 62 1 8 2 0.2463 5 152 1 6 2 0.2846

20 31 1 8 2 0.9125 10 232 1 5 2 0.3106

50 20 1 8 2 2.2157 20 356 1 4 2 0.3448

100 15 1 8 2 4.3657 40 538 1 3 2 0.3904

500 7 1 8 2 21.3913 60 644 1 3 2 0.4243

1,000 6 1 7 2 42.5759 90 836 1 2 2 0.4640

2,000 4 1 7 2 84.8584 120 954 1 2 2 0.4976
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scenario, the optimal cost per item produced is $0.2463. For
comparison purposes, an optimum policy of m0=57 and C0=
6, obtained byVasconcelos et al. [17], with an average cost per
item of $0.2658 is the situation obtained for the case in which
the warning limit is equal to the control limit (W=C); conse-
quently, h=0. This cost is approximately 8 % higher than the
proposed model. It is noteworthy that a cost is 8 % less

expensive per item produced if the production volume is high.
For example, ordering 100,000 pieces will result in a reduc-
tion of $800,000 if the cost per item is $100. Plots of the
average cost versus m,W, C, and h can be found in Fig. 2a–d,
respectively.

It is worth noting that the engineers of the project team
define the specification limit (LE) and that the control limit
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Fig. 3 Sensitivity analysis of
process parameters in natural
logarithm (ln)
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(C) is determined according to statistical and/or economical
criteria via optimization to define the rejection region of the
null hypothesis that the process is in control. These two
quantities are not directly related because an item can be
classified as non-conforming according to engineering’s
criteria (e.g., an item with six or seven defects) despite not
requiring rejection of the null hypothesis when the process
remains in control.

A complementary sensibility analysis (varying one param-
eter at a time) is conducted to analyze the behavior of the
average cost AV and the parameters of design, including the
inspection interval (m), the control limit (C), the warning limit
(W), and the length of h in a function of the input process

parameters π, λ1, Ci, Ca, Cnc, and Cd in a range of previously
specified values obeying the following restrictions:

– the average number of defects in state I is lower than that
of state II (λ0<λ1),

– the adjustment cost is much higher than the inspection
cost (Ca>>>CI), and

– the production cost of a non-conforming item is higher
than the cost of discarding it (Cnc>Cd).

The results of this analysis are summarized in Table 1. To
accommodate the different scales of the input parameters, the
logarithmic scales for both axes are employed in Fig. 3 to
draw the multiple overlaid graphs.

Several interesting observations can be drawn from Fig. 3.

& The length of the sequence (h0) is insensitive to all varia-
tions in costs and parameters insofar as it always exhibits
the same optimum value.

& The warning limit (W0) is also invariable, except when the
average number of defects in the items produced in state II
(λ1) is very large (λ1≥90).

& As the probability of changing from state I to state II (π)
increases, the average cost per item produced (AV) also
rises, whereas the inspection interval (m0) declines
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Fig. 4 Interval plots of average cost versus the various factors

Table 2 Levels of the factor used in the supplementary sensitivity
analysis

Factor Level (−) Level (+) Estimate p value

π 0.0001 0.001 −0.079 0.015

λ1 6.5 19.5 0.033 n.s

Ci 0.025 0.25 0.035 n.s.

Ca 30 300 0.016 n.s

Cnc 5 20 −0.356 <0.000

Cd 1 5 −0.026 n.s
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(inspection frequency increases) (Fig. 3a). If the average
number of defects in items produced in state II (λ1) in-
creases but is lower than the specification limit (λ1≤LE=
5), the inspection interval (m) and control limit (C) de-
crease. When λ1>LE, m remains stable (Fig. 3b).

& As the inspection cost per item (Ci) increases, the average
cost per item produced (AV) and the inspection interval
(m0) also increase. However, the control limit (C0) starts to
decline (Fig. 3c).

& As the adjustment cost (Ca) increases, the inspection in-
terval (m0) decreases (after remaining stable for Ca>30).
The control limit (C0) rises when the adjustment cost also
increases (Fig. 3d). Figure 3e illustrates that as the pro-
duction cost of a non-conforming item (Cnc) rises, so does
the average cost per item produced, whereas the inspec-
tion interval (m0) decreases. As shown in Fig. 3f, the
greater the cost of discarding an inspected item (Cd), the
higher the inspection interval will be (m0).

These findings are very interesting; however, this sensitivity
analysis was conducted while varying only one parameter at a
time, and it is important to identify which factor produces a
substantial impact mainly on the average cost. Thus, a supple-
mentary sensitivity analysis was developed to reflect a fractional
factorial experimental design 2(6−2), where six parameters are
assigned as factors that can be varied simultaneously. The deci-
sion to conduct 16 runs was due to the interest in verifying the
existence of main effects among the factors on the average cost
per item produced. The estimates of effects with the respective
p values (aswell as the levels of the factors) are shown in Table 2.
Note that the values specified in the beginning of this section are
set as the level (−). According to Table 2 and Fig. 4, the
parameters that exhibited the greatest significance in their varia-
tion are the probability of changing from state I to state II (π) and
the cost to produce a non-conforming item (Cnc).

5 Final considerations and suggestions for future studies

In cases of the use of on-line processes to monitor the stability of
the average number of non-conformities in an inspected item, the
model developed in this study considers two sets of limits
(control and warning) and a supplementary decision rule for
process interruption. This policy provides a control strategy that
is approximately 8 %more economical (per unit) than the model
that solely applies the conventional decision rule proposed by
Vasconcelos et al. [17]. Our proposal aimed at developing a
model that obtains the following optimum parameters: m0 (the
inspection interval),C0 (the control limit),W0 (the warning limit),
and h0 (the size of the inspection sequence). This approach
minimizes the mean cost per item produced (here, an infinite
production horizon is considered). We presumed a production
system that produces items exhibiting an average number of

defects λ0 when the process is operating in state I and a number
of non-conformities λ1>λ0 when it is operating in state II. The
production change from state I to state II occurs with probability
π, and the time (in number of units produced) that the process
remains in control follows a geometric distribution for parameter
π, (0≤π≤1). In a sensitivity analysis, the probability of changing
from state I to state II and the production cost of a non-
conforming item exhibited more significant variation.

Future studies based on Bessegato et al. [1] should conduct
on-line monitoring for the number of non-conformities in the
inspected item using a Shewhart graph with multiple inspec-
tion intervals and the addition of other supplementary rules for
process intervention.
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