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Abstract. We present an evaluation of different AI search paradigms applied to a natural planning problem. The problem we
investigate is a particular card game for one player called Black Hole. For paradigms such as SAT and Constraint Programming,
the game has the particular advantage that all solutions are the same length. We show that a general version of Black Hole is
NP-complete. Then we report on the application of a number of AI paradigms to the problem, namely Planning, Constraint
Programming, SAT, Mixed-Integer Programming and a specialised solver. An important feature of Black Hole is the presence of
symmetries which arise during the search process. We show that tackling these can improve search dramatically, as can caching
states that occur during search. Our implementations as SAT, Constraint Programming and Planning problems are efficient
and competitive, allowing detailed empirical evaluation of the strengths and weaknesses of each methodology. Our empirical
evaluation shows that Black Hole is winnable approximately 87% of the time, and that given instances can be trivially solved,
easy to solve, hard to solve and even intractable, depending on the AI methodology used to obtain solutions.
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1. Introduction

We propose patience games – card games for one
player also known as “solitaire” – as a fruitful domain
for studying search problems. These games are a nat-
ural Artificial Intelligence problem, since they are a
recreation enjoyed and understood by many people, but
for which computer-based solving techniques are gen-
erally not studied. There are hundreds of different pa-
tiences,1 with many more variants derived by changing
the number of piles or other features. The varied nature
of these patiences will lead to different approaches be-
ing needed, and this study is designed to explore the
range of validity of different AI techniques. In particu-
lar, as we show here, we can study a variety of mature
AI paradigms applied to a single problem. A particu-

1The individual game called “Solitaire” in Windows™ is most
properly called Klondike. There is a historical tendency for the name
of the most popular patience (usually Klondike or Canfield) to be-
come synonymous with the general pastime, and this can cause con-
fusion.

lar benefit to empirical analysis is that the problems of
everyday concern are of a shuffled deck and are there-
fore entirely random. There is thus an effectively un-
limited number of benchmarks available.

There is very little research on patiences: how to
solve them, how to play them, and how winnable they
are. The only body of work we know of is on the game
Freecell. Exactly one of the 32,000 possible games
in the original Windows program is unwinnable. Ex-
tensive empirical work has shown that the probability
of the game being winnable is roughly 99.999%, and
solvers are available for the game [4]. Freecell has also
been used as a benchmark for AI planning programs
[10]. General solvers could be very useful to players to
detect insolubility or give hints. AI research can also
feed back by helping the design of satisfying new pa-
tiences or variants of old ones, for example verifying
that a proposed patience is solvable a reasonable per-
centage of the time.

The variety of patiences is likely to lead to a toolbox
of techniques being required instead of a single one.
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For example, some games reveal all cards at the start
and are open to analysis, while others enforce moves
to be made with many cards remaining hidden. Other
games are mixed, for example in an initial phase cards
are placed before a final analytical stage where the
cards placed in the first phase are played to a win (or
not). Such different games are likely to be tackled in
different ways.

In this paper we show the value of patience as a
class of benchmark problems, using the game Black
Hole as a case-study. We solve it using a variety of dif-
ferent AI paradigms, namely planning – described in
Section 4, constraint programming (CP) – Section 5,
propositional satisfiability (SAT) – Section 6, mixed
integer programming (MIP) – Section 7, and a special-
purpose solver – Section 8. We thus compare the ad-
vantages and disadvantages with respect to each other,
while also being able to see the important features in
each method. Black Hole is particularly appropriate for
an initial study of AI techniques applied to patience: it
is fully open, i.e. gives perfect information to the player
at the start. Every successful game involves exactly 52
moves, making it easy to apply techniques such as con-
straint programming to it. As we show here, a natural
generalisation of it is NP-complete and therefore we do
not expect any shortcuts to be discovered which allow
trivial solving in general. Finally, we report that on the
problem of human interest, i.e. with 52 cards, Black
Hole provides a challenge for all our methods.

We find some paradigms more effective than others
in this paper, and give a detailed analysis of empiri-
cal results in Section 9. However, we absolutely do not
claim that this shows the more successful techniques
are better, even for Black Hole: our (relative) failures
may simply be due to a lack of skill and ingenuity on
our part. Instead, we intend our analysis to be a useful
longitudinal study of a number of AI paradigms on a
simple, but not trivial, problem of real interest to peo-
ple. We emphasise the design decisions in each case
and how they relate to the properties of the solvers used
and the patience itself, proposing reasons for the tech-
niques’ success or failure.

2. Black Hole

Black Hole was invented by David Parlett [16] with
these rules:

Layout – Put the Ace of spaces in the middle of the
board as the base or ‘black hole’. Deal all the other

cards face up in seventeen fans (i.e. piles) of three, or-
biting the black hole.

Object – To build the whole pack into a single suite
based on the black hole.

Play – The exposed card of each fan is available for
building. Build in ascending or descending sequence
regardless of suit, going up or down ad lib and chang-
ing direction as often as necessary. Ranking is contin-
uous between Ace and King.

The table below shows an instance of the game: the
18 columns represent the A♠ in the black hole and the
17 piles of 3 cards each.

4♦ 7♥ 7♠ 3♦ 5♠ T♣ 6♠ J♣
9♠ 9♥ J♥ 4♠ K♦ Q♦ T♠ T♦

A♠ 8♠ 5♦ 2♥ 5♣ T♥ 3♣ 8♣ A♥

J♠ 9♦ 7♦ 2♣ 3♥ 7♣ 3♠ 6♦ 9♣
A♣ Q♠ K♠ Q♥ 5♥ K♣ 8♥ J♦ 2♦
2♠ K♥ Q♣ 4♥ 6♣ 6♥ A♦ 4♣ 8♦

A solution to this game is:

A♠ 2♣, 3♠, 4♦, 5♠, 6♠, 7♠, 8♥, 9♠, 8♠, 9♣, T♠, J♠,
Q♥, J♥, T♣, J♣, Q♦, K♦, A♣, 2♠, 3♥, 2♦, 3♣, 4♥,
5♥, 6♣, 7♥, 8♣, 7♣, 6♦, 7♦, 8♦, 9♥, T♥, 9♦, T♦,
J♦, Q♠, K♠, A♥, K♥, Q♣, K♣, A♦, 2♥, 3♦, 4♠, 5♣,
6♥, 5♦, 4♣.

We mention one general feature of search in Black
Hole. The first two piles in the example layout both
have 9s in the middle. If, at some point in the game,
both the 4♦ and the 7♥ have been played, the two
9s are interchangeable provided that we don’t need to
play the 9♠ before the 9♥ to allow access to the 8♠, or
the 9♥ before the 9♠ to access the 5♦. That is, the 9s
are interchangeable if they are both played after both
of their predecessors and before either of their succes-
sors. In these circumstances, we can choose the order
in which the two 9s are played and not backtrack on
this choice. Such a symmetry, dependent on what hap-
pens in search, is called an almost symmetry in AI plan-
ning [6], or a conditional symmetry in constraint pro-
gramming [7,8]. How to deal with this plays an impor-
tant role in a number of sections to follow.

Our experimental evidence will show that Black
Hole has a 87.5% chance of being winnable with per-
fect play. About 2.9% of games are trivially unsolv-
able, because no deuces or Kings are available in the
top layer,2 but of course there are non-trivial ways to
be unsolvable.

2For this to happen, the 17 top cards in each fan must be chosen
from 43, i.e. 51 without the 2’s or K’s.

(
43
17

)
/
(

51
17

)
= 0.0285 . . . .
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3. NP-completeness of generalised Black Hole

To show that Black Hole is NP-complete, we con-
sider a generalised version where there are any num-
ber of card values, fans can have arbitrary and differing
sizes, and each card value can have a different number
of suits. We show instances of the SAT problem can be
encoded using this generalised version of Black Hole.

Consider a SAT instance with list of variables V and
list of clauses C where |C| = n. Then the deck to
be used is constructed as follows. Note throughout this
section the particular suit of a card is only given when
relevant, and that subscript i indicates the ith clause.

1. For each v ∈ V , there are two cards of equal
value and different suit, denoted vT and vF ,
called literal cards.

2. For each clause there are (clause size + 1) differ-
ent suits for the card values ci and gi. The ci are
called clause cards, the gi are called gate cards.
We need (clause size + 1) different suits to con-
struct gate fans for each clause, as described later.

3. Cards with values o1, o2, o3 and sf , where o1, o2
and o3 have two suits, and sf has three. o1, o2, o3
take values distinct from the ci, and are used to
construct a ‘one-way trap’ through which a solu-
tion may pass in one direction only. sf denotes a
reserved start/finish card value.

A card can only be played onto the black hole if
its value is adjacent to the card on top of the black
hole. Given an ordering V on the variables, the or-
dering on the card values begins with the start/finish
card sf , followed by the cards representing literals ho-
nouring the order V , followed by the ci and gi cards
in order c1, g1, c2, g2, . . . , cn, gn, followed by the cards
o1, o2, o3 which are used to construct the one-way trap.
Hence, for example, if there are three clauses and three
variables (a, b & c, say), and we choose sf to be an
Ace, then

– aT and aF are deuces;
– bT and bF are threes;
– cT and cF are fours;
– c1, g1, c2, g2, c3, g3 take values 5, 6, 7, 8, 9 and 10

respectively;
– o1, o2, o3 are a Jack, a Queen and a King respec-

tively.

Setting up the cards
The beginning position is constructed as follows:

– Literal fans: For each literal card L, a fan is con-
structed with L on top, and a copy of ci for each
clause that contains L. The ci cards are ordered
with smallest i nearest the top of the fan.

– Gate fans: For each clause card ci, there is a fan
which has a copy of gi at the bottom, then a copy
of ci, then a gi for each occurrence of ci in the
literal fans.

– One way trap fan: A fan consisting of

o1, o2, o3, sf , o1, o2, o3, sf.

The main idea behind the encoding is that ex-
actly one of vT or vF will be chosen for each
SAT variable v. This will reveal a number of clause
cards in the literal fans. If some clause is not rep-
resented in the uncovered literal fans, then no path
can exist to the o1 card. Otherwise, a path such as
c1, g1, c1, g1, c2, g2, . . . , cn, gn, o1 exists. Notice that
the gate cards allow more than one of each clause card
to be collected.

Following this, o1, o2, o3 are picked up for the first
time and form a one-way trap. If this point can be
reached, it is always possible to have reached it in such
a way that it will now be possible to pick up all remain-
ing cards and then go through o1, o2, o3 once again and
finish.

As an example of deck construction, consider the
formula (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c),
whose mapping into Black Hole is given below.

aT aF bT bF cT cF
c1 c2 c1 c3 c1
c3 c2 c2

c3

g1 g2 g3 o1
g1 g2 g3 o2
g1 g2 g3 o3
c1 c2 c3 sf
g1 g2 g3 o1

o2
o3
sf

The initial card in the black hole is sf . The first part
of a solution sequence for this instance (corresponding
to a = True, b = True, c = True) is sf , aT , bT , cT .
At this point a number of clause cards are now visi-
ble. The solution now picks up as many clause cards
as possible from the uncovered literal fans. The fans
of gate cards are used to acquire as many occurrences
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of each clause card as possible, but none of the clause
cards from the gate fans are taken. Finally o1, o2, o3, sf
is picked up for the first time:

c1, g1, c1, g1, c2, g2, c3, g3, c3, g3, o1, o2, o3, sf.

Since the sequence has passed sf , the sequence is al-
lowed to begin its second part, which clears up all the
remaining cards. At this point the clause cards in the
gate fans are collected:

sf , aF , bF , cF , c1, g1, c1, g1, c2, g2, c2,

g2, c2, g2, c3, g3, c3, g3.

Finally o1, o2, o3, sf are collected to complete the se-
quence.

3.1. Proof of correctness

Definition 1. The language of instances of Black Hole
is defined as follows. In the following, each card is
specified as a rank and a suit. A problem instance is a
sequence, beginning with the card initially in the black
hole, followed by a punctuation symbol, followed by
the fans in arbitrary order, separated by the punctuation
symbol. A witness is simply a single sequence contain-
ing all cards once, starting with the card initially in the
black hole.

Definition 2. The initial part of a solution sequence
of a Black Hole encoding consists of any cards which
come before the first occurrence of the sequence
o1, o2, o3.

Lemma 1. The initial part of the solution sequence of
a Black Hole encoding must contain exactly one of the
cards vT and vF , for each variable v.

The deck contains two cards for each SAT vari-
able v, vT and vF . The solution starts at the card
sf and must contain the sequence o1, o2, o3 twice.
Therefore the complete sequence must look like this:
sf , X , o1, o2, o3, sf , Y , o1, o2, o3, sf where X and Y
are subsequences which contain at least one copy of
each of the literal cards. Since the sequence must pass
through all the literal cards twice, there must be only
one literal card of each value in X .

Lemma 2. If the encoded SAT instance is satisfiable,
there is a route from the initial card to the first occur-
rence of o1.

By Lemma 1, such a sequence must contain exactly
one occurrence of each literal card value. If we take the
literal cards which represent a solution to the encoded
SAT instance, then the fans they were on will contain
at least one occurrence of each clause card ci. There
are sufficient available gi cards in the gate fans to form
pairs with all these ci cards, and the ci cards are sorted
in ascending order in the fans. Hence there is a route
where each ci, gi pair occurs.

Lemma 3. If the encoded SAT instance is satisfiable,
then there is a solution to the Black Hole encoding.

By Lemma 2, it is possible to get from the begin-
ning to the first occurrence of o1. Note also during this
sequence it was not necessary to take any clause cards
from the gate fans, and we can therefore assume that no
such cards were taken. The remainder of the solution
begins o1, o2, o3, sf then proceeds through all the re-
maining literal cards, then all the remaining ci, gi pairs
in ascending order, where there is at least one of each
left in the gate fans.

Lemma 4. If there is a solution to Black Hole instance
generated from a SAT instance, the SAT instance is sat-
isfiable.

If there is a solution to the Black Hole instance then
by Lemma 1, the initial part of this solution must con-
tain exactly one of the cards vT or vF for each vari-
able v. These literals form a solution to the encoded
SAT instance as the fans with these cards must between
them contain at least one occurrence of ci for every
clause i, and therefore each clause in the SAT instance
must be satisfied by this assignment.

Lemma 5. Black Hole is NP-easy.

For the Black Hole language described in Defini-
tion 1, it is clear that the solution size is linear in the
size of the problem instance, because they contain the
same number of cards. A solution can be checked in
polynomial time by playing the game: play cards into
the black hole in the order specified by the witness. If,
at any stage, some card is not available to be played,
the witness is invalid, otherwise it is valid.

Theorem 1. Black Hole is NP-complete.
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The combination of Lemmas 3 and 4 show that a
SAT instance is satisfiable if and only if its Black Hole
encoding is satisfiable, hence the encoding is correct.
The encoding produces a Black Hole instance of a size
that is linear in the number of literals in the SAT for-
mula, therefore Black Hole is NP-hard. Combined with
Lemma 5, we prove that Black Hole is NP-complete.

The language used to describe a Black Hole instance
may not be the most compact. If another language
which is logarithmically more compact were found,
the witness would be exponentially larger than the in-
stance, and Black Hole would not be NP-easy. How-
ever, since we polynomially reduce SAT into Black
Hole, such a result would also prove that SAT is not
NP-easy.

While this proof has considered encoding a gen-
eral SAT instance, it could of course encode speciali-
sations of SAT, in particular 3-SAT with a maximum
of 5 occurrences of each variable, which is itself NP-
complete. This is interesting because encoding this
problem would put a fixed limit on the maximum size
of the fans (to 8) and the number of suits (to 4). Ranks
and number of fans remain unlimited.

4. An AI planning encoding

In AI planning, an initial state is gradually trans-
formed into a goal state through the application of
plan operators [1]. Black Hole can straightforwardly
be characterised in this way: the stacks and initial hole
card comprise the initial state, the goal state is that all
cards are played, and a move is to play a card. Hence,
it is natural to test the performance of AI planning sys-
tems on this domain.

The plan objects in our PDDL [5] encoding are sim-
ply the ranks (ace–king) and the suits (spades, clubs,
diamonds, hearts). Each card is specified by a combi-
nation of rank and suit objects. We take this approach,
as opposed to a single object per card, to simplify the
description of adjacency. The initial, current and goal
states are described using a number of simple proposi-
tions. (hole rank) indicates the rank of the card cur-
rently in the hole – note that it is not necessary to know
the suit of the hole card. (unplayed rank suit) and
(played rank suit) are self-explanatory. We use both
because some planners do not accept negated precon-
ditions and/or goals. (top rank suit) indicates that a
particular card is at the top of a stack in the initial
state. Similarly, (under rank1 suit1 rank2 suit2) indi-
cates that, in the initial state, the card denoted by rank1

suit1 is underneath that denoted by rank2 suit2. We
make use of two further variations of under, under-
SameSuit and underSameRank, since most AI plan-
ners forbid more than one parameter associated with
an operator from being instantiated to the same plan
object. Finally, (plusone rank1 rank2) indicates that
rank1 is adjacent below rank2. Thirteen such proposi-
tions describe the adjacency of the set of ranks.

The decision to use plusone necessitates both
PLAY-UP and PLAY-DOWN operators. The simplest
case is in playing a card that is on top of a stack ini-
tially, since there is no need to check that the card
above has been played. For illustration, PLAY-UP-TOP
is given below. Space precludes presenting the full set
of operators,

(:action PLAY-UP-TOP
:parameters (?rank ?suit ?hole)
:precondition(and (top ?rank ?suit)

(hole ?hole)
(plusone ?hole ?rank)
(unplayed ?rank ?suit))

:effect(and (not(unplayed ?rank ?suit))
(played ?rank ?suit)
(not(hole ?hole))
(hole ?rank)))

The other operators follow the same basic pattern.
There are 12 operators in all (6 in either direction). Five
of each six deal with playing a card that was not on the
top of a stack initially, with the need to avoid instan-
tiating different parameters with the same plan object
accounting for the variations.

Naively, the goal can be specified as all cards having
been played. This is needlessly complex. It suffices to
say that the bottom card of each stack must be played,
since this implies that all cards above must also have
been played. This reduces the number of goal condi-
tions from 51 to 17 in the standard game.

We experimented with two state-of-the-art AI plan-
ning systems, Blackbox 4.2 [14] and FF 2.3 [12].
Blackbox is a Graphplan-based [3] planner that trans-
forms the planning graph into a large propositional sat-
isfiability problem. The solution to this problem, which
is equivalent to a valid plan, is obtained by using the
CHAFF [15] dedicated SAT solver. FF is a forward-
chaining heuristic state-space planner that generates
heuristics by relaxing the problem and solves using a
Graphplan-style algorithm. Preliminary experimenta-
tion revealed that, on this encoding, FF performed by
far the better. Hence, we focused on the use of FF.
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4.1. Computational experience

We ran the FF planner on 2,500 randomly chosen
problems. Over 80% were solved in under one second,
although about 2% of the problems timed out (no result
after 2844 CPU seconds). Interestingly, the maximum
non-timed out solution time was 130 CPU seconds, so
it appears that there is a small percentage of problems
for which our planning approach is not suited. This ob-
servation is reinforced by the lack of correlation be-
tween the problems that FF found hardest to solve and
the problems that our SAT and Constraint Program-
ming solvers found hardest. A more detailed compari-
son of results is given in Section 9.

5. A constraint programming model

Constraint Programming (CP) is a powerful method
for solving difficult combinatorial problems. Problems
are characterised by a set of decision variables and a
set of constraints that a solution must satisfy, and are
then solved by search. We can represent a solution to
the game as a sequence of the 52 cards in the pack,
starting with the ace of spades, the sequence represent-
ing the order in which the cards will be played into the
Black Hole. This makes it easy to devise a basic CP
model. In fact, it is a permutation problem [11]: if the
cards are numbered 0 (the ace of spades) to 51, the se-
quence of cards can be represented as a permutation of
these numbers. So we can have two sets of dual vari-
ables: xi represents the ith position in the sequence,
and its value represents a card; yj represents a card
and its value is the position in the sequence where that
card occurs. We have the usual channelling constraints:
xi = j iff yj = i, 0 � i, j � 51. We set x0 = 0.

The constraints that a card cannot be played before
the card above it, if there is one, has been played are
represented by < constraints on the corresponding yj

variables. The constraints that each card must be fol-
lowed by a card whose value is one higher or one lower
are represented by constraints between xi and xi+1 for
0 � i < 51. We use a table constraint for this, i.e.
the constraint is specified by a list of allowed pairs of
values.

The variables x0, x1, . . . , x51 are the search vari-
ables: the variables y0, y1, . . . , y51 get assigned by the
channelling constraints. The xi variables are assigned
in lexicographic order, i.e. the sequence of cards is
built up consecutively from start to finish. There is
scope for value ordering, however (see below). This

simple model using only binary constraints models the
problem successfully, but in practice search is pro-
hibitive. We have therefore correctly investigated other
techniques which make search practical.

We first deal with the conditional symmetry [7] de-
scribed in Section 2. Recall that in the example the
9♠ and the 9♥ are interchangeable if both have been
played after the cards above them, the 4♦ and 7♥,
and before the cards immediately below them, 8♠ and
5♦. To break this conditional symmetry, we can add
the constraint: if 4♦ < 9♥ and 9♠ < 5♦ then 9♠ <
9♥. This constraint forces 9♠ to be played before 9♥
when they are interchangeable. Given any ordering of
the occurrences of each value, all constraints of this
form can be added, pairwise, before search. This does
not change the solutions returned if (as we describe
below) the same order of occurrences is preferred by
the value ordering heuristic. The constraints are sim-
plified if the preferred card of the pair is at the top of
its pile or the other card is at the bottom of its pile, or
both. In particular, if the preferred card is at the top of
its pile and the other card of the pair is at the bottom
of its pile, then we can add a simple precedence con-
straint that the preferred card must be placed before the
other. Because the conditional symmetry breaking con-
straints are designed to respect the value ordering, the
solution found is the same as the solution that would be
found without the constraints. The constraints simply
prevent the search from exploring subtrees that contain
no solution. Hence, the number of backtracks with the
constraints is guaranteed to be no more than without
them. Furthermore, they appear to add little overhead
in terms of runtime; they cannot become active un-
til their condition becomes false on backtracking, and
they then become simple precedence constraints that
are cheap to propagate. It is difficult to give statistics to
show the difference that conditional symmetry break-
ing constraints makes to the performance of the solver:
we have been able to solve few random instances with-
out them, given a run-time limit of 10 minutes per in-
stance. For those that can be solved within 10 min,
adding condition symmetry breaking constraints can
make orders of magnitude difference to the search ef-
fort and runtime. For example, a particular instance
took 336,321 backtracks and 326 sec to solve without
them; when they were added, this was reduced to 252
backtracks and 0.66 sec.

Initially, when a variable xi is selected for assign-
ment, we simply selected its values in an arbitrary or-
der (spades first in rank order, then hearts and so on).
We then changed the value ordering, so that cards in
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Fig. 1. Number of backtracks to solve 2,500 random instances of
‘Black Hole’.

the top or middle layers are chosen before cards of the
same value lower down in the initial piles. This fits
with the problem, in that it makes sense to clear off
the top layer of cards as quickly as possible. This also
is consistent with the conditional symmetry breaking
constraints: as long as values in the same layer are con-
sidered in the same order by the heuristic as in the con-
straints, the same solutions will be returned first with
or without the conditional symmetry breaking con-
straints. Since this is a heuristic, it is not guaranteed to
reduce search on each individual instance, but overall,
it does reduce search considerably, by about an order
of magnitude.

The above CP model has been implemented in ILOG
Solver 6.0 and applied to 2,500 randomly generated in-
stances. The performance of the CP model is highly
skewed: half of the instances take fewer than 100 back-
tracks to solve, or to prove unsatisfiable, whereas the
most difficult instances take millions of backtracks.
This is shown in Fig. 1, where the instances are sorted
by search effort.

5.1. Caching states in ‘Black Hole’

We now show that it can be worthwhile to cache
information about the assignments visited during the
search for solutions: this information can be used to
prune parts of the search visited later and avoid wasted
effort, as described in [18].

When a constraint satisfaction problem (CSP) is
solved by depth-first backtracking search, and the
search backtracks, the failure of the current assignment
is due to some inconsistency that is not explicitly stated
in the constraints. The search has discovered that the
assignment cannot be extended to a solution; it is a no-
good. There is no point in recording the assignment it-

self, in order to avoid it in future, because the search
will never revisit it anyway. However, in some prob-
lems, assignments can occur later in the search that are
equivalent to the failed assignment, in the sense that
they leave the remaining search in the same state, and
hence whether or not the equivalent assignment will
fail can be determined from the failed assignment.

In such a case, if assignments are recorded and an
assignment occurs later in the search that is equivalent
to one that has already failed, the search can imme-
diately backtrack without rediscovering the same fail-
ure. Such equivalent states occur in our CP model for
Black Hole. At any point during search where the cur-
rent assignment is about to be extended, a valid se-
quence of cards has been built up, starting from the ace
of spades. Whether or not the sequence can be com-
pleted depends only on the cards that have been played
and the last card; apart from the last card, the order of
the previously-played cards is immaterial.

For instance, suppose the following sequence of
cards occurs during search (assuming that in some
game the sequence is possible, given the initial layout
of the cards):

A♠-2♣-3♠-4♦-5♠-4♣-3♣-2♠-A♣-K♦-A♦-2♦-3♦.

If at some later point in the search, the following se-
quence occurs:

A♠-K♦-A♦-2♣-3♠-2♠-A♣-2♦-3♣-4♣-5♠-4♦-3♦,

the second sequence will not lead to a solution. The set
of cards in both sequences is the same, and they end
with the same card. Hence, in both cases, the remaining
cards and their layout are the same. Since the first se-
quence did not lead to a solution (otherwise the search
would have terminated), the second will not either.

Based on this insight, the search algorithm in Solver
has been modified to record and use the relevant in-
formation. The search seeks to extend the current se-
quence of cards at choice points. Suppose that the first
unassigned variable is xk and the values of the ear-
lier variables are x0 = 0, x1 = v1, . . . , xk−1 = vk−1.
(Some of these values may have been assigned by con-
straint propagation rather than previous choices.) The
search is about to extend this assignment by assigning
the value vk to xk. A binary choice is created between
xk = vk and xk �= vk, for some value vk in the domain
of xk. The set of cards played so far, {v1, v2, . . . , vk−1}
and the card about to be played, vk, are then com-
pared against the states already cached. If the search
has previously assigned {v1, v2, . . . , vk−1} to the vari-
ables x1, x2, . . . , xk−1, in some order, and vk to xk,
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then the branch xk = vk should fail. If no match is
found, a new state is added to the cache, consisting of
the set of cards already played and the card about to be
played, and the search continues. In the example, when
the 3♦ is about to be added to the sequence, the set
{2♠, 3♠, 5♠, A♦, 2♦, 4♦, K♦, A♣, 2♣, 3♣, 4♣},
and x12 = 3♦, would be compared with the states al-
ready visited.

The implementation represents the set of cards in the
current sequence, excluding the A♠, as a 51-bit inte-
ger, where bit i = 1 if card i is in the set, 1 � i � 51.
The current state can only match a state in the cache if
both the number of cards played (k−1) and the current
card (vk) match. Hence, the cache is indexed by these
items. It is stored as an array of extensible arrays, one
for each possible combination of k − 1 and vk: this is
a somewhat crude storage system, but has proved ad-
equate for this problem. Within the relevant extensi-
ble array, the integer representing {v1, v2, . . . , vk−1} is
compared with the corresponding stored integers, until
either a match is found, or there is no match. In the for-
mer case, the search backtracks: the current state can-
not lead to a solution. Otherwise, the integer represent-
ing {v1, v2, . . . , vk−1} is added to the array, xk = vk is
added to the sequence being built and the search con-
tinues.

Figure 2 shows the reduction in the number of back-
tracks required to solve the 2,500 instances resulting
from caching states. Only the instances which take
fewer backtracks with caching than without are shown,
but the instances are given the same numbering as in
Fig. 1 (so that the most difficult instance from Fig. 1 is
still shown as instance 2,500). It is clear that the saving
in search effort increases with the search effort origi-
nally expended.

Fig. 2. Solving 2,500 random instances of ‘Black Hole’: difference
in number of backtracks between the original search and the search
with cached states, instances in the same order as Fig. 1.

For all but 15 of the 1,206 instances that take 50 or
fewer backtracks to find a solution, caching states vis-
ited makes no difference to the search effort. However,
since few states are cached in these cases, the run-time
is hardly affected either. ILOG Solver occasionally re-
ports a longer run-time with caching than without, by
up to 0.01 sec, but only for instances that take little
time to solve in either case.

At the other end of the scale, the instances that take
more than 1 million backtracks with the original search
are shown in Table 1; these instances have no solu-
tion. For these instances, caching states visited reduces
the search effort by at least 60%; for the most diffi-
cult instance, the reduction is nearly 75%. In spite of
the unsophisticated storage of the cache, the saving in
run-time is nearly as great; more than 55% for all six
instances, and 70% for the most difficult instance.

To show more clearly how caching affects the
search, Fig. 3 shows the search profile for the most dif-
ficult instance of the 2,500 for the original search. The

Table 1

Number of backtracks and run-time in seconds (on a 1.7 GHz Pen-
tium M PC, running Windows 2000) to solve the most difficult of
the 2,500 ‘Black Hole’ instances, with and without caching states
visited

No caching Caching

Backtracks Time Backtracks Time

3,943,901 1,427.93 1,020,371 431.33

3,790,412 1,454.16 1,259,151 509.94

1,901,738 721.07 606,231 251.01

1,735,849 681.57 528,379 233.40

1,540,321 582.71 619,735 257.95

1,065,596 398.44 423,416 176.01

Fig. 3. Proving insolubility for the most difficult ‘Black Hole’ in-
stance in the sample, with and without caching.
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number of choice points is plotted against the num-
ber of variables assigned when the choice point is cre-
ated, so showing the depth in the search where the
choice point occurs. The number of cached states at
each depth is also shown; this is equal to the number of
choice points where no matching state is found in the
cache and the search is allowed to continue.

When the search backtracks because the current
state matches one already visited, a whole subtree that
would have otherwise been explored is pruned. This
is why the reduction in choice points as a result of
caching, shown in Fig. 3 is much greater than the num-
ber of choice points that match cached states; it also
explains why, without caching, choice points tend to
occur deeper in the search.

The total number of cached states for the instance
shown in Fig. 3 is about 1.25 million (<221). In a per-
mutation problem, the number of possible assignments
is at most the number of subsets of the values, i.e. 2n,
where n is the length of the sequence, in this case ef-
fectively 51; hence, this is an upper bound on the num-
ber of states that need to be cached during the course of
search. However, in this case, most of the subsets of the
cards are not feasible states, since a valid sequence can-
not be constructed in which the cards follow each other
correctly in ascending or descending rank. Hence, the
number of possible cached states is much less than 251,
even for the difficult unsatisfiable instances.

6. A SAT model for Black Hole patience

Propositional Satisfiability (SAT) is a technique
closely related to CP in which the domains of all vari-
ables are Boolean and the constraints are expressed in
conjunctive normal form. Specialised solvers achieve
large efficiency gains by exploiting the simplicity of
this specification language.

The SAT model is conceptually similar to the CP
model, although additional variables are needed to
achieve the same expressiveness.

First of all, we have a 52×52 matrix M of variables,
where Mij is true if card i is played into the black hole
in the jth position. We know in advance that the ace of
spades is in the first position. The constraint that each
card is played exactly in one position is represented by
at-least-one and at-most-one clauses. Also, clauses are
placed on the variables in M to ensure that each card
is followed by a card whose rank is one value higher
or lower. When a solution is found, these variables are
used to obtain the solution.

In addition, a second matrix with the same size es-
tablishes the order relations between cards. For estab-
lishing the order relations, we use a ladder matrix [2,
9] i.e. a matrix in which for each row we must have
a sequence of zero or more true assignments, and all
following variables are assigned false. The first entry
to have value false gives the position where the respec-
tive card has been played. Observe that the entries in
this matrix are easily related with the entries in the
first matrix. Besides the clauses to guarantee that only
valid assignments are allowed, on this matrix clauses
are added to guarantee that a card is played into the
black hole only after all the cards above it have been
played.

Finally, a third ladder matrix is required for ap-
plying symmetry breaking, where in this matrix the
columns contain a sequence of zero or more true as-
signments, followed by all variables being assigned
false. Clauses are placed on this matrix to eliminate
conditional symmetries, i.e. search states where cards
of the same rank are interchangeable. The conditions
under which these symmetries arise have already been
described for the CP model.

Unlike CP solvers, most SAT solvers do not provide
the option of specifying a variable or value ordering
and therefore this part of the CP encoding does not
transfer to SAT.

Experimental results – described in Table 2 and ob-
tained using the siege SAT solver [17] – demonstrate
that SAT is indeed a competitive approach for solving
the black hole problem. Although the CP solver is usu-
ally faster, the SAT solver is definitely more robust. We
discuss the relative merits of approaches more fully in
Section 9.

Table 2

Sample SAT solver performance – siege with 50 seeds

Instance Mean SAT nodes Mean CPU time

01 33,429 11.859

09 2,876 0.156

19 1,902 0.071

238 5,080 0.526

337 44,431 22.670

635 59,744 33.075

642 11,293 1.701

1360 1,595 0.028

1698 3,465 0.240

2223 16,721 4.188
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7. Mixed integer programming models

Integer programming (IP) is a powerful tool for solv-
ing linear optimization problems with discrete decision
variables. It has been applied successfully to a vari-
ety of fixed-length AI planning problems (e.g. [13]).
In this section, we present four different mixed inte-
ger programming models (MIP1-4) for Black Hole and
investigate their computational performances on a test
suite.

In representing an instance with 17 stacks of 3 cards
each, the top cards are numbered 1 to 17, the middle
cards from 18 to 34, and the bottom cards from 35 to
51. Notation is as follows:

• a[i, j] denotes a binary decision variable matrix
of size 51 × 51, in which the cell (i, j) is 1 if the
card in the ith position is removed during the jth
move, otherwise 0;

• b[i, j] is a binary decision variable matrix of size
51 × 4, in which the cell (i, j) denotes the differ-
ence between the values of two consecutive cards
played at moves i (i = 0, . . . , 50) and i+1. In this
notation j denotes “the type of difference”, which
could be only one of these values: 1 (j = 1), −1
(j = 2), 12 (j = 3) and −12 (j = 4);

• v[i], a parameter array whose ith element denotes
the value of the card in the ith position;

• x[i] is a continuous decision variable (but takes
only integer values) and denotes “the move num-
ber” for the card at position i (i = 1, . . . , 51);

• y[i] is a continuous decision variable (takes only
integer values) denoting the value of the card
(y[i] ∈ {1, . . . , 13}) played at the ith move. y[0]
is 1.

In what follows we present four different MIP for-
mulations of the ‘Black Hole’ game and compare the
computational performance of these models.

7.1. MIP-1

The first MIP model (MIP-1) consists of two sets
of constraints: a card may only be played after those
on top of it have been played, and successively played
cards must differ in value by either 1 or 12.

x[i + 17(j − 1)] + 1 � x[i + 17j],

i = 1, . . . , 17; j = 1, . . . , 2, (1)

x[i] + 2 � x[i + 34], i = 1, . . . , 17, (2)

x[i] =
∑

k=1,...,51

k · a[i, k], i = 1, . . . , 51, (3)

∑

k=1,...,51

a[i, k] = 1, i = 1, . . . , 51, (4)

∑

i=1,...,51

a[i, k] = 1, k = 1, . . . , 51, (5)

y[i] =
∑

j=1,...,51

v[j] · a[j, i],

i = 1, . . . , 51; y[0] = 1, (6)

y[i] − y[i + 1]

= −b[i, 1] + b[i, 2] − 12b[i, 3] + 12b[i, 4],

i = 0, . . . , 50, (7)

∑

j=1,...,4

b[i, j] = 1, i = 0, . . . , 50, (8)

1 � y[i] � 13, 1 � x[i] � 51,

i = 1, . . . , 51. (9)

In the above formulation, Eqs (1) and (2) express that,
in any stack, the top card must have been played before
an underneath card can be played. Equation (3) sets
the relation between x[i] and a[i, j]. Since a[i, j] = 1
denotes that the card i is played at move j, then x[i],
which is the ith card’s move number, must be equal
to j · a[i, j]. Clearly, each card can be played only
once (Eq. (4)) and there should be one card assigned to
each move (Eq. (5)). Equation (6) has a similar func-
tion to Eq. (3) and sets the relation between y[i] and
a[j, i]: for card j which is played at move i we have
a[j, i] = 1 and must have y[i] = v[j]. Equation (7)
expresses the rule that the difference between the val-
ues of consecutively played cards must be an element
of the set {1,−1, 12,−12}. It is clear that only one of
these four values can be the difference (Eq. (8)). Equa-
tion (9) sets the lower and upper bounds for the contin-
uous decision variables. From Eq. (3) and Eq. (6) we
see that the right-hand side of the equalities may only
assume integer values and therefore, although x[i] and
y[i] are declared as continuous decision variables, they
never take on non-integer values.
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The above formulation can be improved by replac-
ing Eq. (7) with a set of constraints providing tighter
relaxation. A set of such constraints are given below:

y[i + 1] − y[i] � −11b[i, 1] + 12, (10)

y[i + 1] − y[i] � 13b[i, 1] − 12, (11)

y[i] − y[i + 1] � −11b[i, 2] + 12, (12)

y[i] − y[i + 1] � 13b[i, 2] − 12, (13)

12b[i, 3] + 1 � y[i + 1], (14)

12(1 − b[i, 3]) + 1 � y[i], (15)

12b[i, 4] + 1 � y[i], (16)

12(1 − b[i, 4]) + 1 � y[i + 1]. (17)

Equations (14)–(17) give us a very strong formula-
tion compared to Eq. (7). Let us assume that b[i, 3] = 1
(the difference between the card values of move i
and i + 1 is −12), from Eqs (14) and (15) one gets
13 � y[i + 1] and 1 � y[i]; in other words, the deci-
sion variables are fixed to y[i + 1] = 13 and y[i] = 1,
once b[i, 3] = 1. In a similar fashion, Eqs (10)–(13)
are strong enough to fix the difference of card values
to 1(−1) once b[i, 1(2)] is set to 1.

Black Hole has no objective function, so we em-
ploy an artificial one, based upon a breadth-first strat-
egy. This is because breadth-first is expected to yield a
feasible solution easily. One such objective function is
min

∑
i=1,...,17 A · i · x[i] +

∑
i=18,...,34 i · x[i], where

A is a large constant: penalties for playing top row
cards at a later stage in the game are higher, whereas
there is no such penalty for bottom row cards. Pre-
liminary experimentation confirmed that this objective
function performed better than any other we consid-
ered.

7.2. MIP-2

The second model (MIP-2) proposed for the ‘Black
Hole’ problem is similar to MIP-1 in many ways. How-
ever, the most crucial difference is the use of implied
constraints in a way that reduces the search space dra-
matically. Although the increase in the number of con-
straints has adverse effect on the speed of the solu-
tion algorithm, MIP-2 performs still better compared
to MIP-1.

The underlying observation in developing MIP-2 is
that at any stage of the game, one can infer about the
possible card values for the next 11 stages. Consider

Fig. 4. Feasible card values for the beginning of the game.

Fig. 5. Feasible card values for Value = 6 at Move = 15.

Fig. 4 in which gray cells point to feasible card values
for the beginning of the game.

Although Fig. 4 is useful on its own, it is possible
to generalise it for any stage and for any card value to
have more inference on the game. Figure 5 is a result of
such an effort and shows an instance of having a value
of “6” at stage 15. Again the gray cells represent all
possible values if we have a “6” at stage 15.

In MIP, one way of expressing the case given in
Fig. 5 is as follows:

∑

k∈{1,...,51}
v[k]=i

a[k, j]

+
∑

k∈{1,...,51}
|v[k]−i|�={h−1|h∈Sj}

a[k, j + m] � 1, (18)

where j = 1, . . . , 51, i ∈ Sj , m = 1, . . . , min{11,
51 − j} and

S1 = {2, 13},

S2 = {1, 3, 12},

S3 = {2, 4, 11, 13},

S4 = {1, 3, 5, 10, 12},

S5 = {2, 4, 6, 9, 11, 13},
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S6 = {1, 3, 5, 7, 8, 10, 12},

S7 = {2, 4, 6, 7, 8, 9, 11, 13},

S8 = {1, 3, 5, 6, 7, 8, 9, 10, 12},

S9 = {2, 4, 5, 6, 7, 8, 9, 10, 11, 13},

S10 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

S11 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},

S12� = {1, . . . , 13}.

Equation (18) exploits that, at any move, one can in-
fer infeasible card values for the next 11 moves. Con-
sider Fig. 4, in which gray cells are feasible card val-
ues for the beginning of the game. Figure 4 can be gen-
eralised to any move and for any played card value.
Sj denotes the set of feasible card values in move j.
In Eq. (18), the first summation term gives all binary
decision variables referring to playing card valued i
in move j. The second includes all ak,j+m that don’t
comply with having a card valued i in move j. If any
of the variables specified in the first summation takes
on the value of 1, then all ak,j+m in the second must
be 0.

MIP-2 consists of Eq. (18) as well as Eqs (1) and (2)
implying that card i can be played in move j only if
the cards on top of it have been played, Eqs (4) and (5)
guaranteeing that only one card is played in each move,
and each card is played only once.

7.3. MIP-3 and MIP-4

One weakness inherent in MIP is the relatively com-
plex expressions needed for expressing lexicographical
ordering. This has been observed in MIP-1 and MIP-2
models. In this section an alternative formulation is
given for Eqs (1) and (2).

The basic idea behind this formulation is the obser-
vation that if card i (assume that it is a middle row
card) needs to be played at move j, then the top row
card must have been played until stage j. This formu-
lation provides us more inference compared to Eqs (1)
and (2). The downside of this alternative formulation
is the large number of constraints it requires.

This alternative formulation, MIP-3, consists of (i =
1, . . . , 17)

j∑

k=1

a[i, k] � a[i + 17, j + 1],

j = 1, . . . , 50, (19)

j∑

k=1

a[i, k] � a[i + 34, j + 2],

j = 1, . . . , 49, (20)

j∑

k=1

a[i + 17, k] � a[i + 34, j + 1],

j = 2, . . . , 50, (21)

as well as Eqs (4), (5) and (18).
In MIP-4, lexicographical ordering constraints are

expressed twice; first by means of Eqs (1) and (2) and
then Eqs (19)–(21).

7.4. Computational experience

To gauge the computational performance of these
four MIP formulations we conducted numerical ex-
periments. Experiments are performed on a 2 GHz
PC using the well-known MIP solver ILOG CPLEX
9.0. CPLEX’s emphasis indicator is set to “empha-
size feasibility over optimality”. The test suite used in
the experiments consists of 30 randomly-generated in-
stances. The allowed maximum solution time is set to
5 hours. In three instances (19, 20, 29) there are no fea-
sible solutions.

MIP-1 model contains 1071 constraints and 2908
variables (2805 binary variables). MIP-2 contains 6269
constraints and 2652 variables (2601 binary variables).
MIP-3 and MIP-4 use 8683 and 8734 constraints, re-
spectively, and 2601 variables. Table 3 allows us to
compare different MIP models in terms of runtime and
number nodes.

It has been observed that MIP-3 is the computation-
ally most efficient formulation. Using MIP-3, we were
able to solve 23 instances out of 30. It is interesting to
observe that in the solved cases the number of nodes
visited are actually very small, pointing out that the
MIP formulation is effective. The maximum number
of nodes visited was 2203. However, the downside of
the MIP approach is the excessive amount of process-
ing time required at each node visited. The infeasible
cases were easy to spot using MIP-3 or MIP-4. The in-
feasibilities were proven at the root nodes in less than
a second.

These results suggest that IP is not an effective ap-
proach to address ‘Black Hole’. This is interesting,
since, as noted, IP has been successfully applied to
many other fixed-length AI planning problems. The
lack of a real objective function to provide a tight



I.P. Gent et al. / Search in ‘Black Hole’ patience 223

Table 3

Solution time in secs (number of nodes visited)

MIP-1 MIP-2 MIP-3 MIP-4

1 – – 11000 (1444) 8800 (975)

2 – – 7600 (966) 800 (29)

3 – – 1800 (52) 2300 (85)

4 – – – –

5 – 5600 (1691) 850 (71) –

6 – – 140 (0) 2200 (174)

7 – – 300 (7) 700 (19)

8 – – – –

9 – – 1400 (81) –

10 – – 2100 (199) –

11 – – 970 (21) 620 (18)

12 – 1500 (474) 330(15) 1400 (100)

13 – – 4700 (415) 2600 (148)

14 – – 4400 (414) 670 (35)

15 – – – –

16 – 710 (168) 1300 (82) –

17 – – 12000 (1201) –

18 – 2300 (472) 670 (22) 5100 (235)

19∗ – – 38 (0) 32 (0)

20∗ 0.45 (0) 0.42 (0) 0.52 (0) 0.54 (0)

21 – – 8500 (933) 380 (5)

22 – – – –

23 – – – 17000 (1396)

24 – – 1300 (143) –

25 – – – –

26 – – – 18000 (1606)

27 – – 1400 (70) 1700 (68)

28 – – 470 (5) 920 (23)

29∗ 0.08 (0) 0.42 (0) 0.52 (0) 0.55 (0)

30 – – 17000 (2203) –

∗Denotes “no solution” exists; A dash indicates no feasible solution
in 5 hours.

bound is certainly a factor, as well as the fact that the
linear encoding of Black Hole requires a very large
number of binary variables and constraints.

8. A special purpose solver for Black Hole

Writing a special-purpose solver and encoding into
another domain are both viable options for many
classes of AI problems. The advantage of a special-
purpose solver is that, knowing the properties of the
problem, code can be optimised to search exception-
ally fast. The disadvantage is the lack of mature and
deep techniques for search, or the difficulty of adapt-
ing and implementing these techniques for the do-

main. In the case of Black Hole, we were able to
write a special-purpose solver which could search
very fast, but its lack of reasoning abilities means
that the cost in larger search spaces is not repaid by
the added speed per node compared to other meth-
ods.

The solver is written in Common Lisp. To avoid
garbage collection, no lists were constructed or dis-
carded after initialisation at the root of the search tree.
The other key design principle was to minimise the
amount of work on making moves and undoing them
for backtracking. Indeed, there is only very moderate
work done on choosing a move, and even less on back-
tracking.

Essentially we treat cards as pointers into the data
structures. Each card is represented as an array index,
so cards are numbered from 0 to suits ∗ ranks − 1.
For each card, we construct at the root a static pointer
to the card immediately above it in its pile, or a null
pointer if it is on top. A simple dynamic bitarray indi-
cates whether each card has been played or not at this
point in search, leading to one bit change on moving
forward and backtracking. A card is available if it has
not been played, but the card above it (if any) has been.
Our data structures make this a very cheap test. With
only four suits in the standard game, we simply test
all possible cards of the right ranks to see if they are
available. The test is performed for each card of rank
one above and one below the current card in the hole:
the list of cards for each rank is computed statically at
the root. The alternative is to maintain lists of avail-
able cards of each rank, which in general will be much
shorter than 4, the number of suits. However, in its sim-
plest form this leads to creating and reducings lists, and
however it is done involves some work at each node
and undoing it on backtracking. To avoid garbage col-
lection we set up a 2-D array to store available moves
at each depth, the dimensions being depth in search and
twice the number of suits. At a new depth we insert the
possible moves into this array. No work in this array
needs to be done on backtracking, except decrementing
the pointer to the current depth. Enumeration of the set
of moves is implemented iteratively, but search itself
is recursive, so the search function is called when we
move to the next depth. So various bits and pieces go
onto the function stack when this happens. However,
the depth is only the number of cards.

We deal with conditional symmetries as follows.
First, we distinguish between ‘unit’ cards, i.e. cards at
the bottom of a pile or above only cards of the same
rank, and other cards that we call ‘general’. A card’s
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unity or generality is determined statically at the root,
so lists of general and unit cards are stored at the root.
When finding playable cards, we consider at most one
unit card of each rank, and none at all if there are any
general cards of that rank. This deals with this kind
of conditional symmetry almost without overhead. Our
solver is able to search at almost 100,000 backtracks
per second on a 2 GHz PC. However, we are prone
to exceptionally hard problems: one winnable instance
took 1,055,774,437 backtracks and 11,701.38 secs.3

We adapted the solver to deal with general condi-
tional symmetry, i.e. when two general cards of the
same rank are simultaneously available. After back-
tracking from the choice of the first such card, it will
be locked as unavailable until the card underneath the
second card has been played and frees the first. In im-
plementation, this freeing card is pointed to from the
first, and the first card is not available until the freeing
card has been played. When there are more than two
cards available, the card underneath the third card will
free the second, and so on. This array of freeing point-
ers does have to be maintained dynamically, but it is
easy to calculate freeing cards from the list of available
moves at each depth in search. The overheads are now
more substantial, and we did not find great reductions
in search from dealing with conditional symmetry, so
overall performance was not dramatically improved.

To conclude, we did succeed in writing a solver to
search very fast. Although our design decisions may
not be optimal, we would be surprised if it could be
speeded up to search 1,000 more nodes per second, as
would be necessary to reduce the hardest problems to
a few seconds each. Compared with the more intelli-
gent and successful solvers reported earlier, we expect
that some form of reasoning happening in those solvers
is reducing the amount of search: duplicating this in a
special-purpose solver would likely lead to the fastest
possible search, but of course at a substantial overhead
in programmer time.

9. Experimental evaluation

We have reported five solvers in this paper. We found
that two, the MIP approach and the special purpose
solver, were not competitive with the others, with many
instances taking hours to solve. This in no sense im-
plies a final conclusion that these approaches are im-

3By mistake this random instance only involved 48 cards in
16 piles: but as claimed it worked correctly.

practical for Black Hole solving. However, the partic-
ular implementations we report here have not been the
most successful, and we restrict their empirical evalua-
tion to the brief details reported above. In particular, 30
instances using the MIP approach was enough to show
that the cost per node was uncompetitive. Moreover,
the special purpose solver may have become compet-
itive if implemented in C/C++, with state-caching in-
corporated as for our CP solver. We have performed a
much more extensive empirical comparison of our AI
Planning, CP, and SAT based solvers. The CP solver re-
sults in this discussion are those for the version which
incorporates state-caching, as described in Section 5.1.

We constructed a single benchmark set of 2,500 in-
stances to test the solvers on. All three solvers were
tested on the same instances, and they gave the same
results on each instance – excepting a few timeouts de-
scribed below. Since the instances were independently
randomly generated instances of the standard game
with a 52 card game, we can report on the expected
winnability of Black Hole. A total of 2,189 instances
were winnable and 311 were not, giving an 87.56%
probability of winnability. The 95% confidence inter-
val for the true probability is [86.2%, 88.8%].

We were not able to run the three remaining solvers
on the same machines. Instead, we have normalised
runtime results as if they were all run in the same ma-
chine, taking the CP solver to have a factor of 1. To de-
rive the runtime multipliers we ran a single SAT solver
on the same set of benchmarks on the three different
machines. Our results are summarised in Table 4.

All three solvers were highly effective at solving
these instances. Only the FF planner failed to solve all
instances in less than 2,800 s CPU time, and it solved
all but 46, i.e. more than 98% of instances. Of those
it did solve, the longest took only 130 s to solve. For
CP, the longest time was 510 s, and for SAT the longest
mean time was 180.5 s (remembering that SAT times
are means over a sample of runs).

This suggests a rank order of SAT, CP, FF. However,
investigating percentiles of behaviour is more interest-
ing. The best median is CP at only 0.03 s, then FF at
0.88 s and SAT at 1.75 s. We see CP starting to outper-
form both FF and SAT at the higher percentiles. SAT
solves 97.5% of instances in 17 s, compared to 12 s
for CP and 65 s for FF. Even this hides considerable
complexity, as the three solvers find different partic-
ular instances difficult. There is only a weak correla-
tion between the difficulty experienced by SAT and CP
solvers, r = 0.28. The correlations between SAT and
FF and between CP and FF are r = 0.11 and r = 0.39
respectively.
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It seems clear that FF differs markedly from the
other solvers, in that roughly 2% of our problems
were found to be hard enough to time-out the FF
computation, whereas all problems were solved (or
proved unsoluble) in reasonable time by both SAT and
CP. Moreover, mean performance of the SAT and CP
solvers differs widely, at 3.47 s and 1.97 s respectively.
This is distinct enough that a paired t-test on the two
data sets rejects the null hypothesis that performance
is the same (p < 0.001). We can therefore report that
there is a statistically significant difference between the
performances of the three approaches.

In practical terms, given our study of the profiles,
it is reasonable to say that our CP solver is usually
quicker, while the SAT solver is more robust at solving
all instances in reasonable time. This is illustrated by
the fact that the CP solver solves 88% of instances in
less than 1 s, while the SAT solver solves all instances
in less than 3 minutes.

To conclude, we found that while all solvers could
solve Black Hole instances, the SAT and CP solvers
were the most effective. FF was just behind those two,
with our other two approaches not nearly as successful.

10. Conclusions

We consider patiences in general, and Black Hole in
particular, to be interesting domains for studying mod-
elling and encoding, and analysis of empirical data.
There are hundreds of patience games in existence,
many of which will raise interesting questions which
are dependent on the rules of the game in question.
Moreover, people care about – and can easily under-

Table 4

Solving 2,500 random instances of ‘Black Hole’: CPU time
comparison

FF SAT CP

>2800 s 43 0 0

100–999.9 s 4 4 8

10–99.9 s 359 160 61

1–9.9 s 1,100 1,341 276

0.1–0.9 s 643 770 648

<0.1 s 351 285 1,577

Max. sol. (s) 130 180 510

Median sol. (s) 0.88 1.75 0.03

Mean sol. (s) 6.83 3.47 1.97

Std. dev. (s) 15.3 7.6 17.4

win (%) 29.4 7.7 67.8

stand differences between – random instances of the
problems.

In this paper we have demonstrated that MIP, SAT
encoding, AI planning, specialist solution and con-
straints are appropriate ways to study these games.
Each of these AI methodologies uses modelling, en-
coding and solution techniques that differ from the oth-
ers. By applying the methodologies to a problem that is
both easy to understand and hard to solve (in general)
we have been able to compare and contrast the relative
efficacy of the methods. All the solution techniques ex-
amined in this paper are complete, since problem in-
stances have a high probability of being both solvable
and solvable in under one second. For other problem
domains the use of local search techniques should also
be empirically evaluated.

The advantages of using games such as Black Hole
are:

– Any reasonably proficient AI practitioner can en-
code the game as an instance of their preferred
methodology;

– The number of test cases is essentially unlimited
(each being a shuffle of a deck of cards), so that
the design and statistical analysis of experiments
is straightforward;

– We can gain insights into the similarities and dif-
ferences of competing AI methodologies;

– The well-understood framework makes it easy to
disseminate results to the wider community;

– Results can be applied to any fixed-length plan-
ning problem with perfect information that arises
in the real world.

The scope for further work in this area is limitless:
of the hundreds of patience games available, there are
examples which incorporate perfect and imperfect in-
formation; allowed, limited and forbidden backtrack-
ing; multi-deck variations; and solution metrics such
as shortest length. Each of these aspects is worthy of
exploration in AI research.
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