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Abstract Process capability indices are widely used to
provide the evaluation measure of a process. Espe-
cially, the process capability index Cpm, which is defined
by the range of the process standard specification limits
and the deviation from a target value, is called the
Taguchi index. Boyles has investigated the statistical
characteristics of the estimator Ĉpm, and also proposed
a technique for the Cpm control chart. Since the process
capability index Cpm is based on the concept of the
Taguchi’s quality loss, the process capability index Cpm

already includes an economical concept. In this article,
we evaluate an operating cost consisting of the sampling
cost, the sample cost, and the quality loss of failing
to detect an out-of-control state when the Cpm control
chart is used. Then, we derive an optimal operating
plan by sample size and sampling interval in order to
minimize the ceiling value of the operating cost based
on the min–max criterion.
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1 Introduction

A manufacturing process is characterized by numerical
measurements of items produced from the process.
These process characteristics are assumed to be nor-
mally distributed so that the process is characterized by
a process mean μ and a standard deviation σ . Gener-
ally, a process specification consists of lower and upper
specification limits (LSL, U SL) and a target value T
somewhere between these limits. A process capability
index is a unitless function of the process parameters
(μ, σ ) and the process specification (LSL, T, U SL) for
the purpose of quantifying the performance of a process
[18]. The traditionally used process capability indices
are Cp and Cpk [7, 18, 24], where

Cp = UCL − LCL
6σ

, (1)

Cpk = min

{
UCL − μ

3σ
,
μ − LCL

3σ

}
. (2)

Cp evaluates the related scale of the specification’s
tolerance with the process’s tolerance, while Cpk si-
multaneously evaluates the centering degree and the
dispersion degree. The estimators of Cp and Cpk have
already been developed on evaluating the process per-
formance in practice. On one hand, evaluating the
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process capability index is sometimes required when
the process characteristics are assumed to be nonnor-
mally distributed. The evaluation of process capability
indices for nonnormally distributed processes has been
proposed in the literature of Hosseinifard et al. [13]
and Abbasi [1]. Note that the process characteristics are
assumed to be normally distributed in this article.

Control charts play an important role in statistical
process control tools [24]. The process performance is
estimated by the quality characteristics of items pro-
duced from a process. The process mean μ and devi-
ation σ are traditionally monitored by x and s control
charts, respectively. A process capability index is also
used as one of the evaluation measures for process
performance.

Boyles [7] has investigated a control chart based on
an estimator of the process capability index Cpm and
insisted that the Cpm control chart is appropriate for
monitoring the process capability, where

Cpm = UCL − LCL
6τ

, (3)

τ 2 = E
[
(x − T)2

] = σ 2 + (μ − T)2, (4)

where T is usually set at the midpoint of the specifica-
tion limits. The process capability index Cpm is effective
in analyzing manufacturing systems because the index
is composed of the specification limits of items and the
deviation with respect to a specified target value T of
items [20, 21].

As mentioned the above, the process capability in-
dex quantifies the performance of a process using the
process parameters (μ, σ ) and the process specification
(LSL, T, U SL). Cpm show the frequency with which
the observed characteristics of items are within a given
range of the specification. The Cpm control chart is
different from the classical control chart, for example,
the x chart, in that the stochastic characteristics are not
directly estimated but the degree of fulfilling the speci-
fication for items is estimated. Then, Pearn and Shu [28]
have applied the Cpm control chart to the practical pro-
duction environment of precision electronic devices. As
a result, they have verified the effectiveness of the Cpm

control chart and concluded that the approach is useful
for quality improvement decisions.

Lorenzen and Vance [22] have discussed a number
of important considerations in the economic operation
of control charts. Usually, some kinds of costs, such
as sample cost, sampling inspection cost, and addi-
tional loss due to failure to detect an out-of-control
state, have been considered in the design of economical

operations. Duncan [9, 10] has studied an economical
design of the x control chart. The economical design
of the x control chart has also been considered by
Banerjee and Rahim [5] and Parkhideh and Case
[26]. When discussing the economical design of control
charts, it is necessary to evaluate the loss for process
quality. Conventionally, the loss for process quality has
been estimated using the proportion of nonconforming
items.

Taguchi [30, 31] has proposed the concept of “quality
loss” based on the deviation from a target value of items
instead of the quality evaluation by the proportion
of nonconforming items. The quality loss is evaluated
even if a produced item is judged to be conforming
as an item. Therefore, the achievement of high quality
can be expected when the quality loss is applied to
the quality evaluation. The concept of the Taguchi’s
quality loss has been applied for various quality im-
provement decisions [2, 6, 11, 23, 33]. Arizono et al. [3]
and Morita et al. [25] have applied the concept of the
quality loss to the design of acceptance sampling plan.
A variety of economical operations of control charts
using the Taguchi’s quality loss have been developed
[15, 19, 32, 34].

The process capability index Cpm has been called the
Taguchi index because the definition of Cpm has been
essentially identical with that of the Taguchi’s quality
loss. Hence, it must be appropriate to consider the
economical operation of the Cpm control chart based
on the economical criterion of the Taguchi’s quality
loss. However, the economical operation of the Cpm

control chart has not yet been discussed. From Eqs. 1
and 2, Cp and Cpk do not consider the specified target
value T because Cp and Cpk are approaches to quality
improvement for the reduction of variability. While
Cpm is an approach to quality improvement for the
reduction of variability from the target value. It is not
appropriate to apply the quality loss of nominal-the-
best to Cp and Cpk. Therefore, the economical oper-
ation of Cp and Cpk using the Taguchi’s quality loss
should not be considered. Note that the process capa-
bility index based on the quality loss has been proposed
except Cpm. Hesieh and Tong [14] have proposed the
capability index based on the quality loss. Their index
is such that the quality loss is defined by the smaller-
the-better quality characteristics such as the proportion
of nonconforming items.

In the design of the economical operation of control
charts, an additional loss due to failure to detect an
out-of-control state is considered. Therefore, a partic-
ular out-of-control state to evaluate the loss is some-
times specified. For example, Takemoto et al. [32] have
specified an out-of-control state to be detected and



306 Int J Adv Manuf Technol (2009) 43:304–311

designed the economical operation of the cumulative
sum ( x, s) control chart for the specified out-of-control
state. Also, Wu et al. [34] have assumed that the infor-
mation about some out-of-control states to be shifted
from the in-control state is provided. Usually, the out-
of-control state to be shifted from the in-control state is
unknown. On one hand, Kobayashi et al. [19] have pro-
posed a design technique of the economical operation
in the worst situation among all possible out-of-control
states, where sample size is the only decision variable in
the technique proposed by Kobayashi et al. [19].

In this article, we discuss the design of the eco-
nomical operation of the Cpm control chart based on
Taguchi’s quality loss using the min–max criterion.
The min–max criterion realizes the optimization in the
worst situation among all possible out-of-control states.
Then, we define the cost function including the sample
size and sampling interval as decision variables and
then propose the design procedure of the economical
operation of the Cpm control chart by Taguchi’s quality
loss.

2 Outline of Cpm control chart

When the process quality characteristics obey a nor-
mal distribution N(μ, σ 2), the Taguchi’s quality loss
is defined as kτ 2, where τ 2 is in Eq. 4 and k repre-
sents a proportional coefficient based on a functional
limit of quality characteristics. k is a positive constant.
Therefore, the process capability index Cpm is called the
Taguchi’s index or the process capability index based
on the loss criterion [7, 28].

The proportional coefficient k is specified by the
capability limits �U , �L as follows:

k = A

�2
U

or k = A

�2
L

,

where A denotes the complete loss in the case that
the item cannot operate normally by unsatisfying the
specification. Then, (T + �U , T, T − �L) corresponds
with the process specification (U SL, T, LSL). When
�U �= �L, the largest value k is adopted [30].

Let xi, i = 1, 2, ..., n, be random samples from a
normal distribution N(μ, σ 2), where μ and σ 2 are
unknown. Taguchi has proposed the estimator τ̂ 2 of the
expected loss τ 2 defined by

τ̂ 2 = 1

n

n∑
i=1

(
xi − T

)2 = ( x − T)2 + s2, (5)

where x and s2 denote the maximum likelihood estima-
tors of μ and σ 2 as follows:

x = 1

n

n∑
i=1

xi, s2 = 1

n

n∑
i=1

(
xi − x

)2
.

Since x and s2 are the maximum likelihood estima-
tors, the estimator τ̂ 2 is also the maximum likelihood
estimator and then the uniformly minimum variance
unbiased estimator [28]. It is known that the statistic
nτ̂ 2/σ 2 obeys a noncentral chi-square distribution with
n degrees of freedom and noncentrality parameter nξ 2

[29], where ξ 2 is defined as

ξ 2 = (μ − T)2

σ 2
.

The distribution of the estimator Ĉpm is defined as

Ĉpm ≡ d
3τ̂

∼ d
3

√
n

σ 2χ2
n,nξ 2

, (6)

where χ2
n,nξ 2 denotes a noncentral chi-square distribu-

tion with n degrees of freedom, noncentrality parame-
ter nξ 2, and

d = U SL − LSL
2

.

Then, we define a judgment rule for the process state.
Let L be a control limit. The following judgment rule is
constructed:

{
if Ĉpm > L, then in-control.
otherwise, out-of-control.

Now, we define the in-control state as N(μ0, σ
2
0 ),

where T = μ0 and σ 2
0 means the process variance in

the in-control state. The quality loss kτ 2
0 in the in-

control state is given as kτ 2
0 = kσ 2

0 from Eq. 4. When
the process is in-control, we denote the distribution of
the estimator τ̂ 2 as

τ̂ 2 ∼ τ 2
0

n
χ2

n = σ 2
0

n
χ2

n , (7)

where χ2
n means a central chi-square distribution with n

degrees of freedom. Therefore, the distribution of Ĉpm

in the in-control state is described as

Ĉpm ∼ d
3

√
n

σ 2
0 χ2

n

.
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Let α be a specified type I error probability. Then,
the control limit L is given as

L = d
3

√
n

σ 2
0 χ2

n (α)
, (8)

where χ2
n (α) means the upper 100α percentile of the

chi-square distribution with n degrees of freedom.
Next, let N(μ1, σ

2
1 ) denote an out-of-control state. In

this case, we address the distribution of the estimator
τ̂ 2. We denote the statistic ρ as

ρ = 1 + ξ 2
1

1 + 2ξ 2
1

nτ̂ 2

σ 2
1

, (9)

where

ξ 2
1 = (μ1 − μ0)

2

σ 2
1

. (10)

Then, by letting the mean and variance of the statistic
ρ correspond to those of chi-square distribution with φ

degree of freedom, we obtain

φ = n
(
1 + ξ 2

1

)2

1 + 2ξ 2
1

. (11)

Accordingly, the chi-square distribution with φ degrees
of freedom in Eq. 11 can be employed as the ap-
proximation distribution of ρ. Therefore, the distrib-
ution of the estimator τ̂ 2 in the out-of-control state is
represented as

τ̂ 2 ∼ τ 2
1

φ
χ2

φ. (12)

This technique is based on the Patnaik transforma-
tion, in which the noncentral chi-square distribution
is transformed into the central chi-square distribution
[27]. Also, this technique has been employed when
the distribution of Ĉpm was discussed in the previous
literature [7].

Consequently, the power of the Cpm control charts
with L in Eq. 8 is obtained as the following equation:

χ2
φ(1 − β)τ 2

1

φ
= χ2

n(α)τ 2
0

n
. (13)

Note that the power is varied according to the out-of-
control state N(μ1, σ

2
1 ), while there are innumerable

combinations of (μ1, σ
2
1 ) with the same quality loss τ 2

1 .

3 Definition of evaluation function

As mentioned above, we specify the control limit of
the Cpm control chart for given α and n. In this article,
we consider the economical sample size and the eco-
nomical sampling interval when the Cpm control chart
is operated for a given α. Then, the operating cost
function should be constructed in order to evaluate the
economical operation of the Cpm control chart. In this
section, we define an evaluation function for operating
the Cpm control chart.

At first, we present the expected loss kτ 2
0 per unit

item for the in-control state N(μ0, σ
2
0 ) as

kτ 2
0 = kσ 2

0 . (14)

Then, the quality loss τ 2
0 in Eq. 14 can be interpreted as

the unavoidable loss due to the chance cause for the in-
control state. The quality loss τ 2

1 for an out-of-control
state N(μ1, σ

2
1 ) is derived as

kτ 2
1 = k

{
σ 2

1 + (μ1 − μ0)
2
}
, (15)

where τ 2
1 means the additional loss due to the

assignable cause and we suppose kτ 2
1 > kτ 2

0 in general.
As mentioned above, the difference k(τ 2

1 − τ 2
0 ) can be

interpreted as the avoidable surplus loss by means of
detecting the out-of-control state.

Then, we assume that the process repeats the in-
control state and the out-of-control state alternately via
restoration. Therefore, we define a unit cycle by a pair
of the in-control condition and the out-of-control con-
dition. In this case, define unit time as production time
per unit item. Then, an exponential distribution is often
adopted as the distribution of state transition time from
the in-control state to an out-of-control state [4, 8, 12].
Accordingly, since the probability density function of
transition time by occurrence of the assignable cause is
described as

f (t) = λ exp {−λt} , (16)

we obtain the probability q that the in-control state is
maintained in respective sampling intervals as

q = exp {−λM} , (17)

where M means the batch size in the interval be-
tween successive samplings. Then, we evaluate the ex-
pected period to be in-control by mean of a geometric
distribution.
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Furthermore, denote the power for an out-of-control
state N(μ1, σ

2
1 ) by 1 − β. We evaluate the expected

period from the change in the process state to the de-
tection of the out-of-control condition by chart signals.

Now, we define the evaluation function on operating
the Cpm control chart. Concretely, we propose the total
operation cost based on the sampling cost, the sample
cost on operating the Cpm control chart, and the addi-
tional loss due to failure to detect the out-of-control
state.

Define the following expected loss CL per unit item
based on the avoidable loss when operating the Cpm

control chart:

CL =
∞∑
j=1

k
(
τ 2

1 − τ 2
0

)
( j − 1)β j−1(1 − β)

= k
(
τ 2

1 − τ 2
0

)
β

1 − β
. (18)

We obtain the cost CS per unit item consisting of both
the sampling cost and the sample cost as follows:

CS =
⎧⎨
⎩

∞∑
i=1

(cn + D)iqi(1 − q)

+
∞∑
j=1

(cn + D) jβ j−1(1 − β)

⎫⎬
⎭

/
M

= cn + D
M

(
q

1 − q
+ 1

1 − β

)
, (19)

where let n be the sample size, M the batch size, c
the sample cost per unit item, D the sampling cost per
sampling, and β the probability of failure to detect the
out-of-control state. Consequently, the expected total
operation cost per cycle is given as CS + CL. Then,
since the cycle time CT is present as

CT = q
1 − q

+ 1

1 − β

= 1 − qβ

(1 − q)(1 − β)
, (20)

we evaluate the expected total operation cost C per unit
time and item as follows:

C = CS + CL

CT

= cn + D
M

+ k
(
τ 2

1 − τ 2
0

)
(1 − q)β

1 − qβ
. (21)

4 Derivation of economical operation

When the cost and the power on operating control
charts are evaluated, it is traditionally assumed that
once the process state changes into an out-of-control
state, the process remains at the out-of-control state
until the assignable cause has been identified and re-
moved. Takemoto et al. [32] have specified an out-of-
control state to be detected in the design of economical
operation. Wu et al. [34] have assumed that the infor-
mation about some out-of-control states to be shifted
from the in-control state is provided in the design of
economical operation.

The in-control state is known and unique. The qual-
ity loss τ 2

0 is such as to be unique to the in-control
state N(μ0, σ

2
0 ). An out-of-control state to be shifted

from the in-control state is unknown and not unique.
The Cpm control chart has the different power 1 − β for
respective out-of-control states N(μ1, σ

2
1 ). Especially,

there are innumerable combinations of (μ1, σ
2
1 ) for a

given τ 2
1 from Eq. 4, where τ 2

1 > τ 2
0 . Among innumer-

able out-of-control states (μ1, σ
2
1 ) with same loss τ1,

the worst situation in the cost should be considered.
Also, the process does not always remain at an identical
out-of-control state until the assignable cause has been
identified and removed after the process state changes
into the out-of-control state. Then, the development of
economical operations for various changes of a process
state is needed.

At first, we consider the combination of (μ1, σ
2
1 ) in

order that the expected total cost for a given τ 2
1 is

maximized. The behavior of the cost function C in β

for a given τ 2
1 is investigated. From Eq. 21, we have

dC
dβ

= k
(
τ 2

1 − τ 2
0

) {
1

1 − qβ
+ qβ

(1 − qβ)2

}

= k
(
τ 2

1 − τ 2
0

)
(1 − q)

(1 − qβ)2
> 0. (22)

Therefore, we find that the cost function C is monotoni-
cally increased in β. This fact shows the rational feature
that we can decrease the expected operation cost C by
decreasing the type II error probability β.

On one hand, we can evaluate the power 1 − β as
Eq. 13. For a given τ 2

1 , the ceiling value of C is given
when β is maximized. Therefore, we attempt to find the
combination of (μ1, σ

2
1 ) in order that β is maximized

among innumerable combinations of (μ1, σ
2
1 ) with the

same τ 2
1 . Such a combination of (μ1, σ

2
1 ) is obtained as

the following relation:

χ2
n(α)

n
τ 2

0 = min
(μ1,σ

2
1 )∈τ 2

1

χ2
φ(1 − β)

φ
τ 2

1 . (23)
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Fig. 1 The behavior of the ceiling value of C in τ 2
1 for a given

(n, M) = (10, 1000)

By applying the Wilson–Hilferty approximation [17],
we consider the behavior of χ2

φ(1 − β)/φ in φ, that is, a
combination of (μ1, σ

2
1 ) to minimize the right side of

Eq. 23. Consequently, in our previous research [25], we
obtain the combination of (μ1, σ

2
1 ) to minimize the right

side of Eq. 23 as follows:

(
μ1, σ

2
1

) = (
μ0, τ

2
1

)
or

(
μ0 ±

√
τ 2

1 − σ 2
0 , σ 2

0

)
. (24)

In the detail, see Morita et al. [25].
We find the maximum value Cmax of C by comparing

the respective expected costs for the quality loss τ 2
1 pro-

vided that a sample size n and a batch size M are given.
Then, Cmax is minimized by the sample size n for a
given M, and then the minimum value among any Cmax

is found, where the minimum value is called Cmax–min.
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Fig. 3 The behavior of Cmax–min in batch size M

By comparing Cmax–min for every batch size M, we find
the minimum value C∗

max–min of Cmax–min. Finally, we
decide the economical operation plan (n, M) of the Cpm

control chart based on the min–max criterion. Then, the
control limit L can be calculated by using Eq. 8.

5 Numerical examples

We consider some numerical examples in order to il-
lustrate the derivation process of the economical oper-
ation plan (n, M) in the Cpm control chart. Let d = 3σ0

and T = μ0 = 0.0, σ 2
0 = 1.0 without loss of generality,

that is τ 2
0 = 1.0. Then, we assume k = 1. As an example,

the sample cost coefficient c = 1, the sampling cost
coefficient D = 10, the specified type I error probability
α = 0.01, the state transition rate λ = 0.00001 in Eq. 16,
and the lot size M = 1000. We derive the economical
operation plan (n, M) in the above conditions.

At first, Fig. 1 shows the behavior of C in the quality
loss τ 2

1 . Note that the value of C is evaluated for the
combination of (μ1, σ

2
1 ) in Eq. 24. In other words, the

ceiling value of C for respective τ 2
1 is shown in Fig. 1.

From the result, we obtain Cmax as the maximum value
of C in Fig. 1. Next, Fig. 2 illustrates the behavior

Table 1 Te behavior of (n, M) and C∗
max–min in c

c n M Cmax–min

0.50 31 1100 0.052
1.00 13 800 0.062
1.50 8 700 0.069
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Table 2 The behavior of (n, M) and C∗
max–min in D

D n M Cmax–min

5.0 5 400 0.054
10.0 13 800 0.062
15.0 25 1400 0.067

of Cmax in the sample size n. Cmax is minimized in
the sample size n = 17 under M = 1000. The operating
cost is equal to or less than the minimum value of
Cmax even if the process shifts to any out-of-control
condition when the operation plan (n, M) = (17, 1000)

is adopted. Note that the minimum value of Cmax is
equivalent to Cmax–min in the case of M = 1000. Further,
we compare Cmax–min for respective batch sizes M in
Fig. 3. Then, we derive the economical operation plan
(n, M) = (13, 800) of the Cpm control chart based on
the mini-max criterion. When the economical operation
plan (n, M) = (13, 800) is adopted, C∗

max–min = 0.062 is
obtained. As a result, the operation cost is always equal
to or less than C∗

max–min even if the process state changed
to any out-of-control state as long as the Cpm control
chart is operated in the economical plan (n, M).

Then, we have the sensitivity analysis in the econom-
ical operation of the Cpm control chart. Table 1 shows
the behavior of economical operation plan (n, M) in the
sample cost c. The parameters except c are the same
as in Fig. 3. From Table 1, cheaper c leads to larger
n. Then, the strict analysis by large n can lead to large
M, that is, the longer sampling interval. Table 2 shows
the behavior of economical operation plan (n, M) in the
sampling cost D. The parameters except D is the same
as in Fig. 3. From Table 2, more expensive D leads to
larger n. Simultaneously, more expensive D leads to
larger M, that is, the longer sampling interval. Table 3
show the behavior of economical operation plan (n, M)

in the state transition rate λ. The parameters except
λ are the same as in Fig. 3. From Table 3, larger λ

leads to larger n and M in order to realize the quick
detection of the out-of-control state. Table 4 shows
the behavior of economical operation plan (n, M) in
the type I error probability α. The parameters except
α are the same as in Fig. 3. α implies the degree of
strictness for monitoring the process capability. From

Table 3 The behavior of (n, M) and C∗
max–min in λ

λ n M Cmax–min

0.000005 11 1000 0.045
0.000010 13 800 0.062
0.000015 16 800 0.075

Table 4 The behavior of (n, M) and C∗
max–min in α

α n M Cmax–min

0.010 13 800 0.062
0.025 13 1100 0.044
0.050 13 1400 0.034

Table 4, larger α leads to larger M. These results are
quite reasonable.

6 Concluding remarks

In this article, we have considered the economical oper-
ation of Cpm control chart when quality characteristics
obey a normal distribution. We define the expected cost
function based on the sampling cost, the sample cost,
and the additional loss due to failure to detect the out-
of-control state. Then, we have proposed the concept
of the economical operation plan using the min–max
criterion. Further, the decision procedure with respect
to the economical operation plan (n, M) of the Cpm

control chart has been shown throughout numerical
examples.

The Taguchi’s quality loss is defined based on the
deviation from the target value of quality characteris-
tics. The quality loss is evaluated even if the quality
characteristics are within both specification limits. At
this point, the Taguchi’s quality loss is different from
the traditional quality loss such as the proportion of
nonconforming items. That is, the quality loss is present
in the operating cost even if the item is conforming to
the specification. Consequently, the Taguchi’s quality
loss can lead to more strict quality management in com-
parison with the traditional quality management. The
quality management technique based on the Taguchi’s
quality loss is understood as the quality management
technique to aim at the higher quality. Therefore, we
are convinced that the proposed economical operation
of the Cpm control chart contributes to the real indus-
trial environment as the excellent quality management
technique.

On one hand, in-control process parameters such as
μ0 and σ 2

0 are not always known and control charts are
constructed using estimates in place of the parameters
[16]. In this article, the target value T is a desired
object and is given. While, σ 2

0 may include the error of
estimation when the in-control process dispersion is es-
timated. The impact of error due to estimation and then
the development of economical operation including the
impact of error due to estimation are interesting objects
in our future research.
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