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Abstract. The idea of secure quantum information exchange (SQIE) [J. Phys. B: At. Mol. Opt.
Phys. 44, 115504 (2011)] is introduced for the secure exchange of single qubit information states
between two legitimate users, Alice and Bob. In the present paper, we extend this original SQIE
protocol by presenting a scheme, which enables the secure exchange of n-single qubit information
states among the n nodes of a quantum network, with the aid of a special kind of 4n-qubit entan-
gled state and the classical assistance of an extra participant Charlie. For experimental realization
of our extended SQIE protocol, we suggest an efficient scheme for the generation of a special
kind of 4n-qubit entangled state using the interaction between highly detuned �-type three-level
atoms and optical coherent field. Further, by discussing the various experimental parameters, we
show that the special kind 4n-qubit entangled state can be generated with the presently available
technology.
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1. Introduction

In classical theory, the allowed states are simply classical bits (‘0’ and ‘1’), while in quan-
tum theory, for a two-level system, the allowed states are |0〉 and |1〉, and also its linear
superposition, i.e., a|0〉 + b|1〉 with |a|2 + |b|2 = 1. Because of this linear superposition
in quantum theory, for a bipartite system, we have the state 1√

2
[|01〉 + |10〉], which gives

rise to an astonishing phenomenon called long-range EPR correlation [1], also termed as
quantum entanglement [2].

A pure state of two or more quantum systems is said to be entangled [3], if it cannot
be written as a product of the quantum states of the constituent systems. A mixed state is
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called entangled [4], if it cannot be written as a mixture of factorizable pure states, i.e., it
cannot be written in the form,

ρ =
∑

j

pjρ
A1
j ⊗ ρ

A2
j ⊗ · · · ⊗ ρ

An
j , with pj > 0 and

∑

j

pj = 1.

Quantum entanglement makes possible many quantum information processing tasks,
which are otherwise impossible in classical information theory. Quantum entanglement
is widely used in quantum information processing tasks such as quantum teleportation
[5], quantum cryptography [6], quantum superdense coding [7], quantum remote state
preparation [8] etc.

Quantum teleportation (QT), first shown by Bennett et al [5], is a phenomenon in
which an unknown quantum information state is destroyed at the sender’s end (Alice)
and a replica is created at the receiver’s end (Bob) using long-range EPR correlation and
transmitting classical information via classical channel from sender to receiver. After
the introduction of the idea of QT, several theoretical studies on QT [9–12] have been
done. Also several experiments have demonstrated QT with photonic-polarized states
[13,14], atomic qubits [15,16] and quantum state of nucleus [17]. In some studies on QT,
a third observer Charlie is introduced between two legitimate users, Alice and Bob. Intro-
duction of a third observer increases the security of the QT protocol because now both
Alice and Charlie have control on the teleportation process. This type of QT is called
controlled QT. Many researchers proposed the controlled QT of single qubit information
state using GHZ state or GHZ-class states [18,19] and W state [20]. However, in practi-
cal situations, there may be a need of sending a large amount of information encoded in
multipartite states. For this reason, many researchers [21–23] proposed the teleportation
of multipartite information states.

In all these studies on QT, user Alice sends information state and Bob gets an exact
replica of the information state, i.e., this process has one-way quantum communication.
If we require two-way quantum communication, then we have to switch two QT proto-
cols in opposite directions between Alice and Bob. As completion of QT protocol requires
sending of the classical information about Bell state measurement (BSM) from the sender
to the receiver, which is required for performing suitable unitary transformation by the
receiver. There may arise a situation when Bob gets classical information from Alice but
he does not send his BSM result to Alice. Thus, this type of two-way quantum communi-
cation is insecure. Same problem will also arise when we switch two controlled QT pro-
cesses in opposite directions.

To solve the above problems in the two-way quantum communication, Mishra et al [24]
proposed a new idea called secure quantum information exchange (SQIE). The SQIE pro-
tocol enables the faithful exchange of two single qubit information states between Alice
and Bob, with the aid of a special kind of six-qubit entangled (SSE) state and the classical
assistance of Charlie, a third party. This protocol is secure in the sense that either both
Alice and Bob get their required information states or in case of failure of this due to any
reason, none of them gets any information state. Also Alice and Bob cannot reconstruct
the required information states by communicating their BSM results classically to each
other without the assistance of Charlie. However, classical communication between Alice
and Bob is not allowed in the SQIE protocol. In the real world, there may be a need
of secure exchange of a large amount of information encoded in multiqubit states. For
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this purpose, Maurya et al [25] have generalized their original SQIE protocol to secure
exchange of information states of arbitrary number of qubits between Alice and Bob.
Maurya et al [25] have also discussed about the effect on the security of SQIE protocol
with respect to increase in the number of qubits going towards the controller Charlie. Xu
et al [26] proposed cooperative two-way communication for the simultaneous exchange
of two single qubit information states between Alice and Bob using Brown state as the
quantum channel. The security of this protocol is the same as security of SQIE scheme
[24]. But the success of this scheme is information state-dependent, which is one for a
particular information state and for all other information states it is lesser. Success of our
SQIE [24] scheme is independent of information state and is perfect for all information
states.

To realize the quantum computer, there may be a large number of quantum processors
(nodes) working apart. There may be a need of setting a quantum link among the nodes
and also quantum communication among them. In order to set quantum communication
between the nodes, in this paper, we extend our original SQIE protocol for the secure
exchange of the quantum information states among a number of nodes working apart.

In this framework, we consider a quantum network composed of n nodes (observers),
say, Bob(1), Bob(2), Bob(3), . . . , Bob(n). Our aim is to exchange n single qubit information
states among all observers in cyclic order, i.e., to teleport first information state from
Bob(1) to Bob(2), simultaneously second information state from Bob(2) to Bob(3) and so on.
Bob(n) teleports the nth information state to Bob(1). This exchange process must be done
with the condition that either all observers get their required information states or in case
of failure of this end result, nobody among them gets any information state. We present
the extended SQIE protocol, which securely exchanges the n single qubit information
states among the n observers with the aid of a special kind of 4n-qubit entangled state and
classical assistance of the extra participant Charlie. In order to experimentally realize our
extended SQIE protocol, we present an efficient scheme for the generation of a special
kind of 4n-qubit entangled state using the interaction between �-type three-level atoms
and optical coherent field. Further, we discuss the experimental feasibility of this scheme
by considering some experimental aspects like cavity damping time, total flight time of
atoms and conclude that a special kind of 4n-qubit entangled state can be generated using
the presently available technology.

2. Secure quantum information exchange among n nodes

Let us consider a quantum network composed of n observers, say, Bob(1), Bob(2),
Bob(3), . . . , Bob(n). Let Bob(1) want to send single qubit information state |ξ 〉I1 =
[a1|0〉 + b1|1〉]I1 to Bob(2), where |0〉 and |1〉 are two levels of a two-level system
and a and b are unknown complex numbers satisfying the normalization condition
|a|2 + |b|2 = 1. At the same time, Bob(2) wants to send another single qubit information
state |ξ 〉I2 = [a2|0〉 + b2|1〉]I2 to Bob(3), Bob(3) wants to send single qubit information
state |ξ 〉I3 = [a3|0〉 + b3|1〉]I3 to Bob(4) and so on. Bob(n) wants to send single qubit
information state |ξ 〉In

= [an|0〉 + bn|1〉]In
to Bob(1). This information exchange process

must be secure such that either all the observers get their required information states or if
this end result is not obtained due to any reason, then nobody gets any information state.
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To complete this task, we introduce an extra participant Charlie, who classically assists
all the observers. We define a special kind of 4n-qubit entangled state as

|ψ〉E
A1,B1,A2,B2,A3,B3,...,An,Bn,{C} = 1

2n

⎡

⎣
4∑

j1, j2,..., jn=1

|B〉(j1)
A1,B2

⊗ |B〉(j2)
A2,B3

⊗|B〉(j3)
A3,B4

⊗ · · · ⊗ |B〉(jn)
An,B1

⊗
(
|φ〉(j1)

C1,C2
⊗ |φ〉(j2)

C3,C4
⊗ · · · ⊗ |φ〉(jn)

C2n−1,C2n

)
⎤

⎦ ,

(1)

where each |B〉(ji ) is a standard bipartite Bell state given by

|B〉(1, 2) = 1√
2
[|00〉 ± |11〉], |B〉(3, 4) = 1√

2
[|01〉 ± |10〉], (2)

for ji = 1, 2, 3, 4 respectively, modes {C} ≡ (C1, C2, . . . , C2n) and each |φ〉(ji ) is the
state in computational basis {|00〉, |11〉, |01〉, |10〉} for ji = 1, 2, 3, 4 respectively. Ai

and Bi are modes with Bob(i) for i = 1, 2, 3, . . . , n respectively, while the modes {C} are
with Charlie. Superscript E refers to entangled state.

The state, given by eq. (1), can also be written as

|ψ〉E
A1,B1,A2,B2,A3,B3,...,An,Bn,{C}

= 1

2n

⎡

⎣
4∑

j1, j2,..., jn=1

σ j1 |B〉(1)
A1,B2

⊗ σ j2 |B〉(1)
A2,B3

⊗ σ j3 |B〉(1)
A3,B4

⊗ · · · ⊗ σ jn |B〉(1)
An,B1

⊗
(
|φ〉(j1)

C1,C2
⊗ |φ〉(j2)

C3,C4
⊗ · · · ⊗ |φ〉(jn)

C2n−1,C2n

)
⎤

⎦ , (3)

where each σ ji is I, σz, σx, σxσz for ji = 1, 2, 3, 4 respectively. As all observers (n Bob
and Charlie) have shared 4n-qubit entangled state (3) and each Bob has single information
state, we have a system consisting of 5n qubits and we write the composite state of this
system as

|ψ〉I1,...,In,A1,B1,...,An,Bn,{C}

= |ξ 〉I1 ⊗ |ξ 〉I2 ⊗ · · · ⊗ |ξ 〉In
⊗ |ψ〉E

A1,B1,A2,B2,A3,B3,...,An,Bn,{C}

= 1

2n

⎡

⎣
4∑

j1, j2,..., jn=1

σ j1(|ξ 〉I1 ⊗ |B〉(1)
A1,B2

) ⊗ σ j2(|ξ 〉I2 ⊗ |B〉(1)
A2,B3

)

⊗ σ j3(|ξ 〉I3 ⊗ |B〉(1)
A3,B4

) ⊗ · · · ⊗ σ jn(|ξ 〉In
⊗ |B〉(1)

An,B1
)

⊗(|φ〉(j1)

C1,C2
⊗ |φ〉(j2)

C3,C4
⊗ · · · ⊗ |φ〉(jn)

C2n−1,C2n
)

⎤

⎦ . (4)
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The detailed scheme is shown in figure 1. Using the standard bipartite Bell states (2), the
state (4) can also be written as

|ψ〉I1,...,In,A1,B1,...,An,Bn,{C}

= 1

4n

⎡

⎣
4∑

j1, j2,..., jn=1

⎧
⎨

⎩

4∑

k1, k2,..., kn=1

(|B〉(k1)
I1,A1

⊗ σ j1σk1 |ξ〉B2)

⊗ (|B〉(k2)
I2,A2

⊗ σ j2σk2 |ξ〉B3)

⊗ (|B〉(k3)
I3,A3

⊗ σ j3σk3 |ξ〉B4) ⊗ · · · ⊗ (|B〉(kn)
In,An

⊗ σ jnσ kn |ξ〉B1)

⎫
⎬

⎭

⊗ (|φ〉(j1)
C1,C2

⊗ |φ〉(j2)
C3,C4

⊗ · · · ⊗ |φ〉(jn)
C2n−1,C2n

)

⎤

⎦ , (5)

where each σ ki is I, σz, σx, σxσz for ki =1, 2, 3, 4 respectively.
Now each Bob(i) performs Bell state measurement (BSM) on his two qubits in modes

Ii and Ai for i = 1, 2, 3, . . . , n respectively, while Charlie measures his qubits in the
computational basis {|0〉, |1〉}. All Bobs convey their BSM results to Charlie through 2-bit
classical channels. After getting the classical information from all Bobs and on the basis
of Charlie’s measurement results, Charlie decides about the 2-bit classical information
to be conveyed to each Bob. On the basis of these classical information conveyed by
Charlie, all Bobs perform the required unitary transformations on their particles in order

Figure 1. Scheme for extended SQIE protocol. Entangled modes C1, . . . , C2n are
with Charlie, while information mode Ii and entangled modes Ai and Bi belong to
Bob(i) for i = 1, 2, 3, . . . , n. x1, x2, x3, . . . , xn are 2 c-bit classical information. UB1 ,
UB2 , UB3 , . . . , UBn

refer to the unitary operation to be performed by Bob(1), Bob(2),
Bob(3), . . . , Bob(n) respectively for completing the extended SQIE protocol.
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to generate exact replicas of the required quantum information states. If the result of
Charlie’s measurement is j1, j2 . . . jn and the result of BSM of ith Bob is ki , then from
eq. (5), it is clear that (i+1)th Bob performs unitary transformation (σ ji σ ki )† on his qubit
in mode Bi+1 to generate the exact replica of the required information state.

Both the result of Charlie’s measurement and result of BSM, are required to determine
suitable unitary transformation, operation of which generates the required information
state. Hence all Bobs cannot ignore Charlie by communicating classically to one another.
However, in our scheme, classical communication among Bobs is not permitted. Due
to any reason, if any one or more than one Bob do not send classical information to
Charlie, then Charlie cancels the whole process without sending any information to all
Bobs. Hence this SQIE process has the required security that is discussed in the beginning
of this section.

3. Generation of entangled 4n-qubit state

In order to experimentally realize the extended SQIE scheme discussed in §2, we must
have the ability to generate the entangled 4n-qubit state given by eq. (1), which is used as
quantum channel. This state can also be written as

|ψ〉E
A1,B1,A2,B2,A3,B3,...,An,Bn,{C}

= 1

2n

⎡

⎣

⎛

⎝
4∑

j1=1

|B〉(j1)
A1,B2

⊗ |φ〉(j1)
C1,C2

⎞

⎠ ⊗
⎛

⎝
4∑

j2=1

|B〉(j2)
A2,B3

⊗ |φ〉(j2)
C3,C4

⎞

⎠

⊗
⎛

⎝
4∑

j3=1

|B〉(j3)
A3,B4

⊗ |φ〉(j3)
C5,C6

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
4∑

j3=1

|B〉(jn)
An,B1

⊗ |φ〉(jn)
C2n−1,C2n

⎞

⎠

⎤

⎦ .

(6)

Hence it is enough to generate the state,

1

2

⎛

⎝
4∑

j1=1

|B〉(j1)

A1,B2
⊗ |φ〉(j1)

C1,C2

⎞

⎠

= 1

2
[|B〉(1) ⊗ |00〉 + |B〉(2) ⊗ |11〉 + |B〉(3) ⊗ |01〉

+|B〉(4) ⊗ |10〉]A1,B2,C1,C2 , (7)

with n parallel set-ups.
In this section, we present an efficient scheme for the generation of the state (7). We

consider the interaction of �-type three-level atom with optical coherent field. Level
configuration of �-type three-level atom is shown in figure 2, where |0〉 and |1〉 are two
degenerate ground levels and |2〉 is the excited level. Frequency of optical coherent field
(ωc) is largely detuned from atomic transition frequency ω0, i.e., 	 = ω0 − ωc is large.
In large detuning limit, the excited state |2〉 can be adiabatically eliminated during the
interaction and effective Hamiltonian [27] can be expressed as

H = −λa†a[|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|], (8)
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Figure 2. Scheme for the generation of state (7). Callout shows the level configura-
tion of �-type three-level atom, where |0〉 and |1〉 are two degenerate ground levels
and |2〉 is the excited level. C1, C2 and C3 refer to cavities initially prepared in optical
coherent field |α〉C1 , |α〉C2 and |−α〉C3 respectively. A1, A2, A3 and A4 denote the
four atoms. The four atoms are initially in ground state |0 0 0 0〉A1,A2,A3,A4 . t = π/2λ

is the interaction time of atom with cavity field. H refers to Hadamard operation.

where λ = g2/	. In [24], it is shown that for this system if interaction time satisfies
t = π/2λ, then the state of the atom–cavity system evolves according to the following
evolution:

|0,+〉 → |0,+〉; |1,+〉 → |1,+〉;
|0,−〉 → −|1,−〉; |1,−〉 → −|0,−〉 (9)

and

|A+,±α〉 → |A+,∓α〉, |A−,±α〉 → |A−,±α〉, (10)

where |±〉 = [|α〉±|−α〉] are the unnormalized even and odd coherent states and |A±〉 =
(|0〉 ± |1〉)/√2.

Four atoms in modes A1, A2, A3 and A4 are prepared initially in the states |0〉A1 , |0〉A2 ,
|0〉A3 and |0〉A4 respectively and two cavities C1 and C2 are prepared in optical coherent
field state |α〉C1 and |α〉C2 respectively. The initial state of the atom–cavity system can be
written as

|ψ(0)〉A1,A2,A3,A4,C1,C2 = |0000〉A1,A2,A3,A4 ⊗ |α, α〉C1,C2 . (11)

The detailed scheme for the generation of state (7) is shown in figure 2. First, let atom A1

flies through the cavity C1 and at the same time, atom A3 flies through the cavity C2. If
we control the velocity of both atoms A1 and A3 such that each atom interacts with the
optical coherent field for the time t = π/2λ, then the state of atom–cavity system will
evolve according to the evolution given by eq. (9) and we get

|ψ(π/2λ)〉A1,A2,A3,A4,C1,C2 = 1

4
[(|0,+〉 − |1,−〉)A1,C1 ⊗ |0〉A2]

⊗ [(|0,+〉 − |1,−〉)A3,C2 ⊗ |0〉A4]. (12)
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Now atoms A2 and A4 pass through the cavities C1 and C2 respectively to interact with
the optical coherent field for the interaction time t = π/2λ. The state of the system will
evolve according to the evolution (9), giving,

|ψ(π/λ)〉A1,A2,A3,A4,C1,C2

= 1

4
[|00,+〉 + |11,−〉]A1,A2,C1 ⊗ [|00,+〉 + |11,−〉]A3,A4,C2

= 1

2
[|B〉(1) ⊗ |α〉 + |B〉(2) ⊗ | − α〉]A1,A2,C1 ⊗ [|B〉(1) ⊗ |α〉

+ |B〉(2) ⊗ |−α〉]A3,A4,C2 , (13)

where |B〉(1) and |B〉(2) are the standard bipartite Bell states given by eq. (2).
As coherent states |α〉 and |−α〉 are not orthogonal, 〈α|−α〉 = e−2α2

, but they become
almost orthogonal for large mean photon number α2. To distinguish between |α〉 and
|−α〉, we now inject |α〉 into each cavity, i.e., we make use of the displacement operator

D(β)|α〉 = |α+β〉, which results in |α〉 D(α)−→ |2α〉 and |−α〉 D(α)−→ |v〉, where v is vacuum,
and we get

|ψ(π/λ)〉A1,A2,A3,A4,C1,C2

= 1

2
[|B〉(1)

A1,A2
⊗ |B〉(1)

A3,A4
⊗ |2α, 2α〉C1,C2

+ |B〉(1)
A1,A2

⊗ |B〉(2)
A3,A4

⊗ |2α, v〉C1,C2

+|B〉(2)
A1,A2

⊗ |B〉(1)
A3,A4

⊗ |v, 2α〉C1,C2

+ |B〉(2)
A1,A2

⊗ |B〉(2)
A3,A4

⊗ |v, v〉C1,C2 ]. (14)

As for large |α|2, the state |2α〉 has a very small probability of having no photons. Hence
on performing photon counting measurement (PCM), state |2α〉 gives nonzero count and
state |v〉 gives zero count.

Now we perform PCM in both cavities C1 and C2. From eq. (14), it is clear that
there are four possible PCM results and corresponding to these four results, there are four
generated states. We tabulate the PCM results and the corresponding generated states in
table 1.

Table 1. PCM results in both the cavities C1 and C2, and the generated
states corresponding to these results.

Counts in cavity C1 Counts in cavity C2 Generated state

Nonzero Nonzero |B〉(1)
A1,A2

⊗ |B〉(1)
A3,A4

Nonzero Zero |B〉(1)
A1,A2

⊗ |B〉(2)
A3,A4

Zero Nonzero |B〉(2)
A1,A2

⊗ |B〉(1)
A3,A4

Zero Zero |B〉(2)
A1,A2

⊗ |B〉(2)
A3,A4
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Let us consider that the generated state is the first state, i.e.,

|ψ〉A1,A2,A3,A4 = |B〉(1)
A1,A2

⊗ |B〉(1)
A3,A4

= 1

2
[|00〉 ⊗ |00〉 + |11〉 ⊗ |11〉 + |01〉 ⊗ |01〉 + |10〉 ⊗ |10〉]A1,A3,A2,A4 .

(15)

Now Hadamard operation,

R = 1√
2

(
1 1
1 −1

)
, with |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)

is applied on atoms A1. Then state (15) becomes

|ψ〉A1,A3,A2,A4 = 1

2
[|A+0〉 ⊗ |00〉 + |A+1〉 ⊗ |01〉
+ |A−0〉 ⊗ |10〉 + |A−1〉 ⊗ |11〉]A1,A3,A2,A4 . (16)

We prepare a cavity C3 in optical coherent field state |−α〉C3 . The complete state of the
system is thus given as

|ψ〉A1,A3,A2,A4,C3 = 1

2
[|A+0〉 ⊗ |00〉 + |A+1〉 ⊗ |01〉 + |A−0〉

⊗|10〉 + |A−1〉 ⊗ |11〉]A1,A3,A2,A4 ⊗ |−α〉C3 . (17)

On sending atom A1 through the cavity C3, for an interaction time t = π/2λ, the state of
the system evolves according to evolutions in eq. (10) and we get

|ψ〉A1,A3,A2,A4,C3 = 1

2
[|A+0〉 ⊗ |00〉 ⊗ |α〉 + |A+1〉 ⊗ |01〉

⊗|α〉 + |A−0〉 ⊗ |10〉 ⊗ |−α〉 + |A−1〉 ⊗ |11〉
⊗| − α〉]A1,A3,A2,A4,C3 . (18)

Now Hadamard operation R is applied on atom A1. Then state (18) becomes

|ψ〉A1,A3,A2,A4,C3 = 1

2
[|00〉 ⊗ |00〉 ⊗ |α〉 + |01〉 ⊗ |01〉 ⊗ |α〉

+|10〉 ⊗ |10〉 ⊗ | − α〉 + |11〉 ⊗ |11〉
⊗| − α〉]A1,A3,A2,A4,C3 . (19)

We let atom A1 fly through the cavity C3 for time t = π/2λ and then let atom A3 fly
through the cavity C3 for time t = π/2λ. Then, the states in modes A1, A3 and C3 evolve
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according to evolutions (9) and (10), giving,

|00, α〉A1,A3,C3 → 1√
2
[|B〉(1)|α〉 + |B〉(2)|−α〉]A1,A3,C3 ,

|01, α〉A1,A3,C3 → 1√
2
[|B〉(3)|α〉 + |B〉(4)|−α〉]A1,A3,C3 ,

|10,−α〉A1,A3,C3 → 1√
2
[|B〉(3)|−α〉 − |B〉(4)|α〉]A1,A3,C3 ,

|11,−α〉A1,A3,C3 → 1√
2
[|B〉(1)|−α〉 − |B〉(2)|α〉]A1,A3,C3 . (20)

Using eq. (20) for modes A1, A3 and C3 in eq. (19), the final output state is written as,

|ψ〉A1,A3,A2,A4,C3 = 1√
2
[|η〉(1)

A1,A3,A2,A4
⊗|α〉C3 +|η〉(2)

A1,A3,A2,A4
⊗|−α〉C3 ], (21)

where

|η〉(1)
A1,A3,A2,A4

= 1

2
[|B〉(1) ⊗ |00〉 − |B〉(2) ⊗ |11〉 + |B〉(3)

⊗ |01〉 − |B〉(4) ⊗ |10〉]A1,A3,A2,A4 , (22)

|η〉(2)
A1,A3,A2,A4

= 1

2
[|B〉(1) ⊗ |00〉 + |B〉(2) ⊗ |11〉 + |B〉(3)

⊗|01〉 + |B〉(4) ⊗ |10〉]A1,A3,A2,A4 . (23)

Now we inject |α〉 into the cavity C3, then state (21) becomes

|ψ〉A1,A3,A2,A4,C3 = 1√
2
[|η〉(1)

A1,A3,A2,A4
⊗|2α〉C3 +|η〉(2)

A1,A3,A2,A4
⊗|ν〉C3 ]. (24)

On performing PCM in the cavity C3, from eq. (24), it is clear that the result nonzero count
gives the generated state (22), while the result zero count gives the generated state (23).
We see that state (23) is the required state and however, the state (22) can be converted
into state (23) simply by applying local operation σz on atom A2. Thus, for both PCM
results, we obtain the required state, which we want to generate.

We now discuss about the experimental feasibility of our scheme, which generates the
entangled 4n-qubit state. The cavity [28], which can be used in the state generation pro-
cess, is an open Fabry–Perot interferometer, made up of two carefully polished niobium
mirrors facing each other (diameter of each mirror D = 50 mm). Optical field occupies
only ∼10% size of the cavity, i.e., ∼5 mm. Mishra et al [24] have shown that the atom–
cavity field interaction time t ≈ 10−4 s, cavity damping time TD ≈ 1 s and velocity of
atom should be 50 m/s. In the state generation process, we see that in all the atoms, atom
A1 travels the longest distance through the cavity and in the vacuum space. Hence if we
show that the total flight time of atom A1 is less than the cavity damping time TD, then
our scheme will be experimentally feasible.
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Let us take T (=10t = 10−3 s) as the time taken by the atom to cross the cavity, i.e.,
the atom travels 50 mm. If the oven (source of atoms) is placed 10 mm away from cavity
C1, then atom A1 will take time T/5 to reach the cavity C1 and further it will cross the
cavity C1 in time T . If there is a separation of 10 mm between two cavities C1 and C3,
then atom A1 will take time T/5 to cross this separation (10 mm) and further time T to
cross the cavity C3. After 10 mm separation from the cavity C3, atom A1 gets reflected
back to cavity C3, then atom A1 will take time 2T/5 to cross the separation (atom travels
twice 10 mm separation, i.e., vacuum space) and takes time T to cross cavity C3. Thus
total flight time of atom A1 is (4T/5) + 3T = 19T/5 ≈ 4 × 10−3 s, which is lesser than
the cavity damping time TD = 1 s. Hence, our special kind of 4n-qubit entangled state
can be generated using the presently available technology.

4. Conclusions

In this paper, we have extended the original SQIE protocol, which enables the secure
exchange of n single qubit information states among n nodes of a quantum network, with
the aid of a special kind of 4n-qubit entangled state and the classical assistance of an
extra participant Charlie. For experimental realization of our extended SQIE protocol, we
have suggested an efficient scheme for the generation of a special kind of 4n-qubit entan-
gled state using interaction between highly detuned �-type three-level atoms and optical
coherent field. Further we have discussed the experimental feasibility of this scheme by
considering some experimental parameters like cavity damping time and total flight time
of atoms and concluded that the generation of a special kind of 4n-qubit entangled state
is within the reach of the presently available technology.
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