
Karami et al. BMC Bioinformatics 2016, 17(Suppl 2):13
DOI 10.1186/s12859-015-0855-y

RESEARCH Open Access

Dissecting protein architecture with
communication blocks and communicating
segment pairs
Yasaman Karami1,3, Elodie Laine1* and Alessandra Carbone1,2*

From Bringing Maths to Life (BMTL)
Naples, Italy. 27-29 October 2014

Abstract

Background: Proteins adapt to environmental conditions by changing their shape and motions. Characterising
protein conformational dynamics is increasingly recognised as necessary to understand how proteins function. Given
a conformational ensemble, computational tools are needed to extract in a systematic way pertinent and
comprehensive biological information.

Results: Here, we present a method, Communication Mapping (COMMA), to decipher the dynamical architecture of
a protein. The method first extracts residue-based dynamic properties from all-atom molecular dynamics simulations.
Then, it integrates them in a graph theoretic framework, where it identifies groups of residues or protein regions that
mediate short- and long-range communication. COMMA introduces original concepts to contrast the different roles
played by these regions, namely communication blocks and communicating segment pairs, and evaluates the
connections and communication strengths between them. We show the utility and capabilities of COMMA by
applying it to three archetypal proteins, namely protein A, the tyrosine kinase KIT and the tumour suppressor p53.

Conclusion: Our method permits to compare in a direct way the dynamical behaviour either of proteins with
different characteristics or of the same protein in different conditions. It is useful to identify residues playing a key role
in protein allosteric regulation and to explain the effects of deleterious mutations in a mechanistic way. COMMA is a
fully automated tool with broad applicability. It is freely available to the community at www.lcqb.upmc.fr/COMMA.
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Background
Protein conformational dynamics are directly linked to
protein functions [1, 2]. They are sensitive to environ-
mental changes, point mutations, ligand binding and post-
translational biochemical modifications [3–5]. Atomistic
molecular simulation is a method of choice to explore a
protein’s conformational space. It has become increasingly
popular with the recent advances in computational power,
force field accuracy and sampling algorithm development
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[6, 7]. The accumulation of molecular dynamics (MD)
data calls for the development of methods able to extract
pertinent biological information and visualise it in a com-
prehensive way.
The representation of a protein as a graph unravels

more easily and readily its properties at the atomic or
residue level. Typically, each node of the graph repre-
sents one residue of the protein and the edges repre-
sent non-covalent interactions that stabilise the protein
three-dimensional structure [8, 9]. Information about the
dynamical behaviour of the protein can also be integrated
in several ways. For example, the edges can be constructed
and weighted based on the persistence values of the inter-
actions computed over a conformational ensemble instead
of their presence/absence in a static structure [10]. Other
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types of dynamic properties can be taken into consider-
ation, such as dynamical correlations between residues
[11–13]. Alternatively, every conformation of a MD tra-
jectory can be represented by a contact graph and the
evolution of the graphs can be analysed over time to detect
important structure-changing events [14].
Communication between residues results in allosteric

coupling, i.e. the propagation of a perturbation sig-
nal between distinct sites, possibly located far away in
the sequence and structure of the protein, that modu-
lates the function of the protein. Experimental evidence
have demonstrated that protein residues communicate
either through stable non-covalent interactions [15] or
via changes in their local atomic fluctuations [16]. Pre-
vious methodological efforts were engaged by us and
others toward the identification of clusters or chains of
residuesmediating long-range communication in proteins
[17–25]. In particular, the method MONETA [19] proved
useful to identify communication routes in allosterically
regulated proteins and to guide in silicomutagenesis [25].
MONETA is intended to assist the analysis of MD simu-
lation data in a manually-guided way. It enables to focus
on specific protein regions or residues provided that the
user has some prior knowledge of the system. Fixed values
are encoded in the tool for most of the parameters, which
limits its applicability and flexibility.
The present work builds up on these previous efforts to

propose a systematic dissection of protein architectures
from a dynamical perspective. We provide Communica-
tion Mapping (COMMA), a method for analysing molec-
ular dynamics-based communication in proteins and for
mapping this information onto protein three-dimensional
structures. COMMA introduces new measures and new
algorithms, with respect to MONETA, to dissect a pro-
tein’s architecture building blocks. It integrates differ-
ent types of structural and dynamical information in a
unified graph representing the protein. It detects com-
munication blocks and communicating segments pairs
from this graph, which are new concepts representing
groups of residues or protein regions that mediate short-
and long-range communication. COMMA allows to com-
pare in a very straightforward way the conformational
dynamics of different proteins or different states of the
same protein. It provides mechanistic insights on the
effects of deleterious mutations on the stability and inter-
nal dynamics of proteins by pinpointing residues playing
key roles in the propagation of these effects. COMMA
is fully automated and is intended for large-scale appli-
cation. It only requires an ensemble of protein confor-
mations as input. Importantly, we have implemented an
automated procedure to set all parameters depending on
the properties of the protein analysed. Here, we have
applied COMMA on three case studies to illustrate its
capabilities.

Methods
COMMAworkflow
The workflow of the COMMA method is depicted on
Fig. 1. COMMA requires as input a conformational
ensemble representing the protein of interest. Typically,
the method is intended to analyse all-atom MD trajecto-
ries, but it is not restricted to this type of data. The analysis
can also be performed on conformations obtained from
another sampling method or on experimentally deter-
mined structures. The order of the input conformations
does not influence the results. The ensemble can be
divided into several sets, for example corresponding to
several replicates of anMD simulation. COMMAcan han-
dle most popular MD trajectory file formats (Table 2).
COMMA algorithm proceeds as follows:

a. It analyses the conformational ensemble and extracts
five residue-based dynamic properties: local
dynamical correlations, minimum distances,
communication propensities, non-covalent
interaction strengths and secondary structures (box 1).

b. These properties are used to group residues into (i )
independent cliques and (ii ) communication
pathways (boxes 2–3). Independent cliques are
clusters of residues that display concerted atomic
fluctuations while communication pathways are
non-covalent chains of residues that move together
(see below).

c. The information obtained from the independent
cliques and the communication pathways is
integrated in a graph, called Protein Communication
Network (PCN) (box 4).

d. Connected components are extracted from this graph
to define protein communication blocks (box 5).

e. The communication pathways that link different
secondary structure elements are used to define
communicating segment pairs and measure the
strength of the interaction (box 6).

COMMA allows to visualise communication blocks and
communicating segment pairs by mapping them onto the
protein average conformation.

Step a. Extraction of dynamic properties
COMMA defines several measures that reflect the
dynamic properties of the query protein. These measures
are computed from each input set of conformations. Four
measures are defined for pairs of residues and provide
4 distinct matrices. A fifth measure, which is new com-
pared to MONETA, evaluates the likeliness of a residue to
belong to a secondary structure.
Local dynamical correlations Principal Component

Analysis (PCA) is used to describe the atomic fluctuations
of a protein through eigenvectors or modes. These modes
are linear combinations of degrees of freedom. Starting
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Fig. 1 Schematic representation of COMMA workflow. Starting from one or several MD trajectories, COMMA computes matrices of residue-based
dynamic properties: local dynamical correlations (CorrLFA), minimum distances (Dist), communication propensities (CP), non-covalent interaction
strengths (INT) and secondary structures (SS). Local dynamical correlations and minimum distances are used to identify independent cliques while
communication propensities, non-covalent interaction strengths and secondary structures are used for communication pathway detection. A
coloured graph, called Protein Communication Network (PCN), is constructed from independent cliques (blue edges) and communication
pathways (red edges). The graph is analysed and two groups of communication blocks are extracted. The first group is made of clique-based blocks
(blue cliques in PCN), and the second group is made of pathway-based blocks (subgraphs of the red PCN) where pathways have bounded length. In
the schema, three different pathway-based blocks are displayed, corresponding to a minimal path length of 4 (red), 8 (orange) and 9 (yellow)
respectively. Communication pathways are also used to detect pairs of communicating segments, which are portions of secondary structure
elements. Residues belonging to pathways that cross two secondary structures are coloured. For each pair of segments, the communication
strength of the interaction is evaluated, on a scale of strengths going from low (pink) to strong (violet) strength. The segments and their interaction
strength between H1-H2, H1-H3 and H2-H3 helices are shown

from n PCA modes, describing the protein’s essential
dynamics (i.e. explaining 80% of the total atomic fluctua-
tions), we apply a statistical technique called Local Feature
Analysis (LFA) [26]. LFA computes residual correlations
CorrLFA(i, j) between residues i an j as:

CorrLFA(i, j) =
3∑

d=1

n∑
r=1

�r(id)�r(jd) (1)

where d is the (x, y, z)-coordinate index of each Cα atom in
a residue and �r is the PCA rth eigenvector. The CorrLFA
matrix is characterised by sparse correlation patterns (see
on Fig. 1). The LFA formalism identifies a set of n seed
residues that are highly fluctuating and representative of
these correlation patterns.
Minimum distances The minimum distance dmin

ij
between two residues i and j is defined as the smallest
distance between any pair of atoms (ai, aj) belonging

to residues i and j respectively, averaged over the set of
conformations.

Communication propensitiesWeevaluate the communi-
cation propensityCP(i, j) of residues i and j as the variance
of the inter-residue distance [27]:

CP(i, j) = < (dij − d̄ij)2 > (2)

where dij is the distance between the Cα atoms of residues
i and j and d̄ij is the mean value computed over the set
of conformations. Intuitively, the smaller the variance, the
more efficient the communication. Consequently, small
values ofCP(i, j) are indicative of efficient signal transmis-
sion between residues i and j.

Non-covalent interaction strengths We consider as
non-covalent interactions hydrogen(H)-bonds and hydro-
phobic contacts, detected using the HBPLUS algorithm
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[28]. H-bonds are detected between donor (D) and accep-
tor (A) atoms that satisfy the following geometric criteria:
(i) maximum distances of 3.9Å for D-A and 2.5Å for
H-A, (ii) minimum value of 90° for D-H-A, H-A-AA and
D-A-AA angles, where AA is the acceptor antecedent.
Hydrophobic contacts are identified with an inter-atomic
distance lower than 3.9Å. The detected non-covalent
interactions are then classified as backbone-backbone,
backbone-side chain and side chain-side chain. For a given
interaction type, an interaction strength matrix INT is
computed, where each entry (i, j) describes the percent-
age of conformations in which at least one non-covalent
interaction is formed between some pair of atoms (ai, aj)
in residues i and j.

Secondary structures Secondary structures are defined
from the backbone torsion angles of the protein by using
the DSSP algorithm [29]. Three persistence values pα , pβ

and pturn are computed for each residue. They reflect the
percentage of conformations in which the residue is in a
α-helix, a β-sheet or a turn, respectively. The secondary
structure type that has the highest persistence value is
assigned to the residue.

Step b. Identification of independent cliques and
communication pathways
By combining the measures described above, COMMA
identifies groups of residues that mediate communication
across the protein structure, namely independent cliques
and communications pathways. The computation is per-
formed on each input set of conformations. These com-
ponents are similar to the independent dynamic segments
and communication pathways identified by MONETA.
What is new in COMMA is the automated set up of per-
tinent values for the parameters depending on the system
studied (see Parameters).

Independent cliques
It can happen that two seeds detected by LFA are very
close in the sequence (distant by less than 6 residues). In
that case, only the seed with the highest fluctuations is
retained. The CorrLFA matrix is characterised by dense
correlation patterns around every seed identified by LFA
analysis. COMMA defines independent cliques as pro-
tein regions that correspond to these patterns. Each seed
is extended into an independent clique S of residues by
means of an extension algorithm that progressively adds
residues in such a way that: (i) have a minimum distance
smaller than 3.7Å and (ii) display concerted atomic fluc-
tuations, indicated by high local dynamical correlations,
that is the mean correlation value computed over S must
be higher than a threshold [25]:

1
|S|

∑
i,jεS

CorrLFA(i, j) ≥ CorrLFAcut (3)

The set up of CorrLFAcut is explained below (see Parameters).
The extension algorithm terminates when no more
residue can be added. At the beginning of the iteration, S
is made by the starting seed.We obtain k ≤ n independent
cliques, where n is the initial number of seeds. Notice that
the algorithm identifying the independent cliques uses
information coming from the local dynamical correlation
and the minimum distance matrices.

Communication pathways
Any two residues i and j are considered to commu-
nicate efficiently if their communication propensity is
below a threshold, CP(i, j) ≤ CPcut . They form stable
non-covalent interaction(s) if their interaction strength is
higher than a threshold, INT(i, j) ≥ INTcut . The set up
of the parameters CPcut and INTcut is explained below
(see Parameters). Starting from a given residue, the algo-
rithm implemented in COMMA generates a tree of paths
that satisfies the following conditions [25]: two consecu-
tive residues in a path (i) are not adjacent in the sequence,
(ii) form stable non-covalent interaction(s) and (iii) com-
municate efficiently. We ask that all residues in a path
communicate efficiently with each other by transitivity.
Notice that the algorithm identifying the pathway-based
edges uses the communication propensity and the inter-
action strength matrices, and also the secondary structure
information, that plays a role for the set up of CPcut (see
Parameters).

Step c. Construction of a protein communication network
Independent cliques and communication pathways are
used to construct a Protein Communication Network
(PCN) that reflects the way information is transmitted
across the protein 3D structure. A PCN(N ,E) is a coloured
graph defined by nodes N that correspond to the residues
of the protein and edges E that connect dynamically cor-
related residues. Two types of edges are constructed:

1. Clique-based edges: two vertices representing
residues i and j are connected by a clique-based edge
if they belong to the same independent clique and if
CorrLFA(i, j) ≥ CorrLFAcut .

2. Pathway-based edges: two vertices representing
residues i and j are connected by a pathway-based
edge if they are consecutive in some communication
pathway.

The PCN is constructed by considering the union of
all independent cliques and all communication pathways
detected from every input set of conformations. Let us
stress that MONETA 2.0 [19] also provides a graph rep-
resenting the protein, but it uses communication path-
ways and covalent bonds to construct it and the criteria
employed are markedly different from those employed by
COMMA to construct the PCN.
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Steps d and e. Extraction of communication blocks and
communicating segment pairs
COMMA final outputs consist in dynamics-based decom-
positions of the query protein 3D structure. Two types
of decompositions are produced. The protein is divided
into: (i) communication blocks defined from the PCN,
(ii) communicating segment pairs defined from secondary
structure elements and communication pathways. These
two notions are completely new compared to MONETA.

Communication blocks
Connected components in an undirected graph are iso-
lated subgraphs. COMMA extracts connected compo-
nents from the constructed PCN by using depth-first
search (DFS) and defines protein communication blocks.
Different types of communication blocks are defined,
namely clique-based blocks and pathway-based blocks.
Clique-based blocks are directly extracted by consider-
ing all clique-based edges. Different kinds of pathway-
based blocks are defined, either by considering all but
very short (≤ 3 residues) pathways, or by considering
pathways longer than a fixed number of residues. An inter-
esting threshold is given by MPLcut as defined below (see
Parameters).

Communicating segment pairs
COMMA detects pairs of protein segments that are part
of secondary structure elements (SSEs) and that are linked
by communication pathways. A SSE is constituted by
residues (at least three) that adopt the same secondary
structure type. First the algorithm identifies all SSEs con-
tained in the protein structure. Then, it computes, for
each pair (A,B) of SSEs: (i) the proportion PRAB (resp.
PRBA) of residues from A (resp. B) that are linked by
at least a communication path to some residue from B
(resp. A), (ii) the number of pairs of residues (iA, jB) of
A and B that are consecutive in a communication path,
ContAB. The residues of A and B that are linked by at least
a communication path constitute a communicating seg-
ment pair. The communication strength between the two
segments defined from A and B is calculated as:

SAB = PRAB ∗ PRBA ∗ ContAB (4)

Visualisation
COMMA is interfaced with PyMoL [30] to permit
the visualisation of the communication blocks and the
communicating segment pairs by mapping them on
the protein average conformation. COMMA produces
PyMoL files (.pml extension) that enable the following
representations:

• Communication blocks: the residues involved in
communication blocks are coloured accordingly.

Residues that are not detected in a communication
block are coloured in white. Non-covalent
interactions between blocks are shown as thick black
lines.

• Communicating segment pairs: given a pair of
SSEs, the residues involved in the communicating
segments in these SSEs are highlighted in colours.
Pathways-based edges linking residues in the two
segments are shown as thick black lines.

Parameters
COMMA uses several parameters and allows the user to
tune them depending on the question asked and on the
system studied. However, to allow for a large-scale appli-
cation of the method, we have implemented automated
procedures to set up default values for all parameters.

CorrLFAcut We define the LFA correlation threshold
CorrLFAcut to delimit protein regions of concerted atomic
fluctuations. CorrLFAcut is chosen such that 5% of the values
in the CorrLFA matrix are higher than CorrLFAcut (Fig. 2a).

CPcut We define a cutoff CPcut to determine whether
the communication between two residues is efficient.
The strategy employed to set the value of CPcut is
inspired from [31]. Intuitively, neighbouring residues in
the sequence forming well-defined secondary structures
are expected to communicate efficiently with each other.
First, we evaluate the proportion pss of residues that are
in an α-helix, a β-sheet or a turn in more than half of the
conformations. Then for every residue i, we compute a
modified communication propensityMCP(i) as:

MCP(i) = 1
8

i+4∑
j=i−4

j �=i;1≤j≤N

CP(i, j) (5)

where N is the total number of residues. CPcut is cho-
sen such that the proportion pss of MCP values are
lower than CPcut (Fig. 2b). Any two residues i and j for
which CP(i, j) < CPcut are considered to communicate
efficiently.

INTcut We define a threshold value INTcut to filter out
non-covalent interactions that are not relevant. For this,
an adjacency graph is constructed from the INT matrix
by considering different cutoff values, ranging from 0.25
to 1, by increments of 0.05, and the size of the largest
connected component is computed (Fig. 2a). INTcut is
the largest interaction strength for which the size of the
largest component is maximal [32] (Fig. 2c).

MPLcut We define a threshold MPLcut to discrimi-
nate between short and long paths. For this, connected
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Fig. 2 Parameters for protein A. a Distribution of the local dynamical
correlation (CorrLFA) values. b Distribution of the communication
propensity (CP) values. c Size of the largest connected component (in
residues) extracted from the adjacency graph constructed based on
non-covalent interaction strengths. d Size of the largest connected
component (in residues) extracted from the PCN by considering
communication pathways with different minimum lengths

components are extracted from subgraphs of the PCN.
The subgraphs are defined by considering pathway-based
edges that are derived from communication pathways
comprising at least n residues, n ranging from 4 to 8.
MPLcut is chosen as the minimum path length for which
we observe the largest reduction of the size of the largest
connected component (Fig. 2d).

Proteins studied
We applied the COMMAmethod to three archetypal pro-
teins: (i) the B domain of staphylococcal protein A (PDB
id: 1BDD, residues 1-60, NMR), a highly stable protein,
(ii) the DNA-binding domain of the human tumour sup-
pressor protein p53 (PDB id: 2XWR, chain A, residues
89-293, 1.68Å resolution), a highly flexible protein,
(iii) the cytoplasmic region of the receptor tyrosine kinase
KIT (PDB id: 1T45, residues 547-935, 1.90Å resolution),
an allosterically regulated protein.

Molecular dynamics simulations
The same molecular dynamics protocol was applied to all
studied systems. More details on the MD trajectories of
the wild-type KIT and its oncogenic mutant D816V can
be found in [33].

Set up of the systems
The 3D coordinates for the studied proteins were
retrieved from the Protein Data Bank (PDB) [34]. All
crystallographic water molecules and other non-protein
molecules were removed. The structure of the DNA-
binding domain of P53 contains a bound zinc ion. At
physiological temperature, Zn2+ rapidly dissociates from
the protein and the resulting Zn2+-free P53 is folded and
stable [35, 36]. Consequently, we removed the zinc ion
from the initial PDB structure and simulated P53 in the
apo form. The mutated form of KIT was generated by in
silico substitution of the aspartate (D) in position 816 into
a valine (V) using MODELLER 9v7 [37]. All models were
prepared using the LEAP module of AMBER 12 [38], with
the ff12SB forcefield parameter set: (i) hydrogen atoms
were added, (ii) Na+ or Cl− counter-ions were added to
neutralise the systems charge, (iii) the solute was hydrated
with a cuboid box of explicit TIP3Pwatermolecules with a
buffering distance up to 10Å. The environment of the his-
tidines was manually checked and they were consequently
protonated with a hydrogen at the ε nitrogen. The details
of structure preparation and solvent models are given in
Additional file 1: Table S1.

Minimisation, heating and equilibration
The systems were minimised, thermalised and equili-
brated using the SANDER module of AMBER 12. The
following minimisation procedure was applied: (i) 10,000
steps of minimisation of the water molecules keeping pro-
tein atoms fixed, (ii) 10,000 steps of minimisation keeping
only protein backbone fixed to allow protein side chains
to relax, (iii) 10,000 steps of minimisation without any
constraint on the system. Heating of the system to the
target temperature of 310 K was performed at constant
volume using the Berendsen thermostat [39] and while
restraining the solute Cα atoms with a force constant of 10
kcal/mol/Å2. Thereafter, the system was equilibrated for
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100 ps at constant volume (NVT) and for further 100 ps
using a Langevin piston (NPT) [40] to maintain the pres-
sure. Finally the restraints were removed and the system
was equilibrated for a final 100-ps run. Backbone devia-
tions obtained after equilibration are smaller than 1.3 Å
(Additional file 1: Table S1).

Production of the trajectories
For every protein, 2 replicates of 50 ns, with different ini-
tial velocities, were performed in the NPT ensemble using
the PMEMDmodule of AMBER 12. The temperature was
kept at 310 K and pressure at 1 bar using the Langevin
piston coupling algorithm. The SHAKE algorithm was
used to freeze bonds involving hydrogen atoms, allowing
for an integration time step of 2.0 fs. The Particle Mesh
Ewald method (PME) [41] was employed to treat long-
range electrostatics. The coordinates of the system were
written every ps. Standard analyses of the MD trajectories
were performed with the ptrajmodule of AMBER 12.

Stability of the trajectories
The simulations of wild-type and mutated KIT were pre-
viously shown to have good stability [33]. To assess the
stability of the B domain of protein A and of the DNA-
binding domain of p53, the Cα atoms root mean square
deviation (RMSD) from the equilibrated structure, the sta-
bility of secondary structures and the radius of gyration
were recorded along each 50-ns MD simulation replicate
(Additional file 1: Figure S1 and Figure S2). The B domain
of protein A deviates by no more than 2.2Å (Additional
file 1: Figure S1A) from the equilibrated structure and has
an average radius of gyration of 10.5± 0.1Å (Additional
file 1: Figure S1D). p53 DNA-binding domain displays
RMSD values in the range 1.5–3.0Å (Additional file 1:
Figure S2A) and its radius of gyration values 16.6± 0.1Å
(Additional file 1: Figure S2D). Secondary structure pro-
files are highly stable for both replicates of both pro-
teins (Additional file 1: Figure S1B-C and Figure S2B–C).
Overall, the evolution of RMSD, secondary structure and
radius of gyration shows that protein A and p53 are stable
over the 50-ns runs. The systems are fully relaxed after 20
ns (Additional file 1: Figure S1A and Figure S2A). Conse-
quently, COMMA was applied on the last 30 ns of every
replicate. COMMA input sets for the three study cases are
made of 30,000 conformations.

Convergence of the trajectories
To evaluate the convergence of the dynamic properties
extracted by COMMA, a convergence analysis [42] was
applied to the MD trajectories of the studied systems. The
analysis comprises two steps: (i) a set of reference con-
formations are identified, (ii) all MD conformations from
the trajectory are clustered into corresponding reference
groups. Each reference conformation is first picked up

randomly and the conformations distant by less than an
arbitrary cutoff r are binned with it. Then the trajectory
is split in two halves and conformations from each half
are grouped based on their RMSD from each reference
conformation. If the simulation has converged, then each
reference cluster should be populated equally from both
halves of the trajectory.
The RMSD was computed on the Cα atoms and the

cutoff r was empirically chosen so as to get a reason-
able number of representative MD conformations, typi-
cally between 2 and 7. To reduce the bias resulting from
the random choices of the references, the process was
repeated 5 times for each analyzed trajectory. The con-
vergence quality of each simulation was measured using a
convergence criterion c defined as [43]:

c = 1−
(
1
5

5∑
k=1

#(lone reference conformations)
#(reference conformations)

)
(6)

A lone reference conformation is a reference conforma-
tion that is not visited in one half of the trajectory (less that
1% of the frames in the corresponding reference group).
The convergence criterion c is comprised between 0 and
1; a value of 1 corresponds to an optimal convergence.
All trajectories show good to very good convergence, with
values of c ranging between 0.6 and 0.9 (Additional file 1:
Table S2). This indicates that the conformational sampling
furnished by the last 30 ns of each productive MD run is
sufficient to apply COMMA.

Results and discussion
Communication blocks in KIT protein and its oncogenic
mutant
KIT is a receptor tyrosine kinase of type III implicated
in signalling pathways crucial for cell growth, differentia-
tion and survival [44–46]. The mutation of the aspartate
located in position 816 to a valine leads to the constitutive
activation of the receptor and is associated to mastocy-
toses and gastrointestinal stromal tumours [47, 48]. It was
shown experimentally that the mutation induces long-
range effects that lead to a shift in the conformational
equilibrium of the kinase away from the auto-inhibited
state, resulting in a 536-fold increased activation rate [49].
COMMA was applied to the cytoplasmic region of KIT
(331 residues), starting from 2 replicates of 50-ns MD
simulations of the wild-type and D816V-mutated proteins
[33] (see Methods). The method identified 11 (resp. 9)
communication blocks in the wild type (resp. mutant)
(Table 1). These blocks reflect the way information is
transmitted across the protein structure (see Methods).
They were mapped onto the average MD conformations
of the wild-type and mutated proteins for visualisation
(Fig. 3a). They were also used to derive schematic repre-
sentations of the two proteins (Fig. 3b).
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Table 1 Mapping of communication blocks between wild-type KIT and the D816V mutant

Wild type

Name A B C D E F G H I J K - -

Size (res.) 22 11 32 16 14 13 11 127 160 9 4 - -

Mutant

Name - B’ C’ D’ - - G’ H’ I’ J’ - L’ M’

Size (res.) - 12 20 18 - - 10 86 186 8 - 35 66

Overlap (%) - 96 65 76 - - 95 80 87 71 - - -

The overlap oij between two blocks Bi and Bj , identified in the wild type and in the mutant, is evaluated as: oij = 2 ∗ #(Bi ∩ Bj)/(#(Bi) + #(Bj)). Two blocks are defined as
counterparts, namely X and X’ if: (i) X’ (resp. X) yields the maximum overlap with X (rest. X’) over all blocks in the mutant (resp. wild-type) protein; (ii) the overlap is greater than
60%

a b c

Fig. 3 Dynamical architecture of wild-type KIT and the D816V mutant. On top. Wild-type protein. At the bottom. Mutant protein. On the left. The
communication blocks identified by COMMA are mapped onto the average conformation represented as a cartoon. The mutation site is
represented by a sphere (at the bottom). The protein residues are coloured according to the block they belong to and the different blocks are
labelled. See Table 1 for details on the mapping between the two proteins. In themiddle. Schematic representations of the proteins depicting the
communication blocks identified by COMMA and the connections between them. Each block is represented by a round and is labelled. The larger
the number of residues in the block, the larger the size of the round. Overlapping blocks share some residues in common. Contacting blocks are
connected by covalent bonds. The black links indicate the presence of stable non-covalent interactions between blocks. Notice that non-covalent
interactions are formed between blocks that share some residues in common or contact each other, but they are not displayed for a sake of clarity.
On the right. Schematic representations of the proteins depicting the results obtained from MONETA. The large round in green include all residues
involved in some communication pathway. The smaller blocks in blue tones represent independent dynamic segments. The size of the round
depends on the number of residues involved (same scaling as for COMMA results)
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Decomposition of KIT dynamical architecture
KIT communication blocks can be classified according to
the structural and dynamical information used to identify
them. In the wild type (Fig. 3a–b, on top), blocks A to G (in
blue tones) were obtained from independent cliques (see
Methods). These blocks represent protein regions whose
internal dynamics are independent from each other and
from the rest of the protein. Blocks H (in red), I (in green),
J (in lime green) and K (in dark green) were obtained
from communication pathways, i.e. chains of dynamically
correlated residues stabilised by non-covalent interactions
(see Methods). Blocks I, J and K were identified by con-
sidering all but very short paths while block H comprises
only long paths (≥ 6 residues).
Different types of connections are established between

blocks (Fig. 3a–b), namely, from the strongest to the weak-
est: (a) inclusion, e.g. block H is included in block I,
(b) overlap, e.g. blocks D and I share some residues in
common, (c) contact, e.g. some residues from blocks
B and I are adjacent in the sequence, (d) interaction,
e.g. some residues in blocks A and C form a stable H-bond
or hydrophobic contact. We observed that two blocks that
share residues or contact each other (types a, b, c) are also
connected by non-covalent interactions (type d).
The architecture of KIT is composed of a core of long-

range communicating residues forming block H, that rep-
resents more than one third of the protein (Table 1). This
core spans the two lobes of the protein and covers most of
the enzymatic site (Fig. 3a–b, on top). It is extended by a
layer of short-range communicating residues contained in
block K and is connected to several much smaller blocks.
These small blocks establish few connections between
them. However an interconnected set of small blocks (A,
C, and J) can be detected, that is constituted by residues
from the N-terminal lobe and represents about 20% of the
protein.

Comparison of wild-type andmutated KIT
The communication blocks identified by COMMA in
wild-type and mutated KIT were compared. The pairs
of blocks from the two proteins that are constituted in
large part by the same residues were identified (Table 1).
Overall, the composition of the blocks and their con-
nections can vary substantially upon mutation (Fig. 3b).
Specifically, block M’ (in sky blue) of the mutant com-
prises most of the residues constituting blocks A, E and
F in the wild type. Let us stress that the mutational posi-
tion 816 is located in block E of the wild type protein
and in block M’ of the mutant (indicated as a sphere on
Fig. 3a, at the bottom). Interestingly, the protein regions
comprised in block M’ were recently highlighted as form-
ing an allosteric network in Src kinase [50]. In addition to
these changes, COMMA detected three long-range com-
munication blocks in the mutant (in red tones) instead

of one in the wild type. Block H’ (in red) is 1.5 times
smaller than block H. Some residues from the N-lobe that
were included in block H now form the disjoint block L’
(in raspberry). The residues forming block J’ (in firebrick)
communicate at longer range than the residues forming
block J in the wild type. These three blocks H’, J’ and L’
are included in block I’, which is slightly bigger than I.
Consequently, the mutation induces a complete reshap-
ing of communication blocks in KIT, characterised by a
reorganisation of the hierarchy between long-range and
short-range communicating residues and the merge of
three clique-based blocks.

Comparisonwith other classifications
The definition of KIT communication blocks provided
by COMMA can be compared with the definition of
KIT regulatory regions reported in the literature [51–54].
Blocks B, C, D, E, F and L partially match the JM-Switch
(JMS), the JM-Zipper (JMZ), the kinase insert domain
(KID), the A(ctivation)-loop, the substrate-binding plat-
form (helix G) and the C-helix respectively (Additional
file 1: Figure S3A). Block A contains the JM-Proximal
(JMP) and the glycine-rich loop (P-loop). The blocks can
also be evaluated based on the flexibility profile of the
residues they contain. Pathway-based blocks tend to con-
tain rather rigid residues while clique-based blocks are
highly flexible (Additional file 1: Figure S3B). From a sec-
ondary structure perspective, residues in pathway-based
blocks tend to form stable secondary structures whereas
residues in clique-based blocks are in solvent-exposed
loops (Additional file 1: Figure S3C). We observed that
these trends are general among the proteins we studied.
These observations show that the identification of com-
munication blocks by COMMA correlates positively with
protein residue classifications based on the literature, on
rigidity/flexibility or on secondary structures. Further-
more, COMMA enables to go beyond such classifications
by providing a more precise dissection of the protein’s
dynamical architecture.

ComparisonwithMONETA
COMMA results were compared to those obtained with
MONETA 2.0 (Fig. 3c). MONETA identifies independent
dynamic segments and communication pathways from
all-atom MD simulations [19], which are similar to the
independent cliques and communication pathways iden-
tified by COMMA (Fig. 1, boxes 2 and 3). However,
COMMA exploits these components for further analysis
(Fig. 1, boxes 4, 5 and 6) in a way that is completely dif-
ferent from MONETA [19]. Figure 3c depicts schematic
representations of the dynamic segments and communi-
cation pathways detected by MONETA in KIT. The green
round corresponds to the ensemble of residues involved in
some path (representing 90% of the protein). The rounds
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in blue tones represent dynamic segments. These compo-
nents are substantially different from the communication
blocks identified by COMMA (Fig. 3b) and MONETA
does not characterise the connections between them.
From this comparison, it is clear that COMMA brings
additional information on the definition and arrangement
of the protein’s dynamical architecture building blocks,
compared to MONETA.
MONETA previously permitted to put in evidence a

crucial communication pathway in wild-type KIT that
links the A-loop and the JMS through residue D792 from
the catalytic loop [25]. The path was disrupted upon
D816Vmutation. In COMMA representation of wild-type
KIT (Fig. 3, on top), all residues participating in this path
are contained in the long-pathway based block H (in red),
from D792 in the catalytic loop to V559 in the JMS. By
contrast, in the mutant (Fig. 3, at the bottom), D792 is
contained in the pathway-based block I’ (in green) but
not in block H’ (in red), indicating that this residue is
involved in shorter communication pathways compared
to the wild type, and that no pathway goes from D792
to the JMS. COMMA results are thus in agreement with
those obtained by usingMONETA.Moreover, by identify-
ing communication blocks, COMMA enables to pinpoint
other long pathways that are interrupted in the mutant.
Specifically, the fact that the long-pathway-based block H
in the wild type is divided in H’ and L’ in the mutant is
associated to a disruption of the communication between
residue N655 and residues I653, H651 and K807. Inter-
estingly, these residues were shown to form a network of
interactions (called ‘molecular brake’) crucial for the sta-
bility of the inactive conformation of tyrosine kinases [55].
Consequently, COMMA analysis permits to put in evi-
dence a deleterious effect of the activating D816V muta-
tion on this ‘molecular brake’ which was not previously
detected.
This analysis illustrates how COMMA can help dissect

a protein 3D structure from a dynamical perspective and
characterise the effect of a deleterious mutation on the
structural dynamics of a protein. The information pro-
vided by COMMA was found in agreement with the pre-
vious findings on KIT allosteric communication. It further
allows a more systematic assessment of the differences
between two proteins or two states of the same protein
and permits to pinpoint with high precision regions or
residues instrumental in the establishment or alteration of
the protein communication.

Communicating segment pairs in protein A
The B domain of protein A (BdpA) from Staphylococcus
aureus is a small α-helical protein. It comprises 60
residues arranged in three helices, namely H1 (residues
10-19), H2 (residues 25-37) and H3 (residues 42-56),
linked by two turns, namely T1 (residues 20-24) and T2

(residues 38-41). The fast-folding kinetics of protein A
have been extensively characterised through experiments
and computer simulations [56–60], enabling to establish
the following statements: (i) the isolated H3 has a higher
stability and helical content compared to the two other
helices, (ii) H2 and H3 form a stable or marginally stable
intermediate, (iii) H1 is docked in the rate limiting step.
COMMA was used to identify communicating segment

pairs in BdpA (60 residues). For this, we performed 2
replicates of 50-ns MD simulations, starting from an aver-
age nuclear magnetic resonance (NMR) structure (see
Methods). By analysing the MD trajectories, COMMA
detected five stable secondary structure elements (SSEs)
in the protein: three α-helices formed by residues 5-18,
25-37 and 39-55 and two turns formed by residues 2-4
and 56-59. We focus here on the three α-helices, which
match well the experimentally-defined helices H1, H2 and
H3. Three pairs of communicating segments were iden-
tified between H1/H2, H1/H3 and H2/H3 (Fig. 1, box 6).
The communication strengths (computed as the product
of the proportions of residues involved in communication
pathways linking the two segmentsmultiplied by the num-
ber of pairs of residues directly linked by a pathway, see
Methods) for these pairs are 0.5, 1.1 and 4.1 respectively.
The significantly higher strength of the segment pair cor-
responding to H2/H3 is the result of a larger number of
residues involved in the communication and a larger num-
ber of direct links (5 versus 2 and 3, shown as black lines
on Fig. 1, box 6). Let us remind that a direct link is a pair
of residues from the two communicating segments that
are consecutive in a communication path (see Methods).
Moreover, one can observe that the communicating seg-
ments of H1 cover a significantly smaller portion of the
helix compared to the segments of H2 and H3. The com-
munication blocks identified in protein A also show that
the residues of H1 are involved in shorter paths compared
to H2 and H3 (Fig. 1, box 5). These observations are in
agreement with the experimental evidence that H1 docks
to a stable assembly of H2 and H3 during the folding pro-
cess. Let us stress that this result could not be obtained
by simply analysing non-covalent interactions along the
MD trajectories: there are 8, 4 and 8 interactions for the
H1/H2, H1/H3 and H2/H3 pairs. This emphasises the
importance of the notions of communication propensity
and communication pathways in our analysis.

The role of pathway length and interaction type in p53
communication
The tumour suppressor p53 is a transcription factor reg-
ulating a wide range of genes involved in DNA repair,
apoptosis, senescence and metabolism [61–63]. The p53
protein plays a crucial role in conserving the stability of
the genome and preventing genomic mutation [64]. The
loss of p53 tumour suppressor function is associated with
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cancer [65]. The sequence of p53 can be divided into
an N-terminal transactivation domain, a DNA-binding
core domain (DBD), a tetramerisation domain and a
C-terminal regulatory domain [66]. The DBD is intrin-
sically unstable and thus highly susceptible to oncogenic

mutations [67]. The three-dimensional structure of the
DBD comprises two antiparallel β-sheets, characteristic of
the immunoglobulin-like β-sandwich fold (Fig. 4a, topol-
ogy diagram on the left). In total, it contains 11 β-strands
and 2 α-helices linked by flexible loops (Fig. 4a, see labels

a

b e

c f

d g

Fig. 4 Influence of pathway length and interaction type on P53 DBD communication. a 2D topology diagram (on the left) and 3D structure (on the
right) of p53 DBD. The diagram was taken from PDBsum [71] and the colours were modified to put in evidence the S-type immunoglobulin-like fold
of p53 DBD: the first β-sheet is in pink, the second β-sheet is in red. The 3D structure (average MD conformation) is represented as a cartoon, where
the 11 β-strands of the protein are coloured in grey tones and labelled. The clique-based communication blocks identified by COMMA are colored
in blue tones. b–g Pathway-based communication blocks identified by COMMA by using information from all non-covalent interactions (b–d) or
only interactions involving side chains (e–g), and by considering only pathways longer than 3 (b, e), 5 (c, f) or 7 (d, g) residues. The communication
blocks are represented as subgraphs in the PCN (on the left) and are mapped on the average MD conformation (on the right). The edges on the
subgraphs and the residues on the 3D structure are coloured according to the communication blocks they belong to. The nodes in the subgraphs
are coloured in grey tones, indicating the β-strand they belong to
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on the right). The dynamical architecture of p53 DBD
(199 residues) was characterised by COMMA, starting
from 2 replicates of 50-ns MD simulations (see Methods).
We investigated the evolution of the pathway-based com-
munication blocks identified by COMMA when varying
the minimum length of the pathways considered and the
type of non-covalent interactions used to construct them
(Fig. 4).

Hierarchical description of p53 communication
The ensemble of all but very short (≤ 3 residues) com-
munication pathways identified in p53 yielded one com-
munication block (Fig. 4b, in red), representing about
50% of the protein residues. This block comprises the 11
β-strands of the protein, some residues from the loops
that frame them and a portion of the helix H2. The
edges of the corresponding subgraph show that com-
munication pathways go along individual β-strands (the
nodes coloured in the same grey tone belong to the same
β-strand) and also cross them. The edges linking differ-
ent β-strands reflect well the interactions that stabilise the
two β-sheets of the protein. Filtering out pathways smaller
than 6 residues yields a communication block twice as
small (Fig. 4c, in orange). The β-strands S1, S3 and S8
that form the first β-sheet (Fig. 4a, in pink) are completely
absent from the block, as well as helix H2. The block is
further reduced by two times when keeping only very long
(≥ 8 residues) pathways (Fig. 4d, in lime green). Only a
portion of the second β-sheet, composed of S4, S7, S9 and
S10 (Fig. 4a, in red), remain in the block. This region can
be viewed as the communication core of the protein.

Influence of non-covalent interaction type
Secondary structure units (e.g. β-sheets) are stabilised by
H-bonds formed between backbone atoms (e.g. from par-
allel or anti-parallel β-strands). We analysed the impact of
disregarding information from these interactions on p53
DBD communication. Only interactions involving side
chain atoms were retained to construct communication
pathways and the corresponding communication blocks
were extracted (Fig. 4e-g). The obtained subgraphs show
a significantly reduced number of edges linking different
β-strands. This result is expected owing to the nature of
β-sheets. More surprisingly, however, the smaller number
of edges minimally impacts the communication within
each β-sheet. This indicates that numerous interactions
are established within the β-sheets, other than backbone-
backbone H-bonds. By contrast, the loss of these interac-
tions is determinant for the communication between the
two β-sheets and results in each of them being detected
as an isolated communication block (Fig. 4e, in red and
pink). Two communication blocks are also detected when
pathways smaller than 6 residues are filtered out (Fig. 4f,
in orange and yellow-orange), instead of one with all

interactions (Fig. 4c). This is due to backbone-backbone
interactions being lost within S10 and between S10 and
S9. The communication core of the protein, obtained
from very long pathways (Fig. 4g), is slightly smaller than
when considering all interactions (Fig. 4d), due to missing
interactions involving S7.
This analysis unveiled the hierarchical roles played by

the different structural units (i.e. β-sheets) of the p53
DBD in the protein’s dynamical architecture. Specifi-
cally, the residues constituting the first β-sheet commu-
nicate at shorter range than those constituting the second
β-sheet. Furthermore, it showed the preponderant role of
backbone-backbone interactions in establishing commu-
nication between the two β-sheets. These results illustrate
how COMMA can be employed to contrast different
protein regions from a dynamical point of view and to
investigate the molecular determinants of protein com-
munication at a precise level.

Comparison of protein A and p53
The B domain of protein A and p53 DBD represent
two archetypal proteins in terms of thermodynamic and
kinetic stability. While the latter unfolds at just above
physiological temperature [68], the former presents fast
and stable folding [56]. Moreover, BdpA is composed of
three helices while p53 DBD mainly contains β-sheets.
Consistently, our analyses of the two proteins show very
different results. COMMA identified 2 very small clique-
based communication blocks in BdpA, corresponding to
the two extremities and representing 13% of the protein
residues. By contrast, the clique-based communication
blocks identified in p53 DBD represent almost 60% of
the protein (Fig. 4a, on the right and in blue tones). They
encompass all residues involved in the interaction with
DNA, namely the loops L1, L2 and L3 and the helix
H2, which adopt variable conformations in the available
experimental structures of p53 DBD [69]. COMMA also
enabled to characterise the evolution of pathway-based
communication blocks when varying the minimum com-
munication pathway length. The communication core of
BdpA, defined based on very long (≥ 8 residues) path-
ways, comprises full-length helix H3 and some residues
fromH1 andH2 (Fig. 1, box 5, in yellow). This is consistent
with experimental evidence showing that H3 is the most
stable helix among the three [60]. p53 DBD presents a
strikingly different dynamical behaviour, with a communi-
cation core composed of residues from different β-strands
that form the first β-sheet (Fig. 4d). Progressively filter-
ing out communication pathways with increasing length
results in residues, first from the loops that frame the β-
strands, then from the extremities of the β-strands, to
be excluded from the communication block (Fig. 4b–d).
Notice that the length of the pathways does not depend
on the length of the β-strands, i.e. longer β-strands do
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not exhibit longer paths. These observations on BdpA
and p53 DBD support the utility of COMMA to com-
pare proteins of very different natures in a straightforward
way.

The importance of the conformational sampling
The results obtained from COMMA directly depend on
the extent and quality of sampling in the input conforma-
tional ensemble. In the case of MD trajectories, the user
must carefully check that they have converged before pro-
ceeding through COMMA analysis. In the present work,
we have performed COMMA analysis on the conforma-
tional ensemble generated during the last 30 ns of two
50-ns MD replicates for each studied system. We have
assessed the stability of the studied systems in the cho-
sen force field description (Additional file 1: Figure S1A
and Figure S2A) and the convergence of the MD trajec-
tories (Additional file 1: Table S2). We have also applied
COMMA to the single trajectories and have obtained sim-
ilar results (Additional file 1: Table S3 and Table S4).
This indicates that our results are reproducible and robust
to limited variations of the conformational ensemble.
Another important aspect is the number of input con-
formations. In order to get statistically significant results,
in particular for the principal component analysis, the
number of conformations shall in principle be larger that
the number of degrees of freedom of the system stud-
ied. In the examples of application reported here, we have
characterised the internal dynamics of three proteins on
relatively short simulation times (replicates of 50 ns). Con-
sequently, we have illustrated how COMMA can reveal
the dynamical dimension of a 3D structure representing
a particular macrostate of the protein. Nevertheless, the
utility of COMMA is not limited to such type of analy-
sis and the tool can be applied to atomistic simulations
sampling large conformational changes.

Related tools
As noted in the introduction, a number of previously
developed methods are dedicated to the analysis of the
dynamical behaviour of proteins and their inter-residue
communication [10, 11, 16, 17, 20]. These tools how-
ever typically consider only dynamical correlations or/and
non-covalent interactions, whereas COMMA combines
four different dynamical properties in a unified frame-
work (Table 2). Moreover COMMA describes communi-
cation at different levels, from individual residues to the
whole dynamical architecture of the protein. In particu-
lar, the identification of communicating pairs of secondary
structure elements is a unique feature of our method
(Table 2). Finally, COMMA, which uses MDTraj Python
package [70], does not depend on a particularMDpackage
and can handle most popular formats used in the protein
structural dynamics community.

Conclusion
We provide to the community a fully automated tool
for analysing conformational ensembles of proteins. The
power of the COMMA method resides in the fact that
it computes a number of dynamic properties of a pro-
tein at the residue level and integrates them in a unified
framework to dissect the protein dynamical architecture
by identifying its building blocks and the connections
between them. COMMA permits to enrich the knowl-
edge of a protein structure by bringing precise, complete
and synthetic information on/from its internal dynamics.
Moreover, the automatic set up of the parameters imple-
mented in COMMA allows for an adapted modelling of
the system under study and to contrast the roles of the
different protein regions. COMMA can advantageously
complement classical analyses of protein structures and
simulations and help look at proteins as dynamical biolog-
ical objects with a new eye.
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