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Abstract
This paper proposes a simple model to capture the complexity of multilayer systems where

their constituent layers affect, and are affected by, each other. The physical layer is a circuit

composed by a power source and resistors in parallel. Every individual agent aims at maxi-

mizing its own delivered power by adding, removing or keeping the resistors it has; the deliv-

ered power is in turn a non-linear function that depends on the other agents’ behavior, its

own internal state, its global state perception, the information received from its neighbors

via the communication network and a randomized selfishness. We develop an agent-based

simulation to analyze the effects of number of agents (system size), communication network

topology, communication errors and the minimum power gain that triggers a behavioral

change on the system dynamic. Our results show that a wave-like behavior at macro-level

(caused by individual changes in the decision layer) can only emerge for a specific system

size. The ratio between cooperators and defectors depends on the minimum gain assumed

—lower minimal gains lead to less cooperation, and vice-versa. Different communication

network topologies imply different levels of power utilization and fairness at the physical

layer, and a certain level of error in the communication layer induces more cooperation.

Introduction
The modernization of large-scale engineering infrastructures introduces new challenges into
their already complicated design [1–3]. For example, electric power grids are large-scale engi-
neering systems built to generate, transmit and distribute electricity from generators to end-
users [4–6]. Although their technological development has never stopped, a strong political
demand for a structural change is taking place. Such change basically consists in decentralizing
generating units (e.g. from nuclear to solar panels and wind turbines), spreading of electric
vehicles (which are mobile batteries and loads) and controlling demand based on information
technologies; all in all, the traditional consumer is predicted to become a prosumer: a consumer
who participate more actively in the grid management either by supplying electricity or
decreasing their consumption. Modern power grids will become more dynamic and
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distributed. This will bring new complexities to their already complex dynamic together with
new research challenges to cope with them [7].

The same trends—although considered in their own context—can be seen when analysing
the modernization of other large-scales systems, from smart cities [8, 9] to factories of the
future [10] or the 5-th generation of cellular systems [11]. As in power grids, new complexities
in those systems will emerge followed by a need for a new body of knowledge. Notwithstanding
the unquestionable technical evolution, there is still a limited number of simple analytic models
that are able to capture the dynamics of these modern systems, where the physical infrastruc-
ture, the information network and regulations affect, and are affected, by each other dynamics.
In this context the present article proposes a discrete-time agent-based model assuming these
three layers as constitutive parts of a multilayer system composed by an electric circuit as the
physical infrastructure, a communication network where agents exchange local information
and a set of regulations that define the agents’ behavior.

The electric circuit is composed by one constant voltage source including its inner resistance
and resistors (loads) in parallel [12]. The resistors in parallel are grouped by their controlling
agent, as shown in Fig 1. Every agent may add or remove one of the resistors under its control
at every time step. One can expect that, the greater the number of active resistors a given agent
has, the more power is delivered to it. The actual delivered power is, however, a non-linear,
concave, function of the electric current flowing in the circuit; there exists then a saturation
point where adding more resistors will decrease the delivered power for the whole system. This
behavior is somehow comparable to what happens in real power systems, where overuse leads
to a drop in frequency and voltage, reducing the delivered power for all users.

Looking at the whole system, a “tragedy of the commons” kind of problem arises [13],
where adding a resistor is individually beneficial, while socially harmful. However, in our case,
the resource recovers very quickly. The agent’s decision regarding the resistors (adding, sub-
tracting or maintaining) is built upon the following criteria: the behavior of the agent’s neigh-
bors at the last time step, the previous state of the whole system and its own selfishness gene.
As we will discuss later, this interactive decision procedure resembles the prisoners dilemma
[14–16]. In this case, the agents’ neighborhood is defined by the communication network
(where links can be in error), while the selfishness genes of the agents are independent and
identically distributed random variables.

Complexity sciences
Before we start presenting our contribution in more detail, it is worth indicating the theoretical
ground that supports our findings: complexity sciences. Complexity is a term used in several
diverse research fields [17–19], from theoretic physics to social sciences and biology, to charac-
terize a state that is neither completely deterministic nor random. The so-called complex
behavior emerges in systems whose elements interact; they may be heterogeneous and may
also adapt their relation rules in accordance to internal and/or external factors.

In his extensive work [20, 21], Wolfram has shown that simple interaction rules applied in
one-dimensional cellular automata may lead to unexpected intricate patterns—defined therein
as complex—over time. This work tells us that, when looked at a higher level, the spatial-tem-
poral dynamics of a fairly simple deterministic system composed by homogeneous agents that
follow fixed interrelation rules may generate complexity. This fact suggests that decentralized
systems, based only in local information, might be functional without any controlling entity. In
Wolfram’s case the spatial-temporal pattern is determined by the interaction rule. Following
his classification, four kind of behaviors can emerge in the one-dimensional automata, namely
homogeneous, periodic, chaotic and complex [18, 20].
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For some researchers, this fact indicates the system is able to self-organize without any
explicit centralized controller. We can cite here few illustrative examples regarded as self-orga-
nized [17]: ants working in colonies [22], neurons building a capable brain [17, 23] and birds
flying in groups [24] or criticality in plasma turbulence [25]. As an interesting counter point to
this perspective, one may argue that the interaction rule that the agents follow is per se a kind
of central control or a strict regulative force [26]. By using this view, many questions may be
posed:Where do the interaction rules come from? Are they evolving? Are they changing in a
much slower time-scale that can be considered as given? These questions in fact still cause hot
philosophical debates among biologists, economists, social scientists and other theorists con-
cerning who controls the “invisible hand” of the system [27].

When dealing with large-scale engineering systems, these questions seem to have clear
answers as far as it is designed and follows predefined requirements. This is true for some

Fig 1. (a) Electrical circuit representing the physical layer of the system. The circuit is composed by a power
source V and RV, and resistors of R in parallel, generating a current I. These resistors are related to N agents
that can add, remove or keep the resistors under their control in the circuit. The minimum number of resistors
an agent can have is one and there is no maximum.We also considerN as the size of the system. (b) The
agents are connected in a communication network so that a given agent has access to the information related
to the previous action of their first-order neighbours. In the ring topology illustrated here, every agent is
connected with two other agents. In this case agent i is connected with agents i − 1 and i+1 with i = 1, 2, . . ., N.
In the ring topology, agents 1 andN are neighbours. (c) At time step t, the normalized power delivered Pall[t]/
Ptyp to the agents with rising number of resistors n[t] in the system, where Ptyp ¼ V2

RV
and Pall½t� ¼

P
i2APi½t� with

Pi[t] given by Eq (1).

doi:10.1371/journal.pone.0145135.g001
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systems, but it is far from being a universal feature, mainly when the infrastructure is heavily
dependent on human actions and interactions. Road networks provide an educative example
when one tries to understand the formation of traffic jams [28, 29]. Without going into further
details, the key for solving the traffic puzzle is not found by looking at what happens in individ-
ual cars or in the design of the whole transportation infrastructure. While these aspects are nec-
essary conditions to the formation of the jam, they are not sufficient to explain the
phenomenon. The most accepted theory is built upon the interactions between cars and reac-
tions to the individual behaviors within a specific region of the road network: one car slowing
down in highly dense highway causes other nearby cars to slow down as well to avoid colli-
sions, which may trigger a traffic jam that will fade away after some time.

This simple example identifies few important characteristics of complex phenomena: they
are spatial and temporal, they never reach stable equilibrium states, the context where the indi-
viduals interact and their perception are important to individual decisions, and one individual
action might cause a local change that might also trigger changes in the global state of the sys-
tem. The so-called complexity sciences tries to deal with phenomena that present such charac-
teristics [30].

It is also worth pointing out that simplified models for the power grid (like the “DC Power
Flow” [31]) have a long-standing tradition in the literature [32, 33]. While they were initially
constructed to cope with available computational power limitation, their use is still widespread
nowadays with much more powerful computers [34]. For instance, simplified models for the
synchronization in the grid as in [35] are an active focus of the research community (e.g. [36–
38]). Such models are able to predict the stability of the network against perturbations, showing
ways to optimize its underlying topology [39]. The study of cascade effects [40, 41] to under-
stand the propagation of blackouts and to find the critical links in the grid can be seen as
another, more recent, development based on simplified power system models [42, 43]. An
agent-based approach (as in the present work) can be also employed to model a wide range of
aspects in the power grid, going from electricity market simulations [44] to very specific appli-
ance usage behavior [45] or even the smart grid system as a whole [46].

We follow here the idea of using simplified models to understand the complex behavior that
arises in the power grid. However, in contrast to the engineering-focused models as in [47–50],
we concentrate more on the higher level interactions across the different layers of the system.
Consequently, we have chosen a model that keeps essential features of the system without hav-
ing a detailed specification of its entities. For this reason, the nature of our work can be seen as
“exploratory”, rather than “performance-optimizer” (in the engineering sense) [51].

Contributions
Motivated by a growing literature in complexity sciences in general and their application in
engineering systems in specific, this articles presents a new perspective to analyze multilayered,
strongly coupled, systems. We construct a simple, while illustrative, multilayer model com-
posed by agents that control a set of resistors in an electrical circuit. These agents play an evolu-
tionary “prisoners’ dilemma” style of game to decide if they should collaborate or not, based on
the local information gathered from their communication network, the estimated state of the
whole system and their own random selfishness. Our results indicate that: (i) a wave-like
behavior at macro-level spatial-temporal dynamics, which is caused by changes in individual
behaviors at the decision layer, can only emerge for a specific system size, (ii) the ratio between
cooperators and defectors depends on the minimum gain assumed—lower minimal gains lead
to less cooperation and vice-versa, (iii) different communication network topologies—ring,
Watt-Strogatz-Graph and Barabasi-Albert-Graph [52]—imply different levels of power
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utilization and fairness at the physical layer, and (iv) a certain level of error in the communica-
tion layer induces more cooperative behavior at the decision layer, affecting the physical layer
dynamics in terms of power utilization and fairness accordingly.

Results
Before starting, we think it is worth describing the key aspects of the proposed model that will
help to understand our results. We also systematized some useful notation in Table 1. More
details about the multilayer system proposed here can be found in the Methods section. The
implementation of our model can be found under [53].

Agents’ decision process
We assume a discrete-time system such that the changes in the agent behavior occur in time-
steps, denoted by t 2 Z. At every time-step t, each agent wants to maximize its own power, so
their interactions can be then viewed as a round-based game [15]. To achieve that goal, the
agent has three options: add a resistor (defecting), remove it (cooperating), or do nothing
(ignoring).

To make a decision at time t, every agent i looks at its gain from the previous strategy Si[t
− 1] in order to decide its new state Si[t]. The decision process for the agent i is the following. If
the gain λi[t − 1] is greater than or equal to a system-wide pre-defined minimum λmin, the
agent sticks to its (successful) strategy at time t, i.e. Si[t] = Si[t − 1]. If λi[t]<λmin, then agent i
compares its strategy with its neighborhoodN i, which will be defined later in this section. If
the majority is cooperative, then

P
j2N i

Sj½t � 1� < 0 and the agent under analysis will also coop-

erate, leading to Si[t] = −1. Otherwise, the agent draws a random number between 0 and 1 to
be compared to its own selfishness gene si (which is also randomly generated as discussed later)
in order to decide whether it will start cooperating. If it does not cooperate, it again draws a
random number to be compared to the selfishness gene si, but now to decide if stays inactive
(i.e. Si[t] = 0) or adds another load in the circuit (i.e. Si[t] = +1). The agent decision procedure
is shown in Fig 2.

Table 1. Notations.

Notation Meaning

t 2 Z discrete time

A ¼ f1; 2; :::;Ng set of all agents, where N is the size of the system

Anfig set of all agents without agent i

i 2 A agent i

N i � A neighborhood set of agent i

n[t] 2 {N, N+1, . . .} active number of resistors in the system at time t

ai½t� 2 N
þ active resistors of agent i

ri[t] = n[t] − ai[t] active resistors excluding agent i

Pi[t] > 0 consumed power of agent i [in units of power]

li½t� 2 R gain in power of agent i

lmin 2 R system-wide predefined minimum gain

Si[t] 2 {−1,0, +1} state of agent i: +1 (defect), 0 (ignore), or −1 (cooperate)

si 2 [0, 1] selfishness gene of agent i

perr 2 [0, 1] error probability in a communication link

doi:10.1371/journal.pone.0145135.t001
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Communication network

In the multilayer system proposed here, agent i knows the state Sj[t − 1] of the agents j 2 N i

through a communication network. We assume that agent j always transmits its actual state
Sj[t] to agent i. The neighborhoodN i of agent i is defined as the agents j 2 Anfig that are
directly linked with it. In the case of ring topology, the cardinality ofN i is 2 for all agents
i 2 A. For more complex network topologies,N i will be characterized differently [52], as dis-
cussed later.

The communication links can also experience errors. An error event means the received
message by agent i contains a different information than agent j has sent. Let Sj ! i[t − 1] = Sj[t

− 1] be the state information transmitted from j to i at time-step t and Ŝj!i½t � 1� be the infor-
mation received by i. We consider that error events are independent and identically distributed

such that the probability of the event: Pr½Ŝj!i½t � 1� 6¼ Sj!i½t � 1�� ¼ perr for all t 2 Z, i 2 A

and j 2 N i, where Pr[�] refers to the probability that a given event occurs. It is worth mention-
ing that the network is a bidirectional graph so that an error event at i! j does not imply an
error event at j! i, and vice-versa.

If an error event happens, the received information Ŝj!i½t � 1� will be uniformly and identi-

cally distributed between the other possible states. For example, if Sj ! i[t − 1] = −1 and error

happens, then Ŝj!i½t � 1� ¼ 0 or Ŝj!i½t � 1� ¼ þ1 will happen with 50% chance each.

Physical system
For the physical systems presented in Fig 1, there exists a certain number of resistors that leads
to the maximum power gain in the system. If the delivered power is below the maximum on
the right, then there will be a gain by removing a resistor until the system has reached such
point. Conversely, if it is below on the left, then there will be a gain by adding a resistor.

Fig 2. Schematic of agent i’s decision procedure.

doi:10.1371/journal.pone.0145135.g002
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In this case, one may ask the following question: Is it possible for the agents to reach the opti-
mal point while fairly delivering power among them (i.e. they indiviadually consume about the
same amount of power)? In the presence of a central control unit this would be a fairly easy
problem. First, we need to find the number of resistors that lead to optimal power to then fairly
allocate them among the agents by some kind of centralized coordination mechanism. This
kind of solution resembles time division schemes in computer networks or cellular systems
[54]. For example, if there are ten agents and the optimal number of resistors is twenty, then
the central control coordinates the behavior such that all ten agents have two active resistors,
summing up to twenty. However, as discussed before, our model does not consider the pres-
ence of a central control and the agents have a limited knowledge about other agents.

At time-step t, the power each agent consumes Pi[t] with i 2 A ¼ f1; :::;Ng and is given by:

Pi½t� ¼ Ptyp

ai½t�m
ðaavg½t� þ mÞ2 ; ð1Þ

where Ptyp ¼ V2

RV
, m ¼ R

RV
, ai[t] is the number of active resistors the agent i possesses, ri[t] is the

number of active resistors in the system excluding the source resistor RV and the ones controlled
by agent i, and aavg[t] = (ai[t]+ri[t])/N.

The physical system is then described by its size N, the ratio μ of the resistance values and
the power source V. The resistors are scaled so that the optimal average number of resistors

ða�avgÞ is independent of N while the voltage might be scaled with
ffiffiffiffi
N

p
to have a constant ratio

of power per agent, as explained later on. The gain that agent i experiences at time-step t is
then defined as:

li½t� ¼
Pi½t� � Pi½t � 1�

Pi½t � 1� ¼ DPi

Pi½t � 1�: ð2Þ

This implies that the agents only use the information about the previous time-step t − 1. If
we expand Eq (2) using Eq (1), the resulting equation that determines λi[t] becomes more com-
plicated. To make the analysis clearer, we choose to apply the following approximation (more
details in the Methods section):

li½t� �
dPi

Pi½t�
� Dai½t�

ai½t�
� 2

N
1

aavg½t� þ m
Dri½t� þ Dai½t�ð Þ; ð3Þ

such that the gain λi[t] is now a function of the variations in agent i’s own number of resistors
Δai[t] = ai[t] − ai[t − 1] and in the number of resistors controlled by other agents Δri[t] = ri[t] −
ri[t − 1], as well as the average number of resistors aavg[t] and the system parameters N and μ.

Numerical results
Let Ct � A be the cooperative agents at time-slot t. In this case, #ðCtÞ 	 #ðAÞ ¼ N where (�) is
the cardinality of the set. The spatial-temporal average number of cooperators in the system
(cavg) is then:

cavg ¼
1

N
lim
T!1

1

T

XT�1

t¼0

#ðCtÞ: ð4Þ

Fig 3 shows the change of the system behavior with varying size N. The left side shows the
changes in the spatial-temporal average number of cooperators in the system cavg as a function
of the system size N, while the right side shows a representation of a typical spatial-temporal
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system behavior for three different sizes N. In the latter, each line of vertical pixels represents
the state of the system for one time-step: white means cooperation, red means defection and
black means doing nothing.

For small sizes (as when N = 10), one can see a kind of checkerboard pattern where coopera-
tors and defectors alternate on time and space axes. For middle-sized systems (as when
N = 100), the most striking feature is that there exist certain points in time when sudden
changes in the behavior happen. The system seems to move closer and closer to a global coop-
eration state until suddenly it falls back to a state with much less cooperation. Such pattern
becomes even more pronounced for a meshed communication network built as a Watts-Stro-
gatz graph [52], as seen in Fig 4. For larger systems (as when N = 1000), one can see that a pat-
tern where cooperation is dominant and only few stripes of defecting appear. As we will see
next, this behavior is not due to simple scaling effects in the system variables, but rather it
results from inherent scaling effects within the physical layer. In other words, certain behaviors
can be only observed for certain system sizes N. therefore, for a given N, one cannot pre-set the
system variables expecting a certain kind of behavior. Rather, the size of the system is itself a
variable that influences its own macro-level behavior.

Fig 5 shows how the minimal gain λmin affects the agents’ behavior quantified by average
number of cooperators in the system cavg for two different system size N. One can see that big-
ger values of λmin lead to more cooperation in the system and different behavior patterns. But
only in mid-sized systems (as when N = 100) one can see wave-like patterns for certain ranges.
We can then infer that the system is dominated by the agent behaviors for high and low thresh-
olds of λmin, while complex behavior only emerges in few cases where a proper interplay
between the layers occurs.

To have a better understanding on how the minimal gain influences the behavior, we need
to analyze Eq (3). We find that the upper limit for the tipping point is given by 1

lmin
(more details

in Methods section), meaning that after such a point the gain of adding another resistor for a

Fig 3. On the left: change in the average cooperation cavg depending on the system sizeN. On the right: examples of a typical system behavior as a function
of time t where the points (pixels) represent the agent state Si[t] such that red means defection, white cooperation, and black doing nothing for N = 1000 (top),
N = 100 (middle) andN = 10 (bottom). The system parameters are: λmin = 0.0005, RV = 2Ω, R0 = R/N = 200Ω, perr = 0.01 and V = 1 V. The communication
network is configured as a ring.

doi:10.1371/journal.pone.0145135.g003
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single agent becomes too small. This stands in contrast to the global optimum, which repre-
sents the tipping point after which another resistor added to the system as a whole will result in
reduced power delivered to the agents. Only in the case that all agents behave equally at every
point in time, i.e. ai½t� ¼ aavg½t� 8 i 2 A, the tipping point for each agent also becomes the

global optimum of aavg[t] = μ.
As the system grows, the feedback that each agent can infer is then reduced, so is its influ-

ence on the system as a whole. For large systems the deviation of a single agent from the

Fig 4. On the left: change in the average cooperation cavg depending on the system sizeN. On the right: examples of a typical system behavior as a function
of time t where the points (pixels) represent the agent state Si[t] such that red means defection, white cooperation, and black = doing nothing for N = 1000
(top),N = 100 (middle) andN = 10 (bottom). The system parameters are: λmin = 0.0005, RV = 2Ω, R0 = R/N = 200Ω, perr = 0.01 and V = 1 V. The
communication network is configured asWatts-Strogatz graph.

doi:10.1371/journal.pone.0145135.g004

Fig 5. Influence of minimal gain λmin on system behavior for (a)N = 100 and (b)N = 500. Bigger minimum gains leads to more cooperation while smaller
ones lead to defection. More complex behavior can be observed for values close to λmin = 0.0001 in mid sized systems. The systems parameters are RV =
2Ω, R0 = R/N = 200Ω, perr = 0.01 and V = 1 V. The communication network is configured as a ring.

doi:10.1371/journal.pone.0145135.g005
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average of the rest of the system has little influence on the average of the whole system. This
reduced feedback leads to a situation where agents will become trapped in a state of what we
call cooperative solidarity. Agents in this trapped state have reduced their number of resistors
to minimum (i.e. only one active resistor), while having still not seen a positive gain. Conse-
quently, they remain cooperative as do their neighbours.

In this scenario, all resources of the system will be used by the agents that are not yet
trapped, leading to high inequality levels. For large systems the feedback about individual
behaviors are so small that the only way to skip from this solidarity trap is, surprisingly,
through communication errors. In this case, the trapped agents (wrongly) believe that some
neighbours stopped cooperating.

For middle-sized systems, however, the gain may become large enough if a sufficient number
of agents synchronize in reducing their number of resistors. This results in a positive gain to all
the trapped agents since the system recovers from a state of overusing. This positive gain then
leads to agents that no longer seek cooperation as they are already in the lowest state possible and
the system has recovered. This in turn explains the wave-like behavior in mid-size systems.

Fig 6 shows the system from a different perspective. Let us first define the power utilization
Putil as the fraction of power that is utilized by the system and the available power:

Putil ¼
4

Ptyp

X
i2A

Pi;avg; ð5Þ

where Pi,avg is the time average power of agent i computed as:

Pi;avg ¼ lim
T!1

1

T

XT�1

t¼0

Pi½t�: ð6Þ

By looking at the power utilization Putil and the average number of resistors aavg, one can
see that both are related to each other. Note that all systems in this example are stable in the
sense that number of resistors varies within a certain range and does not diverge. This is not
necessarily true. Depending on the choices of μ and λmin the system can behave differently, e.g.
all agents remain with only one resistor, or end up collecting more and more resistors. How
close the system can operates to the optimum wildly varies between the different system sizes.
The only system that can operate very close to the optimum is the very small system with a size
of only five agents (N = 5). We also see the sudden jumps in behavior for mid-size systems,
while large ones appear to be the most stable.

To better understand what happens in large systems, we analyze Fig 7, which illustrates the
changes in power utilization and inequality (fairness) in power usage between the agents
depending on the size of the system N and different topologies of communication network.
The inequality (fairness) is measured here by the Gini index [55]:

G ¼ 2

n

X
i2A

iPi;avgX
i2A

Pi;avg

0
B@

1
CA� nþ 1

n
; ð7Þ

where Pi,avg 	 Pi+1,avg such that full equality is G = 0 and the highest level of inequality is G = 1.
We see that, for small systems, the results are very close together specially for the complex

network Watt-Strogatz and Barabasi-Albert [52]. When the system size increases, on the other
hand, one can see a growing difference between the results of different topologies, suggesting
that the communication layer plays a big role in the system dynamics.
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One can also see a drastic change for the Barabasi-Albert network withm = 4 that shows a
much lower power utilization than all other networks. This is due to the fact that the probabil-
ity that a node with a degree lower than four exists is very low. This means that, for a given
agent breaking free from the solidarity trap, at least four communication errors must happen,
instead of two in the ring topology or only one in Watt-Strogatz (for the nodes with a degree of
one). therefore, the power is underutilized for the Barabasi-Albert network.

The Gini index analysis indicates, that when the system size grows, few agents receive most
of the power, which from a global perspective makes the system very stable. We also see how
the outcome is dominated by the structure of the communication network when large systems
are considered.

Fig 8 presents more evidence on how the communication system starts dominating the sys-
tem dynamics when the system size N grows. For small systems, one can only see a small reac-
tion with a lot of scattering when rising the communication error probability. Surprisingly we
can see global maxima appearing for mid-size and large systems. This fact may indicate that

Fig 6. Typical behavior of very small (N = 5), small (N = 10), medium (N = 100) and large systems (N = 1000). The small systems can operate much
closer to the optimum, while mid-size systems show big jumps after stable periods. The system parameters are λmin = 0.005, RV = 2Ω, R0 = R/N = 200Ω, perr =
0.01 and V = 1 V. The communication network is configured as a ring.

doi:10.1371/journal.pone.0145135.g006
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Fig 7. Power utilization Putil (top) and Gini indexG (bottom) as a measure of inequality of power distribution, whereG = 1 representing the biggest
inequality. TheWatt-Strogatz-Graph (WS) setting is: mean degree K = 4, rewiring probability β = 0.5. Barabasi-Albert-Graph (BA) setting is: number of
nodes to attach tom = 2,4. The system parameters are: λmin = 0.005, RV = 2Ω, R0 = R/N = 200Ω, perr = 0.01 and V = 1 V.

doi:10.1371/journal.pone.0145135.g007
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the communication error probability has a similar effect on our systems as temperature on the
susceptibility of physical systems [56]. When perr = 0, the system can become trapped in a state
of solidarity with 100% cooperation (minimal power consumption). With increasing the error
probability, the system has a random aspect that allows for agents to defect. However, if the
error probability becomes too high, the state information exchange becomes worthless and the
system is dominated by the randomness.

Discussions
We believe that our proposed multilayer system can indeed emulate features of real-world sys-
tems with coupled physical, communication and decision layers. Nonetheless, our framework
has not been developed to model any specific infra-structure. Our idea is to construct a toy-
model where the components are rather simple and easy to understand, but where unpredict-
able behavior can emerge in certain circumstances, resembling real-world phenomena as mod-
ern power grids [5] or cities [9]. As previously mentioned, large-scale systems built upon those
layers are getting more and more usual. In any case, we believe that it is also worth discussing
the design of the components employed herein. Let us first deal with the rules the agents follow.
One might compare the agents to humans or machines acting in behalf of humans. In either
case, the possible variety of behaviors may be as large as infinite. The same can be said for the
interactions that occur between the agents. In this work, the decision procedure and the com-
munication network connections have been arbitrarily chosen to be understandable and justifi-
able. Although our simulation assumes the network topology and the decision rules (including
the selfishness gene and the minimal power gain) as given, both of them could be evolved as
part of the simulation. We could argue that our model allows for complete explanations in the
sense that we need not to find explanations that are external to the system; everything can be
constructed within the system domain. This, however, might mask the results by, for example,
slowing down changes in behavior [26].

For the basic agent principle of maximizing power, it is important to remember that usually
power consumption is just a by-product of making life more comfortable and less manual
labour intensive by using more loads in the electricity power grid. Similarly to humans, the
agents assumed here are most of the time reluctant to remove a resistor once it is installed.

Fig 8. Influence of communication error probability perr on systemswith different sizesN. The parameters are λmin = 0.005, RV = 2Ω, R0 = R/N = 200Ω
and V = 1 V. The communication network is configured as a ring.

doi:10.1371/journal.pone.0145135.g008
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They only consider to do so when they did not had a large enough gain from adding a resistor
(which means that the system might be overused) or when the social pressure is too much (by
being non-cooperative in a cooperative neighbourhood).

To further justify the concept of cooperative solidarity, one has to understand the prisoners-
dilemma-type of situations [16]. It is also worth noting that is has been shown that cooperation
arises in the evolution of social systems [57, 58]. If the system is close to the optimal point, the
agents see a very low gain so that they would have to change their strategy. If most of them
reduce their number of resistors, they might receive a little less power (in the case of the system
being on the left side of the optimum) or they receive a little more by getting closer to the opti-
mum. However, if only a certain percentage of them reduces their number of resistors while
others raise their numbers, the latter gain more power even if the system is very overused. If
most of them add resistors, however everyone is worse off than before, which resembles the
tragedy of the commons [13].

One of the core findings of this report is that, not only is it possible to create systems with
complex behavior through a combination of a few simple parts [20], but indeed every layer
influences the systems behavior in nontrivial ways. And in some cases, one layer can even dom-
inate the global system behavior. A special note should be taken in the strong size-dependency
of the model, since as far as real-world engineering systems are always subject to changes in the
number of users after the initial deployment, leading to unforeseen situations (e.g. power grids
[5], cities [9] or highways [28]).

Another interesting aspect can be found in the system behavior in response to communication
errors. As was shown in Fig 8, a sharp peak exists for the number of cooperators in the system for
a communication error probability of about 1%. From an engineering standpoint, one might pre-
fer a system without errors, which (ideally) leads to a stable and a more predictable behavior.
However, the existence of even a small amount of errors leads to a significant change in the behav-
ior and sometimes it might even be desired (e.g. to unfreeze the system from solidarity trap).

Let us assume that the system should work on a state of very high cooperation. Our results
indicate that an external attacker trying to disturb the system does not have to shut down the
whole communication network to break the dominant cooperative state of the whole system.
Rather, it would suffice to generate a small amount of randomly-generated erroneous messages
as this will unfreeze the system, which might create a new system dynamic. For an attacker,
this would then mean that he does not have to capture the whole communication network to
disturb the desired behavior, due to the coupled nature of the system as a whole. Consequently,
security precautions should be designed accordingly.

All in all, the present research shall open several options for future work. For example, the
inclusion of multiple power sources would be used to simulate a more decentralized power grid
topology. The power source could be added as an active agent in the system, having a role of
similar to a central controller. It would be also possible to model additional layers like a market
where the price for the demanded power (consumed energy) would be set.

Methods

Physical layer
The physical layer used in this paper is depict in Fig 1. The value of the resistors R that are
under the control of the agents i 2 A should be scaled with the number of agents in the system
so that

R ¼ NR0; ð8Þ
where R0 is a constant value, arbitrarily chosen, independent from the system size.
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If all agents have in total k appliances, the equivalent resistance of the system is Req ¼ R
k
, i.e.

k resistors of R in parallel [12]. The system starts with the different agents having a random
number of resistors so that the equivalent resistance is above the system-wide optimal point
R�
eq ¼ RV, computed in terms of power consumed by the agents.

Let us now describe the system from the point of view of a single agent i 2 A. For agent i, all
the other individual agents can be combined at time-slot t into

Rsys;i½t� ¼
R
ri½t�

; ð9Þ

where ri[t] stands for the number of resistors in the system that do not belong to agent i. The
agent itself is then described by

Ri½t� ¼
R
ai½t�

: ð10Þ

We can then derive the power Pi[t] that agent i consumes at time-slot t by

Pi½t� ¼
ðV ffiffiffiffi

N
p � IRVÞ2

Ri½t�
¼ Ptyp

ai½t�mN2

ðai½t� þ ri½t� þ NmÞ2 ; ð11Þ

where V is the voltage source, I is the electric current passing through the source resistor RV,

Ptyp ¼ V2

RV
and m ¼ R

RV
.

Note that we scale the voltage with the square-root of the system size so that the power
available for the agents stays constant. We could then write Pi as

Pi½t� ¼ Ptyp

ai½t�m
ðaavg½t� þ mÞ2 ; ð12Þ

where aavg[t] = (ai[t]+ri[t])/N.

Communication layer
The communication layer allows for exchange of information between the agents, which is a
necessary condition to coordinate their actions in the system. In this case, we need to describe
what kind of information is sent by the agents and how they build links creating then their
neighbourhood set.

Every agent i 2 A sends to their neighbours (to be defined next) a message containing its
own state in that time step t such that Si[t]2{−1,0, +1}. The transmitted message may be in
error with a given error probability perr 2 [0, 1], which is independent from anything else and
uniformly distributed. If an error event happens, the receiving agent sees one of the two other
possible states (instead of the transmitted one) with the same probability. The error probability
perr is the only parameter we control. It is worth mentioning that, although we assume perr as
given, it in fact is a result of the communication strategy used [54]. Nevertheless, we believe
that this more realistic approach goes beyond the focus of this work.

The topology of the communication network defines the neighbourhood set of the agents.
In this report we focused on three classes of graphs: ring, Watts-Strogatzs (WS) and Barabasi-
Albert (BA) [52]. The ring network is defined in a way that agent i is connected with to the
agents i − 1 and i+1 (refer to Fig 1). In this case, agent 1 is connected to agent N and vice-versa,
so the graph topology resembles a ring

To define more complex neighbourhoods, we employ the Watts-Strogatzs (WS) and the
Barabasi-Albert (BA) graphs for social networks. The WS graph is constructed as follows. The
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graph starts with a regular lattice where each node has exactly K neighbours. The links are then
rewired with probability β resulting in a more random structure.

The BA graph is formed by adding the desired number of nodes step-by-step, starting with
a small initial set. Each new node is then preferably connected to nodes with an already high
degree (k), with probability pi such that

pi ¼
kiP
j kj

; ð13Þ

generating then a network whose degree distribution is given by a power law.

Agent behavior
We explain here the behavior of the agents and its relation to the physical and communication
layers previously defined. Let us start in the scenario where none of the neighbours of agent i,
defined by the neighbourhood setN i, is cooperative. This is the default state in the beginning.
Agent i will then behave randomly according to its selfishness gene si. The selfishness gene is a
random number with uniform distribution assigned to every agent i 2 A before start the sys-
tem simulation itself.

The decision procedure is the following: a random number ξ is drawn. If ξ> si, agent i will
switch to the cooperative mode and remove one resistor. Otherwise, it will switch to one of the
non-cooperative modes. This means that, when si is big, agent i is more selfish. Conversely,
agent i is more cooperative when si is small

For the non-cooperative modes, the agent will again draw a random number do decide if it
will add a resistor if ξ< si or do nothing otherwise. The decision process is consistent, but
depends on random variables. therefore the higher the selfishness, the higher the probability
that an agent starts accumulating resistors.

The agent behavior also depends on the minimal gain λmin that the agents needs to stick to
their strategy. We assume that λmin is fixed and pre-defined before the simulation. The gain
λi[t] that agent i has at time-slot t is computed as

li½t� ¼
Pi½t� � Pi½t � 1�

Pi½t � 1� ¼ DPi½t�
Pi½t � 1�: ð14Þ

Let us now assume that the functions of t are continuous so that we can use the total deriva-
tive rule as follows:

dPi ¼ Ptyp

m

ðaavg½t� þ mÞ2 dai �
2

N
aim

ðaavg ½t� þ mÞ3 dai �
2

N
aim

ðaavg½t� þ mÞ3 dri
" #

: ð15Þ

Now returning to the discrete domain, we consider ΔPi[t]�dPi, Δai[t]�dai, Δri[t]�dri and
Pi[t]�Pi[t − 1]. Then, the gain λi[t] can be evaluated as

li½t� �
dPi

Pi½t�
� Dai½t�

ai½t�
� 2

N
1

aavg ½t� þ m
Dri½t� þ Dai½t�ð Þ ¼ Dai½t�

ai½t�
� 2

aavg½t� þ m
Daavg½t�: ð16Þ

The advantage of proceeding in this way is that one can see that the that the gain not only
depends on the amount of resistors agent i possesses and the behavior of the system, but also
on the system size N. The higher the number of resistors agent i has, the smaller the first term
is since Δai[t] can only be −1, 0, or +1. For a very large system (N!1) and agent i non-
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cooperative (i.e. Δai[t] = 1), agent i reaches the minimum gain when it reaches

amax ¼
1

lmin

: ð17Þ

For example, the minimal gain λmin = 0.0005 used for most of the simulation scenarios leads
to amax = 2000, which is far above the optimal point a�avg ¼ m ¼ 100.

The second term, which has a negative leading sign, provides feedback. We can then split
the term in the feedback from individual actions Δai[t] and external actions Δri[t]. The negative
leading sign means that this term will reduce the gain in case of rising amount of resistors
(Δai[t] = 1) or will deliver a positive gain in case of cooperation Δai[t] = −1 or keep its state by
doing nothing Δai[t] = 0. In any case, the effect of such feedback will diminish with rising sys-
tem size N.

Supporting Information
S1 File. Understanding the feedback of the physical layer on the agents behavior.
(PDF)

Acknowledgments
We would like to acknowledge the computing facilities of CSC—IT Center for Science Ltd.
(Finland) that was used to run the simulation scenarios.

Author Contributions
Conceived and designed the experiments: FK PHJN. Performed the experiments: FK. Analyzed
the data: FK. Contributed reagents/materials/analysis tools: FK PHJN. Wrote the paper: PHJN
FK.

References
1. Helbing D. Globally networked risks and how to respond. Nature. 2013; 497(7447):51–59. doi: 10.

1038/nature12047

2. Nikolic I. Co-evolutionary method for modelling large scale socio-technical systems evolution. TU Delft,
Delft University of Technology; 2009.

3. Dam V, et al. Agent-basedmodelling of socio-technical systems. vol. 9. Springer Science & Business
Media; 2012.

4. Kremers EA. Modelling and simulation of electrical energy systems through a complex systems
approach using agent-basedmodels. KIT Scientific Publishing; 2013.

5. Nardelli PHJ, et al. Models for the modern power grid. The European Physical Journal Special Topics.
2014; 223(12):2423–2437. doi: 10.1140/epjst/e2014-02219-6

6. Bush SF. Smart Grid: Communication-enabled Intelligence for the Electric Power Grid. John wiley &
sons; 2014.

7. Bale CS, Varga L, Foxon TJ. Energy and complexity: New ways forward. Applied Energy. 2015;
138:150–159. doi: 10.1016/j.apenergy.2014.10.057

8. Batty M. Cities and complexity: understanding cities with cellular automata, agent-basedmodels, and
fractals. The MIT press; 2007.

9. Batty M. The new science of cities. The MIT press; 2013.

10. Herrmann C, et al. Sustainability in Manufacturing and Factories of the Future. International Journal of
Precision Engineering and Manufacturing-Green Technology. 2014; 1(4):283–292. doi: 10.1007/
s40684-014-0034-z

11. Hossain E, et al. Evolution toward 5Gmulti-tier cellular wireless networks: An interference management
perspective. IEEEWireless Commun. 2014; 21(3):118–127. doi: 10.1109/MWC.2014.6845056

12. Dorf RC, Svoboda JA. Introduction to electric circuits. JohnWiley & Sons; 2010.

Dynamics of Complex Systems Built as Multilayer Systems

PLOSONE | DOI:10.1371/journal.pone.0145135 January 5, 2016 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145135.s001
http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1140/epjst/e2014-02219-6
http://dx.doi.org/10.1016/j.apenergy.2014.10.057
http://dx.doi.org/10.1007/s40684-014-0034-z
http://dx.doi.org/10.1007/s40684-014-0034-z
http://dx.doi.org/10.1109/MWC.2014.6845056


13. Hardin G. The tragedy of the commons. Science. 1968 Dec; 162(3859):1243–8. doi: 10.1126/science.
162.3859.1243

14. Szabó G, Fath G. Evolutionary games on graphs. Physics Reports. 2007; 446(4):97–216.

15. Archetti M, Scheuring I. Review: Game theory of public goods in one-shot social dilemmas without
assortment. Journal of Theoretical Biology. 2012; 299:9–20. doi: 10.1016/j.jtbi.2011.06.018 PMID:
21723299

16. Gianetto DA, Heydari B. Network Modularity is essential for evolution of cooperation under uncertainty.
Scientific Report. 2015; 5.

17. Mitchell M. Complexity: A Guided Tour. Oxford University Press; 2009.

18. Furtado BA, Sakowski PAM. Complexity: A review of the classics. Policy and Complex Systems. Fall
2014; 1(2):3–18.

19. Ott E. Chaos in dynamical systems. Cambridge university press; 2002.

20. Wolfram S. A New Kind of Science. WolframMedia; 2002.

21. Wolfram S. Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena. 1984;
10(1):1–35. doi: 10.1016/0167-2789(84)90245-8

22. Wang DQ, Gong QG, Shen XF. An Improved Personnel Evacuation Cellular Automata Model Based on
the Ant Colony Optimization Algorithm. In: Applied Mechanics and Materials. vol. 513. Trans Tech
Publ; 2014. p. 3287–3291.

23. Iarosz K, et al. The influence of connectivity on the firing rate in a neuronal network with electrical and
chemical synapses. Physica A: Statistical Mechanics and its Applications. 2012; 391(3):819–827. doi:
10.1016/j.physa.2011.09.014

24. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of
self-driven particles. Physical review letters. 1995; 75(6):1226. doi: 10.1103/PhysRevLett.75.1226

25. dos Santos Lima G, et al. Self-organized criticality in MHD driven plasma edge turbulence. Physics Let-
ters A. 2012; 376(5):753–757. doi: 10.1016/j.physleta.2011.12.026

26. Hodgson GM. From pleasure machines to moral communities: An evolutionary economics without
homo economicus. University of Chicago Press; 2012.

27. Hodgson GM. Economics and evolution: Bringing life back into economics. University of Michigan
Press; 1997.

28. Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics. 2001; 73
(4):1067. doi: 10.1103/RevModPhys.73.1067

29. Abramson G, Semeshenko V, Iglesias JR. Cooperation and Defection at the Crossroads. PLoS ONE.
2013 04; 8(4):e61876. Available from: http://dx.doi.org/10.1371%2Fjournal.pone.0061876 doi: 10.
1371/journal.pone.0061876

30. Arthur WB. Complexity and the economy. Oxford University Press; 2014.

31. Stott B, Jardim J, Alsac O. DC Power Flow Revisited. IEEE Transactions on Power Systems. 2009; 24
(3):1290–1300. doi: 10.1109/TPWRS.2009.2021235

32. HahnW. Load studies on the DC calculating table. General Electric Review. 1931; 34:444.

33. Casazza J, KuW. The co-ordinated use of AC and DC network analyzers. In: Proceedings of American
Power Conference. vol. 16; 1954.

34. Purchala K, et al. Usefulness of DC Power Flow for Active Power Flow Analysis;.

35. Filatrella G, Nielsen AH, Pedersen NF. Analysis of a power grid using a Kuramoto-like model. The Euro-
pean Physical Journal B. 2008; 61(4):485–491. Available from: http://www.springerlink.com/index/10.
1140/epjb/e2008-00098-8 doi: 10.1140/epjb/e2008-00098-8

36. Rohden M, Sorge A, Witthaut D, TimmeM. Impact of network topology on synchrony of oscillatory
power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014; 24(1):013123. Available
from: http://arxiv.org/abs/1305.1634$\delimiter“026E30F$nhttp://scitation.aip.org/content/aip/journal/
chaos/24/1/10.1063/1.4865895 doi: 10.1063/1.4865895

37. Florian D, Bullo F. Synchronization and Transient Stability in Power Networks and Non-Uniform Kura-
moto Oscillators. 2010;p. 930–937.

38. Nishikawa T, Motter AE. Comparative analysis of existing models for power-grid synchronization. New
Journal of Physics. 2015 Jan; 17(1):015012. Available from: http://stacks.iop.org/1367-2630/17/i=1/a=
015012?key = crossref.64c23e9d1bbe3eaad717d9306453ddf9 doi: 10.1088/1367-2630/17/1/015012

39. Menck PJ, et al. How dead ends undermine power grid stability. Nature Communications. 2014 Jun; 5.
Available from: http://www.nature.com/doifinder/10.1038/ncomms4969 doi: 10.1038/ncomms4969

Dynamics of Complex Systems Built as Multilayer Systems

PLOSONE | DOI:10.1371/journal.pone.0145135 January 5, 2016 18 / 19

http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1016/j.jtbi.2011.06.018
http://www.ncbi.nlm.nih.gov/pubmed/21723299
http://dx.doi.org/10.1016/0167-2789(84)90245-8
http://dx.doi.org/10.1016/j.physa.2011.09.014
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1016/j.physleta.2011.12.026
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1371%2Fjournal.pone.0061876
http://dx.doi.org/10.1371/journal.pone.0061876
http://dx.doi.org/10.1371/journal.pone.0061876
http://dx.doi.org/10.1109/TPWRS.2009.2021235
http://www.springerlink.com/index/10.1140/epjb/e2008-00098-8
http://www.springerlink.com/index/10.1140/epjb/e2008-00098-8
http://dx.doi.org/10.1140/epjb/e2008-00098-8
http://arxiv.org/abs/1305.1634$&bsol;delimiter&ldquo;026E30F$nhttp://scitation.aip.org/content/aip/journal/chaos/24/1/10.1063/1.4865895
http://arxiv.org/abs/1305.1634$&bsol;delimiter&ldquo;026E30F$nhttp://scitation.aip.org/content/aip/journal/chaos/24/1/10.1063/1.4865895
http://dx.doi.org/10.1063/1.4865895
http://stacks.iop.org/1367-2630/17/i=1/a=015012?key�=�crossref.64c23e9d1bbe3eaad717d9306453ddf9
http://stacks.iop.org/1367-2630/17/i=1/a=015012?key�=�crossref.64c23e9d1bbe3eaad717d9306453ddf9
http://dx.doi.org/10.1088/1367-2630/17/1/015012
http://www.nature.com/doifinder/10.1038/ncomms4969
http://dx.doi.org/10.1038/ncomms4969


40. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise. Physical review
letters. 1987; 59(4):381. doi: 10.1103/PhysRevLett.59.381

41. Carreras BA, et al. Evidence for Self-Organized Criticality in a Time Series of Electric Power System
Blackouts. IEEE Transactions on Circuits and Systems I: Regular Papers. 2004; 51(9):1733–1740.
Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1333223 doi: 10.
1109/TCSI.2004.834513

42. Holmgren AJ. Using graph models to analyze the vulnerability of electric power networks. Risk analysis:
an official publication of the Society for Risk Analysis. 2006; 26(4):955–969. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/16948688 doi: 10.1111/j.1539-6924.2006.00791.x

43. Huang Z, et al. Modeling cascading failures in smart power grid using interdependent complex net-
works and percolation theory. 2013 IEEE 8th Conference on Industrial Electronics and Applications
(ICIEA). 2013;p. 1023–1028. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6566517

44. Krause SM, Boerries S, Bornholdt S. Econophysics of adaptive power markets: When a market does
not dampen fluctuations but amplifies them. 2013;012815:5. Available from: http://arxiv.org/abs/1303.
2110

45. Kremers E, et al. Emergent synchronisation properties of a refrigerator demand side management sys-
tem. Applied Energy. 2013; 101:709–717. doi: 10.1016/j.apenergy.2012.07.021

46. Kremers E, Gonzalez De Durana J, Barambones O. Multi-agent modeling for the simulation of a simple
smart microgrid. Energy Conversion and Management. 2013; 75:643–650. doi: 10.1016/j.enconman.
2013.07.050

47. Pipattanasomporn M, et al. Multi-Agent Systems in a Distributed Smart Grid: Design and Implementa-
tion. Control. 2009;p. 1–8.

48. Hernandez L, et al. A multi-agent system architecture for smart grid management and forecasting of
energy demand in virtual power plants. IEEE Communications Magazine. 2013; 51(1):106–113. doi:
10.1109/MCOM.2013.6400446

49. Ramchurn SD, et al. Agent-Based Control for Decentralised Demand Side Management in the Smart
Grid. 2011;p. 5–12.

50. Divenyi D, Dan AM. Agent-based modeling of distributed generation in power system control. IEEE
Transactions on Sustainable Energy. 2013; 4(4):886–893. doi: 10.1109/TSTE.2013.2253811

51. Schuster P. Models: From exploration to prediction: Bad reputation of modeling in some disciplines
results from nebulous goals. Complexity. 2015 Sep; 21(1):6–9. Available from: http://arxiv.org/abs/
1103.4838 http://dx.doi.org/10.1002/cplx.20234 http://doi.wiley.com/10.1002/cplx.21729 doi: 10.1002/
cplx.21729

52. NewmanM, Barabási AL, Watts DJ. The Structure and Dynamics of Networks. Princeton University
Press; 2006.

53. Python implementation available at: https://github.com/tharwan/CoopCPS

54. Marsic I. Computer networks: Performance and quality of service. Rutgers University; 2010.

55. Gini C. Variabilità e mutabilità. Memorie di metodologica statistica. 1912;p. 156.

56. Wolf WP. The Ising Model and Real Magnetic Materials. Brazilian Journal of Physics. 2000; 30(4):794–
810. doi: 10.1590/S0103-97332000000400030

57. Miranda L, et al. Complex Transition to Cooperative Behavior in a Structured Population Model. PLoS
ONE. 2012 06; 7(6):e39188. Available from: http://dx.doi.org/10.1371%2Fjournal.pone.0039188 doi:
10.1371/journal.pone.0039188 PMID: 22761736

58. Traag VA, Van Dooren P, De Leenheer P. Dynamical Models Explaining Social Balance and Evolution
of Cooperation. PLoS ONE. 2013 04; 8(4):e60063. Available from: http://dx.doi.org/10.1371%
2Fjournal.pone.0060063 doi: 10.1371/journal.pone.0060063

Dynamics of Complex Systems Built as Multilayer Systems

PLOSONE | DOI:10.1371/journal.pone.0145135 January 5, 2016 19 / 19

http://dx.doi.org/10.1103/PhysRevLett.59.381
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1333223
http://dx.doi.org/10.1109/TCSI.2004.834513
http://dx.doi.org/10.1109/TCSI.2004.834513
http://www.ncbi.nlm.nih.gov/pubmed/16948688
http://www.ncbi.nlm.nih.gov/pubmed/16948688
http://dx.doi.org/10.1111/j.1539-6924.2006.00791.x
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6566517
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6566517
http://arxiv.org/abs/1303.2110
http://arxiv.org/abs/1303.2110
http://dx.doi.org/10.1016/j.apenergy.2012.07.021
http://dx.doi.org/10.1016/j.enconman.2013.07.050
http://dx.doi.org/10.1016/j.enconman.2013.07.050
http://dx.doi.org/10.1109/MCOM.2013.6400446
http://dx.doi.org/10.1109/TSTE.2013.2253811
http://arxiv.org/abs/1103.4838
http://arxiv.org/abs/1103.4838
http://dx.doi.org/10.1002/cplx.20234
http://doi.wiley.com/10.1002/cplx.21729
http://dx.doi.org/10.1002/cplx.21729
http://dx.doi.org/10.1002/cplx.21729
https://github.com/tharwan/CoopCPS
http://dx.doi.org/10.1590/S0103-97332000000400030
http://dx.doi.org/10.1371%2Fjournal.pone.0039188
http://dx.doi.org/10.1371/journal.pone.0039188
http://www.ncbi.nlm.nih.gov/pubmed/22761736
http://dx.doi.org/10.1371%2Fjournal.pone.0060063
http://dx.doi.org/10.1371%2Fjournal.pone.0060063
http://dx.doi.org/10.1371/journal.pone.0060063


Copyright of PLoS ONE is the property of Public Library of Science and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


