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New Strong Direct Product Results in Communication Complexity

RAHUL JAIN, National University of Singapore

We show two new direct product results in two different models of communication complexity. Our first
result is in the one-way public-coin model. Let f ⊆ X × Y × Z be a relation and ε > 0 be a constant. Let
R1,pub

ε ( f ) represent the communication complexity of f , with worst-case error ε in this model. We show that
if for computing f k (k independent copies of f ) in this model, o(k · R1,pub

1/3 ( f )) communication is used, then
the success is exponentially small in k. We show a new tight characterization of communication complexity
in this model which strengthens the tight characterization shown in Jain et al. [2008]. We use this new
characterization to show our direct product result and this characterization may also be of independent
interest.

Our second direct product result is in the model of two-way public-coin communication complexity. We show
a direct product result for all relations in this model in terms of a new complexity measure that we define.
Our new measure is a generalization to nonproduct distributions, of the two-way product subdistribution
bound of Jain et al. [2008]. Our direct product result therefore generalizes to nonproduct distributions, their
direct product result in terms of the two-way product subdistribution bound. As an application of our new
direct product result, we reproduce (via completely different arguments) strong direct product result for
the set-disjointness problem which was previously shown by Klauck [2010]. We show this by proving that
our new complexity measure gives a tight lower bound of �(n) for the set-disjointness problem on n-bit
inputs (this strengthens the linear lower bound on the rectangle/corruption bound for set-disjointness shown
by Razborov [1992]). In addition, we show that many previously known direct product results in this model
are uniformly implied and often strengthened by our result.
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1. INTRODUCTION

Can computing k simultaneous instances of a problem be done more efficiently than
computing them in parallel? This question has been very well studied in many models
of computation, first for being a natural, fundamental, and interesting question in
itself, and second for the many implications it has for some other important questions.
One way to pose this question for bounded error computation models is as follows. Let
the resource required for solving a single instance with constant success be c; then
if less than k · c resource is provided for solving k instances together, is the overall
success exponentially small in k? This is referred to as the direct product question.
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20:2 R. Jain

We consider this question in two models of communication complexity: the one-way
public-coin model and the two-way public-coin model.

The One-Way Public-Coin Model. Let X ,Y,Z be finite sets. Let f ⊆ X × Y × Z be
a complete relation, by which we mean that, for each (x, y) ∈ X × Y, there exists at
least one z ∈ Z such that (x, y, z) ∈ f . We only consider complete relations in this work.
Let ε > 0. Let Alice with input x ∈ X and Bob with input y ∈ Y wish to compute
a z ∈ Z such that (x, y, z) ∈ f . In this model, Alice sends a single message to Bob
who outputs z and Alice and Bob use pubic coins. Please refer to the excellent text
by Kushilevitz and Nisan [1997] for a more formal introduction to the different models
of communication complexity. Let R1,pub

ε ( f ) denote the (worst-case) communication of
the best protocol P which achieves this with error at most ε (over the public-coins) for
any input (x, y). We answer the direct product question for all relations f in this model
in the following manner. Let f k be the set {(x1, . . . , xk, y1, . . . , yk, z1, . . . , zk) : for i =
1, 2, . . . , k, (xi, yi, zi) ∈ f }.

THEOREM 1.1. Let f ⊆ X ×Y×Z be a relation, ε > 0 be a constant and k be a natural
number. Then,

R1,pub

1−2−�(ε3k)
( f k) = �

(
k · (

ε2 · R1,pub
ε ( f ) − O(1)

))
.

To our knowledge, this is the first time a direct product statement has been made for
all relations in any model of communication complexity. We present here some previous
results which are now implied and strengthened by our current result.

(1) Jain et al. [2008] introduced the so-called one-way subdistribution bound and
showed a direct product result in terms of the one-way subdistribution bound under
product distributions. The one-way subdistribution bound forms a lower bound on
R1,pub

ε ( f ) and hence our result implies the result of Jain et al. [2008].
(2) Gavinsky [2008] proves direct product for one-way distributional communication

complexity of a certain class of relational problems under the uniform distribution.
Gavinsky used his result to show communication vs entanglement tradeoff for
communication protocols. Since our result holds for all relations, it implies the
result of Gavinsky.

(3) de Wolf [2005] proves a strong direct product theorem for the one-way public-
coin randomized communication complexity of the Index function. Ben-Aroya et al.
[2008] derive a similar direct product theorem for the one-way quantum commu-
nication complexity of Index. Since Index captures the notion of VC-dimension,
similar results follow for the one-way distributional (classical and quantum) com-
munication complexity of any Boolean function under the worst-case product dis-
tribution. These results for classical communication complexity are implied by this
result.

(4) Jain et al. [2005] show optimal direct sum for all relations in the one-way public
coin communication complexity. A direct sum is a weaker question to direct product
question and asks the following. Let the resource required for solving a single
instance with constant success be c; then, if less than kc resource is provided
for solving k instances together, is the overall success is at most a constant? (In
direct product, the overall success is required to be exponentially small in k.) Jain
et al. [2005] also show similar optimal direct sum result for one-way entanglement
assisted quantum communication complexity of all relations; however quantum
communication complexity is beyond the scope of this work.
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Remark 1.2. In case R1,pub
1/3 ( f ) ≥ 1, our result is trivial. However, in this case, the

corresponding direct product statement R1,pub
1−2−�(k) ( f k) = �(k) can be argued as follows.

Since R1,pub
1/3 ( f ) ≥ 1, there exists x0, x1 and y such that f (x0, y) ∩ f (x1, y) = ∅. (We write

f (x, y) = {z ∈ Z : (x, y, z) ∈ f }.)
Let P be a protocol for f k with communication d bits and overall (worst-case) success

probability p. Now consider protocol P ′ for f k, where Alice does not communicate
anything and let Bob guess the communication in P and then act as in P. The worst-
case success probability of P ′ is at least 2−d p. Suppose Bob’s input for P ′ is ȳ =
(y, , . . . , y). Since f (x0, y) ∩ f (x1, y) = ∅, any answer is correct for at most one input
sequence (for Alice) in {x0, x1}k. Thus, there is an input sequence for Alice of the form
w̄ = (w1, w2, . . . , wk), such that the answer returned by Bob is correct for (w̄, ȳ) with
probability at most 2−k. Thus, 2−k ≥ 2−d p. Hence, if d < k/2, then p < 2−k/2.

The following corollary for the one-way private-coin communication complexity fol-
lows immediately from Theorem 1.1 and the well-known relationship

R1,pub
ε ( f ) ≤ R1,pvt

ε ( f ) ≤ R1,pub
ε ( f ) + O(log |X | + log |Y|),

which holds for all relations f ⊆ X × Y × Z and constant ε > 0 [Newman 1991].

COROLLARY 1.3. Let f ⊆ X × Y × Z be a relation, ε > 0 be a constant and k be a
natural number. Then,

R1,pvt

1−2−�(ε3k)
( f k) = �

(
kε2 · (

R1,pvt
ε ( f ) − O(log |X | + log |Y|))).

Our Techniques. We follow a natural argument for showing the direct product result.
Let us say there are totally k coordinates (instances) and we condition on success on
some l = d · k (d < 1 is a small constant) coordinates. If the overall success in these l
coordinates is already as small as we want, then we are done and stop. Otherwise, we
exhibit another coordinate j outside of these l coordinates such that the success in the
jth coordinate, even conditioned on the success in the l coordinates, is bounded away
from 1. This way, the overall success keeps going down, decreasing by a constant factor
per coordinate, and becomes exponentially small in k once �(k) coordinates have been
chosen. This broad outline to show direct product results have been used previously,
for example, by Raz [1998] in the famous parallel repetition theorem for two-prover
games (and in the recent modifications of its proof due to Holenstein [2007]).

We do this argument in the distributional setting where one is concerned with aver-
age error over the inputs coming from a specified distribution rather than the worst-
case error over all inputs. The distributional setting can then be related to the worst-
case setting by the well-known Yao’s principle. Let μ be a “hard distribution” on X ×Y,
possibly nonproduct across X and Y. Let us consider the inputs for f k drawn from the
distribution μk (k-fold product of μ). Now consider a one-way protocol P for f k with
communication o(kc) and condition on a typical message string m from Alice (where c
is rcment( f ), please refer to the next section for precise definition). Conditioned on this
message m and also on success in l coordinates, we analyze what the distribution of
Alice and Bob’s inputs on a typical coordinate j (outside the l coordinates) looks like.
We argue that this distribution is still “hard enough”, that is, Bob will make constant
errors on this coordinate whichever way he tries to give an answer. We are able to
identify some key properties in such a distribution, concerning its relationship to μ,
and argue that any distribution with these properties must be a hard distribution,
given that μ is a hard distribution.

We do this last argument by showing a new tight characterization of one-way
public-coin communication complexity for all relations. We introduce a new measure of
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complexity which we call the robust conditional relative min-entropy bound (rcment).
We show that this bound is equivalent, up to constants, to R1,pub

ε ( f ) (for any constant
ε > 0). This bound forms lower bound on the one-way subdistribution bound of Jain
et al. [2008], where they also show that their bound is equivalent, up to constants, to
R1,pub

ε ( f ). We make crucial use of a message compression protocol due to Braverman
and Rao [2011] while exhibiting this tight characterization.

One key difficulty that is faced in the argument outlined here is that Bob’s answer
on the jth coordinate can depend on his inputs in other coordinates. Since μ could be a
nonproduct distribution, Bob’s inputs in other coordinates, because of the correlations
between Alice’s and Bob’s inputs within each instance, potentially provide him infor-
mation about Alice’s inputs, in addition to the information obtained from the message
from Alice. This difficulty is overcome by splitting the distribution μ into a convex
combination of several product distributions. The particular way in which we split
distributions leads us to consider the conditional distributions (conditioned on Bob’s
inputs) in the definition of rcment. This idea of splitting a nonproduct distribution into
convex combination of product distributions has been used in several previous works
to handle nonproduct distributions in different settings [Razborov 1992; Raz 1998;
Bar-Yossef et al. 2002; Holenstein 2007; Barak et al. 2010].

Another key difficulty faced in the argument outlined here is as follows. Once we
condition on success in the l coordinates, and look at the joint distribution XjYj (for
a typical coordinate j outside the l coordinates), we are able to argue that the joint
distribution of XjYj has small (less than c) conditional (conditioned on Yj) relative
entropy with μ (please refer to the next section for definitions of information theoretic
quantities). However, XjYj may no longer be one-way for μ. Nonetheless, we argue that
XjYj also has small (a very small constant) conditional (conditioned on Xj) relative
entropy with μ. This helps us obtain another distribution X1Y 1 which is close (in
total variation distance) to XjYj , is one-way for μ and has small (less than c) robust
conditional (conditioned on Y ) relative min-entropy with μ. This shows that X1Y 1 (and
hence XjYj) must have error (since we have exhibited tight characterization for the
robust-conditional min-entropy bound earlier).

The Two-Way Public-Coin Model. In this model, Alice on input x and Bob on input y
exchange messages using public coins and at the end agree on a common output z. Let
R2,pub

ε ( f ) denote the (worst-case) communication of the best protocol P which achieves
this with error at most ε (over the public-coins) for any input (x, y). We show a direct
product result in terms of a new complexity measure that we introduce: the ε-error
two-way conditional relative entropy bound of f with respect to distribution μ, denoted
crent2,μ

ε ( f ). The measure crent2,μ
ε ( f ) forms a lower bound (up to constant factors) on

R2,pub
ε ( f ). Although this result is not an optimal direct product result that one may

desire, we show how many previously known direct product results in the two-way
model follow as a consequence of our result.

(1) Recently Klauck [2010] showed a direct product result for the set disjointness prob-
lem. In the set disjointness problem, Alice with input x ∈ {0, 1}n and Bob with input
y ∈ {0, 1}n are supposed to determine if x and y intersect when viewed as character-
istic vectors of subsets of [n]. This is arguably one of the most well-studied problems
in communication complexity. We show (in Section 5) that our new complexity mea-
sure crent gives tight lower bound for the set-disjointness problem. This combined
with the direct product in terms of crent, implies strong direct product result for the
set disjointness problem for its two-way public-coin communication complexity. We
point out here that the arguments used in Klauck [2010] are arguably specifically

Journal of the ACM, Vol. 62, No. 3, Article 20, Publication date: June 2015.



New Strong Direct Product Results in Communication Complexity 20:5

geared to handle the set disjointness problem. In contrast, our result is much more
general as we further argue in this article.

(2) When μ is a product distribution, crent2,μ
ε ( f ) forms an upper bound (up to constant

factors) on the two-way subdistribution bound of Jain et al. [2008]. Hence, our di-
rect product result implies the direct result of Jain et al. [2008] using the two-way
product subdistribution bound and in addition generalizes their result to nonprod-
uct distributions. It was pointed out in Jain et al. [2008] that their result provides a
unified view of several recent works on the topic, simultaneously generalizing and
strengthening them. These works include the strong direct product property for the
rectangle/corruption bound for Boolean functions due to Beame et al. [2007].

(3) Shaltiel [2003] gave strong direct product theorem for the discrepancy bound for
communication complexity under the uniform distribution. The discrepancy bound
under product distributions (in particular, under the uniform distribution) is upper
bounded by the rectangle bound which in turn is upper bounded (up to constants)
by the crent. Therefore, our result implies and strengthens on Shaltiel’s result
and in particular implies strong direct product for the Inner Product function
(IPn(x, y) = ∑

i xi · yi mod 2), since, for this function, the discrepancy bound under
the uniform distribution is �(n).

Our techniques to show the direct product in the two-way model are quite similar
to the techniques in the one-way model. However, in the two-way model, we do not
present an upper bound on the public-coin communication complexity in terms of the
new measure crent.

Recent Developments in the Direct Product Question. In a recent work, Jain et al.
[2012] have extended our direct product result (for one-way protocols) to apply for
bounded round public-coin communication protocols. One key difference between our
work and theirs is that while we look at the distribution of XjYj (for a typical coordinate
j outside the l coordinates where success is conditioned), conditioned on a typical
message transcript mof the protocol for f k; they look at the joint distribution of XjYj M
(where M is the random variable representing the message transcript of the protocol
for f k). This helps them to argue about multiple-round protocols (even in the absence
of a tight characterization of a lower bound method for such protocols). They have used
and extended many arguments and techniques from our work, implicitly and explicitly.

In a more recent work, Braverman et al. [2013a] have provided a direct product result
for bounded round public-coin communication protocols with near optimal dependence
on the number of rounds. In another work [Braverman et al. 2013b], the same set of au-
thors have provided a direct product result the two-way unbounded round public-coin
protocols, which can be roughly stated as follows. Let c be the communication required
for one-copy of f . If communication less than

√
k · c is provided for f k, then the success

is exponentially small in k. For the two-way unbounded round public-coin protocols,
Jain and Yao [2012] have provided a direct product result in terms the smooth rectan-
gle bound and this strengthens our direct product result in terms of crent. The smooth
rectangle bound has been introduced by Jain and Klauck [2009] as a lower bound
method for two-way public-coin communication complexity and is stronger than many
other lower bound methods including crent. Very recently, a strong direct product result
has been shown in terms of (internal) information complexity, which is stronger lower
bound method than smooth rectangle bound, by Braverman and Weinstein [2014].

Other Related Work in Communication Complexity. Parnafes et al. [1997] prove a direct
product result when a different algorithm works for each of the different instances and
each algorithm is only provided communication at most the communication complex-
ity of a single instance (with constant error). In their result, the bound on the success
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probability is shown to behave like 2−k/c for the communication complexity c of the prob-
lem at hand. Lee et al. [2008] have shown strong direct product for the discrepancy
bound under arbitrary distributions and Viola and Wigderson [2008] have extended it
to the multiparty case. Recently, Sherstov [2011] showed strong direct product for the
generalized-discrepancy bound. For deterministic protocols, it is known that k times the
square root of the deterministic communication complexity of a function f is needed
to compute k instances of f (see, e.g., Kushilevitz and Nisan [1997, Exercise 4.11,
page 46]). It is also straightforward to show that the deterministic one-way commu-
nication complexity of every function f has the direct sum property. In a sequence of
results [Jain et al. 2003; Harsha 2009; Barak et al. 2010; Braverman and Rao 2011],
successively tighter direct sum results for all relations in the bounded-round two-way
public-coin model have been shown, however optimal direct sum result holding for all
relations for the two-way (unbounded round) model is still open. Direct sum result for
all relations in the public-coin SMP model has been shown in Jain et al. [2005] both for
classical and quantum protocols. In the SMP (simultaneous message passing) model,
Alice with input x and Bob with input y, each send a message to a Referee who outputs
z. Direct sum results for all relations in the private-coin SMP model has been shown
in Jain and Klauck [2009] both for classical and quantum protocols. In a weak direct
product theorem, one shows that the success probability of solving k instances of a prob-
lem with the resources needed to solve one instance (with constant success) goes down
exponentially with k. Klauck [2004] shows such a result for the rectangle/corruption
bound for all functions and all distributions in the two-way model and Jain et al.
[2008] extend this result for all relations and for all distributions in the same
model.

Indeed this is only an incomplete list of the many interesting results concerning
direct product and related questions in communication complexity.

Organization. In Section 2, we provide some information theory and communication
complexity preliminaries that we need. We refer the reader to Cover and Thomas [1991]
and Kushilevitz and Nisan [1997] for good introductions to these topics respectively.
In Section 3, we introduce our new bound for one-way communication, show that
it tightly characterizes one-way public-coin communication complexity and show our
direct product result in the one-way model. In Section 4, we introduce our new bound for
two-way communication and show a direct product result in its terms. In Section 5, we
present the strong direct product for set disjointness as an application of our two-way
direct product result.

2. PRELIMINARIES

Information Theory. Let X ,Y,Z be finite sets and k be a natural number. Let x ∈ X and
y ∈ Y. Let X k represent the k-fold Cartesian product of X with itself. Let P(X ) denote
the set of all distributions over X . Let μ ∈ P(X ). We let μ(x) represent the probability of
x under μ. The entropy of μ is defined as S(μ) = −∑

x∈X μ(x) log μ(x) (all logarithms are
to base 2 unless otherwise specified). Let X be a random variable distributed according
to μ which we denote by X ∼ μ. We use the same symbol to represent a random
variable and its distribution whenever it is clear from the context. For distributions
μ,μ1 ∈ P(X ), μ ⊗ μ1 represents the product distribution (μ ⊗ μ1)(x) = μ(x) · μ1(x) and
μk represents μ⊗ · · ·⊗ μ, k times. The total variation distance between distributions μ

and λ is defined as ||μ − λ||t = 1
2

∑
x∈X |μ(x) − λ(x)|. The relative entropy between λ and

μ is defined as S(λ||μ) = ∑
x∈X λ(x) log λ(x)

μ(x) . The relative min-entropy between λ and μ

is defined as S∞(λ||μ) = maxx∈X log λ(x)
μ(x) . It is easily seen that S(λ||μ) ≤ S∞(λ||μ). Let

XY ∼ μ, here we assume that X is distributed over X and Y is distributed over Y. We
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use μx and Yx to represent (Y | X = x). We use μ(x|y) to represent μ(x, y)/μ(y) (when
μ(y) = 0). The conditional entropy of Y given X, is defined as S(Y |X) = Ex←XS(Yx). We
use the following properties of relative entropy.

FACT 2.1.

(1) Relative entropy is jointly convex in its arguments, that is for distributions
λ1, λ2, μ1, μ2 and p ∈ [0, 1]

S(pλ1 + (1 − p)λ2 || pμ1 + (1 − p)μ2) ≤ p · S(λ1||μ1) + (1 − p) · S(λ2||μ2).

(2) Let the random variables XY, X1Y 1 be distributed over X × Y. Relative entropy
satisfies the following chain rule

S(XY ||X1Y 1) = S(X||X1) + Ex←XS
(
Yx||Y 1

x

)
.

This implies, using joint convexity of relative entropy

S(XY ||X1 ⊗ Y 1) = S(X||X1) + Ex←XS(Yx||Y 1) ≥ S(X||X1) + S(Y ||Y 1).

(3) For distributions λ,μ : S(λ||μ) ≥ 0 and ||λ − μ||t ≤
√

ln 2
2 S(λ||μ) ≤

√
S(λ||μ). The

latter is referred to as the Pinsker’s inequality.
(4) Substate theorem [Jain et al. 2002]: Let λ,μ be distributions. For every δ > 0, there

exists a distribution λδ such that S∞(λδ||μ) ≤ O( 1
δ
(S(λ||μ) + 1)) and ||λδ − λ||t ≤ δ.

Let X, Y, Z be random variables. The mutual information between X and Y is defined
as

I(X : Y ) = S(X) + S(Y ) − S(XY ) = Ex←XS(Yx||Y ) = Ey←Y S(Xy||X).

The conditional mutual information is defined as

I(X : Y | Z) = Ez←ZI(X : Y | Z = z) = Ez←Z[S(X|Z = z) + S(Y |Z = z) − S(XY |Z = z)].

Random variables XY Z form a Markov chain Z ↔ X ↔ Y iff I(Y : Z| X = x) = 0 for
each x in the support of X. The following fact is often used in our proofs.

FACT 2.2. Let λ,μ ∈ P(X ) be distributions. Then
∑

x∈X :λ(x)<μ(x) λ(x) log λ(x)
μ(x) ≥ −1 .

One-Way Communication Complexity. Let f ⊆ X ×Y ×Z be a relation, where X ,Y,Z are
finite sets. We only consider complete relations that is for each (x, y) ∈ X × Y, there
exists at least one z ∈ Z such that (x, y, z) ∈ f . In the one-way model of communication,
there is a single message, from Alice with input x ∈ X to Bob with input y ∈ Y, at the
end of which Bob is supposed to determine an answer z such that (x, y, z) ∈ f . Let ε > 0
and let μ ∈ P(X × Y) be a distribution. We let D1,μ

ε ( f ) represent the distributional
one-way communication complexity of f under μ with expected error ε, that is, the
(worst-case over all inputs) communication of the best deterministic one-way protocol
for f , with distributional error (average error over the inputs) at most ε under μ. Let
R1,pub

ε ( f ) represent the one-way public-coin communication complexity of f with worst
case error ε, that is, the (worst case over all inputs) communication of the best one-way
public-coin protocol for f with error for each input (x, y) being at most ε. The following
is a consequence of the min-max theorem in game theory [Kushilevitz and Nisan 1997,
Theorem 3.20, page 36].

LEMMA 2.3 (YAO PRINCIPLE). R1,pub
ε ( f ) = maxμ D1,μ

ε ( f ).

The following result follows quite directly from the arguments in Braverman and
Rao [2011]. We provide its proof in Appendix A for completeness.
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LEMMA 2.4 [BRAVERMAN AND RAO 2011]. Let f ⊆ X × Y × Z be a relation and ε >
0, δ ≥ 0. Let XY ∼ μ be inputs to a one-way private-coin communication protocol P
with distributional error at most ε. Let M represent the message of P. Let θ be the joint
distribution of XY M and let

Pr
(x,y,i)←θ

[
log

θ (i|x)
θ (i|y)

> c
]

≤ δ. (2.1)

There exists a deterministic one-way protocol P1 for f , such that the communication of
P1 is c + O(log(1/δ)), and distributional error of P1, with inputs distributed according
to μ, is at most ε + 2δ.

Two-Way Communication Complexity. Let f ⊆ X × Y × Z be a complete relation, where
X ,Y,Z are finite sets. In the two-way model of communication, Alice with input x ∈ X
and Bob with input y ∈ Y, communicate by exchanging messages with each other over
several rounds, at the end of which they are supposed to determine a common answer
z (as a function of the message transcript) such that (x, y, z) ∈ f . Let ε > 0 and let
μ ∈ P(X × Y) be a distribution. We let D2,μ

ε ( f ) represent the two-way distributional
communication complexity of f under μ with expected error ε, that is, the (worst case
over all inputs) communication of the best deterministic two-way protocol for f , with
distributional error (average error over the inputs) at most ε under μ. Let R2,pub

ε ( f )
represent the two-way public-coin communication complexity of f with worst case
error ε, that is, the (worst-case over all inputs) communication of the best two-way
public-coin protocol for f with error for each input (x, y) being at most ε. The following
is a consequence of the min-max theorem in game theory [Kushilevitz and Nisan 1997,
Theorem 3.20, page 36].

LEMMA 2.5 (YAO PRINCIPLE). R2,pub
ε ( f ) = maxμ D2,μ

ε ( f ).

3. ONE-WAY COMMUNICATION

Definitions. We make here the necessary definitions for this section. Let f ⊆ X ×Y ×Z
be a relation, μ, λ ∈ P(X × Y) be distributions and ε, δ > 0.

The following two definitions were made in Jain et al. [2008].

Definition 3.1 (One-Way Distributions). Distribution λ is called one-way for distri-
bution μ if, for all (x, y) in the support of λ, we have μ(y|x) = λ(y|x).

Note that in a one-way protocol if the inputs are drawn from μ and we condition on a
message transcript from Alice, then the resulting distribution would be one-way for μ.

Definition 3.2 (Error of a Distribution). Error of distribution μ with respect to f ,
denoted err f (μ), is defined as

err f (μ) def= min
{

Pr
(x,y)←μ

[(x, y, g(y)) /∈ f ] | g : Y → Z
}

.

Let μ be the distribution of inputs for Alice and Bob. Let Bob make an output depending
on his input, without any communication from Alice. Then, err f (μ) represents the least
error that Bob must make.

The following bound was defined in Jain et al. [2008] where it was referred to as the
one-way subdistribution bound. We call it differently here for consistency of nomencla-
ture with the new bound that we define subsequently.
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Definition 3.3 (Relative min-entropy Bound). The ε-error relative min-entropy
bound of f with respect to distribution μ, denoted mentμε ( f ), is defined as

mentμε ( f ) def= min
{
S∞(λ||μ)| λ is one-way for μ and err f (λ) ≤ ε

}
.

The ε-error relative min-entropy bound of f , denoted ment( f ), is defined as

mentε( f ) def= max
{
mentμε ( f )| μ is a distribution over X × Y

}
.

The following two are key new quantities we define in this article. As mentioned pre-
viously, while considering the direct product argument, we need to handle distributions
which are close (in total variation distance) to distributions which are one-way for μ and
have bounded conditional relative entropy with μ. This leads us to consider distribu-
tions which are one-way for μ, have potentially very high conditional relative entropy
with μ, however for which the relevant ratios are bounded with high probability.

Definition 3.4 (Robust Conditional Relative min-entropy). The δ-robust conditional
relative min-entropy of λ with respect to μ, denoted rcmentμδ (λ), is defined to be the
minimum number c such that

Pr
(x,y)←λ

[
log

λ(x|y)
μ(x|y)

> c
]

≤ δ.

The following can be viewed as a “modified and smoothened” version of the bound
in the Definition 3.3. We consider conditional relative min-entropy instead of relative
min-entropy and smooth it by allowing a small violation of the conditional relative
min-entropy condition.

Definition 3.5 (Robust Conditional Relative min-entropy Bound). The ε-error δ-
robust conditional relative min-entropy bound of f with respect to distribution μ,
denoted rcmentμε,δ( f ), is defined as

rcmentμε,δ( f ) def= min
{
rcmentμδ (λ)| λ is one-way for μ and err f (λ) ≤ ε

}
.

The ε-error δ-robust conditional relative min-entropy bound of f , denoted rcmentε,δ( f ),
is defined as

rcmentε,δ( f ) def= max
{
rcmentμε,δ( f )| μ is a distribution over X × Y

}
.

We often use this definition in the following way. Let λ be a distribution which is
one-way for μ and with rcmentμδ (λ) < rcmentμε,δ( f ). Then, err f (λ) > ε.

LEMMA 3.6. For every λ,μ and δ > 0 we have rcmentμδ (λ) ≤ (S∞(λ||μ) + 1)/δ, hence
rcmentμε,δ( f ) = O(mentμε ( f )) and rcmentε,δ( f ) = O(mentε( f )).

PROOF. Let XY ∼ λ and X′Y ′ ∼ μ. Then, using Part 2 of Fact 2.1 we have

S∞(λ||μ) ≥ S(λ||μ) ≥ Ey←Y S(Xy||X′
y) = E(x,y)←λ log

λ(x|y)
μ(x|y)

.

Therefore, using Fact 2.2 and Markov’s inequality, we get Pr(x,y)←λ[log λ(x|y)
μ(x|y) >

(S∞(λ||μ) + 1)/δ] < δ. Hence, rcmentμδ (λ) ≤ (S∞(λ||μ) + 1)/δ. The other relationships
follow from definitions.

New Characterization. In this section, we show a new characterization of one-way
public-coin communication complexity in terms of rcment. The following lemma which
lower bounds distributional communication complexity using ment appears in Jain
et al. [2008].
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LEMMA 3.7. Let f ⊆ X ×Y ×Z be a relation and μ ∈ P(X ×Y) be a distribution and
ε, k > 0. Then,

D1,μ

ε(1−2−k)( f ) ≥ mentμε ( f ) − k.

We show the following key lemma which upper bounds distributional communication
complexity using rcment. Its proof is inspired by a similar result in Jain et al. [2008]
which upper bounds distributional communication complexity using ment.

LEMMA 3.8. Let f ⊆ X ×Y ×Z be a relation and μ ∈ P(X ×Y) be a distribution and
ε, δ > 0. Then,

D1,μ

ε+4δ
( f ) ≤ rcmentε,δ( f ) + O

(
log

1
δ

)
.

PROOF. We start with the following key claim where we produce a desired split of
μ into several distributions which are one-way for μ. This will enable us to obtain a
one-way protocol with small communication as we show later.

CLAIM 3.9. There exists a natural number k and a Markov chain M ↔ X ↔ Y , where
M is distributed over [k] and XY ∼ μ, such that

(1) for each i ∈ [k] : err f (Pi) ≤ ε, where Pi = (XY | M = i) and
(2) Pr(x,y,i)←θ [log θ(i|x)

θ(i|y) > rcmentε,δ( f ) + log 1
δ
] ≤ 2δ, where θ is the distribution of XYM.

PROOF. Let c = rcmentε,δ( f ). Let us perform a procedure as follows. Start with i = 1.

(1) Let us say we have collected distributions P1, . . . , Pi−1, each one-way for μ, and
positive numbers p1, . . . , pi−1 such that μ ≥ ∑i−1

j=1 pj Pj . If μ = ∑i−1
j=1 pj Pj , then set

k = i − 1 and stop.
(2) Otherwise, let us express μ = ∑i−1

j=1 pj Pj + qi Qi, where Qi is a distribution, one-

way for μ. Since rcmentQi
ε,δ( f ) ≤ c, we know that there is a distribution R, one-way

for Qi (hence, also one-way for μ), such that rcmentQi
δ (R) ≤ c and err f (R) ≤ ε. Let

r = max{q| Qi ≥ qR}. Let Pi = R, pi = qi ∗ r, i = i + 1 and go back to step (1).

It can be observed that for each new i, there is a new x ∈ X such that Qi(x) = 0. Hence,
this process converges after at most |X | iterations. At the end, we have μ = ∑k

i=1 pi Pi.
Let us define random variable M ∈ [k] such that Pr[M = i] = pi. Let us define XY ,

distributed over X × Y, and correlated with M such that (XY | M = i) ∼ Pi. It is easily
checked that XY ∼ μ. Also since each Pi is one-way for μ, XYM form a Markov chain
M ↔ X ↔ Y . This shows Part (1) of Claim 3.9, and it remains to show Part (2). Let θ
be the distribution of XY M. Let us define

(1) B = {(x, y, i)| log Pi (x|y)
μ(x|y) > c + log 1

δ
},

(2) B1 = {(x, y, i)| log Pi (x|y)
Qi (x|y) > c},

(3) B2 = {(x, y, i)| μ(y)
qi Qi (y) > 1

δ
}.

Since qi Q(x, y) ≤ μ(x, y),

Pi(x|y)
μ(x|y)

= Pi(x|y)
Qi(x|y)

· Qi(x|y)
μ(x|y)

= Pi(x|y)
Qi(x|y)

· Qi(x, y)μ(y)
Qi(y)μ(x, y)

≤ Pi(x|y)
Qi(x|y)

· μ(y)
qi Qi(y)

.

Therefore, B ⊆ B1 ∪ B2. Since for each i, rcmentQi
δ (Pi) ≤ c, we have

Pr
(x,y,i)←θ

[(x, y, i) ∈ B1] ≤ δ.
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For a given y, let iy be the smallest i such that μ(y)
qi Qi (y) > 1

δ
. Once qi Qi is a δ factor smaller

than μ at a sample point, it remains so. Therefore,

Pr
(x,y,i)←θ

[(x, y, i) ∈ B2] =
∑

y

qiy Qiy(y) <
∑

y

δμ(y) = δ.

Hence, Pr(x,y,i)←θ [(x, y, i) ∈ B] < 2δ. Finally we note that

Pi(x|y)
μ(x|y)

= θ (x|(y, i))
θ (x|y)

= θ (i|x)
θ (i|y)

.

Now consider the following one-way private-coin protocol P1 for f with inputs drawn
from distribution μ. In P1 Alice on input x generates i from the distribution (M| X = x)
and sends i to Bob. Note that from Part (1). of Claim 3.9, conditioned on Alice’s message
being i, the joint distribution of the inputs of Alice and Bob is Pi. Bob on input y and
receiving message i, gives the best possible output assuming distribution of Alice’s
inputs being X|(M = i, Y = y). Since for all i, err f (Pi) ≤ ε, the distributional error
of P1 is at most ε. Now, using Lemma 2.4, we get a deterministic protocol P2 for f ,
with distributional error at most ε + 4δ and communication at most d = rcmentε,δ( f ) +
O(log 1

δ
).

We can now conclude our characterization.

THEOREM 3.10. Let f ⊆ X × Y × Z be a relation and ε > 0. Then,

ment2ε( f ) − 1 ≤ R1,pub
ε ( f ) ≤ rcmentε/5,ε/5( f ) + O

(
log

1
ε

)
.

Hence, for constant ε,

R1,pub
ε ( f ) = �(mentε( f )) = �(rcmentε,ε( f )).

PROOF. The first inequality follows from Lemma 3.7 (set k = 1) and maximizing
both sides over all distributions μ and using Lemma 2.3 (Yao principle). The second
inequality follows from Lemma 3.8 (set δ ← ε) and maximizing both sides over all
distributions μ and using Lemma 2.3. The other relations now follow from Lemma 3.6
and from the fact that the error in public-coin randomized one-way communication
complexity can be decreased by a constant factor by increasing the communication by
a constant factor.

Strong Direct Product. In this section, we show our strong direct product theorem
for one-way public-coin communication complexity. We start with the following key
theorem.

THEOREM 3.11 (DIRECT PRODUCT IN TERMS OF ment AND rcment). Let f ⊆ X ×Y ×Z be
a relation and μ ∈ P(X × Y) be a distribution. Let 0 < 4

√
80δ < ε < 0.5 be constants, k

be a natural number and rcmentμε,ε( f ) ≥ 4/δ. Then,
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mentμ
k

1−(1−ε/2)�δk� ( f k) ≥ δ · k · rcmentμε,ε( f ).

PROOF. Let c = rcmentμε,ε( f ). Let λ ∈ P(X k × Yk) be a distribution which is one-way
for μk and with S∞(λ||μk) < δck. We show that err f k(λ) > 1 − (1 − ε/2)�δk�. This shows
the desired.

Let B be a set. For σ ∈ Bk, let σi be the ith component of σ ; for a set C ⊆ [k], let σC
denote < σi : i ∈ C >, and for i ∈ [k], let σ−i denote σ[k]−{i}. For joint random variables
MN, we let Mn to represent (M| N = n) and also (MN| N = n) (which of these we mean
will be clear from the context).

Let XY ∼ λ. Let us fix g : Yk → Zk. For a coordinate i, let the binary random variable
Ti ∈ {0, 1}, correlated with XY , denote success in the ith coordinate. That is, Ti = 1 iff
(Xi, Yi, g(Y )i) ∈ f . Using Claim 3.12, we get a sequence of coordinates i1, . . . , ik′ such
that,

Pr[T1 × T2 × · · · × Tk = 1] ≤ Pr[Ti1 × Ti2 × · · · × Tik′ = 1] < (1 − ε/2)k′
.

CLAIM 3.12. Let k′ = �δk�. There exist k′ distinct coordinates i1, . . . , ik′ such that
Pr[Ti1 = 1] ≤ 1 − ε/2 and for each r < k′,

(1) either Pr[Ti1 × Ti2 × · · · × Tir = 1] < (1 − ε/2)k′
,

(2) or Pr[Tir+1 = 1| (Ti1 × Ti2 × · · · × Tir = 1)] < 1 − ε/2.

PROOF. Let us say we have identified r < k′ coordinates i1, . . . ir. Let C =
{i1, i2, · · · , ir}. Let T = Ti1 × Ti2 × · · · × Tir . If Pr[T = 1] < (1 − ε/2)k′

, then we will be
done. So assume that Pr[T = 1] ≥ (1 − ε/2)k′

> 2−δk.
Let X′Y ′ ∼ μ. Let X1Y 1 = XY |(T = 1). Note that S∞(X1Y 1||XY ) ≤ log 1

Pr[T =1] ≤ δk.
Let D be uniformly distributed in {0, 1}k and independent of X1Y 1 (and X′Y ′). Let Ui =
X1

i if Di = 0 and Ui = Y 1
i if Di = 1. Let U = U1 · · ·Uk. Here for any random variable X̃Ỹ ,

we let X̃Ỹd,u represent the random variable obtained by following conditioning on X̃Ỹ :
for all i, X̃i = ui if di = 0, otherwise Ỹi = ui if di = 1. The following calculations help us
identify a coordinate i outside C in which the marginal distribution, even conditioned
on success on C, is close to μ in terms of the measure we consider, namely the robust
conditional min-entropy bound. This helps us argue that the success in that coordinate,
even conditioned on success on C, is bounded away from 1. Consider,

δk + δck

> S∞(X1Y 1||XY ) + S∞(XY ||(X′Y ′)⊗k)

≥ S∞(X1Y 1||(X′Y ′)⊗k) ≥ S(X1Y 1||(X′Y ′)⊗k)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S((X1Y 1)d,u,xC ,yC ||((X′Y ′)⊗k)d,u,xC ,yC ) (from Part (2) of Fact 2.1)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S(X1
d,u,xC ,yC

||X′
d1,u1,xC ,yC

⊗ . . . ⊗ X′
dk,uk,xC ,yC

) (from Part (2) of

Fact 2.1)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )

∑
i /∈C

S
((

X1
d,u,xC ,yC

)
i||X′

di ,ui

)
(from Part (2) of Fact 2.1)

=
∑
i /∈C

E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

X1
d,u,xC ,yC

)
i||X′

di ,ui

)
. (3.1)

Journal of the ACM, Vol. 62, No. 3, Article 20, Publication date: June 2015.



New Strong Direct Product Results in Communication Complexity 20:13

Also

δk > S∞(X1Y 1||XY ) ≥ S(X1Y 1||XY ) (3.2)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S
(
(X1Y 1)d,u,xC ,yC ||(XY )d,u,xC ,yC

)
(from Part (2) of Fact 2.1)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S
(
Y 1

d,u,xC ,yC
|| Yd1,u1,xC ,yC ⊗ · · · ⊗ Ydk,uk,xC ,yC

)
(from Part (2) of Fact 2.1 and using the fact that XY is one-way for μ⊗k)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )

∑
i /∈C

S
((

Y 1
d,u,xC ,yC

)
i||Ydi ,ui

)
(from Part (2) of Fact 2.1)

=
∑
i /∈C

E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

Y 1
d,u,xC ,yC

)
i||Y ′

di ,ui

)
. (3.3)

From Eq. (3.1) and Eq. (3.3) and using Markov’s inequality we get a coordinate j outside
of C such that

(1) E(d,u,xC ,yC )←(DU X1
CY 1

C )S((X1
d,u,xC ,yC

) j ||X′
dj ,uj

) ≤ 2δ(c+1)
(1−δ) ≤ 4δc, and

(2) E(d,u,xC ,yC )←(DU X1
CY 1

C )S((Y 1
d,u,xC ,yC

) j ||Y ′
dj ,uj

) ≤ 2δ
(1−δ) ≤ 4δ.

Therefore,

4δc ≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

X1
d,u,xC ,yC

)
j ||X′

dj ,uj

)
= E(d− j ,u− j ,xC ,yC )←(D− jU− j X1

CY 1
C )E(dj ,uj )←(DjU j )| (D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )

S
((

X1
d,u,xC ,yC

)
j ||X′

dj ,uj

)
.

And,

4δ≥E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

Y 1
d,u,xC ,yC

)
j ||Y ′

dj ,uj

)
=E(d− j ,u− j ,xC ,yC )←(D− jU− j X1

CY 1
C )E(dj ,uj )←(DjU j )| (D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S

((
Y 1

d,u,xC ,yC

)
j ||Y ′

dj ,uj

)
.

Now using Markov’s inequality, there exists set G1 with Pr[D− jU− j X1
CY 1

C ∈ G1] ≥
1 − 0.2, such that for all (d− j, u− j, xC, yC) ∈ G1,

(3) E(dj ,uj )←(DjU j )| (D− jU− j X1
CY 1

C )=(d− j ,u− j ,xC ,yC )S((X1
d,u,xC ,yC

) j ||X′
dj ,uj

) ≤ 40δc, and
(4) E(dj ,uj )←(DjU j )| (D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S((Y 1

d,u,xC ,yC
) j ||Y ′

dj ,uj
) ≤ 40δ.

Fix (d− j, u− j, xC, yC) ∈ G1. Conditioning on Dj = 1 (which happens with probability
1/2) in inequality (3), we get,

Eyj←Y 1
j |(D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S

((
X1

d− j ,u− j ,yj ,xC ,yC

)
j ||X′

yj

) ≤ 80δc. (3.4)

Conditioning on Dj = 0 (which happens with probability 1/2) in inequality (4), we get

Exj←X1
j |(D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S

((
Y 1

d− j ,u− j ,xj ,xC ,yC

)
j ||Y ′

xj

) ≤ 80δ.

Using Part (3) of Fact 2.1 and concavity of square root, we get

Exj←X1
j |(D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )||

(
Y 1

d− j ,u− j ,xj ,xC ,yC

)
j − Y ′

xj
||t ≤

√
80δ. (3.5)

Let X2Y 2 be such that X2 ∼ (X1
d− j ,u− j ,xC ,yC

) j and (Y 2| X2 = xj) ∼ Y ′
xj

. From Eq. (3.5), we
get

||X2Y 2 − (
(X1Y 1)d− j ,u− j ,xC ,yC

)
j ||t ≤

√
80δ. (3.6)
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Note that the distribution ((X1Y 1)d− j ,u− j ,xC ,yC ) j is not necessarily one-way for μ. However,
by construction the distribution of X2Y 2 is one-way for μ. The following claim helps us
argue that rcmentμε (X2Y 2) < c. Its proof is deferred.

CLAIM 3.13.

Pr
(x,y)←X2Y 2

[
log

X2Y 2(x|y)
μ(x|y)

> c
]

≤ 200δ +
√

80δ < ε.

This implies, err f (X2Y 2) ≥ ε and therefore using Eq. (3.6) (and the assumption regard-
ing ε, δ),

err f
((

(X1Y 1)d− j ,u− j ,xC ,yC

)
j

) ≥ ε −
√

80δ ≥ 3ε

4
.

Note that conditioned on (Y 1
d− j ,u− j ,xC ,yC

) j , the distribution (X1Y 1)d− j ,u− j ,xC ,yC is product
across the X k and Yk parts (this is because of the conditioning on D). Due to this, Bob’s
inputs in coordinates other than j do not matter as far as the correctness of Bob’s
answer in the jth coordinate is concerned. Therefore,

Pr[Tj = 1| (1, d− j, u− j, xC, yC) = (T D− jU− j XCYC)] ≤ 1 − err f
((

(X1Y 1)d− j ,u− j ,xC ,yC

)
j

)
.

Therefore, overall

Pr[Tj = 1| (T = 1)] ≤ 0.8
(

1 − 3ε

4

)
+ 0.2 < 1 − ε/2.

We return to the proof of Claim 3.13.

PROOF OF CLAIM 3.13. The broad argument used in the proof is as follows. Let
X3Y 3 = ((X1Y 1)d− j ,u− j ,xC ,yC ) j . From Eq. (3.4) and Markov’s inequality, one can infer
that the desired statement is (roughly) true when X2Y 2 is replaced by X3Y 3. Since the
distributions X2Y 2 and X3Y 3 are close in total variation distance (from Eq. (3.5)) we
can conclude the desired statement. The details follow.

From Eq. (3.4), we have,

80δc ≥ Ey←Y 3 S
(
X3

y||X′
y

) = E(x,y)←X3Y 3 log
X3

y(x)

μ(x|y)
.

Using Fact 2.2 and Markov’s inequality on Claim 3.13, we get

161δ ≥ 80δc + 1
c/2 + 1/δ

≥ Pr
(x,y)←X3Y 3

[
log

X3
y(x)

μ(x|y)
>

c
2

+ 1
δ

]
. (3.7)

Now assume for contradiction that

200δ +
√

80δ < Pr
(x,y)←X2Y 2

[
log

X2
y(x)

μ(x|y)
> c

]
.

Using Eq. (3.6), we get

200δ < Pr
(x,y)←X3Y 3

[
log

X2
y(x)

μ(x|y)
> c

]
. (3.8)

Journal of the ACM, Vol. 62, No. 3, Article 20, Publication date: June 2015.



New Strong Direct Product Results in Communication Complexity 20:15

Using Eq. (3.7), Eq. (3.8), and since c ≥ 4/δ, we get

39δ < Pr
(x,y)←X3Y 3

[
log

X2
y(x)

X3
y(x)

>
c
2

− 1
δ

≥ 1
δ

]
.

Therefore, there exists a y such that

39δ < Pr
x←X3

y

[
log

X2
y(x)

X3
y(x)

>
1
δ

]
.

But this is not possible since both X2
y and X3

y are probability distributions.

We now ready to state and prove the main result of this section.

THEOREM 3.14 (STRONG DIRECT PRODUCT FOR ONE-WAY PUBLIC-COIN COMMUNICATION

COMPLEXITY). Let f ⊆ X × Y × Z be a relation. Let ε, δ be constants such that
0 < 4

√
80δ < ε/5 < 0.5 and k be a natural number. Let δ′ = (1 − ε/10)�δk� + 2−k.

Then,

R1,pub
1−δ′ ( f k) = �

(
k · (δ · R1,pub

ε ( f ) − O(1))
)
.

In other words,

R1,pub

1−2−�(ε3k)
( f k) = �

(
k · (

ε2 · R1,pub
ε ( f ) − O(1)

))
.

PROOF. Let μ1 be a distribution such that D1,μ1
ε ( f ) = R1,pub

ε ( f ). Let μ be a distribution
such that rcmentμ

ε/5,ε/5( f ) = rcmentε/5,ε/5( f ). Then,

δ · k · R1,pub
ε ( f ) = δ · k · D1,μ1

ε ( f )
= O(δ · k · rcmentε/5,ε/5( f )) (from Lemma 3.8)

= O
(
δ · k · rcmentμ

ε/5,ε/5( f )
)

= O
(
mentμ

k

1−(1−ε/10)�δk� ( f k) + k
)

(from Theorem 3.11)

= O
(
D1,μk

1−(1−ε/10)�δk�−2−k( f k) + k
)

(from Lemma 3.7)

= O
(
R1,pub

1−δ′ ( f k) + k
)
.

Hence, R1,pub
1−δ′ ( f k) = �(k · (δ · R1,pub

ε ( f ) − O(1))).

4. TWO-WAY COMMUNICATION

In this section, we discuss the two-way public-coin model. We begin with the necessary
definitions.

Definitions. Let f ⊆ X × Y × Z be a relation, μ, λ ∈ P(X × Y) be distributions and
ε > 0. Let XY ∼ μ and X1Y1 ∼ λ be random variables. Let S ⊆ Z. We abuse the
notation and define f (x, y) def= {z ∈ Z | (x, y, z) ∈ f }.

Definition 4.1 (Error of a Distribution). Error of distribution μ with respect to f
and answer in S, denoted err f,S(μ), is defined as

err f,S(μ) def= min
z∈S

{
Pr

(x,y)←μ
[(x, y, z) /∈ f ]

}
.

Let μ be the distribution of the inputs of Alice and Bob conditioned on a message
transcript in a two-way deterministic protocol. Then, if Alice and Bob give an answer
in S, they make error on at least err f,S(μ) fraction of the inputs.
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Definition 4.2 (Essentialness of an Answer Subset). Essentialness of answer in S for
f with respect to distribution μ, denoted essμ( f, S), is defined as

essμ( f, S) def= Pr
(x,y)←μ

[ f (x, y) ⊆ S].

essμ( f, S) represents the fraction of inputs according to μ for which every correct an-
swer must lie in S. For example, essμ( f,Z) = 1. Our direct product result is eventually
stated in terms of the conditional relative entropy bound (which we define subse-
quently) when the answers lie in S and the essentialness of S.

Here, we define one-way distributions again since we need to define them with respect
to both X and Y. The following two definitions were made in Jain et al. [2008].

Definition 4.3 (One-Way Distributions). λ is called one-way for μ with respect to X ,
if for all (x, y) in the support of λ we have μ(y|x) = λ(y|x). Similarly, λ is called one-way
for μ with respect to Y, if for all (x, y) in the support of λ, we have μ(x|y) = λ(x|y).

Definition 4.4 (SM-Like). λ is called SM-like (simultaneous-message-like) for μ, if
there is a distribution θ on X × Y such that θ is one-way for μ with respect to X and λ
is one-way for θ with respect to Y.

Let the inputs of Alice and Bob be distributed according to μ. Then note that con-
ditioned on any message transcript in a two-way deterministic protocol, the resulting
distribution on the inputs will be SM-like for μ.

The following two definitions are new to this work. Again, as in the case of crent,
these definitions are helpful in dealing with nonproduct distributions.

Definition 4.5 (Conditional Relative Entropy). The Y-conditional relative entropy of
λ with respect to μ, denoted crentμY (λ), is defined as

crentμY (λ) def= Ey←Y1 S((X1)y||Xy).

Similarly, the X -conditional relative entropy of λ with respect to μ, denoted crentμX (λ),
is defined as

crentμX (λ) def= Ex←X1 S((Y1)x||Yx).

Definition 4.6 (Conditional Relative Entropy Bound). The two-way ε-error condi-
tional relative entropy bound of f with answer in S with respect to distribution μ,
denoted crent2,μ

ε ( f, S), is defined as

crent2,μ
ε ( f, S) def= min

{
crentμX (λ) + crentμY (λ) | λ is SM-like for μ and err f,S(λ) ≤ ε

}
.

We use this definition as follows. Let λ be SM-like for μ and crentμX (λ) + crentμY (λ) <

crent2,μ
ε ( f, S). Then err f,S(λ) > ε.

The following bound is analogous to a bound defined in Jain et al. [2008] where
it was referred to as the two-way subdistribution bound. We call it differently here
for consistency of nomenclature with the other bounds. Jain et al. [2008] typically
considered the cases where S = Z or S is a singleton set.

Definition 4.7 (Relative min entropy Bound). The two-way ε-error relative min en-
tropy bound of f with answer in S with respect to distribution μ, denoted ment2,μ

ε ( f, S),
is defined as

ment2,μ
ε ( f, S) def= min

{
S∞(λ||μ)| λ is SM-like for μ and err f,S(λ) ≤ ε

}
.
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The following is easily seen from definitions and Part (2) of Fact 2.1.

LEMMA 4.8.

crentμX (λ) + crentμY (λ) ≤ 2 · S∞(λ||μ) and crent2,μ
ε ( f, S) ≤ 2 · ment2,μ

ε ( f, S).

The following lemma states that, when μ is a product distribution, then ment is upper
bounded by crent.

LEMMA 4.9. Let μ be a product distribution across X and Y. Then,

ment2,μ
ε ( f, S) = O

(
1
ε

(
crent2,μ

ε/2( f, S) + 1
))

.

PROOF. Let μ = μ1 ⊗ μ2, where μ1 ∈ X and μ2 ∈ Y. Let λ be a distribution such
that crentμX (λ) + crentμY (λ) = crent2,μ

ε/2( f, S); λ is SM-like for μ and err f,S(λ) ≤ ε/2. Since
λ is SM-like for μ, it is easily verified that λ is also a product distribution across X
and Y. Let λ = λ1 ⊗ λ2, where λ1 ∈ X and λ2 ∈ Y. Using Part (4), of Fact 2.1, we get
that there exists distributions λ′

1 and λ′
2 such that S∞(λ′

1||μ1) ≤ O( 1
ε
(S(λ1||μ1) + 1)),

S∞(λ′
2||μ2) ≤ O( 1

ε
(S(λ2||μ2)+1)), ||λ′

1−λ1||t ≤ ε
4 and ||λ′

2−λ2||t ≤ ε
4 . Let λ′ = λ′

1⊗λ′
2. Note

that λ′ is SM-like for μ. Since ||λ′ − λ||t ≤ ε
2 and err f,S(λ) ≤ ε/2, we have err f,S(λ′) ≤ ε.

Now,

S∞(λ′||μ) = S∞(λ′
1||μ1) + S∞(λ′

2||μ2) = O
(

1
ε

(S(λ1||μ1) + S(λ2||μ2) + 1)
)

= O
(

1
ε

(
crentμX (λ) + crentμY (λ) + 1

)) = O
(

1
ε

(
crent2,μ

ε/2( f, S) + 1
))

.

Therefore, ment2,μ
ε ( f, S) = O( 1

ε
(crent2,μ

ε/2( f, S) + 1)).

4.1. Strong Direct Product

We start with the following theorem.

THEOREM 4.10 (DIRECT PRODUCT IN TERMS OF ment AND crent). Let f ⊆ X ×Y ×Z be a
relation, μ ∈ P(X × Y) be a distribution and S ⊆ Z. Let 0 < ε < 1/3, 0 < 200δ < 1 and
k be a natural number. Fix z ∈ Zk. Let the number of indices i ∈ [k] with zi ∈ S be at
least δ1k . Assume crent2,μ

ε ( f, S) > 2. Then

ment2,μk

1−(1−ε/2)�δδ1k� ( f k, {z}) ≥ δ · δ1 · k · crent2,μ
ε ( f, S).

PROOF. Let c = crent2,μ
ε ( f, S). Let λ ∈ X k × Yk be a distribution which is SM-like for

μk and with S∞(λ||μk) < δδ1ck. We show that err f k,{z}(λ) ≥ 1 − (1 − ε/2)�δδ1k�. This shows
the desired.

We use similar notations as in the previous section. Let XY ∼ λ. For a coordinate i,
let the binary random variable Ti ∈ {0, 1}, correlated with XY , denote success in the
ith coordinate. That is, Ti = 1 iff XY = (x, y) such that (xi, yi, zi) ∈ f . Using Claim 4.11,
we get a sequence of coordinates i1, . . . , ik′ such that,

Pr[T1 × T2 × · · · × Tk = 1] ≤ Pr[Ti1 × Ti2 × · · · × Tik′ = 1] ≤ (1 − ε/2)k′
.
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CLAIM 4.11. Let k′ = �δδ1k�. There exists k′ distinct coordinates i1, . . . , ik′ such that
Pr[Ti1 = 1] ≤ 1 − ε/2 and for each r < k′,

(1) either Pr[Ti1 × Ti2 × · · · × Tir = 1] ≤ (1 − ε/2)k′
,

(2) or Pr[Tir+1 = 1| (Ti1 × Ti2 × · · · × Tir = 1)] ≤ 1 − ε/2.

PROOF. Let us say we have identified r < k′ coordinates i1, . . . ir. Let C = {i1, i2, . . . , ir}.
Let T = T1 × T2 × · · · × Tr . If Pr[T = 1] ≤ (1 − ε/2)k′

, then we will be done. So assume
that Pr[T = 1] > (1 − ε/2)k′ ≥ 2−δδ1k. Let X′Y ′ ∼ μ. Let X1Y 1 = XY |(T = 1). Let D
be uniformly distributed in {0, 1}k and independent of X1Y 1. Let Ui = X1

i if Di = 0
and Ui = Y 1

i if Di = 1. Let U = U1 · · ·Uk. Here, for any random variable X̃Ỹ , we let
X̃Ỹd,u, represent the random variable obtained by following conditioning on X̃Ỹ : for all
i, X̃i = ui if di = 0, otherwise Ỹi = ui if d = 1 . Let I be the set of indices i such that
zi ∈ S.

The following are similar to the calculations performed in the one-way case. They
help us identify a coordinate i outside C in which the marginal distribution, even
conditioned on success on C, is close to μ, this time in terms of the conditional min-
entropy bound. This helps us argue that the success in that coordinate, even conditioned
on success on C, is bounded away from 1. Consider,

δδ1k + δδ1ck

> S∞(X1Y 1||XY ) + S∞(XY ||(X′Y ′)⊗k)

≥ S∞(X1Y 1||(X′Y ′)⊗k) ≥ S(X1Y 1||(X′Y ′)⊗k)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S((X1Y 1)d,u,xC ,yC ||((X′Y ′)⊗k)d,u,xC ,yC ) (from Part (2) of Fact 2.1)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S(X1
d,u,xC ,yC

||X′
d1,u1,xC ,yC

⊗ · · · ⊗ X′
dk,uk,xC ,yC

) (from Part (2) of

Fact 2.1)

≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )

∑
i /∈C,i∈I

S
((

X1
d,u,xC ,yC

)
i||X′

di ,ui

)
(from Part (2) of Fact 2.1)

=
∑

i /∈C,i∈I

E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

X1
d,u,xC ,yC

)
i||X′

di ,ui

)
. (4.1)

Similarly,

δδ1k + δδ1ck >
∑

i /∈C,i∈I

E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

Y 1
d,u,xC ,yC

)
i||Y ′

di ,ui

)
. (4.2)

From Eq. (4.1) and Eq. (4.2) and using Markov’s inequality, we get a coordinate j
outside of C but in I such that

(1) E(d,u,xC ,yC )←(DU X1
CY 1

C )S((X1
d,u,xC ,yC

) j ||X′
dj ,uj

) ≤ 2δ(c+1)
(1−δ) ≤ 4δc, and

(2) E(d,u,xC ,yC )←(DU X1
CY 1

C )S((Y 1
d,u,xC ,yC

) j ||Y ′
dj ,uj

) ≤ 2δ(c+1)
(1−δ) ≤ 4δc.

Therefore,

4δc ≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

X1
d,u,xC ,yC

)
j ||X′

dj ,uj

)
= E(d− j ,u− j ,xC ,yC )←(D− jU− j X1

CY 1
C )E(dj ,uj )←(DjU j )| (D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )

S((X1
d,u,xC ,yC

) j ||X′
dj ,uj

).
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And,

4δc ≥ E(d,u,xC ,yC )←(DU X1
CY 1

C )S
((

Y 1
d,u,xC ,yC

)
j ||Y ′

dj ,uj

)
= E(d− j ,u− j ,xC ,yC )←(D− jU− j X1

CY 1
C )E(dj ,uj )←(DjU j )| (D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )

S
((

Y 1
d,u,xC ,yC

)
j ||Y ′

dj ,uj

)
.

Now, using Markov’s inequality, there exists set G1 with Pr[D− jU− j X1
CY 1

C ∈ G1] ≥
1 − 0.2, such that for all (d− j, u− j, xC, yC) ∈ G1,

E(dj ,uj )←(DjU j )| (D− jU− j X1
CY 1

C )=(d− j ,u− j ,xC ,yC )S
((

X1
d,u,xC ,yC

)
j ||X′

dj ,uj

) ≤ 40δc, (4.3)

E(dj ,uj )←(DjU j )| (D− jU− j X1
CY 1

C )=(d− j ,u− j ,xC ,yC )S
((

Y 1
d,u,xC ,yC

)
j ||Y ′

dj ,uj

) ≤ 40δc. (4.4)

Fix (d− j, u− j, xC, yC) ∈ G1. Conditioning on Dj = 1 (which happens with probability
1/2) in Eq. (4.3), we get

Eyj←Y 1
j |(D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S

((
X1

d− j ,u− j ,yj ,xC ,yC

)
j ||X′

yj

) ≤ 80δc. (4.5)

Conditioning on Dj = 0 (which happens with probability 1/2) in Eq. (4.4), we get

Exj←X1
j |(D− jU− j X1

CY 1
C )=(d− j ,u− j ,xC ,yC )S

((
Y 1

d− j ,u− j ,xj ,xC ,yC

)
j ||Y ′

xj

) ≤ 80δc. (4.6)

Let X2Y 2 = ((X1Y 1)d− j ,u− j ,xC ,yC ) j . Note that conditioned on (d− j, u− j, xC, yC), the dis-
tribuition of X1Y 1 is independent across Alice and Bob in all other coordinates except
j, so the inputs in coordinates other than j serve as private coins for Alice and Bob.
Hence, X2Y 2 is SM-like for μ. From Eq. (4.5) and Eq. (4.6), we get that

crentμX (X2Y 2) + crentμY (X2Y 2) < c.

Hence, err f,{z}(((X1Y 1)d− j ,u− j ,xC ,yC ) j) ≥ ε. This implies,

Pr[Tj = 1| (1, d− j, u− j, xC, yC) = (T D− jU− j XCYC)] ≤ 1 − ε.

Therefore, overall

Pr[Tj = 1| (T = 1)] ≤ 0.8(1 − ε) + 0.2 ≤ 1 − ε/2.

We can now state and prove the main result of this section.

THEOREM 4.12 (DIRECT PRODUCT IN TERMS OF D AND crent). Let f ⊆ X × Y × Z be a
relation, μ ∈ P(X × Y) be a distribution and S ⊆ Z. Let 0 < ε < 1/3 and k be a natural
number. Let δ2 = essμ( f, S). Let 0 < 200δ < δ2. Let δ′ = 3(1 − ε/2)�δδ2k/2�. Then,

D2,μk

1−δ′ ( f k) ≥ δ

2
· δ2 · k · crent2,μ

ε ( f, S) − k.

PROOF. Let crent2,μ
ε ( f, S) = c. For input (x, y) ∈ X k × Yk, let b(x, y) be the number of

indices i in [k] for which there exists zi /∈ S such that (xi, yi, zi) ∈ f . Let

B = {
(x, y) ∈ X k × Yk| b(x, y) ≥ (1 − δ2/2)k

}
.

By Chernoff ’s inequality, we get

Pr
(x,y)←μk

[(x, y) ∈ B] ≤ exp(−δ2
2k/2).

Let P be a protocol for f k with inputs XY ∼ μk and communication at most d =
(kcδδ2/2) − k bits. Let M ∈ M represent the message transcript of P. Let

B1 = {
m ∈ M| Pr[(XY )m ∈ B] ≥ exp

( − δ2
2k/4

)}
.
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Then, Pr[M ∈ B1] ≤ exp(−δ2
2k/4). Let

B2 = {m ∈ M| Pr[M = m] ≤ 2−d−k}.
Then, Pr[M ∈ B2] ≤ 2−k. Fix m /∈ B1 ∪ B2. Let zm be the output of P when M = m. Let
b(zm) be the number of indices i such that zm,i /∈ S. If b(zm) ≥ (1 − δ2/2)k, then success
of P when M = m is at most exp(−δ2

2k/4) ≤ (1 − ε/2)�δδ2k/2�. If b(zm) < (1 − δ2/2)k, then
from Theorem 4.10 (by setting z = zm and δ1 = δ2/2), success of P when M = m is at
most (1 − ε/2)�δδ2k/2�. Therefore, overall success probability of P is at most

2−k + exp
( − δ2

2k/4
) + (

1 − 2−k − exp
( − δ2

2k/4
))

(1 − ε/2)�δδ2k/2� ≤ 3(1 − ε/2)�δδ2k/2�.

We point that when μ is a product distribution, this result and Lemma 4.9 imply the
direct product result, using ment2,μ

ε ( f, S), of Jain et al. [2008].

5. STRONG DIRECT PRODUCT FOR SET DISJOINTNESS

In this section, we present an application of Theorem 4.12 to show a strong direct prod-
uct result for the two-way public-coin communication complexity of the set-disjointness
function. For a string x ∈ {0, 1}n, we let x also represent the subset of [n] for which x is
the characteristic vector. The set disjointness function disjn : {0, 1}n × {0, 1}n → {0, 1} is
defined as disjn(x, y) = 1 iff the subsets x and y do not intersect.

THEOREM 5.1 (STRONG DIRECT PRODUCT FOR SET DISJOINTNESS). Let k be a natural num-
ber. Then, R2,pub

1−2−�(k) (disjkn) = �(k · n).

PROOF. We assume n = 4l − 1 (for some integer l) and show our result. This implies
our result for all n (since we use � in our result). Let T = (T1, T2, I) be a uniformly
random partition of [n] into three disjoint sets such that |T1| = |T2| = 2l−1 and |I| = 1.
Conditioned on T = t = (t1, t2, {i}), let X be a uniformly random subset of t1 ∪ {i} and Y
be a uniformly random subset of t2 ∪ {i}. Note that X ↔ T ↔ Y is a Markov chain. It
is easily seen that essXY (disjn, {1}) = 0.75. Therefore, using Theorem 4.12, Lemma 5.2
and Lemma 2.5 (Yao principle) we conclude the desired,

R2,pub
1−2−�(k)

(
disjkn

) = �(k · n).

LEMMA 5.2. crent2,XY
1/20 (disjn, {1}) = �(n).

PROOF. Our proof follows broadly on the lines as the proof of Razborov [1992] showing
linear lower bound on the rectangle bound for set-disjointness (see, e.g., Kushilevitz
and Nisan [1997, Lemma 4.49]). However, there are important differences. The first
difference is that we not only have to argue about distributions conditioned on rectan-
gles but also about the more general SM-like distributions. The second very important
difference is that we cannot assume that the distribution (for which we have to show
error) has high relative min-entropy with XY , which was the assumption under which
Razborov’s proof worked. We are working with a much weaker quantity crent and
hence we cannot afford to even ignore events with exponentially small probability,
which Razborov’s proof could. Due to this, the exact technical lemmas that we use and
their proofs differ significantly from Razborov’s work.

The broad argument works as follows: Consider a distribution λ such that crentXY (λ)
is small. We divide λ into a convex combination of several product (across Alice and Bob)
distributions. We are able to argue that for most of these (“good”) distributions, entropy
of Alice’s input and Bob’s input is still sufficiently high and since these are product
distributions this implies that the probability of Alice and Bob’s inputs intersecting is
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sufficiently high. A large part of the technical argument goes in showing that not much
probability is lost in “not good” distributions. The details follow.

Let δ = 1/(200)3. Let X′Y ′ be such that crentXY
X (X′Y ′) + crentXY

Y (X′Y ′) ≤ δn and X′Y ′
is SM-like for XY . We will show that errdisjn,{1}(X′Y ′) = Pr[disjn(X′Y ′) = 0] > 1/20. This
will show the desired. We assume that Pr[disjn(X′Y ′) = 1] ≥ 0.5 otherwise we are done
already. Let A, B ∈ {0, 1} be binary random variables such that A ↔ X ↔ Y ↔ B
and X′Y ′ = (XY | A = B = 1). We argue existence of such A, B as follows. Let X′Y
be a distribution which is one-way (with respect to X ) for XY and X′Y ′ is one-way
(with respect to Y) for X′Y . Let X′′Y be a distribution on X × Y and p ∈ [0, 1] be such
that XY = pX′Y + (1 − p)X′′Y . Define correlated random variable A ∈ {0, 1} such that
X′Y = (XY | A = 1) and X′′Y = (XY | A = 0). Note that since X′Y is one-way for XY with
respect to X , so is X′′Y . Hence A ↔ X ↔ Y . Similarly, we can argue the existence of B
using the fact that X′Y ′ is one-way (with respect to Y) for X′Y .

Recall that in our notation Xt2 = (X| T2 = t2) and so on. Define

(1) B1
x = {t2| S(X′

t2 ||Xt2 ) > 100δn}, B1
y = {t1| S(Y ′

t1 ||Yt1 ) > 100δn};
(2) B2

x = {t = (t1, t2, i) | S((X′
t)i||(Xt)i) > 0.01}, B2

y = {t = (t1, t2, i) | S((Y ′
t )i||(Yt)i) > 0.01};

(3) Bad1
x (T ) = 1 iff T2 ∈ B1

x, otherwise 0. Bad1
y (T ) = 1 iff T1 ∈ B1

y otherwise 0;
(4) Bad2

x (T ) = 1 iff T ∈ B2
x, otherwise 0. Bad2

y (T ) = 1 iff T ∈ B2
y otherwise 0.

Note that if t /∈ B2
y then S((Y ′

t )i||(Yt)i) ≤ 0.01. This implies (using Part (3) of Fact 2.1)
||(Y ′

t )i − (Yt)i)||t ≤ 0.1. Recall that (Yt)i is uniformly distributed in {0, 1}. This implies

0.45 ≤ Pr[Yi = 1| B = 1, T = t]
⇒ 0.45 Pr[B = 1| T = t] ≤ Pr[Yi = 1, B = 1| T = t]. (5.1)

Similarly for t /∈ B2
x we have 0.45 Pr[A = 1| T = t] ≤ Pr[Xi = 1, A = 1| T = t].

The following three claims show that we do not loose much probability when T is
bad.

CLAIM 5.3.

(1) Pr[A = B = 1, T2 ∈ B1
x] < 1

100 Pr[A = B = 1].
(2) Pr[A = B = 1, T1 ∈ B1

y] < 1
100 Pr[A = B = 1].

(3) Let t2 /∈ B1
x, then Pr[T ∈ B2

x| T2 = t2] < 1
100 .

(4) Let t1 /∈ B1
y, then Pr[T ∈ B2

y| T1 = t1] < 1
100 .

PROOF. We show Part (1) and Part (2) follows similarly. Let T ′ = (T | A = B = 1). Here,
the second equality follows since ∀(x, y) : (T | XY = (x, y)) is identically distributed as
(T ′| X′Y ′ = (x, y))) and using Part (2) of Fact 2.1. Consider,

δn ≥ crentXY
Y (X′Y ′) = Ey←Y ′ S(X′

y||Xy)

= Ey←Y ′ S((X′T ′)y||(XT )y)
≥ E(y,t)←(Y ′T ′)S(X′

y,t||Xy,t) (from Part (2) of Fact 2.1)

= Et←T ′ S(X′
t||Xt) (since X ↔ T ↔ Y and X′ ↔ T ′ ↔ Y ′ are Markov chains)

= Et2←T ′
2
S(X′

t2 ||Xt2 ).

Here, the last equality follows since for all t = (t1, t2, {i}), Xt2 is identically distributed
as Xt and similarly X′

t2 is identically distributed as X′
t. Therefore, using Markov’s in-
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equality,

1
100

> Pr[T ′
2 ∈ B1

x] = Pr[T2 ∈ B1
x| A = B = 1] = Pr[T2 ∈ B1

x, A = B = 1]
Pr[A = B = 1]

.

We show Part (3) and Part (4) follows similarly. Fix t2 /∈ B1
x. Then, using Part (2) of

Fact 2.1 (recall that in our notation Xi represents the ith bit of X and so on),

100δn ≥ S(X′
t2 ||Xt2 ) ≥

∑
i /∈t2

S((X′
t2 )i||(Xt2 )i).

Let R = {i /∈ t2| S((X′
t2 )i||(Xt2 )i) > 0.01}. This inequality and the choice of δ implies

|R| ≤ n/800. Now i /∈ R ∪ t2 implies t = (t1, t2, {i}) /∈ B2
x. Hence,

Pr
[
T ∈ B2

x| T2 = t2
] ≤ Pr[i ∈ R| T2 = t2] = |R|

2l
<

1
100

.

CLAIM 5.4.

(1)

Et=(t1,t2,{i})←T Pr[A = B = 1, Yi = 0 | T = t]Bad1
x (t) ≤ 2

100
Pr[A = B = 1, disjn(XY ) = 1].

(2)

Et=(t1,t2,{i})←T Pr[A = B = 1, Xi = 0 | T = t]Bad1
y (t) ≤ 2

100
Pr[A = B = 1, disjn(XY ) = 1].

(3) Fix t2 /∈ B1
x. Let Tt2 = (T | T2 = t2). Then

Et=(t1,t2,{i})←Tt2
Pr[A = B = 1, Yi = 0| T = t]Bad2

x (t)

≤ 1
100

Et=(t1,t2,{i})←Tt2
Pr[A = B = 1, disjn(XY ) = 1| T = t].

(4) Fix t1 /∈ B1
y. Let Tt1 = (T | T1 = t1). Then

Et=(t1,t2,{i})←Tt1
Pr[A = B = 1, Xi = 0| T = t]Bad2

y (t)

≤ 1
100

Et=(t1,t2,{i})←Tt1
Pr[A = B = 1, disjn(XY ) = 1| T = t].

PROOF. We show Part (1) and Part (2) follows similarly. Consider,

Et=(t1,t2,{i})←T Pr[A = 1, B = 1, Yi = 0| T = t]Bad1
x (t)

≤ Et=(t1,t2,{i})←T Pr[A = B = 1| T = t]Bad1
x (t)

= Pr[A = B = 1, T2 ∈ B1
x]

≤ 1
100

Pr[A = B = 1] (from Part (1) of Claim 5.3)

≤ 2
100

Pr[A = B = 1, disjn(XY ) = 1]. (since Pr[disjn(X′Y ′) = 1] ≥ 0.5).

We show Part (3) and Part (4) follows similarly. Note that

(1) Pr[B = 1| Yi = 0, T = (t1, t2, {i})] is independent of i for fixed t2. Let us call it c(t2);
(2) Pr[A = 1| T = (t1, t2, {i})] is independent of i for fixed t2. Let us call it r(t2).
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Fix t2 /∈ B1
x. Consider,

Et=(t1,t2,{i})←Tt2
Pr[A = 1, B = 1, Yi = 0| T = t]Bad2

x (t)

= Et=(t1,t2,{i})←Tt2

1
2

· Pr[A = 1| T = t] Pr[B = 1| Yi = 0, T = t]Bad2
x (t)

= c(t2)r(t2)
2

Et=(t1,t2,{i})←Tt2
Bad2

x (t)

≤ 2
100

c(t2)r(t2) (from Part (3) of Claim 5.3)

= 2
100

Et=(t1,t2,{i})←Tt2
Pr[A = 1| T = t] Pr[B = 1| Yi = 0, T = t]

= 1
100

Et=(t1,t2,{i})←Tt2
Pr[A = 1, B = 1, Yi = 0| T = t]

≤ 1
100

Et=(t1,t2,{i})←Tt2
Pr[A = B = 1, disjn(XY ) = 1| T = t].

In this claim, ∨ represents the logical OR.

CLAIM 5.5. For any t = (t1, t2, i)

Pr[A = B = 1, disjn(XY ) = 1 | T = t]
(
Bad2

x (t) ∨ Bad2
y (t)

)
≤ 3 Pr[A = B = 1, Xi = 0 | T = t]Bad2

y (t) + 3 Pr[A = B = 1, Yi = 0 | T = t]Bad2
x (t).

This implies using Claim 5.4.

Et=(t1,t2,{i})←T Pr[A = B = 1, disjn(XY ) = 1 | T = t]
(
Bad2

x (t) ∨ Bad2
y (t)

)
≤ 18

100
Et=(t1,t2,{i})←T Pr[A = B = 1, disjn(XY ) = 1 | T = t].

PROOF. The claim is obvious when Bad2
x (t) = Bad2

y (t) = 0. Consider the case when
Bad2

x (t) = Bad2
y (t) = 1. Then,

Pr[A = B = 1, disjn(XY ) = 1 | T = t](Bad2
x (t) ∨ Bad2

y (t))

≤ (Pr[A = B = 1, Xi = 0 | T = t] + Pr[A = B = 1, Yi = 0 | T = t])(Bad2
x (t) ∨ Bad2

y (t))

= Pr[A = B = 1, Xi = 0 | T = t]Bad2
y (t) + Pr[A = B = 1, Yi = 0 | T = t]Bad2

x (t).

Consider the case Bad2
x (t) = 1 and Bad2

y (t) = 0 (the case Bad2
x (t) = 0 and Bad2

y (t) = 1 is
similar). In this case, Pr[Yi = 0 | B = 1, T = t] ≥ 0.45. Then,

Pr[A = B = 1, disjn(XY ) = 1 | T = t](Bad2
x (t) ∨ Bad2

y (t))

= Pr[A = B = 1, disjn(XY ) = 1 | T = t]Bad2
x (t)

≤ Pr[A = B = 1 | T = t]Bad2
x (t)

= Pr[A = 1 | T = t] Pr[B = 1 | T = t]Bad2
x (t)

≤ 1
0.45

Pr[A = 1 | T = t] Pr[B = 1, Yi = 0 | T = t]Bad2
x (t)

= 1
0.45

Pr[A = B = 1, Yi = 0 | T = t]Bad2
x (t).
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We can now finally prove our lemma. Define Bad(t) = Bad2
x (t) ∨ Bad2

y (t).

Pr[A = B = 1, disjn(XY ) = 1]

≤ 100
82

Et=(t1,t2,{i})←T Pr[A = B = 1, disjn(XY ) = 1 | T = t](1 − Bad(t)) (using Claim 5.5)

≤ 100
82

Et=(t1,t2,{i})←T Pr[A = B = 1 | T = t](1 − Bad(t))

= 100
82

Et=(t1,t2,{i})←T Pr[A = 1 | T = t] Pr[B = 1 | T = t](1 − Bad(t))

≤ 100
82(0.45)2 Et=(t1,t2,{i})←T Pr[A = 1, Xi = 1 | T = t] Pr[B = 1, Yi = 1 | T = t](1 − Bad(t))

(using Eq. (5.1) and the statement after it)

= 100
82(0.45)2 Et=(t1,t2,{i})←T Pr[A = B = 1, disjn(XY ) = 0 | T = t](1 − Bad(t))

≤ 100
82(0.45)2 Pr[A = B = 1, disjn(XY ) = 0].

This implies (recall that Pr[disjn(X′Y ′) = 1] ≥ 0.5),

Pr[disjn(X′Y ′) = 0] = Pr[disjn(XY ) = 0| A = B = 1]

= Pr[disjn(XY ) = 0, A = B = 1]
Pr[A = B = 1]

≥ 82(0.45)2

100
· Pr[disjn(XY ) = 1, A = B = 1]

Pr[A = B = 1]

= 82(0.45)2

100
· Pr[disjn(X′Y ′) = 1] >

1
20

.

Conclusion. In this work, we present the first generic strong direct product results
holding of all relations for the one-way public-coin communication complexity and in
terms of a lower bound method for the two-way public-coin communication complex-
ity. As we mentioned in the Introduction, several subsequent works have followed,
using and further developing ideas from our work and strengthening our results; the
latest being a strong direct product result in terms of (internal) information complex-
ity [Braverman and Weinstein 2014]. We hope that the ideas and techniques from our
work are helpful in reaching an important final goal in this research area, that is in
settling the strong direct product conjecture for the two-way public-coin communication
complexity of all relations. As intermediate open questions, we can ask if a strong direct
product result can be shown in terms of other lower bound methods, for example, the
partition bound [Jain and Klauck 2010] and the public-coin partition bound [Jain et al.
2014], the latter has been shown to be quadratically tight for the two-way public-coin
communication complexity for all relations.

APPENDIX

A. DEFERRED PROOF

PROOF OF LEMMA 2.4 First we obtain a public-coin protocol P ′ from protocol P. In P ′,
Alice on input x and Bob on input y proceed as follows. Let the set U be the support
of M. Alice and Bob, using public coins, obtain a sequence {ai}∞i=1 = {(ui, pi)}∞i=1, where
each ai is drawn uniformly and independently from U × [0, 1]. They, using public coins,
also obtain a sequence of random functions {hi : U → {0, 1}}m

i=1 (m = c + �log 2
δ
�) such
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that for every u = u′ (u, u′ ∈ U) and for every i ∈ [m], we have Pr[hi(u) = hi(u′)] = 1
2 . Let

P = (M| X = x) and Q = (M| Y = y). Let

A = {(u, p)| p ≤ P(u)} and B = {(u, p)| p ≤ 2c · Q(u)},
be subsets of U × [0, 1]. Let aj be the first point in the sequence {ai}∞i=1 = {(ui, pi)}∞i=1
such that aj ∈ A. Let k = � j

|U | �. If k > �log 2
δ
�, then Alice sends 1 to Bob, otherwise she

sends the binary encoding of k to Bob. Note that, for any n (assuming |U | > 1),

Pr[k > n] = Pr[ai /∈ A for i = 1, . . . , n · |U |] = (1 − 1/|U |)|U |·n < e−n.

Therefore,

Pr
[
k >

⌈
log

2
δ

⌉]
< e−�log 2

δ
� ≤ δ/2.

Alice also sends to Bob hi(uj) for all i ∈ [m]. Hence, overall communication from Alice
to Bob c+ O(log 1/δ). Bob checks if there is an ar = (ur, pr) (in the sequence {ai}∞i=1) such
that

(1) r ∈ {(k − 1) · |U | + 1, . . . , k · |U |},
(2) ar ∈ B, and
(3) hi(ur) = hi(uj) for all i ∈ [m].

If there exists more than one such point, then Bob takes the first such point. If there
is no such point then Bob assumes r = 1. Bob then proceeds as in P assuming the
message in P from Alice is ur. It is easily seen that the distribution of uj is exactly P.
Hence,

Pr[ Bob’s output is incorrect in P ′ on input (x, y) ]
≤ Pr[ Bob’s output is incorrect in P on input (x, y) ] + Pr[r = j].

Note that

Pr
[
r = j| uj ∈ B, k ≤

⌈
log

2
δ

⌉]
≤ |U | · 2c

|U | · 2−m ≤ δ/2.

Now,

Pr[r = j] = Pr
[
k ≤

⌈
log

2
δ

⌉]
· Pr

[
r = j| k ≤

⌈
log

2
δ

⌉]

+ Pr
[
k >

⌈
log

2
δ

⌉]
· Pr

[
r = j| k >

⌈
log

2
δ

⌉]

≤ δ/2 + Pr
[
r = j| k ≤

⌈
log

2
δ

⌉]

= δ/2 + Pr
[
aj ∈ B| k ≤

⌈
log

2
δ

⌉]
· Pr

[
r = j| aj ∈ B, k ≤

⌈
log

2
δ

⌉]

+ Pr
[
aj /∈ B| k ≤

⌈
log

2
δ

⌉]
· Pr

[
r = j| aj /∈ B, k ≤

⌈
log

2
δ

⌉]

≤ δ + Pr
[
aj /∈ B| k ≤

⌈
log

2
δ

⌉]
= δ + Pr[aj /∈ B].
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Note that, from Eq. (2.1), expectation over (x, y) ← XY of Pr[aj /∈ B] is at most δ. Hence,
overall,

Pr[Bob errs in P ′] ≤ Pr[Bob errs in P] + 2δ.

Here the probability is taken over the inputs and coins used in the protocols. Now by
fixing the public-coins in P ′ (so that the average error over the inputs is minimized),
we get a deterministic one-way protocol P1 with distributional error (over the inputs)
at most ε + 2δ and communication at most c + O(log 1

δ
).
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