
49

Shared-Memory Optimizations for Inter-Virtual-Machine
Communication

YI REN, National University of Defense Technology
LING LIU and QI ZHANG, Georgia Institute of Technology
QINGBO WU, JIANBO GUAN, JINZHU KONG, HUADONG DAI, and LISONG SHAO,
National University of Defense Technology

Virtual machines (VMs) and virtualization are one of the core computing technologies today. Inter-VM com-
munication is not only prevalent but also one of the leading costs for data-intensive systems and applications
in most data centers and cloud computing environments. One way to improve inter-VM communication ef-
ficiency is to support coresident VM communication using shared-memory-based methods and resort to the
traditional TCP/IP for communications between VMs that are located on different physical machines. In
recent years, several independent kernel development efforts have been dedicated to improving communica-
tion efficiency between coresident VMs using shared-memory channels, and the development efforts differ
from one another in terms of where and how the shared-memory channel is established. In this article,
we provide a comprehensive overview of the design choices and techniques for performance optimization
of coresident inter-VM communication. We examine the key issues for improving inter-VM communication
using shared-memory-based mechanisms, such as implementation choices in the software stack, seamless
agility for dynamic addition or removal of coresident VMs, and multilevel transparency, as well as advanced
requirements in reliability, security, and stability. An in-depth comparison of state-of-the-art research ef-
forts, implementation techniques, evaluation methods, and performance is conducted. We conjecture that
this comprehensive survey will not only provide the foundation for developing the next generation of inter-VM
communication optimization mechanisms but also offers opportunities to both cloud infrastructure providers
and cloud service providers and consumers for improving communication efficiency between coresident VMs
in virtualized computing platforms.

CCS Concepts: � Software and its engineering → Communications management; � Software and its
engineering → Virtual machines; � Networks → Network protocol design; � Networks → Cloud computing

Additional Key Words and Phrases: Residency aware, inter-virtual-machine communication, shared memory,
seamless agility, multilevel transparency

The authors from NUDT were supported by grants from the National Nature Science Foundation of China
(NSFC) under grant NO. 60603063 and the Young Excellent Teacher Researching and Training Abroad
Program of China Scholarship Council (CSC); the author from Georgia Tech is partially supported by the
USA NSF CISE NetSE program, the SaTC program, the IUCRC FRP program, and a grant from Intel ISTC
on Cloud Computing.
An earlier version of this article appeared in the Proceedings of the IEEE 6th International Conference
on Cloud Computing. June 27–July 2, 2013, Santa Clara, CA, titled “Residency-Aware Virtual Machine
Communication Optimization: Design Choices and Techniques.”
Authors’ addresses: Y. Ren (corresponding author), Q. Wu, J. Guan, J. Kong, H. Dai, and L. Shao, College
of Computer Science, National University of Defense Technology, 47 Yanwachi St., Changsha 410073, Hu-
nan, P. R. China; emails: {renyi, wqb123, guanjb}@nudt.edu.cn, kongjinzhu@gmail.com, hddai@vip.163.com,
lsshao@vip.sina.com; L. Liu, 3340 Klaus Advanced Computing Building (KACB), Georgia Tech, 266 Ferst
Dr, Atlanta, GA 30332-0765 USA; email: lingliu@cc.gatech.edu; Q. Zhang, 3319 Klaus Advanced Computing
Building (KACB), Georgia Tech, 266 Ferst Dr, Atlanta, GA 30313; email: qzhang90@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/02-ART49 $15.00
DOI: http://dx.doi.org/10.1145/2847562

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

http://dx.doi.org/10.1145/2847562

49:2 Y. Ren et al.

ACM Reference Format:
Yi Ren, Ling Liu, Qi Zhang, Qingbo Wu, Jianbo Guan, Jinzhu Kong, Huadong Dai, and Lisong Shao. 2016.
Shared-memory optimizations for inter virtual machine communication. ACM Comput. Surv. 48, 4, Article 49
(February 2016), 42 pages.
DOI: http://dx.doi.org/10.1145/2847562

1. INTRODUCTION

Virtual machines (VMs) are the creations of hardware virtualization. Unlike physical
machines, software running on virtual machines is separated from the underlying
hardware resources. Virtual machine monitor (VMM or hypervisor) technology enables
a physical machine to host multiple guest VMs on the same hardware platform. As a
software entity, VMM runs at the highest system privilege level and coordinates with a
trusted VM, called the host domain (Dom0) or host OS, to enforce isolation across VMs
residing on a physical machine. Each of the VMs is running on a guest domain (DomU)
with its own operating system (guest OS). To date, VMM-based solutions have been
widely adopted in many data centers and cloud computing environments [Armbrust
et al. 2010; Gurav and Shaikh 2010; Younge et al. 2011; Anderson et al. 2013].

1.1. Problems of Coresident VM Communication and Related Work

It is well known that the VMM technology benefits from two orthogonal and yet com-
plementary design choices. First, VMM technology enables VMs residing on the same
physical machine to share resources through time slicing and space slicing. Second,
VMM technology introduces host-neutral abstraction, which treats all VMs as inde-
pendent computing nodes regardless of whether these VMs are located on the same
host machine or different hosts.

Although VMM technology offers significant benefits in terms of functional isolation
and performance isolation, live-migration-enabled load balance, fault tolerance, porta-
bility of applications, and higher resource utilization, both design choices carry some
performance penalties. First, VMM offers significant advantages over native machines
when VMs coresident on the same physical machine are not competing for comput-
ing and communication resources. However, when coresident VMs are competing for
resources under high workload demands, the performance of those coresident VMs is
degraded significantly compared to the performance of the native machine, due to the
high overheads of switches and events in host/guest domain and VMM [Pu et al. 2012;
Mei et al. 2013]. Furthermore, different patterns of high workload demands may have
different impacts on the performance of VM executions [Wang et al. 2011; Imai et al.
2013]. Second, several research projects [Huang et al. 2007; Huang 2008; Kim et al.
2008; Wang et al. 2008b; Radhakrishnan and Srinivasan 2008; Ren et al. 2012] have
demonstrated that even when the sender VM and receiver VM reside on the same phys-
ical machine, the overhead of shipping data between coresident VMs can be as high as
the communication cost between VMs located on separate physical machines. This is
because the abstraction of VMs supported by VMM technology does not differentiate
between whether the data request is coming from the VMs residing on the same phys-
ical machine or from the VMs located on a different physical machine. Concretely, the
Linux guest domain shows lower network performance than native Linux [Menon et al.
2006; Liu et al. 2006; SANTOS et al. 2008; YEHUDA et al. 2006; RUSSELL 2008; Li
et al. 2010] when an application running on a VM communicates with another VM. Kim
et al. [2008] should that with copying mode in Xen 3.1, the inter-VM communication
performance is enhanced but still significantly lagging behind compared to the perfor-
mance on native Linux, especially for VMs residing on the same physical machine.

The two main reasons for the performance degradation of coresident VM communi-
cation are [Wang 2009] (1) long communication data path through the TCP/IP network
stack [Kim et al. 2008; Wang et al. 2008b; Ren et al. 2012] and (2) lack of communication

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

http://dx.doi.org/10.1145/2847562

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:3

awareness in CPU scheduler and absence of real-time inter-VM interactions [Govindan
et al. 2007; Kim et al. 2009; Ongaro et al. 2008]. The first category of solutions to im-
prove the performance of inter-VM communication is to use a shared-memory channel
mechanism for communication between coresident VMs to improve both communica-
tion throughput and latency [Huang et al. 2007; Huang 2008; Zhang et al. 2007; Kim
et al. 2008; Wang et al. 2008b; Radhakrishnan and Srinivasan 2008; Ren et al. 2012;
Zhang et al. 2015; Diakhaté et al. 2008; Eirakuet al. 2009; Koh 2010; Gordon 2011a;
Gordon et al. 2011b; Ke 2011; Macdonell 2011]. An alternative category of solutions
is to reduce inter-VM communication latency by optimizing CPU scheduling policies
[Govindan et al. 2007; Kim et al. 2009; Ongaro et al. 2008; Lee et al. 2010]. Research
efforts in this category show that by optimizing CPU scheduling algorithms at the
hypervisor level, both inter-VM communication and I/O latency can be improved. For
instance, Govindan et al. [2007] introduce an enhancement to the SEDF scheduler
that gives higher priority to I/O domains over the CPU-intensive domains. Ongaro
et al. [2008] provide specific optimizations to improve the I/O fairness of the credit
scheduler. Task-aware scheduling [Kim et al. 2009] focuses on improving the perfor-
mance of I/O-intensive tasks within different types of workloads by a lightweight par-
tial boosting mechanism. Incorporating the knowledge of soft real-time applications,
Lee et al. [2010] propose a new scheduler based on the credit scheduler to reduce the
latency. However, none of the work in this category actually deals with the inter-VM
communication workloads or takes colocated VM communications into consideration.

In this article, we focus on reviewing and comparing the solutions in the first
category, namely, improving inter-VM communication efficiency using shared-memory-
based mechanisms. To date, most of the kernel research and development efforts re-
ported in the literature are based on shared memory for improving communication
efficiency among coresident VMs. Furthermore, most of the documented efforts are
centered on open-source hypervisors, such as the Xen platform and KVM platform.1
Thus, in this article, we present a comprehensive survey on shared-memory-based
techniques that are implemented on either the Xen or KVM platform for inter-VM
communication optimization.

Relatively speaking, there are more shared-memory efforts on the Xen platform than
on the KVM platform in the literature, such as IVC [Huang et al. 2007; Huang 2008],
XenSocket [Zhang et al. 2007], XWAY [Kim et al. 2008], XenLoop [Wang et al. 2008b],
MMNet [Radhakrishnan and Srinivasan 2008] on top of Fido [Burtsevet al. 2009], and
XenVMC [Ren et al. 2012], while all KVM-based efforts, such as VMPI [Diakhaté et al.
2008], Socket-outsourcing [Eiraku et al. 2009; Koh 2010], and Nahanni [Gordon 2011a;
Gordon et al. 2011b; Ke 2011; Macdonell 2011], are recent developments since 2009.
One reason could be that Xen open source was made available since 2003 and KVM
is built on hardware containing virtualization extensions (e.g., Intel VT or AMD-V)
that were not available until 2005. Interestingly, even the development efforts on the
same platform (Xen or KVM) differ from one another in terms of where in the software
stack the shared-memory channel is established and how the inter-VM communication
optimization is carried out.

We see growing demand for a comprehensive survey of the collection of concrete tech-
niques and implementation choices on inter-VM communication optimization. Such
comprehensive study not only can help researchers and developers to design and

1VMCI Socket of VMware [VMware Inc. 2007] was a commercial implementation to improve the efficiency of
inter-VM communication using a shared memory approach. From the publically available documentations
on VMCI, such as the description of its API, its programming guide, etc., we found that VMCI introduces
AF_VMCI, a new socket interface, which is not compatible to the current standard interface, and VMCI
socket is implemented below system calls layer and above transport layer. Unfortunately, we could not find
more detail about VMCI and thus we did not include VMCI in this article.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:4 Y. Ren et al.

implement the next-generation inter-VM communication optimization technology but
also offers cloud service providers and cloud service consumers an opportunity to
further improve the efficiency of inter-VM communication in virtualized computing
platforms.

1.2. Scope and Contributions of the Article

This article provides a comprehensive survey of the literature on coresident inter-VM
communication methods, focusing on the design choices and implementation tech-
niques for optimizing the performance of the coresident inter-VM communication. We
make two original contributions:

—First, we present the core design guidelines and identify a set of key issues for im-
proving inter-VM communication using shared-memory-based mechanisms, includ-
ing choice of implementation layer in the software stack, seamless agility for dynamic
addition or removal of coresident VMs, and multilevel transparency, as well as ad-
vanced requirements in reliability, security, and stability. By seamless agility, we
mean that residency-aware inter-VM communication mechanisms support dynamic
addition or removal of coresident VMs including VM creation, VM shutdown, and VM
live migration in an automatic and transparent way. We conjecture that through this
in-depth study and evaluation, we provide a better understanding of the set of criteria
for designing the next-generation shared-memory channel for coresident VMs.

—Second, we conduct a comprehensive survey of representative state-of-the-art re-
search efforts on both Xen and KVM platforms using a structured approach. Con-
cretely, we provide an in-depth analysis and comparison of existing implementation
techniques with respect to the architectural layout, the fundamental functionalities,
how they achieve the design goals, additional implementation choices, the software
environment and source code availability, and inter-VM communication efficiency.
To the best of our knowledge, this is the first effort that provides a comprehensive
survey of the inter-VM communication methods from three different perspectives: im-
plementation layer in software stack, seamless agility, and multilevel transparency.

The rest of this article is organized as follows. Section 2 provides an overview of
the basic concepts and terminology of network I/O and shared-memory structures in
VMMs, which are fundamental for understanding the design choices and functional re-
quirements of shared-memory-based inter-VM communication optimization. Section 3
presents design guidelines and key issues about shared-memory-based communica-
tion mechanisms for coresident VMs, including high performance, seamless agility,
and multilevel transparency. Based on the functional requirements and design choices
outlined in Section 3, we provide a comprehensive comparison of existing work in five
subsequent sections: architectural layout comparison in Section 4; common fundamen-
tal functionalities in Section 5; the support for seamless agility, including race condition
handling, in Section 6; the multilevel transparency in Section 7; and other implemen-
tation considerations and optimizations, including buffer size, software environment,
source code availability, and performance comparison, in Section 8. We conclude the
article in Section 9.

2. BACKGROUND AND PRELIMINARY

VMM technology to date is broadly classified into two categories [Pearce et al. 2013]:
Type I VMMs, which are hypervisor-based VMMs running directly on hardware, such
as Xen and VMware ESX Server, and Type II VMMs, which are also known as hosted
VMMs and represented by Linux KVM and VMware Workstation. Since the technical
details of related work in industry is not publically available, in this article, we focus
primarily on representative open-source VMMs, such as Xen and KVM. In this section,

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:5

Fig. 1. Xen network I/O architecture and interfaces.

we give a brief description of network I/O and communication mechanisms among
domains for Xen and KVM, respectively.

2.1. Xen Network Architecture and Interfaces

2.1.1. Network I/O Architecture. Xen is a popular open-source x86/x64 hypervisor, which
coordinates the low-level interaction between VMs and physical hardware [Barham
et al. 2003]. It supports both full virtualization and para-virtualization. With full vir-
tualization, in virtue of hardware-assisted virtualization technology, the hypervisor
lets VMs run unmodified operating systems. For each guest domain, it provides full ab-
straction of the underlying physical system. In contrast, with para-virtualization, it re-
quires the guest OS to be modified and no hardware-assisted virtualization technology
is needed. The para-virtualization mode provides a more efficient and lower-overhead
mode of virtualizations.

In para-virtualization mode, Dom0, a privileged domain, performs the tasks to create,
terminate, and migrate guest VMs. It can also access the control interfaces of the hy-
pervisor. The hypervisor utilizes asynchronous hypercalls to deliver virtual interrupts
and other notifications among domains via Event Channel.

Xen exports virtualized network devices instead of real physical network cards to
each DomU. The native network driver is expected to run in the Isolated Device Domain
(IDD), which is typically either Dom0 or a driver-specific VM. The IDD hosts a back-end
network driver. An unprivileged VM uses its front-end driver to access interfaces of
the back-end daemon. Figure 1 illustrates the network I/O architecture and interfaces.
The front end and the corresponding back end exchange data by sharing memory
pages, either in copying mode or in page flipping mode. The sharing is enabled by the
Xen Grant Table mechanism that we will introduce later in this section. The bridge
in IDD handles the packets from the network interface card (NIC) and performs the
software-based routine in the receiver VM.

When the NIC receives a network packet, it will throw an interrupt to the upper layer.
Before the interrupt reaches IDD, the Xen hypervisor handles the interrupt. First, it
removes the packet from NIC and forwards the packet to the bridge. Then the bridge
demultiplexes the packet and delivers it to the back-end interface corresponding to the
receiver VM. The back end raises a hypercall to the hypervisor for page remapping so
as to keep the overall memory allocation balanced. After that, data is copied and the

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:6 Y. Ren et al.

receiver VM gets the packet as if it comes from NIC. The process of packet sending is
similar but performed in a reverse order.

Each I/O operation in the split I/O model requires involvement of the hypervisor or
a privileged VM, which may become a performance bottleneck for systems with I/O-
intensive workloads. The VMM-bypass I/O model allows time-critical I/O operations to
be processed directly by guest OSs without involvement of the hypervisor or a privi-
leged VM. High-speed interconnects, such as InfiniBand [Infiniband Trade Association.
2015], can be supported by Xen through VMM-bypass I/O [Liu et al. 2006].

2.1.2. Communication Mechanisms Among Domains. Xen provides the shared I/O Ring
buffers between the front end and the back end, as shown in Figure 1. These I/O ring
buffers are built upon the Grant Table and Event Channel mechanisms, two main com-
munication channels for domains provided by Xen. Grant Table is a generic mechanism
to share pages of data between domains in both page mapping mode and page transfer
mode. The Grant Table contains the references of granters. By using the references,
a grantee can access the granter’s memory. The Grant Table mechanism offers a fast
and secure way for DomUs to receive indirect access to the network hardware through
Dom0. Event Channel is an asynchronous signal mechanism for domains on Xen. It
supports inter-/intra-VM notification and can be bound to physical/virtual interrupt
requests (IRQs).

In addition, Xen provides XenStore as a configuration and status information stor-
age space shared between domains. The information is organized hierarchically. Each
domain gets its own path in the store. Dom0 can access the entire path, while each
DomU can access only its owned directories. XenStore has been utilized by some exist-
ing projects as a basic mechanism to facilitate the tracing of the dynamic membership
update of coresident VMs.

2.2. QEMU/KVM

KVM is an open-source full-virtualization solution for Linux on x86 hardware that
supports virtualization extension. It consists of two components: one is QEMU, which
is a hardware emulator running on the host Linux as a user-level process and provides
an I/O device model for VM; the other is a loadable KVM kernel device driver module,
which provides core virtualization infrastructure including virtual CPU services for
QEMU and supports functionalities such as VM creation and VM memory allocation.
QEMU communicates with the KVM module through a device file, /dev/kvm, which is
created when the KVM module is loaded into the kernel. The KVM module is capable
of supporting multiple VMs. QEMU/KVM virtualizes network devices of the host OS to
allow multiple guest OSs running in different VMs to access the devices concurrently.

KVM also supports two modes of I/O virtualization: full virtualization through device
emulation and the para-virtualization I/O model by Virtio [Russell 2008].

2.2.1. Network I/O Through Device Emulation. Emulated devices are software implemen-
tations of the hardware, such as E1000 and RTL8139. Device emulation is provided
by the user space QEMU. It makes the guest OS using the device interact with the
device as if it were actual hardware rather than software. There is no need to modify
a corresponding device driver in the guest OS.

Figure 2 illustrates the architecture of the KVM full-virtualized network I/O. When
the guest OS tries to access the emulated hardware device, the I/O instruction traps
into the KVM kernel module. Then the module forwards the requests to QEMU. Then
QEMU asks the guest OS to write data into the buffer of the virtualized NIC (VNIC)
and copies the data into the TAP device, and the data is forwarded to the TAP device
of the destination guest OS by the software bridge. When the TAP device receives the
data, it wakes up the QEMU process. The QEMU process first copies the data into its

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:7

Fig. 2. The architecture of KVM full-virtualized network I/O.

VNIC buffer, from where the data is copied to the virtual device in the destination guest
OS. Then, QEMU notifies the KVM kernel module to receive the data. The KVM kernel
module sends interrupts to notify the guest OS about the data arrival. Finally, through
the virtual driver and network protocol stack, the data is passed to the corresponding
applications.

2.2.2. Virtio-Based Network I/O. Although emulated devices offer broader compatibility
than para-virtualized devices, the performance is lower due to the overhead of context
switches across the barrier between user-level guest OS and Linux kernel (host OS),
as well as the barrier between Linux kernel and user space QEMU. Therefore, Virtio,
a para-virtualized I/O framework, was introduced. The Virtio device driver consists of
two parts: the front end is in the guest OS, while the back end is in the user space
QEMU. The front end and the back end communicate with a circular buffer, through
which the data can be copied directly from the kernel of the host OS to the kernel of
the guest OS. Virtio avoids some unnecessary I/O operations. It reduces the number of
data copies and context switches between the kernel and user space. It provides better
performance than device emulation approaches.

3. OVERVIEW OF DESIGN CHOICES

In this section, we first discuss the motivation by comparing TCP/IP and shared-
memory-based approaches to better understand the design guidelines we promote in
this article. Then we present the design objectives for optimizing coresident inter-
VM. We elaborate on the design choices and identify the key issues in designing and
implementing a high-performance and lightweight inter-VM communication protocol
based on shared-memory mechanisms.

3.1. TCP/IP Versus Shared-Memory-Based Approaches

Modern operating systems, such as Linux, provide symmetrical shared-memory facili-
ties between processes. Typical interprocess communication mechanisms in Linux are
System V IPC and POSIX IPC. With the IPC mechanisms, the processes communicate
in a fast and efficient manner through shared memory or message channels since data
shared between processes can be immediately visible to each other [Renesse 2012].

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:8 Y. Ren et al.

TCP/IP is pervasively used for inter-VM communication in many virtualized data
centers, regardless of whether the VMs are coresident on the same physical machine or
separate physical machines. However, TCP/IP, originally designed for communication
among different computer hosts interconnected through a communication network, is
not optimized for communication between VMs residing on the same physical machine.

Compared with IPC, communication via a TCP/IP-based network protocol takes a
longer time because the data transfer from a sender to a receiver has to go through the
TCP/IP protocol stack. Concretely, with the native TCP/IP network, if a sender process
wants to transmit data to a receiver process, first the data is copied from the user space
to the kernel space of the sender VM. Then it is mapped to the memory of the network
device, and the data is forwarded from the sender VM to the network device of the
receiver VM via the TCP/IP network. After that, the data is mapped from the network
device to the kernel space of the receiver VM and copied to the user space of the receiver
process. Inter-VM communication adds another layer of kernel software stack that the
data has to travel along the path from the sender VM to the receiver VM via VMM. On
the Xen platform, with the Xen virtualized front end/back end network, after the data
reaches the buffer of NIC in the sender VM, the data is then transferred to the bridge
in the IDD of the sender VM. Via TCP/IP, the data is routed to the corresponding back
end of the IDD on the host of the receiver VM. Finally, the data is copied to the receiver
VM. In summary, the data transferred from the sender VM to the receiver VM typically
goes through a long communication path via VMM on the sender VM’s host, TCP/IP
stack, and VMM on receiver VM’s host. Similarly, on KVM platforms, data transferred
between the sender VM and the receiver VM also incurs multiple switches between
VM and VMM in addition to going through the TCP/IP stack.

By introducing shared-memory-based approaches to bypass a traditional TCP/IP pro-
tocol stack for coresident VM communication, we may obtain a number of performance
optimization opportunities: (1) the number of data copies is reduced by shortening the
data transmission path, (2) unnecessary switches between VM and VMM are avoided
by reducing dependency on VMM, and (3) using shared memory also makes data writes
visible immediately. In short, shared-memory-based approaches have the potential to
achieve higher communication efficiency for coresident VMs.

3.2. Design Objectives

The ultimate goal of introducing a fast coresident VM communication mechanism to
coexist with the TCP/IP-based inter-VM communication protocol is to improve the per-
formance by shortening the data transfer path and minimizing the communication
overhead between coresident VMs. Concretely, when the sender VM and the receiver
VM are coresident on the same host, the data will be transmitted via the local shared-
memory channel (local mode) and bypass the long path of the TCP/IP + network stack.
When the sender VM and the receiver VM reside on different hosts, the data will
be transferred from sender to receiver through traditional TCP/IP network channel
(remote mode). To establish such a shared-memory-based inter-VM communication
channel, the following three core capabilities should be provided: (1) intercept every
outgoing data request, examine it, and detect whether the receiver VM is coresident
with the sender VM on the same host; (2) support both local and remote inter-VM
communication protocols and, upon detection of local inter-VM communication, auto-
matically switch and redirect the outgoing data request to the shared-memory-based
channel instead; and (iii) incorporate the shared-memory-based inter-VM communica-
tion into the existing virtualized platform in an efficient and fully transparent man-
ner over existing software layers [Burtsev et al. 2009; Eiraku et al. 2009; Kim et al.
2008; Radhakrishnan and Srinivasan 2008; Ren et al. 2012; Wang et al. 2008b; Wang
2009]. More importantly, the implementation of a shared-memory-based approach to

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:9

inter-VM communication should be highly efficient, highly transparent, and seamlessly
agile in the presence of VM live migration and live deployment.

The objective of high efficiency aims at significant performance enhancement of
different types of network I/O workloads, including both transactional and streaming
TCP or UDP workloads.

The objective of seamless agility calls for the support of on-demand detection and
automatic switching between the local mode and remote mode to ensure that the VM
live migration and the VM deployment agility are retained.

Finally, the objective of multilevel transparency of the shared-memory-based mech-
anism refers to the transparency over programming languages, OS kernel, and VMM.
Such transparency ensures that there is no need for code modifications, recompilation,
or relinking to support legacy applications.

We argue that high performance, seamless agility, and transparency should be fully
respected when coresident VM communication optimization is incorporated in an ex-
isting virtualization platform, be it Xen or KVM or any other VMM technology. We also
would like to point out that a concrete implementation choice should make a careful
tradeoff among conflicting goals. We will elaborate on each of these three objectives in
the subsequent sections respectively. In addition, we conjecture that the next genera-
tion of shared-memory-based inter-VM communication facilities should support other
desirable features, such as reliability, security, and stability, which will be elaborated
on in Section 3.6.

3.3. Design Choices on High Performance and High Efficiency

The performance of a shared-memory inter-VM communication mechanism depends on
a number of factors, such as the choice of implementation layer in the software stack,
the optimization for streaming network I/O workloads, and the support for necessary
network I/O optimization.

The implementation layer in the software stack brings potential impacts on pro-
gramming transparency, kernel-hypervisor-level transparency, seamless agility, and
performance efficiency. Based on the choice of in which layer the data transfer request
interception mechanism is implemented, existing approaches can be classified into
following three categories.

3.3.1. User Libraries and System Calls Layer (Layer 1). This is the simplest and most
straightforward way to implement a shared-memory-based inter-VM communication
protocol. Concretely, we can simply modify the standard user and programming in-
terfaces in layer 1. This approach introduces less switching overhead and fewer data
copies for crossing two protection barriers: from guest user level to guest kernel level
and from guest OS to host OS. However, it exposes the shared memory to the user-level
applications running on guest OSs and sacrifices user-level programming transparency.
Most of the existing projects that choose the layer 1 approach fall into the following two
categories: (1) in the HPC environment where specific interfaces based on communica-
tion dominates, such as MPI (Message Passing Interface), and (2) the earlier efforts of
developing colocated VM communication mechanisms on the KVM platform.

3.3.2. Below System Calls Layer, Above Transport Layer (Layer 2). An alternative approach
to implement shared-memory-based inter-VM communication is below the system calls
layer, above the transport layer. There are several reasons that the layer 2 solutions
may be more attractive. Due to the hierarchical structure of the TCP/IP network proto-
col stack, when data is sent through the stack, it has to be encapsulated with additional
headers layer by layer in the sender node. Furthermore, when the encapsulated data
reaches the receiver node, the headers will be removed layer by layer accordingly.
However, if the data is intercepted and redirected in a higher layer in the software

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:10 Y. Ren et al.

Fig. 3. XenLoop performance measured by NetPerf.

stack, it will lead to two desirable results: smaller data size and shorter processing
path (less processing time on data encapsulation and the reverse process) [Wang et al.
2008b]. Based on this observation, we argue that implementation in a higher layer
can potentially lead to lower latency and higher throughput of network I/O workloads.
In contrast, establishing the shared-memory channel in layer 1 makes it very hard
to maintain programming language transparency. Hence, layer 2 solutions are more
attractive compared to layer 1 solutions [Ren et al. 2012].

3.3.3. Below IP Layer (Layer 3). The third alternative method is to implement the shared-
memory-based inter-VM communication optimization below the IP layer. The advan-
tages of this approach over those implemented at layer 1 or layer 2 include the following:
(1) TCP/IP features, such as reliability, are left intact and remain to be effective, and
(2) an existing third-party tool, such as netfilter [Ayuso 2006], remains available for
hooking into the TCP/IP network path to facilitate the implementation of packets’ in-
terceptions. However, layer 3 is the lowest in the software stack. Thus, it potentially
leads to higher latency due to higher network protocol processing overheads and more
data copy operations and context switches across barriers.

3.3.4. Problems with Existing Solutions. Implementing shared-memory-based inter-VM
communication for coresident VMs at layer 1 has some obvious shortcomings due to
the need to modify applications. Thus, most of the existing shared-memory inter-VM
communication mechanisms are implemented at either layer 2 or layer 3. However,
implementation at layer 2 will result in missing some important TCP/IP features,
such as reliability, and some existing third-party tools, such as netfilter [Ayuso 2006].
Layer 3 solutions offer high transparency and high reliability but may incur high
overhead. Among the collection of shared-memory-based inter-VM protocols, XenLoop
is the most representative in terms of performance, seamless agility, programming
transparency, and availability of open-source release. To better understand the per-
formance of shared-memory-based inter-VM approaches, we conduct extensive exper-
imental evaluation of XenLoop [Zhang et al. 2013a]. Figure 3 shows the results of
running XenLoop for both TCP and UDP workloads by Netperf [Netperf 2015].

It compares the performance of TCP STREAM, UDP STREAM, TCP TRANSAC-
TION, and UDP TRANSACTION workloads that are running on VMs with and with-
out shared-memory approaches, respectively. We make three interesting observations.
First, for the UDP STREAM workload, shared-memory-based colocated inter-VM com-
munication performance is up to 6 times higher than native colocated inter-VM com-
munication. Also, the performance of UDP STREAM workloads increases dramatically

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:11

Table I. Three Most Frequently Invoked Kernel Functions

Samples Image Function
4,684 (7.16%) vmlinux __do_softirq
229 (0.35%) vmlinux csum_partial_copy_generic
222 (0.34%) vmlinux tcp_ack

when the message size grows above 1KB. Second, the performance of transactional
workloads is always beneficial using the shared-memory approach. Third, the per-
formance of TCP STREAM workloads running with the shared-memory approach is
always worse than that in native inter-VM communication, irrespective of message
size.

In order to understand the reasons for poor performance of shared-memory mech-
anisms under streaming TCP workloads, we conduct further investigation by using
Oprofile [Levon 2014], a low-overhead system-wide profiler for Linux. We found that
the frequent software interrupts incurred in shared-memory-based inter-VM commu-
nications can severely degrade the performance of TCP STREAM workloads between
two colocated VMs. We analyze the types and the amount of events occurring in the
VM kernel while TCP streaming workloads are running between colocated VMs opti-
mized with MemPipe [Zhang et al. 2015]. Table I shows the three most frequent kernel
functions that are invoked during the TCP STREAM workloads. We noticed that the
function do softirq is executed in a very high frequency compared with others. In the
Linux network subsystem, do softirq is an interrupt handler responsible for extracting
packets from the socket buffer and delivering them to the applications. The CPU stack
switching cost brought by executing a software interrupt handler is nonnegligible,
especially in the case where the frequency of software interruption is high.

These results indicate that reducing the frequency of software interrupts can be
a potential opportunity to further improve the performance of shared-memory-based
inter-VM communication systems, especially for TCP streaming workloads. Interesting
to note is that our observation is aligned with the active-tx/rx technologies that are
adopted by the NIC drivers to constantly monitor the workload and adaptively tune
the hardware interrupt coalescing scheme. This helps to reduce the OS overhead en-
countered when servicing one interrupt per received frame or per transmitted frame.
However, when a shared-memory mechanism and its packet interception are imple-
mented at layer 2 (below the system’s call layer and above the transport layer), the
inter-VM network frames are transmitted via shared memory and never go through
the hardware or virtual NICs. Thus, the adaptive-tx/rx technologies supported in NIC
can no longer help to better manage the overhead of software interrupts in the shared-
memory-based inter-VM communication protocols.

In our MemPipe [Zhang et al. 2015] system, we overcome this problem by introducing
an anticipatory time window (ATW)-based notification grouping algorithm to substitute
the simple and intuitive per packet notification issuing (PNI) algorithm. The idea is
that, for the sender VM, instead of issuing a notification to the receiver VM for each
single network packet, it is always anticipating that more packets will arrive in the
near future. Thus, we set the anticipation time window t such that the sender can
partition notifications into multiple ATW-based notification partitions of the same size
N, such that each partition batches N packets in a single notification. The reduced
number of notifications between the sender VM and the receiver VM can significantly
cut down on the amount of software interrupts to be handled in both sender and receiver
VMs. Proper setting of the parameter N and the ATW interval t is critical for achieving
optimal performance. In MemPipe, each streaming partition is formed when N packets
have arrived or when the ATW interval t expires. This ensures that the ATW-based

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:12 Y. Ren et al.

Fig. 4. MemPipe throughput performance by running NetPerf.

notification incurs only a bounded delay by t and a notification will be issued by the
sender at most every t time, even when there are less than N new packets in the
shared memory. Figure 4 shows the experimental evaluation of MemPipe, which is a
XenLoop-like implementation of the shared-memory inter-VM communication protocol
on the KVM platform [Zhang et al. 2015].

Figure 4 measures the UDP and the TCP streaming throughput by varying the mes-
sage size from 64B to 16KB using Netperf. Figure 4(a) shows that, for UDP workloads,
throughput increases as the message size increases for all three scenarios. When the
message size is larger than 256B, throughput in intermachine and native inter-VM
scenarios becomes relatively stable, which indicates that the network communication
channel is saturated. In contrast, MemPipe consistently outperforms the native inter-
VM scenario in all message sizes, and MemPipe outperforms the intermachine scenario
when the message size is larger than 512B and the performance gap increases as the
message size increases from 0.5KB to 16KB with up to 32 times higher throughput com-
pared with that in the native inter-VM case. This is because for small message sizes,
the performance is dominated by the per-message system call overhead. However, as
the message size increases, the performance becomes dominated by the data trans-
mission. The advantages of using shared-memory outweigh the overhead caused by
per-message system call overhead. Similarly, for TCP streaming workloads, as shown
in Figure 4(b), MemPipe reliably outperforms the other two scenarios for all message
sizes thanks to the ATW-based notification grouping algorithm.

In summary, the MemPipe experience shows that the design of a shared-memory
inter-VM communication protocol needs to take into account the layer in which the
shared memory channel will be established and the necessary optimizations due to
bypassing the higher layer in the software stack.

3.4. Design Choices for Seamless Agility

VM live migration is one of the most attractive features provided by virtualization
technologies. It provides the ability to transport a VM from one host to another in
a short period of time as if the VM’s execution has not been interrupted. VM live
migration allows VMs to be relocated to different hosts to respond to the load balancing
due to varying load or performance, save power, recover from failures, and improve
manageability. It is considered by many as a “default” feature of VM technologies.

However, VMs are by design not aware of the existence of one another directly due to
the abstraction and isolation support by virtualization. Therefore, seamless agility calls
for the support of on-demand coresident VM detection and automatic switch between

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:13

the local mode and remote mode to retain the benefits of VM live migration and the
flexibility for VM deployment.

3.4.1. Automatic Detection of Coresident VMs. Two different methods can be used to detect
coresident VMs and maintain VM coresidency information. The simplest one is static,
which collects the membership of coresident VMs during the system configuration time
prior to runtime. Such collection is primarily done manually by the administrator and
is assumed unchanged during runtime. Thus, user applications are aware of cores-
idency information of communicating VMs by the static VM detection method. The
most commonly used coresident VM detection method is dynamic, which provides au-
tomatic detection mechanisms. In contrast to the static method, which fails to detect
the arrival of new VMs or the departure of existing VMs without an administrator’s
intervention, dynamic coresident VM detection can be done either periodically and
asynchronously or as a tightly integrated synchronous process with the live migration
and VM dynamic deployment subsystem:

—The privileged domain or corresponding self-defined software entity periodically
gathers coresidency information and transmits it to the VMs on the same host.

—VM peers advertise their presence/absence to all other VMs on the same host upon
significant events, such as VM creation, VM shutdown, VM live migration in/out,
and so forth.

The first approach is asynchronous and needs centralized management by the host
domain. It is relatively easier to implement since coresidency information is scattered
in a top-down fashion and the information is supposed to be sent to VMs residing
on the same host consistently. However, the frequency or time period between two
periodical probing operations needs to be configured properly. If the period is set longer
than needed, the delay may bring inaccuracy to the coresidency information, leading
to possible race conditions. For instance, if VM1 that migrated from host A to another
host B is still communicating with VM2 on host A via the shared-memory channel, then
it may lead to system errors. However, if the time period is set to be too short, it might
lead to unnecessary probing and CPU cost.

The second approach is event driven and synchronous. When a VM migrates out/in,
related VMs are notified and the coresidency information is updated as an integral part
of the live migration transaction. Thus, the coresidency information is kept fresh and
updated immediately upon the occurrence of the corresponding events. Unless the list
of coresident VMs on a physical machine is updated, it is protected from read. Thus,
the consistency of the VM coresidency information is maintained.

3.4.2. Transparent Switch Between Local Mode and Remote Mode. Two tasks are involved in
performing the transparent switch between the local and remote mode:

—To identify if the communicating VMs are residing on the same physical machine
—To automatically determine the right spot of where and when to perform the trans-

parent switch

For the first task, the unique identity of every VM and the coresident information are
needed. <Dom ID, IP/Mac address> pairs can be used to uniquely identify domains.
Whether it is the IP address or Mac address, it depends on in which layer the automatic
switch feature is implemented. Maintaining coresident VMs within one list makes the
identification easier. The coresident membership information is dynamically updated
by the automatic detection mechanism for coresident VMs. For the second task, one of
the good spots for determining the local or remote switching is to intercept the requests
before setting up or tearing down connections or before the sender VM transfers the
data. For example, we can make the checking of whether the coresident VM list is

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:14 Y. Ren et al.

updated and the setting up of a connection or the transferring of data between two
VMs as one single atomic transaction to ensure correctness.

3.5. Multilevel Transparency

The next design objective is the maintenance of multilevel transparency for developing
efficient and scalable inter-VM communication mechanisms. We argue that three levels
of transparency are desirable for effective inter-VM communication optimization using
shared-memory approaches.

3.5.1. User-Level Transparency. User-level transparency refers to a key design choice
regarding whether applications can take advantages of the coresident inter-VM com-
munication mechanism without any modifications to the existing applications and user
libraries. With user-level transparency, legacy network applications using standard
TCP/IP interfaces do not need to be modified in order to use the shared-memory-based
communication channel. To achieve this level of transparency, shared-memory-based
inter-VM communication is supposed to be implemented in a layer lower than the
system calls and user libraries such that there is no modification to layer 1 and thus
applications.

3.5.2. OS Kernel Transparency. By OS kernel transparency, we mean that incorporating
the shared-memory channel requires no modification to either the host OS kernel
or guest OS kernel, and thus no kernel recompilation and relinking are needed. No
customized OS kernel and kernel patches need to be introduced, which indicates a more
general and ready-to-deploy solution. To obtain the feature of OS kernel transparency,
one feasible approach is to use nonintrusive and self-contained kernel modules. Kernel
modules are compiled separately from the OS kernel, so recompiling and relinking
the kernel can be avoided. Moreover, they can be loaded at runtime without system
reboot. A typical kernel-module-based approach is to utilize a standard virtual device
development framework to implement the guest kernel optimization as standard and
a clean kernel driver module, which is flexible to be loaded/unloaded. In fact, most
state-of-the-art hypervisors support emulated devices (network, block, etc.) to provide
functionalities to guest OSs.

3.5.3. VMM Transparency. With VMM transparency, no modification to VMM is required
to incorporate shared-memory communication mechanisms, maintaining the indepen-
dence between VMM and guest OS instances. It is well known that modifying VMM is
hard and can be error prone; thus, it is highly desirable to use and preserve the existing
interfaces exported by the VMM instead of modifying them.

The design choice of multilevel transparency closely interacts with other design
choices, such as implementation layers, seamless agility, degree of development diffi-
culty, and performance improvement. For example, the benefits of layer 1 implemen-
tation, such as less kernel work, fewer data copies, and lower overhead of context
switches across the boundaries, are obtained at the cost of sacrificing user-level trans-
parency. We will detail some of these interactions in Section 4 when we compare the
architectural design of existing representative systems.

3.6. Other Desired Features

In addition to high performance, implementation layer in software stack, seamless
agility, and multilevel transparency, we argue that full consideration of how to provide
reliability, security, and stability is also important for the next-generation co-residency-
aware inter-VM communication mechanisms. However, most of the related work to date
pays little attention to these advanced features.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:15

3.6.1. Reliability. By reliability, we mean that a shared-memory-based implementation
of residency-aware inter-VM communication should be error free and fault tolerant.
Concretely, the incorporation of a shared-memory channel into the existing virtual-
ization platform should not introduce additional errors and should be able to handle
exceptions introduced smoothly and automatically. We discuss next two example excep-
tion handlings: connection failures and race conditions upon VM migration or dynamic
VM deployment.

Connection failures. Connection failures may occur in a virtualization system for
both local connections (connection between VMs on the same host) and remote con-
nections (connection between VMs on separate hosts). For local connection failures,
the shared-memory buffer mapped by the communicating VMs should be deallocated
by explicitly unmapping those pages. For remote connections, we will resort to the
traditional methods for network failure recovery.

Race conditions. Race conditions may occur when the coresident VM detection is
performed dynamically but periodically. For example, when a VM1 on host A is migrated
to host B right after the coresident VM detection has updated the list of coresident VMs
and before the list of coresident VMs will be updated in the next time interval, it is
possible that VM1 communicates with VM2 still via the previously established shared-
memory channel on host A, which can lead to race conditions due to connection failure
since VM1 is no longer present on host A.

One approach to address this type of race condition is to use the synchronous update
method instead of an asynchronous update method, such as a periodic update based on
a predefined time interval, or static update method. The synchronous update method
enables the update to the list of coresident VMs to be triggered synchronously with
a live migration transaction, offering strong consistency support. More importantly,
the synchronous update method also avoids race conditions. However, the support
of the synchronous update method requires one to modify the live migration module
and the dynamic VM deployment module to add the support of synchronization.

Alternatively to the synchronous update, if the automatic coresident VM detection
mechanism is accompanied by an asynchronous update method, which periodically up-
dates the list of coresident VMs, then the period update method will periodically check
the membership tracing mechanism, such as XenStore, to see if any existing VMs in
the coresident VM list have been added to or removed from the current host. If yes, it
will trigger an update to the list of coresident VMs on the host. The problem with the
periodic update method is the possibility of race conditions during the time interval
between two consecutive updates, as illustrated by the aforementioned example. Thus,
any shared-memory-based inter-VM communication protocol that adopts the periodic
update method for refreshing the coresident VM list will need to provide an excep-
tion handling method to address the possible occurrence of race conditions. There are
two possible approaches to this problem: race condition prevention and race condition
resolution.

Race condition prevention. To prevent the occurrence of a race condition under the
periodic update method, we need to add a VM-status checking module as an integral
part of operations, such as connection establishment. Prior to the communication from
one VM to another coresident VM, this consistency checking module will double-check
if they remain to be colocated and their shared memory channel is established. This
consistency checking is performed by examining the membership tracing mechanism
from the most recent time point of the periodic update. Upon detecting the addition of
new VMs or the removal of existing VMs on the current host machine, for instance, if
it detects the occurrence of VM1’s migration from host A to host B, then it will trigger
three tasks: (1) the switching of the communication channel between VM1 (on host
B) and VM2 (on host A) to the remote mode using the conventional TCP/IP protocol,

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:16 Y. Ren et al.

with pending data properly handled; (2) the shared-memory tear-down procedure; and
(3) the update to the coresident VM list. The advantage of this solution compared to
the synchronous update method is that it is independent of the live migration module,
the dynamic VM deployment module, and possibly other relevant modules at the cost
of an additional delay for every connection establishment.

Race condition resolution. One way to avoid the additional delay introduced in con-
nection establishments to deal with possible race conditions is to handle connection
errors using timeout until the next round of the periodic update is performed. We have
two cases to consider:

Case 1: adding new VMs. The communication between the new VM and the other
coresident VMs will be using the remote mode instead of the shared-memory mode
because the coresident VM list is not yet updated.

Case 2: removal of existing VMs. The communication between the removed VM and
the other coresident VMs will still be using the shared-memory mode. Thus, when
VM1 is migrated from host A to host B, its resource allocations on host A have been
deallocated. Thus, the attempt to use the shared-memory communication between VM1
(on host B) and VM2 (on host A) will result in a failure and eventually timeout. If VM1
(on host B) is the sender, it will fail until its coresident VM list on host B is updated by
the next update interval. Similarly, if VM1 (on host B) is the receiver, it will not be able to
access the data placed by VM2 on their previously established shared-memory channel
on host A, leading to a communication failure for the sender until the coresident VM
list of VM2 on host A is updated by the next update interval.

In either case, some inter-VM communications are delayed until the periodic update
to the coresident list is performed. And possible pending data problems during the
switch of the local and remote mode need to be considered. This solution is lightweight
compared to the other alternatives and allows us to avoid the additional overhead
introduced to every connection (local and remote). One can further study the adaptive
setting of the time interval for the periodic update method, for example, with a smaller
interval for frequent live migration and a larger interval for infrequent live migration.

3.6.2. Security. By security, we mean that the shared-memory-based implementation
should provide a proper protection level for memory sharing between coresident VMs
based on the degree of mutual trust between coresident VMs. For example, by imple-
menting the shared-memory-based inter-VM communication mechanism as a kernel
module, it manages the access to the globally allocated shared memory by keeping
track of the mapping between shared-memory regions for each pair of communicating
VMs, and performs an address boundary check for each access attempt before it grants
the access to the shared memory. By utilizing the protection models of host/guest OSs,
it assumes that a sender VM has implicit trust in its receiver VM. One way to introduce
a higher level of security protection is to add an additional level of explicit trust among
VMs to allow a VM to choose which other VMs it wants to communicate with. One
way to establish such explicit trust is based on past transaction history and feedback
ratings [Su et al. 2015]. Other possible solutions can be found from the excellent survey
by Pearce et al. [2013]. Also, Gebhardt and Tomlinson [2010] present some suggestions
on creating a proper security model and offer protection strategies for virtual machine
communications.

3.6.3. Performance Stability. We have shown in Section 3.3.4 (Figure 3) that some ex-
isting shared-memory approaches deliver a good performance improvement on UDP
workloads for coresident inter-VM communications compared to using conventional
approaches but a small or no performance improvement for larger message sizes and
streaming TCP workloads [Zhang et al. 2013a]. We argue that to enable the wide
deployment of a shared-memory approach to inter-VM communication, we need to

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:17

ensure the performance stability for shared-memory-based inter-VM communication
mechanisms, no matter whether the network protocol is TCP or UDP, the workload is
transactional or streaming, the size of messages is small or large, the incoming rate of
the messages is normal or very high, or the number of coresident VMs is small or large.
Furthermore, when the VM live migration and VM dynamic deployment are present,
the throughput performance should be stable regardless of whether it is before or after
the migration.

3.7. Concluding Remarks

We would like to state that a careful tradeoff should be made regarding different de-
sign choices and requirements. For example, the choice of implementation layer is di-
rectly related to user-level transparency, and it also has an impact on the performance
of shared-memory approaches. In addition, achieving higher reliability and security
often leads to certain losses of performance. Thus, reliability and security facilities
should be carefully designed and incorporated to minimize the unnecessary perfor-
mance overhead. Finally, customizability and configurability are highly desirable and
highly recommended features for designing and implementing a scalable and reliable
shared-memory-based coresident VM communication protocol.

4. ARCHITECTURAL LAYOUT: A COMPARISON

In this section, we classify existing representative shared-memory inter-VM commu-
nication mechanisms based on their architecture layout in the software stack and
provide a comprehensive analysis and comparison on their design choices, including
the implementation techniques for fundamental functionalities, seamless agility sup-
port, multilevel transparency, and additional features. In addition, we will compare
Xen-based implementations with KVM-based implementations and identify similari-
ties and differences in their design and implementation choices.

Figure 5 shows our classification of existing representative shared-memory ap-
proaches by their implementation layers in the software stack: layer 1 is the user
libraries and system calls layer, layer 2 is the below system calls layer and above trans-
port layer, and layer 3 is the below IP layer. To facilitate the comparative analysis, we
show the Xen-based systems and KVM-based systems in Figure 5(a) and Figure 5(b),
respectively. We illustrate each system with one or several components and show that
different components may be designed and implemented at different layers within a
single system. For presentation clarity, we defer the discussion on the modifications
to VMMs to Section 7.3. We say that an existing shared-memory system belongs to
the category of layer X (X = 1, 2, or 3) when its data transfer request interception
mechanism is implemented in this layer.

For Xen-based systems, we include IVC [Huang et al. 2007], XenSocket [Zhang et al.
2007], XWay [Kim et al. 2008], XenLoop [Wang et al. 2008b], MMNet [Radhakrishnan
and Srinivasan 2008], and XenVMC [Ren et al. 2012] in our comparative analysis study.
For KVM-based systems, we include VMPI [Diakhaté et al. 2008], Socket-outsourcing
[Eiraku et al. 2009], Nahanni [MacDonell 2011], and MemPipe [Zhang et al. 2015]
in our comparative analysis study. There have been some recent developments in the
KVM category [Hwang et al. 2014, Zhang et al. 2014b, Zhang et al. 2015]. We have
added some discussions on the new developments to date when appropriate.

4.1. User Libraries and System Calls Layer

Implementing the shared-memory-based inter-VM communication in the user libraries
and system calls layer has a number of advantages as we have discussed in Section 3.
IVC on the Xen platform and VMPI and Nahanni on the KVM platform are the repre-
sentative efforts in this layer.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:18 Y. Ren et al.

Fig. 5. Architectural layout of coresident VM communication mechanisms.

4.1.1. IVC. IVC is one of the earliest shared-memory efforts based on the Xen hyper-
visor [Huang et al. 2007]. It is designed for a cluster-based HPC environment and is a
representative Xen-based approach whose user libraries are implemented in layer 1.
Different from other related work on the Xen platform, IVC is developed based on the
VMM-bypass I/O model instead of the split I/O model.

IVC consists of three parts: a user space VM-aware communication IVC library,
a user space MVAPICH2-ivc library, and a kernel driver. The IVC library supports
shared-memory-based fast communication between coresident VMs, which provides

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:19

socket-style interfaces. Supported by IVC, the MVAPICH2-ivc library is developed,
which is derived from MVAPICH2, an MPI library over Infiniband. The kernel driver
is called by the user space libraries to grant the receiver VM the right to access the
sharing buffer allocated by the IVC library and gets the reference handles from the
Xen hypervisor.

To verify the performance of IVC, Huang et al. [2007] and Huang [2008] conducted
evaluations of MVAPICH2-ivc on a cluster environment with multicore systems and
PCI-Express InfiniBand Host Channel Adapters (HCAs). InfiniBand is a kind of inter-
connect offering high bandwidth and low latency through user-level communication and
OS bypass. It can be supported with a Xen platform via VMM-bypass I/O [Liu et al.
2006]. High performance and additional features make Infiniband popular in HPC
cluster computing environments. Evaluation results demonstrate that in the multicore
systems with Infiniband interconnections, IVC achieves comparable performance with
native platforms [Huang et al. 2007; Huang 2008].

4.1.2. VMPI. VMPI [Diakhaté et al. 2008] is an Inter-VM MPI communication mech-
anism for coresident VMs targeted to the HPC cluster environment on the KVM plat-
form. In VMPI, only local channels are supported. Different from other related work,
VMPI supports two types of local channels: one to allow fast MPI data transfers be-
tween coresident VMs based on shared buffers accessible directly from guest OSs’
user spaces, and the other to enable direct data copies through the hypervisor. VMPI
provides a virtual device that supports these two types of local channels.

To implement VMPI, both guest and host OSs and the hypervisor are extended
and modified. In guest implementation, the device is developed as a PCI (Peripheral
Component Interface) device for each guest OS based on the Virtio framework. It of-
fers a shared-memory message passing API similar to but not compatible with MPI
via the device driver to guest OSs. The modified user libraries and the device enable
applications in guest OSs to use shared memory instead of the TCP/IP network to
communicate with each other. mmap() is used to map the shared memory of the device
to user space. ioctl is used to issue DMA requests. In host implementation, basic func-
tionalities, such as memory allocation, memory sharing and DMA copies, are provided.
Slight modifications are made to QEMU instances to allow them to allocate memory
from a shared-memory pool.

Experimental results show that VMPI achieves near-native performance in terms
of MPI latency and bandwidth [Diakhaté et al. 2008]. Currently, VMPI only supports
a small subset of MPI API. And its scalability is limited since it does not support a
varying number of coresident VMs to communicate by using fork() to create the QEMU
instances.

4.1.3. Nahanni. Nahanni [Macdonell 2011] provides coresident inter-VM shared-
memory API and commands for both host-to-guest and guest-to-guest communication
on the KVM platform. In order to avoid the overhead of crossing protection barriers
from the guest user level to guest kernel and from guest OS to host, it is designed and
implemented mainly in layer 1. Nahanni’s interfaces are visible to user space applica-
tions. The MPI-Nahanni user-level library is implemented for computational science
applications. The Memcached client and server are modified and extended to benefit
from Nahanni [Gordon 2011a; Gordon et al. 2011b]. Nahanni supports only local chan-
nels. Both stream data and structured data are supported to aim at a broader range of
applications.

Nahanni consists of three components: a POSIX shared-memory region on the host
OS, a modified QEMU that supports a new Nahanni PCI device named ivshmem, and
a Nahanni guest kernel driver developed based on the UIO (Userspace I/O) device
driver model. The shared-memory region is allocated by host POSIX operations. It is

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:20 Y. Ren et al.

mapped to the QEMU process address space via mmap() and is added to the RAM-
blocks structure in QEMU, which makes it possible to manage virtual device memory
through available interfaces. After the driver of device ivshmem is loaded, the mapped
memory can be used by guest applications through mapping it to guest user space via
the mmap() operation. The Shared-Memory Server (SMS), a standalone host process
running outside of QEMU, is designed and implemented to enable inter-VM notifica-
tion.

Evaluation results show that applications or benchmarks powered by Nahanni
achieve better performance [Macdonell 2011; Gordon 2011a; Gordon et al. 2011b; Ke
2011]. However, to take advantage of Nahanni, it is required to rewrite applications
and libraries, or to modify and extend existing applications and libraries. In addition,
Nahanni by design does not consider VM live migration. Thus, it is supposed to be used
by applications that do not expect to migrate or to make switches between the local
and remote mode.

4.2. Below System Calls Layer, Above Transport Layer

Implementing shared-memory-based inter-VM communication below the system calls
layer and above the transport layer represents the layer 2 solution. As we discussed
in Section 3, although the implementation of the shared-memory channel in layer 1
can potentially lead to lower latency and higher throughput of network I/O work-
loads, it requires modification of user-level applications and libraries and thus has the
worst user-level transparency. This motivates the research efforts to explore the im-
plementation of shared-memory mechanisms at the lower layer. XWAY, XenVMC and
Socket-outsourcing are the representative developments to date in layer 2.

4.2.1. XWAY. XWAY is another inter-VM communication optimization for coresident
VMs [Kim et al. 2008]. XWAY is designed based on the belief that it is not practical to
rewrite legacy applications with new APIs even if implementation at a lower layer of
the software stack indicates some performance loss. The design of XWAY makes efforts
to abstract all socket options and keeps user-level transparency. XWAY modifies the
OS kernel by patching it. It intercepts TCP socket calls below the system calls layer
and above the transport layer.

Hierarchically, XWAY consists of three components: switch, protocol, and device
driver. They are implemented as a few lines of kernel patch and a loadable kernel
module. Upon the very first packet delivery attempt, the switch component is used to
intercept socket-related calls between the INET and TCP layer. It determines if the
receiver is a coresident VM or not. Then it transparently chooses between the TCP
socket and the local XWAY protocol, which should be called whenever a message is
transmitted. The protocol component conducts the task of data transmission via the
device driver. The device driver plays a basic role to support the XWAY socket and
XWAY protocol. It writes data into the sharing buffer or reads data from it. It also
transfers events between the sender and the receiver and makes a callback to upper
components when necessary. In the implementation of XWAY, the virtual device is
represented as XWAY channels.

Evaluation results show that under various workloads, XWAY achieves better per-
formance than the native TCP socket by bypassing the long TCP/IP network stack and
providing a direct shared-memory-based channel for coresident VMs [Kim et al. 2008].

4.2.2. XenVMC. XenVMC is another residency-aware inter-VM communication pro-
tocol implemented at layer 2, with transparent VM live migration and dynamic VM
deployment support [Ren et al. 2012]. It satisfies the three design criteria: high per-
formance, seamless agility, and multilevel transparency. For XenVMC, each guest OS

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:21

hosts a nonintrusive self-contained XenVMC kernel module, which is inserted as a thin
layer below the system calls layer and above the transport layer.

The XenVMC kernel module contains six submodules: Connection Manager, Data
Transfer Manager, Event Manager, System Call Analyzer, VM State Publisher, and
Live Migration Assistant. The Connection Manager is responsible for establishing or
tearing down shared-memory-based connections between two VM peers. The Data
Transfer Manager is responsible for data sending and receiving. The Event Manager
handles data-transmission-related notifications between the sender and the receiver.
The System Call Analyzer enables transparent system call interception. It intercepts
related system calls and analyzes them. If coresident VMs are identified, it bypasses
traditional TCP/IP paths. The VM State Publisher is responsible for announcement
of VM coresidency membership modification to related guest OSs. The Live Migration
Assistant supports the transparent switch between the local and remote mode together
with other submodules.

Experimental evaluation shows that compared with the virtualized TCP/IP method,
XenVMC improves coresident VM communication throughput by up to a factor of 9
and reduces the corresponding latency by up to a factor of 6 [Ren et al. 2012].

4.2.3. Socket-Outsourcing. Socket-outsourcing [Eiraku et al. 2009] enables the shared-
memory inter-VM communication between coresident VMs by bypassing the network
protocol stack in guest OSs. Socket-outsourcing is implemented in layer 2. It supports
two representative operating systems (Linux and NetBSD), with two separate versions
for two VMMs (Linux KVM and PansyVM). We focus our discussion on its Linux KVM
version.

Socket-outsourcing consists of three parts: a socket layer guest module, the VMM
extension, and a user-level host module. In guest OSs, a high-level functionality module
in the socket layer is replaced to implement the guest module. Concretely, the socket
function in structure proto_ops for TCP and UDP is replaced with self-defined ones
so that it can bypass the protocol stack in guest OSs by calling the high-level host
module implemented in the host OS and improve the performance of coresident inter-
VM communication. The outsourcing of the socket layer is called Socket-outsourcing.
Socket-outsourcing supports standard socket API. It is user transparent. However, the
VMM is extended to provide (1) a shared-memory region between coresident VMs,
(2) event queues for asynchronous notification between the host module and guest
module, and (3) a VM Remote Procedure Call (VRPC). The user-level host module acts
as a VRPC server for the guest module. It provides socket-like interfaces between the
guest module and the host module.

Experimental results show that by using Socket-outsourcing, a guest OS achieves
similar network throughput as a native OS using up to 4 Gigabit Ethernet links [Koh
2010]. From the results of an N-tier web benchmark with a significant amount of inter-
VM communication, the performance is improved by up to 45% over the conventional
KVM-hosted VM approach [Eiraku et al. 2009]. VM live migration is not a part of the
design choices and thus not supported by Socket-outsourcing.

4.3. Below IP Layer

Implementing the shared-memory-based inter-VM communication below the IP layer
has several advantages, such as higher transparency, as outlined in Section 3. However,
layer 3 is lower in the software stack, and implementation at layer 3 may potentially
lead to higher latency due to higher protocol processing overheads and a higher number
of data copies and context switches across barriers. XenSocket, XenLoop, and MMNet
are the representative efforts developed in layer 3 on the Xen platform. MemPipe

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:22 Y. Ren et al.

[Zhang et al. 2015] is a recent implementation on the KVM platform in layer 3. All
these efforts are focused on optimization techniques for high performance.

4.3.1. XenSocket. XenSocket [Zhang et al. 2007] provides a shared-memory-based one-
way coresident channel between two VMs and bypasses the TCP/IP network protocol
stack when the communication is local. It is designed for applications in large-scale
distributed stream processing systems. Most of its code is in layer 3 and is compiled
into a kernel module. It is not binary compatible with existing applications. And it
makes no modification to either the OS kernel or VMM.

In XenSocket, there are two types of memory pages shared by the communicating
VM peers: a descriptor page and buffer pages. The descriptor page is used for control
information storage, while the buffer pages are used for data transmission. They work
together to form a circular buffer. To establish a connection, the shared memory for
the circular buffer is allocated by the receiver VM and later mapped by the sender
VM. Then the sender writes data into the FIFO buffer and the receiver reads data
from it in a blocking mode. The connection is torn down from the sender’s side after
data transfer to ensure that the shared resources are released properly. To enhance
the security, application components with different trust levels are placed on separate
VMs or physical machines.

Performance evaluation shows that XenSocket achieves better bandwidth than the
TCP/IP network [Zhang et al. 2007]. Without the support of automatic coresident VM
detection, XenSocket is primarily used by applications that are aware of the coresidency
information and do not expect to migrate or make switches between local and remote
mode during runtime. Once XenSocket is used, the remote path will be bypassed.

4.3.2. XenLoop. XenLoop [Wang et al. 2008] provides fast inter-VM shared-memory
channels for coresident VMs based on Xen memory sharing facilities to conduct direct
network traffic with less intervention of the privileged domain, compared with that
of traditional TCP/IP network communication. It provides multilevel transparency
and needs no modification, recompilation, or relinking to existing applications, guest
OS kernelm and Xen hypervisor. To utilize netfilter [Ayuso 2006], a third-party hook
mechanism, XenLoop is implemented below the IP layer, the same layer in which
netfilter resides.

XenLoop consists of two parts: (1) a kernel module named the XenLoop module,
which is loaded between the network layer and link layer into each guest OS that
wants to benefit from the fast local channel, and (2) a domain discovery module in Dom0.
Implemented on top of netfilter, the module in the guest OS intercepts outgoing network
packets below the IP layer and automatically switches between the standard network
path and a high-speed inter-VM shared memory channel. <guest-ID, MAC address>
pairs are used to identify every VM. One of the kernel parts of the XenLoop module is its
fast bidirectional inter-VM channel. The channel structure is similar to that of XWAY.
The channel consists of two FIFO data channels (one for data sending, the other for
data receiving) and a bidirectional event channel that is used to enable notifications of
data presence for the communicating VM peers. The module in Dom0 is responsible for
discovering coresident VMs dynamically and maintaining the coresidency information,
with the help of XenStore. XenLoop supports transparent VM live migration via the
aforementioned modules.

Evaluations demonstrate that XenLoop increases the bandwidth by up to a factor of
6 and reduces the inter-VM round-trip latency by up to a factor of 5, compared with
the front-end/back-end mode [Wang et al. 2008b]. Although XenLoop satisfies the three
design criteria we outlined in Section 3, we have shown in Figure 3 (Section 3) some
problems inherent in the XenLoop implementation, due to the choice of layer 3, such
as bypassing some important optimizations provided at the NIC layer.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:23

4.3.3. MMNet. Different from other related work, MMNet [Radhakrishnan and
Srinivasan 2008] works together with the Fido framework [Burtsev et al. 2009] to pro-
vide shared-memory-based inter-VM communication optimization for coresident VMs
on the Xen platform. Fido was designed for enterprise-class appliances, such as storage
systems and network-router systems. It offers three fundamental facilities: a shared-
memory mapping mechanism, a signaling mechanism for inter-VM synchronization,
and a connection handling mechanism. Built on top of Fido, MMNet emulates a link
layer network device that provides shared-memory-based mechanisms to improve the
performance of coresident inter-VM communication. Its driver is implemented in the
lowest layer of the protocol stack. It easily achieves user-level transparency by provid-
ing a standard Ethernet interface. Fido and MMNet together give the user a view of
standard network device interfaces, while the optimization of shared-memory-based
inter-VM communication is hidden beneath the IP layer. MMNet enables switch-
ing between the local and remote communication mode by updating the IP routing
tables.

Different from other Xen-based related work, Fido leverages the relaxed trust model
to enable zero copy and to reduce data transfer overhead. It maps the entire kernel
space of the sender VM to that of the receiver VM in a read-only manner to avoid un-
necessary data copies and to ensure security. Actually, it is designed for communication
between VMs that are trustable to each other, where the mapping of guest OSs’ mem-
ory is acceptable since the possibility of malicious memory access is low in a private,
well-controlled environment. As for reliability, Fido provides heartbeat-check-based
connection monitoring and failure handling mechanisms to be capable of detecting VM
failures and conducting proper operations accordingly.

MMNet obtains lower performance overhead by incorporating the relax trust model
[Burtsev et al. 2009; Radhakrishnan and Srinivasan 2008]. Evaluation [Burtsev et al.
2009] shows that for the TCP STREAM and UDP STREAM workload, MMNet pro-
vides near-native performance. For the TCP STREAM workload, it achieves twice the
throughput compared with XenLoop. And for the UDP STREAM workload, MMNet
increased the throughput by up to a factor of 4 compared with that of Netfront, and its
latencies are comparable to XenLoop for smaller message sizes. As the message sizes
increase (�8KB), MMNet outperforms XenLoop by up to a factor of 2.

4.3.4. MemPipe. MemPipe is the most recent shared-memory inter-VM communica-
tion method implemented in layer 3 on the KVM platform [Zhang et al. 2015]. To
optimize the performance of layer 3 implementation, MemPipe introduced a dynamic
shared-memory pipe framework for efficient data transfer between colocated VMs with
three interesting features: (1) MemPipe promotes a dynamic proportional memory
allocation mechanism to enhance the utility of shared-memory channels while improv-
ing the colocated inter-VM network communication performance. Instead of statically
and equally allocating a shared-memory pipe to each pair of colocated communicating
VMs, MemPipe slices the shared memory into small chunks and allocates the chunks
proportionally to each pair of VMs based on their runtime demands. (2) MemPipe in-
troduces two optimization techniques: time-window-based streaming partitions and
socket buffer redirection. The former enhances the performance of inter-VM commu-
nication for streaming networking workloads, and the latter eliminates the network
packet data copy from the sender VM’s user space to its VM kernel. (3) MemPipe is
implemented as kernel modules to achieve high transparency. Its functionalities are
split between a kernel module running in the guest kernel and a kernel module in
the host kernel. The MemPipe kernel module in the host is responsible for allocating
the shared-memory region from the host kernel memory and initializing the allocated
shared-memory region so that guest VMs are able to build their own memory pipes.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:24 Y. Ren et al.

The MemPipe kernel module in a guest VM manages the shared-memory pipes for its
communication with other colocated VMs. It consists of a Peer VM Organizer, Packet
Analyzer, Memory Pipe Manager, Emulated PCI Device, and Error Handler.

The Peer VM Organizer enables each VM to distinguish its colocated VMs from
remote VMs (VMs running on a different host machine). It is implemented using a
hashmap, with the Mac address of a VM as the hash key and the corresponding data
structure used for establishing the memory pipe as the hash value. The Packet Analyzer
helps VMs to determine whether a network packet is heading to its colocated VMs or
remote VMs. The Memory Pipe Manager consists of four parts: Pipe Initiator, Pipe
Reader/Writer, Pipe Analyzer, and Pipe Inflator/Deflator. Since KVM does not allow
sharing memory between the host and the guest VM, MemPipe creates an emulated
PCI device in each VM to overcome this limitation. The PCI device takes the memory,
which is allocated and initialized by the Shared Memory Initiator in the host, as its own
I/O region. Then it maps its I/O region into the VM’s kernel address and transfers the
base virtual address to the Memory Pipe Manager. Thus, the Memory Pipe Manager is
able to access the shared memory from this virtual address. Although the based virtual
addresses may not be the same in different VMs, they are pointing to the same physical
address: the beginning of the memory allocated by the Shared Memory Initiator. After
putting a packet into a shared-memory pipe, the sender VM notifies the receiver VM
through the Events Handler to fetch the packets.

Experimental evaluations show that MemPipe outperforms existing layer 3 systems
such as XenLoop (recall Figure 4 in Section 3) for both transactional workloads and
streaming workloads under TCP and UDP. The most recent release of MemPipe is built
on KVM [Kivity et al. 2007] 3.6, QEMU (http://wiki.gemu.org) 1.2.0, and Linux kernel
3.2.68.

4.4. Comparing Xen-Based Implementation Versus KVM-Based Implementation

Shared-memory-based inter-VM communication optimization for coresident VMs is
desirable for both the Xen-based virtualization environment and the KVM-based vir-
tualization environment. Early research is primarily targeted for HPC MPI applica-
tions. Recent trends are toward more generic computing areas such as large-scale
distributed computing, web transaction processing, and cloud computing and big data
analytics services. Understanding the similarity and subtle differences between Xen-
based implementations and KVM-based implementations is critical and beneficial for
the development and deployment of next-generation shared-memory-based inter-VM
communication systems.

In general, Xen-based shared-memory implementations and KVM-based efforts
share all the design objectives and functional and nonfunctional requirements for
shared-memory-based inter-VM communication optimization. For example, they share
common fundamental functionalities, such as memory sharing, connection setup and
tear-down, local connection handling, and data sending and receiving, to name a few.
In addition, they also share the nonfunctional requirements such as high performance,
multilevel transparency, seamless agility, reliability, and security.

However, Xen and KVM are different virtualization platforms with different network
architectures and interfaces, as outlined in Section 2. These architectural and network
interface differences contribute to the differences in the design and implementation of
their respective shared-memory communication mechanisms. For Xen-based shared-
memory communication development efforts, there are more fundamental mechanisms
available, such as Xen Grant Table, Xen Event Channel, and XenStore, which provide a
good foundation to simplify the design and implementation of shared-memory channels
between coresident VMs. In comparison, KVM does not offer as many fundamental

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:25

Table II. Architectural Layout and General Features

Xen Based KVM Based
MMNet Socket-

IVC Xen Socket XWAY XenLoop (Fido) XenVMC VMPI outsourcing Nahanni MemPipe
Scope of
application

HPC Distributed
processing

Network
intensive

Network
intensive

Enterprise-
class

services

Network
intensive

HPC Not
specified

HPC,
MemCached

Network
intensive

Type of API IVC-specific
API,

VM-aware
MVAPICH

2 API

Modified
socket-based

API

Standard
API

Standard
API

Standard
API

Standard
API

Modified
MPI

Standard
socket-
based
API

Modified
MPI &

Memcached
API

Standard
API

I/O virtual-
ization
model
supported

VMM-
bypass

I/O

Split I/O Split I/O Split I/O Split I/O Split I/O Virtio based Software-
emulated

I/O

Software-
emulated

I/O

Software-
emulated

I/O

Location of
local shared-
memory
channel

Layer 1 Layer 3 Layer 2 Layer 3 Layer 3 Layer 2 Layer 1 Layer 2 Layer 1 Layer 3

Form of
main
components

Libraries,
kernel
driver

Kernel
module

Kernel
patch,
kernel
driver

Kernel
modules

Kernel
driver

Kernel
module

Library,
kernel

driver, patch
for QEMU

Host
module,

guest
module,
patch for
KVM &

PansyVM

UIO-based
device

driver, patch
for QEMU/

KVM

Host
module,

guest
module

Patch for
KVM

programmable capabilities as Xen. Thus, KVM-based research and development efforts
need to focus more on mechanisms to provide a local memory sharing method for guest-
guest VM communication and host-guest VM communication.

The architectural design and general features of existing representative shared-
memory inter-VM communication systems are summarized in Table II.

Although virtqueues in the Virtio framework can be used like I/O ring buffers, Vir-
tio is based on DMA semantics, which is not suitable for every design. Regardless of
whether one is using the Virtio framework or not, the QEMU/KVM needs to be ex-
tended to provide similar facilities like the Xen Grant Table, Xen Event Channel, and
XenStore. For example, to extend the current hypervisor for providing underlying sup-
port of shared memory, Nahanni and VMPI modify QEMU, and Socket-outsourcing
modifies the KVM module and QEMU. As layer 1 implementation, VMPI and
Nahanni choose to sacrifice their user-level transparency to simplify the implemen-
tation of the shared-memory channel and reduce potential context switch overhead.
Thus, the shared-memory channel in both systems is visible to applications. The
legacy applications need to be rewritten or modified to know about the coresidency
information of the respective VMs in order to benefit from the shared-memory-based
inter-VM communication mechanisms. As layer 2 implementation, Socket-outsourcing
provides the shared memory region between coresident VMs, event queues for asyn-
chronous notification between host and guest, and VM remote procedure call (VRPC)
using the user-level host module as a VRPC server for the guest with socket-like
interfaces between the guest and the host. Moreover, all three existing KVM-based de-
velopments provide no support for seamless agility, namely, no support for automated
switching between local and remote communication channels. MemPipe is the only
full-fledged shared-memory system on the KVM platform, which satisfies the three de-
sign criteria discussed in Section 3: high performance, seamless agility, and multilevel
transparency.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:26 Y. Ren et al.

4.5. Recent Advances in Network I/O Virtualization

Recent research on network I/O virtualization has centered on improving the inter-
VM network I/O performance by software-defined network (SDN) and network func-
tion virtualization (NFV). Representative technology includes the single-root I/O
virtualization (SR-IOV) [MSDN 2014] for making PCI devices interoperable, and the
Intel Data Plane Development Kit (DPDK) [Sanger 2013; Intel 2013] for fast packet
processing using multicore systems.

SR-IOV-capable devices allow multiple VMs to independently share a single I/O de-
vice and can move data from/to the device by bypassing the VMM. SR-IOV offers an
attractive alternative for the virtualization of high-performance interconnects such
as InfiniBand. Jose et al. [2013] show that by combining SR-IOV with InfiniBand,
instead of TCP/IP networks, based on the VMM-bypass I/O model, one can obtain
near-native performance for internode MPI point-to-point communication. Zhang et al.
[2014a, 2014b] show that by introducing VM residency-aware communication, the per-
formance of MPI communication on SR-IOV-based InfiniBand clusters can be further
improved.

Although SR-IOV improves the communication between VM and its physical device,
it cannot remove the overhead of colocated inter-VM communication. This is because
with SR-IOV, packets still need to travel through the network stack of the sender VM, to
be sent from the VM to the SR-IOV device, and then sent to the receiver VM. This long
path can still lead to an unnecessarily high cost for colocated inter-VM communication,
especially for larger-size messages.

Alternatively, Intel DPDK [Intel 2013] is a software framework that allows high-
throughput and low-latency packet processing. It allows the applications to receive
data directly from NIC without going through the Linux kernel and eliminates the
overhead of interrupt-driven packet processing in traditional OSs. As a set of libraries
and drivers, Intel DPDK utilizes huge pages in guest VMs and multicore processing to
provide applications direct access to the packets on NIC. The huge pages in DPDK are
statically allocated to each VM. However, DPDK is restricted and on its own cannot
yet support flexible and fast network functions [Sanger 2013].

NetVM [Hwang et al. 2014] is the most recent development by utilizing the shared-
memory mechanism on top of DPDK. NetVM shows that the virtualized edge servers
can provide fast packet delivery to VMs, bypassing the hypervisor and the physical
network interface. However, NetVM is limited to run on a DPDK-enabled multicore
platform, and no open source is made available to date.

In summary, shared-memory-based inter-VM communication mechanisms are im-
portant value-added methods for further improving the performance of network I/O
virtualization.

5. FUNDAMENTAL FUNCTIONAL COMPONENTS: DESIGN COMPARISON

All shared-memory-based residency-aware inter-VM communication mechanisms must
provide three fundamental functionalities: (1) memory sharing structures and corre-
sponding facilities, (2) shared-memory channel (local connection) setup/tear down, and
(3) sending and receiving data. Figure 6 illustrates the interactions of these three
common functional components for enabling inter-VM communication.

5.1. Memory Sharing

For VMs to communicate via their shared-memory channel, it is necessary to build a
buffer of shared physical pages for both VMs such that the two VMs can communicate
directly by accessing the specific slot in the buffer.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:27

Fig. 6. Fundamental common functionalities of inter-VM communication between coresident VMs.

For existing shared-memory systems implemented on Xen platform, the Xen Grant
Table is usually used as a fundamental memory sharing facility to offer map-
ping/transfer pages between the sender VM and receiver VM. The Grant Table provides
an efficient and secure way for memory sharing. The Grant Table API is accessible
from the OS kernel, which explains to some extent why most of the Xen-based shared-
memory mechanisms are implemented in the kernel. Implementation at the kernel
level makes it easier to support both the shared-memory-based local channel and the
traditional network-based remote channel since functionalities, such as packet inter-
ception and redirection, can be supported in the kernel between user applications and
inter-VM communication enabling components.

However, different shared-memory methods implemented on the KVM platform may
differ from one another in terms of their support for memory sharing: virtqueues in the
Virtio framework provides the interfaces to manage a list of buffer descriptors, which
are used by VMPI as ring buffers to implement its message passing MPI. However,
virtqueues itself does not provide the semantics of guest-guest or host-guest memory
sharing. Nahanni shows that instead of using the Virtio framework, it is preferable
to expose ivshmem, the virtual device, as a PCI device to the guest OSs. Nahanni’s
shared memory is created by the host OS with POSIX API and is mapped to the
shared-memory region of the virtual PCI device, which is exposed by the device driver
to the guest OS and is mapped again to the user level. For KVM, user-level QEMU
is capable of accessing guest physical memory. By taking advantage of this feature,
Socket-outsourcing implements its self-defined memory sharing algorithms.

5.2. Local Connection Handling

When the sender VM or the receiver VM detects the first network traffic to its coresi-
dent communicating VM, it initiates the procedures to establish shared-memory-based
local connection. The local connections are set up usually as a client-server model be-
tween the sender and the receiver. The simplified procedures are, first, memory for
shared buffer is allocated by the client who sponsors the connection establishment
procedure, and then the client passes the handles of the buffer to the server, which
maps the communication buffer to its own address space through inter-VM shared-
memory facilities. The event channel or similar structures are initialized for control
flow between communicating VMs.

After the data transfer is finished, the sender or the receiver is shut down, or, when
the connection is to be switched from local to remote, the local connection needs to be
torn down. Different from a traditional network connection, where the sender and the
receiver can be shut down independently, specific care should be given to correctly tear
down the shared-memory-based local channel to make sure that the shared memory is
unmapped properly and, consequently, the memory is deallocated.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:28 Y. Ren et al.

5.3. Data Transmission

Once the shared-memory channel is established, the local connection is initialized, and
the send VM can send the network traffic to the receiver VM via the local channels.
There are two popular ways to organize the shared buffer for data transferring: circular-
buffer-based method and non-circular-buffer-based method.

5.3.1. Circular-Buffer-Based Approaches. The circular-buffer-based approaches organize
the shared buffer into two producer-consumer circular buffers (one for sending and
one for receiving) with one event channel for every pair of communicating VMs. The
producer writes data into the buffer and the consumer reads data from it in an asyn-
chronous manner. The event channel is used to notify the communicating VMs of the
presence of data in the circular buffer. The offset in the buffer should be well main-
tained. Circular-buffer-based mechanisms offer the advantage that data in the buffer
is kept in order and thus no explicit cross-domain synchronization is needed.

XenSocket, XWAY, XenLoop, and XenVMC are representative shared-memory-based
methods on the Xen platform, which incorporate the circular buffer mechanism. IVC
and VMPI are layer 1 shared-memory implementations on KVM. They share the idea
with the previously mentioned related work but with small differences. For the IVC
channel, the shared buffer consists of two circular buffers containing multiple data
segments and a pair of producer/consumer pointers. Instead of using the Xen Event-
Channel-based notification mechanism, both the sender and the receiver check the
pointers to determine if the buffer is full or if data has arrived. VMPI provides two types
of local channels: a producer/consumer circular buffer for small messages (�32KB) and
a rendezvous-protocol-based DMA channel for larger messages. Different from other
existing works, the XenSocket channel is one way and does not support bidirectional
data transmission.

5.3.2. Non-Circular-Buffer-Based Approaches. There are a number of existing shared-
memory mechanisms, such as MMNet on the Xen platform, and Nahanni and Socket-
outsourcing on the KVM platform, which organize their buffer for data sharing
differently from the circular-buffer-based approaches. MMNet is built on top of Fido,
which adopts a relaxed trust model and maps the entire address space of the sender
VM into the receiver VM’s space before any data transmission is initiated, so that the
data is transferred with zero copy. For Socket-outsourcing, the guest module allows the
host module to access its memory regions, which makes memory sharing between the
host and guest possible. Event queues are allocated in the shared memory and can be
accessed via self-defined API to enable asynchronous communication between the host
module and the guest module. The socket-like VRPC protocol is implemented between
the sender and the receiver to set up or tear down connections, to transfer data, and so
forth. For Nahanni, it modifies QEMU to support a virtual PCI device named ivshmem.
The shared-memory object allocated by host POSIX operations is mapped to the shared
buffer of this device. The UIO device driver in the guest OS makes the shared buffer
available to the guest user-level applications. Its SMS coordinates with Linux eventfds
and ivshmem’s register memory mechanisms to provide an inter-VM notification mech-
anism for Nahanni. Different from other related works, Nahanni supports not only
stream data but also structured data.

Table III summarizes the features of fundamental functionalities for both Xen-based
and KVM-based shared-memory systems.

6. SEAMLESS AGILITY: COMPARATIVE ANALYSIS

Recall from Section 3.4 that seamless agility refers to the support for (1) automatic
detection of coresident VMs, (2) automatic switch between local shared-memory mode

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:29

Table III. Features of Fundamental Functionalities

Xen Based KVM Based

IVC XenSocket XWAY XenLoop
MMNet
(Fido) XenVMC VMPI

Socket-
outsourcing Nahanni MemPipe

Approach to
bypassing
traditional
network
path

Via
VM-aware

MVAPI
CH 2-ivc
library

Via
modified
API and

user
libraries

Socket-
related

calls
inter-

ception

Netfilter
hooks

IP routing
tables

updating

Transparent
system call
interception

Via modified
MPI and

user
libraries

Replacing
related
kernel

functions
with

self-defined
ones

Via modified
API and
device

ivshmem

Replace/
extend
kernel

functions
with

self-defined
ones

Auxiliary
facilities for
local
connection
and data
exchange

Grant
Table
Event

Channel

Grant
Table
Event

Channel

Grant
Table
Event

Channel

Grant
Table

XenStore
Event

Channel

Grant
Table

XenStore
Event

Channel

Grant Table
XenStore

Event
Channel

Virtio Shared
memory,

event
queues,
VRPC of
extended

KVM

PCI, mmap,
UIO,

eventfds

Shared
memory,

PCI, event
queues

Complete
memory
isolation

Yes Yes Yes Yes No
Relaxed

Yes Yes Yes Yes Yes

Bidirectional
connection

Yes No One
way

Yes Yes Yes Yes Yes Yes Yes Yes

Data buffer
type

Circular
buffer

Circular
buffer

Circular
buffer

Circular
buffer

Address
space

mapping

Circular
buffer

Circular
buffer for
message
(≤32KB)

N/A Host: POSIX
memory

object Guest:
device

memory
region

Circular
buffer

of communication and remote TCP/IP communication, and (3) dynamic addition or re-
moval of coresident VMs. These functionalities are critical for shared-memory-based
inter-VM communication to work effectively and correctly in the presence of VM live mi-
gration and VM dynamic deployment. We dedicate this section to provide a comparative
analysis on whether and how seamless agility is supported in existing representative
shared-memory-based coresident VM communication mechanisms.

6.1. Automatic Detection of Coresident VMs

As mentioned in Section 3.4, there are two approaches to maintain VM coresidency
information: static method and dynamic method.

For Xen-based shared-memory systems, XenSocket does not provide any support for
dynamic addition or removal of coresident VMs, and thus cannot work in conjunction
with the VM live migration. XWAY [Kim et al. 2008] utilizes a static method to gen-
erate and maintain its coresident VM list. When a sender VM sends a request to a
receiver VM, XWAY refers to the static file that lists all coresident VMs to determine
whether the receiver VM resides on the same physical machine or not. If yes, XWAY
performs an automatic switch between the shared-memory-based local channel and
the traditional network path. However, XWAY does not support dynamic addition or
removal of coresident VMs. Thus, XWAY only works when VM live migration and VM
dynamic deployment are performed manually.

IVC [Huang et al. 2007] initially registers the VM coresidency information in the
back-end driver of Dom0 in a static manner. During runtime, IVC provides API for
communicating the client (sender) and server (receiver) to be registered to form a
local communication group and to obtain the group membership information such as
magic id. All registered domains with the same magic id will communicate through
local IVC channels. Although IVC’s original coresident VM information is collected in

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:30 Y. Ren et al.

a static manner, it supports automatic detection of coresident VMs by dynamically
maintaining an IVC-active list, a list of active virtual connections between coresident
VMs.

XenLoop [Wang et al. 2008] provides a soft-state domain detection mechanism to
monitor the addition/removal of coresident VMs and to dynamically gather and update
VM coresidency information. A Domain Discovery module in Dom0 periodically scans
all guest entries in XenStore, where each entry represents its state. Then the module
advertises the updated information to all the VMs covered by the existing entries and
the VMs update their local <guest-ID, Mac address> lists. MMNet [Radhakrishnan
and Srinivasan 2008] claims that it provides an automatic VM detection mechanism
and supports VM live migration, but related technical details are not made available.

XenVMC differs from XenLoop in that there is no centralized management. Cores-
ident VMs and their related local channels’ information are organized in a structure
defined as vms[], which is an array of coresident VMs maintained by every VM. Each
item in vms[] represents one of the coresident VMs on the physical host machine (ex-
cluding the Dom0 VM itself). It stores not only coresidency information but also the
data of local channels. When one VM is created or migrated into a new host, vms[]
of this VM will be initialized. When an event such as creation, migration in/out, or
shutdown of a coresident VM occurs, all the other VMs on the same physical machine
will be notified so that their vms[] will be correctly updated. The vms[] entry of a VM
will be deleted, upon receiving the request to migrate out, from its current physical
host machine.

For KVM-based shared-memory systems, VMPI [Diakhate et al. 2008], Nahanni
[Macdonell 2011], and Socket-outsoucing [Eiraku et al. 2009] all provide no support
for transparent detection of coresident VMs. Nahanni’s shared-memory server (SMS)
was originally designed and implemented to enable inter-VM notification. The guest
OS is required to be registered with SMS when it is first connected to SMS. How-
ever, automatic coresident VM detection and auto-switch between the local channel
and remote network path are not supported in Nahanni. In order to support dynamic
coresident VM membership maintenance, Nahanni needs to be extended. For example,
to facilitate the Memcached client and server to use Nahanni, Adam Wolfe Gordon
implemented Locality Discovery, a user-level mechanism, to judge if the client and the
server application are in two coresident VMs [Gordon 2011a; Gordon et al. 2011b].
MemPipe [Zhang et al. 2015] extends QEMU/KVM to provide full-fledged support for
seamless agility for shared-memory communication on the KVM platform. Similarly,
for the Xen-based platform, XenLoop and XenVMC support fully transparent VM mi-
gration, transparent switch between local and remote mode, and automatic coresident
VM detection.

6.2. Auto-Switch Between Local Mode and Remote Mode of Inter-VM Communication

To support transparent switch between the local mode and remote mode, the two tasks
as mentioned in Section 3.4.2 are involved.

For Xen-based shared-memory solutions, IVC has two kinds of communication chan-
nels available in MVAPICH2-ivc: a shared-memory-based local IVC channel over user
space shared memory for coresident communicating VMs, and a network-based remote
channel over InfiniBand for communicating VMs on separate hosts. As VMs migrates
in/out, the MVAPICH2-ivc library supports an intelligent switch between the local IVC
channel and remote network channel via its communication coordinator implemented
in user space libraries, which are responsible for dynamically setting up or tearing
down the connections when VM migration occurs. It also keeps an IVC-active list and
updates it when necessary. IVC offers the flexibility of supporting VM live migration.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:31

However, since information such as magic id must be preconfigured, live migration is
not supported with full transparency.

XWAY determines whether the receiver VM is coresident or not by referring to a
preconfigured static file through its switch component at the first packet delivery.
Then it decides to choose between the TCP socket and local XWAY protocol to transmit
the data.

XenVMC transparently intercepts every network-related system call and executes
its user-defined system call handler. The handler analyzes from the context whether
the communicating VMs are coresident or not. If yes, it bypasses the TCP/IP path by
executing the codes for shared-memory-based communication. Otherwise, it recovers
the entry address of the original handler and executes it. The entries in the system call
table are modified in a way that is transparent to the OS kernel.

MMNet supports automatic coresident VM membership maintenance, which enables
communicating VMs to establish connections dynamically. MMNet also allows running
applications within a VM to seamlessly switch from/to the local shared-memory path
by updating the IP routing tables accordingly.

Instead of implementing the interception mechanism from scratch, XenLoop uses
netfilter [Ayuso 2006], a third-party hook mechanism provided inside the Linux kernel
for kernel modules to register callback functions within the network stack, to intercept
every outgoing network packet below the IP layer, and to determine the next hop node
by the information in its header. Since netfilter resides below the IP layer, its intercep-
tion mechanism indicates a longer data transmission path compared with alternative
approaches in layer 2.

For KVM-based shared-memory communication methods, such as Nahanni and
VMPI, the user applications need to explicitly specify whether the local optimized
channel or original network channel is to be used via different APIs: specific shared-
memory API or standard network API. Nahanni does not support the transparent
switch between the local and remote mode. Socket-outsourcing replaces traditional
socket communication functions with shared-memory-oriented ones at the socket layer,
without modifying standard socket API. However, no technical details are provided to
indicate that it supports the transparent switch between the local and remote mode.
MemPipe [Zhang et al. 2015] supports the auto-switch between local shared-memory
communication and remote inter-VM communication through a conventional network
channel as part of its kernel module implementation.

6.3. Discussion on Race Condition

Seamless agility not only refers to auto-detection of coresident VMs and auto-switch
between local and remote communication channels but also requires the guarantee
that residency-aware inter-VM communication is reliable and robust in the presence of
dynamic addition or removal of coresident VMs. Ideally, dynamic addition or removal
of a VM should be made visible to other VMs on the same physical host machine imme-
diately after the event occurs. However, when VMs on the same host cannot be notified
of the membership changes immediately and synchronously upon the update to the VM
coresidency information, race conditions may occur. Thus, not only should the detection
of VM coresidency information be done on demand and whenever a VM communicates
with another VM, but also we need to provide immediate update mechanisms for re-
freshing the list of coresident VMs on the respective physical host machine(s). For
example, when a VM is migrated out to another physical host machine, it should no-
tify all its coresident VMs on both the current host machine and the new destination
host machine to update their coresident VM list. This will avoid errors concerning lo-
cal/remote connection management and pending data handling because the coresident
VM list is out of date.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:32 Y. Ren et al.

Recall our discussion on reliability in Section 3.6.1: we described what race con-
ditions are and how they may occur for shared-memory inter-VM communication in
the presence of dynamic VM migration and dynamic VM deployment. We also briefly
described some race condition prevention or resolution mechanisms. In general, the
following three categories of operations need coresidency information either explicitly
or implicitly and thus may become vulnerable when the coresidency information is
not kept up to date: (1) connection establishment, (2) pending data handling for data
remaining from former local/remote connections, and (3) connection tearing down. Let
top denote the beginning time for an operation, tevent denote the time when the addition
or removal of a VM occurs, and tnotified denote the time when corresponding coresident
VMs are notified of the events. If the gap between tevent and tnotified is large and top
happens to fall into the time interval specified by the gap, then a race condition is
created due to the inconsistency between the up-to-date coresident VM information
and the out-of-date coresident VM list maintained in the VMs of the respective host
machines. In the rest of this section, we will provide a comparative analysis on how
existing shared-memory systems handle such race conditions.

6.3.1. Race Condition Handling in Existing Shared-Memory Systems. For residency-aware
inter-VM communication mechanisms that adopt static methods for detection of coresi-
dent VMs, such as IVC and XWAY, no race condition (as defined in Section 3.6.1) exists.
The reason is that once the coresidency information is prefigured, no membership
changing is allowed during runtime, unless the static file with membership informa-
tion is modified and the coresident VM list is updated via a specific API manually.

For implementations with dynamic coresident VM detection, race conditions may
occur if the update to the coresident VM list is asynchronous and deferred with respect
to the on-demand addition or removal of VMs. For example, for several Xen-based
shared memory systems, such as XenLoop, MMNet, and XenVMC, which support dy-
namic coresident VM detection via XenStore, race conditions exist. However, neither
of these systems has discussed how it handles race conditions in the presence of VM
live migration.

In order to support race condition prevention, the XenStore-based module needs to
be extended to enable synchronous notification to be triggered before any update trans-
action over the XenStore to update the coresidency information of a VM is committed.
Compared to the prevention methods that require modifying the XenStore-based mod-
ule to maintain strong consistency, the race condition resolution methods use the opti-
mistic approaches to handle or compensate for the possible errors after the occurrence
of race condition. They maintain weak consistency in the sense that the notification of
changes to the coresidency information caused by VM live migration is delayed until
the respective VMs initiate or are involved in an inter-VM communication request.

For KVM-based shared-memory systems, only MemPipe provides auto-detection of
coresident VMs and auto-switch between the local mode and remote mode of inter-VM
communications. In addition, the first release of MemPipe is implemented as a solution
in layer 3. It maintains the coresident VM membership information asynchronously
using a periodic update method. Also, MemPipe checks the update to the coresidency
information before determining whether to switch the inter-VM communication to the
local shared-memory channel.

6.3.2. Potential Impacts on Connection Management and Pending Data Handing. To better un-
derstand how race condition management may affect the correctness and performance
of residency-aware inter-VM communication mechanisms, Table IV shows the poten-
tial impact for connection management, for handling of pending data remaining from
previous local/remote connections, and for connection teardown along two dimensions:

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:33

Table IV. Impacts of Race Conditions on Connection Management and Pending Data Handling

VM Addition VM Removal
VM Migration In VM Creation Migration Out VM Shutdown

Connection
establishment

No error
Performance

overhead

No error
Deferred

establishment

Error Error

Pending data
handling

N/A N/A Layer 2 approachs: Error N/A

Layer 3 approachs: No error
Connection
tearing down

No error N/A Possible error N/A

(1) events leading to the change of coresident VM membership and (2) operations
affected by race condition.

Note that not all the events are included in previous table. For example, events
such as VM reboot and VM destroy are not enumerated, since they are similar to VM
addition or VM removal under connection establishment or teardown. The commonality
of these events is that they all need coresident VM information explicitly or implicitly
to proceed.

For race conditions in the case of VM addition, no additional error will be introduced,
though additional performance overhead may be experienced in some cases. Concretely,
when VMi is migrated to host A from another physical machine host B, if VMs on host
A have not been notified of the addition of VMi, then they can continue their remote
communication with VMi. Thus, no pending data needs to be handled and connection
tearing down is performed as if VMi were on host B, and no error occurs. Once the
list of coresident VMs is updated, for example, through a periodic update scheme, the
race condition will be naturally eliminated. Similarly, when VMi is added to host A
through dynamic VM deployment, before other VMs on the same host A become aware
of the coresidency of VMi, connections to VMi cannot be set up until it is visible to its
communicating VMs. Thus, no pending data and connection tearing down are needed.

For race conditions in the case of VM removal, the situations are somewhat more
complicated. After VMi is migrated out from current host A to host B, it needs to switch
all its shared-memory-based communications with VMs on host A (if any) from its
original local channel to the remote channel between host A and host B. Without such
a switch, due to race conditions, VMi may attempt to communicate with VMs on host
A through the local shared-memory channels that were set up previously, which can
lead to errors since without switching to the remote channel, VMs cannot communicate
with each other across physical hosts. To enable such a switch, we need tear down the
local channels between VMi and VMs on host A. Upon the command of local connection
tearing down, a local channel should not be released until all its pending data are
processed. Regarding the pending data remaining from the original local channel, if
the local channel is established below the IP layer (layer 3), then data transfer error
is tolerable and is transparent to end-users since the upper-layer TCP/IP protocol has
the ability to handle such error and to make amends, although the amending process
may lead to additional overhead. On the other hand, if the local channel is in layer
2, the residency-aware inter-VM communication mechanism itself will need to provide
functionalities to guarantee the reliability of pending data transmission, as outlined
previously.

In summary, race conditions do not necessarily lead to errors. The general guideline
for preventing race conditions is to ensure that the coresident VM membership is
updated immediately and synchronously with the event of VM addition or VM removal
and before conducting any corresponding operations listed in Table IV. If the update to

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:34 Y. Ren et al.

Table V. The Feature of Seamless Agility

Xen Based KVM Based

IVC XenSocket XWAY XenLoop
MMNet
(Fido) XenVMC VMPI

Socket-
outsourcing Nahanni MemPipe

Coresident VM
membership
maintenance

Yes
Static

No Yes
Static

Yes
Dynamic

Yes
Dynamic

Yes
Dynamic

No No Yes Yes

Automatic switch
between local and
remote channels

Yes No Yes Yes Yes Yes No No No Yes

Transparent VM live
migration support

Not fully
transparent

No No Yes Yes Yes No No No Yes

Dynamic VM
deployment support

No No No Yes Yes Yes No No No Yes

the coresidency information is done asynchronously and periodically, then the proper
tuning of the settings for the update cycle period is critical: smaller frequency leads to
higher freshness quality at higher cost. With proper prevention or resolution methods,
race conditions due to VM addition or removal do not happen with high frequency. Thus,
lightweight solutions that can guarantee correctness while maintaining acceptable
performance are desirable.

Table V shows a comparison of the seamless agility support in existing representative
shared-memory inter-VM communication systems.

7. MULTILEVEL TRANSPARENCY: COMPARATIVE ANALYSIS

7.1. User-Level Transparency

Among Xen-based representative approaches, XWAY, XenLoop, XenVMC, and MMNet
achieve user-level transparency by lower-layer design choices and no modification to
layer 1. IVC is not user-level transparent for generic applications that use IVC library.
However, for MPI applications, they can take advantage of MVAPICH2-ivc without
modification. XenSocket introduces XenSocket API, a new type of socket family to al-
low users to communicate across shared-memory channels. The API is different from
current standard sockets. The Grant Table reference is required to be passed to con-
nect() explicitly as a parameter. It uses one shared variable to indicate the number of
bytes for writes in the circular data channel. Thus, in order to benefit from XenSocket,
applications need to be developed/modified to incorporate the proposed interfaces.

Among KVM-based representative approaches, Socket-outsourcing is implemented
in layer 2. MemPipe is implemented in layer 3. Both keep the feature of user-level trans-
parency. VMPI exposes a shared-memory message passing API that is not compatible
with the standard MPI. For Nahanni, user-level transparency and the ease of usage
are sacrificed to achieve simplicity of implementation and potentially better perfor-
mance. For example, to allow Memcached-based applications to benefit from Nahanni,
the Memcached server is modified to use Nahanni API. The Memcached client library
is also extended to identify whether a Memcached server is local. Since Nahanni only
provides a local shared-memory channel, it does not support inter-VM communication
across physical machines.

7.2. Guest OS Kernel Transparency

Among the existing representative shared-memory systems, XWAY and Socket-
outsourcing are not OS kernel transparent. XWAY offers full binary compatibility for
applications communicating over TCP sockets. However, it gives up the transparency
of the OS kernel by patching the kernel. Except for the patch, the other part of XWAY
is implemented as a virtual network device and its kernel driver. Socket-outsourcing
modifies the kernel by replacing existing socket functions with self-defined ones.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:35

Table VI. Multilevel Transparency Features

Xen Based KVM Based

IVC XenSocket XWAY XenLoop
MMNet
(Fido) XenVMC VMPI

Socket-
outsourcing Nahanni MemPipe

User-level
transparency

No No Yes Yes Yes Yes No Yes No Yes

OS kernel
transparency

Yes Yes No Yes Yes Yes Yes No Yes Yes

VMM-level
transparency

No Yes Yes Yes Yes Yes No No No Yes

XenSocket, XenLoop, XenVMC, MMNet, IVC, MemPipe, Nahanni, and VMPI are OS
kernel transparent. Among them, XenSocket, XenLoop, XenVMC, and MemPipe are
designed as kernel modules. MMNet, IVC, Nahanni, and VMPI are implemented as
kernel device driver modules. For instance, MMNet is in the form of a kernel driver
module of a link layer device. The OS kernel part of IVC is a kernel driver module for
a para-virtualized Xen network device. Nahanni’s guest OS part is implemented as a
UIO device driver for virtual PCI device ivshmem, which is created in the same way
a graphics device is. VMPI is implemented as a kernel driver module of a virtual PCI
character device for message passing.

7.3. VMM/Hypervisor Transparency

Xen-based existing representative developments utilize the existing Xen Grant Table,
XenStore, and Xen Event Channel to facilitate the design and implementation of the
shared-memory communication channel and the notification protocol. Almost all of
them keep the feature of VMM transparency except that IVC modifies the VMM to
enable VM live migration.

KVM-based development efforts, such as Nahanni, VMPI, and Socket-outsourcing,
are not VMM transparent. Before Nahanni is merged into QEMU as a sharing memory
facility at the user level, there is no mechanism provided by QEMU/KVM to support
host-guest and guest-guest memory sharing as the Xen Grant Table does on the Xen
platform [Macdonell 2011]. For Nahanni, QEMU is modified to provide virtual device
ivshmem to enable the management of shared memory. For VMPI, slight modifica-
tions are made to QEMU to implement the emulation of a new virtual device. For
Socket-outsourcing, VMM is extended to provide the support for implementing facili-
ties including shared memory, event queues, and VRPC. MemPipe [Zhang et al. 2015]
is the recent shared-memory inter-VM communication system on the KVM platform,
which provides VMM transparency in addition to user-level and guest OS kernel-level
transparency.

Table VI summarizes a comparison of the multilevel transparency feature in existing
representative shared-memory communication systems.

We observe from Table VI that four existing shared-memory developments meet the
requirement of multilevel transparency. They are XenLoop, MMNet, and XenVMC on
the Xen platform and MemPipe on the KVM platform. These four systems also meet the
seamless agility requirement according to Table V by supporting dynamic coresident
VM detection and automatic switch between local and remote channels. However, they
employ different approaches in the memory sharing and implementation layer: (1) MM-
Net maps the entire address space of the sender VM into the receiver VM’s space before
data transmission, while XenLoop, XenVMC, and MemPipe map requested pages on
demand; (2) XenVMC builds shared-memory-based local channels in layer 2, and Xen-
Loop, MMNet, and MemPipe establish local channels in layer 3; and (3) XenLoop, Xen-
VMC, and MMNet manage the shared memory by static allocation of shared-memory

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:36 Y. Ren et al.

regions to the communicating VMs on the same host, whereas MemPipe uses a dy-
namic proportional resource allocation mechanism to manage shared-memory regions
for communicating VMs on a physical host.

8. PERFORMANCE COMPARISONS AND IMPACT OF IMPLEMENTATION CHOICES

8.1. Functional Choices

TCP and UDP support. TCP and UDP are two of the most commonly used net-
work protocols. TCP is connection oriented, while UDP is connectionless. They provide
different levels of reliability and their performance differs due to different features
they offer. Typically, TCP and UDP protocols are used in different application areas.
Among existing shared-memory inter-VM communication systems, XenLoop, MMNet,
XenVMC, and Socket-outsourcing currently support both TCP and UDP workloads,
while XenSocket and XWAY to date support only inter-VM communication for TCP-
oriented applications. For VMPI and Nahanni, only local channels are provided, and
neither TCP nor UDP is supported. For IVC, the technical detail for TCP/UDP support
is not available.

Blocking I/O and nonblocking I/O. Shared-memory buffer access algorithms can
be implemented to support either blocking or nonblocking I/O. With blocking I/O, a
thread is blocked until the I/O operations are finished. With nonblocking I/O, the
functions return immediately after activating the read/write operations. Generally
speaking, the blocking I/O mode is easy to implement but less efficient than the non-
blocking I/O mode. XWAY and XenVMC support both modes, which is desirable for
shared-memory-based inter-VM communication mechanisms. IVC offers ivc_write and
ivc_read functions that are implemented as nonblocking I/O mode. The socket oper-
ations in the host module of Socket-outsourcing indicate its nonblocking I/O feature.
XenSocket does not support nonblocking I/O mode.

Host-guest and guest-guest communication. For shared-memory approaches on
the Xen platform, they all leverage on the Xen Grant Table and offer optimized inter-
VM communication across domains. In contrast, for the KVM platform, the communi-
cating VMs are either host OS or guest OS; thus, host-guest and guest-guest are the
two typical modes of inter-VM communication. Based on different design objectives
and different implementation techniques adopted, KVM-based shared-memory sys-
tems support different communication types: Nahanni supports both host-guest and
guest-guest communication. In Socket-outsourcing, its guest module allows the host
module to access its memory region through VRPC and Event interfaces between the
host module and the guest module. VMPI explicitly supports guest-guest communi-
cation. MemPipe provides direct support for host-guest communication and indirect
support for guest-guest communication.

Buffer size. A majority of existing shared-memory developments choose to design
and implement the buffer for data sharing as FIFO circular structure. Experimental
observation shows that the FIFO buffer size may impact on achievable bandwidth
[Wang et al. 2008b]. IVC, XenLoop, and XenVMC support tunable buffer size to offer
tunable bandwidth. Also in XenLoop, if the packet size is larger than the FIFO buffer
size, then the packet is transmitted by traditional network path. XenSocket utilizes a
fixed-size buffer that is composed of 32 buffer pages and each page size is 4KB.

Table VII provides a comparison on different implementation choices by existing
shared-memory implementations.

8.2. Software Environment and Source Code Availability

All existing representative shared-memory channels are implemented and evaluated
exclusively with different versions of Linux kernel and VMM as shown in Table VIII.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:37

Table VII. Additional Implementation Choices

Xen Based KVM Based
MMNet Socket-

IVC XenSocket XWAY XenLoop (Fido) XenVMC VMPI outsourcing Nahanni MemPipe
TCP/UDP
support

N/A TCP TCP Both Both Both N/A Both N/A Both

Blocking/
nonblocking

Non-blocking Blocking Both N/A N/A Both N/A N/A N/A Both

Host-guest/
guest-guest

Interdomain Interdomain Interdomain Interdomain Interdomain Interdomain Guest-guest Host-guest Both Both

Data buffer
size

Tunable 4KB*32 N/A Tunable N/A Tunable N/A N/A N/A Tunable

Table VIII. Software Environment and Source Code Availability

Xen Based KVM Based

MMNet Socket-

IVC XenSocket XWAY XenLoop (Fido) XenVMC VMPI outsourcing Nahanni MemPipe

Linux kernel
version

2.6.6.38 2.6.6.18 2.6.16.29 2.6.18.8 2.6.18.8 3.13.0 N/A 2.6.25 Since 2.6.37 3.2.68

VMM version Xen 3.0.4 Xen 3.0.2 Xen 3.0.3
Xen3.1

Xen 3.2.0 Xen 3.2 Xen 4.5 N/A KVM-66 Since
QEMU 0.13

KVM 3.6/
QEMU 1.2.0

Source code
availability

N/A Open source Open source Open source N/A N/A N/A N/A Open source Open source

Among them, XenSocket [Zhang and Mcintosh 2013b], XWAY [Kim et al. 2013], Xen-
Loop [Wang et al. 2008], Nahanni [Macdonell 2014], and MemPipe [Zhang et al. 2015]
are open-source systems. Nahanni open-source code is included in the QEMU/KVM
release since its version 0.13 from August 2010. It has become a part of QEMU/KVM,
which is the default hypervisor in Ubuntu as well as Red Hat Enterprise Linux.

8.3. Performance Comparison

As indicated in Table VIII, most of the existing representative shared-memory inter-
VM communication systems to date have not provided open-source release of their im-
plementations. For Xen-based systems, only XenSocket, XWAY, and XenLoop have re-
leased their software. XenVMC was developed by the authors of NUDT. For KVM-based
systems, only Nahanni and MemPipe release their systems as open-source software.
However, among these systems, XenSocket and Nahanni are not user-level transpar-
ent (Table VI), which means existing applications and benchmarks cannot be easily
deployed to run on XenSocket or Nahanni without modification. Therefore, they do not
support Netperf, the widely used network I/O benchmark. As a result, XWAY, XenLoop,
XenVMC, and MemPipe become candidates for the performance comparison. XenLoop
and MemPipe are implemented in layer 3, and XWAY and XenVMC are implemented
in layer 2. Also, compared with XenLoop, XenVMC, and MemPipe, which support both
TCP and UDP semantics and meet all three design criteria of shared memory opti-
mization, seamless agility, and multilevel transparency, XWAY falls short in a couple
aspects: (1) XWAY does not support UDP and (2) XWAY does not support seamless
agility or OS kernel transparency. Taking these different factors into consideration,
we provide a comparison of performance based on the reported experimental results
from related papers [Huang et al. 2007; Zhang et al. 2007; Kim et al. 2008; Wang et al.
2008b; Burtsevet al. 2009; Ren et al. 2012; Diakhaté et al. 2008; Eiraku et al. 2009;
Koh 2010; Gordon 2011a; Gordon et al. 2011b; Ke 2011; Macdonell 2011, Zhang et al.
2015], including experimental setups, test cases or benchmarks, comparison dimen-
sions, comparison systems, and the description of performance improvement. Table IX

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:38 Y. Ren et al.

Table IX. Performance Comparison for Existing Shared-Memory Systems

Plat. Name Hardware Setup
Test Case/

Benchmark
Dimensions

(Netperf) Contrast Systems

Normalized
Performance
Improvement

Xen

IVC 2 2.8GHz 4GB, 2
3.6GHz 2GB, 2

quad-core 2.0GHz
4GB, PCI-E IB

HCAs

Intel MPI, NAS
parallel, LAMMPS,
NAMD, SMG2000,

HPL

N/A
(Migration)

IVC, inter-VM,
native Linux

Near-native Linux
NAS parellel: up

to 11%+

XenSocket 2 2.8GHz CPU,
4GB RAM

Netperf 2.4.2 TCP STREAM
TCP RR

Native Linux,
inter-VM,
XenSocket

Inter-VM: up to
72×

XWAY 3.2GHz CPU, 1GB
RAM

Netperf 2.4.3,
Apps(scp, ftp, wget),

DBT-1

N/A
(Connection
overhead)

Unix Domain, TCP
(Xen 3.0/3.1, Page
Flip/Copy), XWAY

Better than native
TCP socket

Binary
compatable

XenLoop dual-core 2.8GHz
CPU, 4GB RAM

Netperf, lmbench,
netpipe-mpich, OSU
MPI, ICMP ECHO
REQUEST/REPLY

UDP SREAM
TCP RR UDP

RR

Intermachine,
netfront, XenLoop,

loopback

Latency: reduces
by up to 5×
Bandwidth:

increases by up to
6×

MMNet
(Fido)

2 quad-core
2.1GHz CPU, 16GB

RAM, 2 1Gbps
NICs

Netperf 2.4.4 TCP SREAM
UDP SREAM

TCP RR

Loopback, netfront,
XenLoop, MMNet

TCP&UDP
STREAM: about
2× (XenLoop) up
to 4× (Netfront)

XenVMC 2.67GHz CPU 4GB
RAM

Netperf 2.4.5 TCP SREAM
TCP RR

Netfront, XenVMC thoughput: up tp
9× latency:

improves by up tp
6×

KVM

VMPI 2 quad-core
2.33GHz CPU, 4GB

RAM

Pingpong benchmark N/A MPICH2 near native
performance

Socket-
outsourcing

3GHz CPU, 2GB
RAM, 4 Gigabit

NICs

Iperf, RUBiS
benchmark 1.4.3

N/A KVM-emu,
KVM-virtio,

KVM-out

iperf: up to 25×
RUBiS: 45%+
(KVM-emu)

Nahanni 2 quad-core
2.67GHz CPU,

48GB RAM

Modified: GAMESS,
SPEC MPI2007,

Memcached,
MPICH2

N/A Inter-VM 20%–80%+

MemPipe quad-core 2.4GHz
CPU, 4GB RAM,

Gigabit NIC

Netperf, network
apps (scope, wget,

sftp, etc.)

TCP SREAM
UDP SREAM
TCP RR UDP

RR

Inter machine,
inter-VM, MemPipe

Intermachine:
1.1×–3×

Inter-VM: 2.5×
–65×

shows the summary information. Given that the experimental environments and sys-
tem configurations vary from one system to another, we use the normalized numbers
in the performance improvement column to make comparison more straightforward.

Note that in Table IX, the normalized performance number is respective to each
shared-memory system compared to intermachine, inter-VM, and loopback scenarios.
Given that the experimental results are obtained with different versions of hypervi-
sor and Linux kernel and under diverse hardware configurations, the higher/lower-
performance numbers should not be interpreted as an absolutely better/worse
throughput or lower/higher latency. Take Nahanni as an example; Nahanni achieves
the runtime speedup by 20% to 80% for the benchmark workloads used in the exper-
iments reported in Macdonell [2011]. For example, Nahanni is faster for transferring
data compared to other mechanisms such as Netcat and SCP. Copying data across

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:39

shared memory is between 4 and 8 times faster than Netcat and is an order of magni-
tude faster than SCP.

9. CONCLUSION

We have presented an in-depth analysis and comparison of the state-of-the-art shared-
memory-based techniques for inter-VM communication. To the best of our knowledge,
this is the first effort that provides a comprehensive survey of the inter-VM com-
munication methods. Concretely, this article makes two original contributions. First,
we present the main design and implementation choices of the shared-memory-based
inter-VM communication methods with respect to the implementation layer in the
software stack, the support of seamless agility, and the guarantee of multilevel trans-
parency. Second, based on the objectives and design choices, we present a comparative
analysis on a selection of important issues, including how to achieve high performance,
how to guarantee multilevel transparency, how to automatically detect coresident VMs,
and how to support automatic switch between the local and remote mode of shared-
memory-based inter-VM communication so that dynamic addition or removal of cores-
ident VMs can be supported. We conclude that the implementation layer may have a
critical impact on transparency and performance, as well as seamless agility. Third, but
not the least, we provide an extensive comparison on shared-memory implementations
on top of the two most popular and yet architecturally different open-source VMM
platforms, Xen and KVM. The comparison covers architectural layout, fundamental
functionalities, seamless agility, multilevel transparency, additional implementation
considerations, software environment, and source code availability. We conjecture that
this survey provides not only a comprehensive overview of important issues, design
choices, and practical implementation techniques for developing the next generation
of shared-memory-based inter-VM communication mechanisms but also offers both
cloud infrastructure providers and cloud service consumers an opportunity to further
improve inter-VM communication efficiency in virtualized data centers.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor Prof. Dr. Manish Parashar and the anonymous review-
ers for their helpful comments and constructive suggestions, which have helped improve the quality and
presentation of the manuscript.

REFERENCES

T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freedman, A. Haeberlen, Z. G.
Ives, A. Krishnamurthy, W. Lehr, B. T. Loo, D. Mazieres, A. Nicolosi, J. M. Smith, I. Stoica, R. V. Renesse,
M. Walfish, H. Weatherspoon, and C. S. Yoo. 2013. The NEBULA future internet architecture. Lecture
Notes in Computer Science 7858, 16–26.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia. 2010. Above the clouds: A Berkeley view of cloud computing. Communications
of the ACM. 53, 4 (April 2010), 50–58.

P. N. Ayuso. 2006. Netfilter’s connection tracking system. USENIX 31, 3.
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. 2003.

Xen and the art of virtualization. In Proceedings of the 9th ACM Symposium on Operating Systems
Principles (SOSP’03). ACM, New York, NY, 164–177.

A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram, K. Voruganti, and G. R. Goodson.
2009. Fido: Fast inter virtual-machine communication for enterprise appliances. In Proceedings of the
2009 Conference on USENIX Annual Technical Conference.

F. Diakhaté, M. Perache, R. Namyst, and H. Jourdren. 2008. Efficient shared memory message passing
for inter-VM communications. In Proceedings of 3rd Workshop on Virtualization in High-Performance
Cluster and Grid Computing (VHPC’08). Springer-Verlag, Berlin. 53–62.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

49:40 Y. Ren et al.

H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato. 2009. Fast networking with socket-outsourcing in hosted
virtual machine environments. In Proceedings of ACM Symposium on Applied Computing (SAC’09).
ACM, New York, NY. 310–317.

C. Gebhardt and A. Tomlinson. 2010. Challenges for inter virtual machine communication. Technical
Report, RHUL-MA-2010-12. Retrieved from http://www.ma.rhul.ac.uk/static/techrep/2010/RHUL-MA-
2010-12.pdf.

A. W. Gordon. 2011a. Enhancing cloud environments with inter-virtual machine shared memory. M.S. thesis,
Department of Computing Science, University of Alberta.

A. W. Gordon and P. Lu. 2011b. Low-latency caching for cloud-based web applications. In Proceedings of 6th
International Workshop on Networking Meets Databases (NetDB’11).

S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam. 2007. Xen and Co.: Communication-
aware CPU scheduling for consolidated Xen-based hosting platforms. In Proceedings of the 3rd Interna-
tional Conference on Virtual Execution Environments (VEE’07). ACM, 126–136.

U. Gurav and R. Shaikh. 2010. Virtualization: A key feature of cloud computing. In Proceedings of the
International Conference and Workshop on Emerging Trends in Technology (ICWET’10). 227–229.

W. Huang. 2008. High performance network I/O in virtual machines over modern interconnects. Ph.D. thesis,
Department of Computer Science and Engineering, Ohio State University.

W. Huang, M. Koop, Q. Gao, and D. K. Panda. 2007. Virtual machine aware communication libraries for high
performance computing. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC’07).
ACM, New York, NY. Article No. 9.

J. Hwang, K. Ramakrishnan, and T. Wood. 2014. NetVM: High performance and flexible networking us-
ing virtualization on commodity platforms. In Proceedings of 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’14). USENIX Association. 445–458.

S. Imai, T. Chestna, and C. A. Varela. 2013. Accurate resource prediction for hybrid IaaS clouds using
workload-tailored elastic compute units. In Proceedings of 6th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC’13). IEEE, 171–178.

Infiniband Trade Association. 2015. Homepage. Retrieved from http://www.infinibandta.org.
Intel Corporation. 2013. Intel data plane development kit: Getting started guide. Retrieved from

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/intel-dpdk-programmers-
guide.html.

J. Jose, M. Li, X. Lu, K. Kandalla, M. Arnold, and D. K. Panda. 2013. SR-IOV support for virtualization on
InfiniBand clusters: Early experience. In Proceedings of 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid’13). IEEE, 385–392.

X. Ke. 2011. Interprocess communication mechanisms with inter-virtual machine shared memory. M.S.
thesis, Department of Computing Science, University of Alberta.

H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. 2009. Task-aware virtual machine scheduling for I/O performance.
In Proceedings of the 5th International Conference on Virtual Execution Environments (VEE’09). ACM,
101–110.

K. Kim. 2013. XWAY project. Retrieved from http://xway.sourceforge.net/.
K. Kim, C. Kim, S. Jung, H. Shin, and J. Kim. 2008. Inter-domain socket communications supporting high

performance and full binary compatibility on Xen. In Proceedings of the 4th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE’08). ACM, New York, NY. 11–20.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. 2007. KVM: The Linux virtual machine monitor. In
Proceedings of the Linux Symposium, volume 1. 225–230.

Y. Koh. 2010. Kernel service outsourcing: An approach to improve performance and reliability of virtualized
systems. PhD thesis, School of Computer Science, College of Computing, Georgia Institute of Technology.

M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik. 2010. Supporting soft real-time tasks in the
Xen hypervisor. In Proceedings of the 6th International Conference on Virtual Execution Environments
(VEE’10). Pittsburgh, PA, March 17–19, 2010. 97–108.

J. Levon. 2014. OProfile manual. Retrieved from http://oprofile.sourceforge.net/doc/index.html.
D. Li, H. Jin, Y. Shao, X. Liao, Z. Han, and K. Chen. 2010. A high-performance inter-domain data transferring

system for virtual machines. Journal of Software 5, 2 (February 2010), 206–213.
J. Liu, W. Huang, B. Abali, and D. K. Panda. 2006. High performance VMM bypass I/O in virtual machines.

In Proceedings of the Annual Conference on USENIX’06 Annual Technical Conference (ATEC’06). 29–42.
A. C. Macdonell. 2011. Shared-memory optimizations for virtual machines. PhD thesis, Department of

Computing Science, University of Alberta.
A. C. Macdonell. 2014. Nahanni: the KVM/Qemu inter-VM shared memory PCI device. Retrieved from

http://gitorious.org/nahanni/pages/Home.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Shared-Memory Optimizations for Inter-Virtual-Machine Communication 49:41

Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong. 2013. Performance analysis of network I/O workloads in
virtualized data centers. IEEE Transactions on Services Computing 6, 1, 48–63.

A. Menon, A. L. Cox, and W. Zwaenepoel. 2006. Optimizing network virtualization in Xen. In Proceedings
of the 2006 Conference on USENIX Annual Technical Conference. USENIX Association, Berkeley, CA.
15–28.

MSDN. 2014. Overview of single root I/O virtualization (SR-IOV). Retrieved from http://msdn.microsoft.com/
en-us/library/windows/hardware/hh440148%28v=vs.85%29.aspx.

Netperf. 2015. http://www.netperf.org/netperf/.
D. Ongaro, A. L. Cox, and S. Rixner. 2008. Scheduling I/O in virtual machine monitors. In Proceedings of

the 4th International Conference on Virtual Execution Environments (VEE’08). Seattle, WA, March 5–7,
2008. ACM, 2008, ISBN 978-1-59593-796-4. 1–10.

M. Pearce, S. Zeadally, and R. Hunt. 2013. Virtualization: Issues, security threats, and solutions. ACM
Computing Surveys 45, 2 (February 2013), 17.

X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao. 2012. Who is your neighbor: Net I/O performance
interference in virtualized clouds. IEEE Transactions on Services Computing 6, 3, 314–329.

P. Radhakrishnan and K. Srinivasan. 2008. MMNet: An efficient inter-VM communication mechanism. Xen
Summit, Boston, 2008.

Y. Ren, L. Liu, X. Liu, J. Kong, H. Dai, Q. Wu, and Y. Li. 2012. A fast and transparent communication protocol
for co-resident virtual machines. In Proceedings of 8th IEEE International Conference on Collaborative
Computing (CollaborateCom’12). 70–79.

R. V. Renesse. 2012. Fact-based inter-process communication primitives for programming distributed sys-
tems. In Proceedings of Workshop on Languages for Distributed Algorithms (LADA’12). http://www.cs.
cornell.edu/home/rvr/newpapers/lada2012.pdf.

R. Russell. 2008. Virtio: Towards a de-facto standard for virtual I/O devices. ACM SIGOPS Operating Systems
Review 42, 5 (July 2008), 95–103.

J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt. 2008. Bridging the gap between software and hardware
techniques for I/O virtualization. In Proceedings of USENIX 2008 Annual Technical Conference on
Annual Technical Conference (ATC’08). 29–42.

R. Sanger, Ed. 2013. Notes on libtrace Intel data plane development kit (DPDK) support - experimental.
https://github.com/wanduow/libtrace/wiki/DPDK-Notes—Experimental.

Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou. 2015. Reliable and resilient trust management in distributed
service provision networks. http://www.cc.gatech.edu/∼lingliu/papers/2015/TWEB-ServiceTrust.pdf.

VMware Inc. 2007. VMCI Overview. Retrieved from http://pubs.vmware.com/vmci-sdk/VMCI_intro.html.
J. Wang. 2009. Survey of state-of-the-art in inter-VM communication mechanisms. Research Report

(September 2009). Retrieved from http://www.cs.binghamton.edu/∼jianwang/papers/proficiency.pdf.
J. Wang, K. Wright, and K. Gopalan. 2008a. XenLoop source code. Retrieved from http://osnet.cs.binghamton.

edu/projects/xenloop-2.0.tgz.
J. Wang, K. Wright, and K. Gopalan. 2008b. XenLoop: A transparent high performance inter-VM network

loopback. In Proceedings of the 17th ACM International Symposium on High Performance Distributed
Computing (HPDC’08). ACM, New York, NY. 109–118.

Q. Wang and C. A. Varela. 2011. Impact of cloud computing virtualization strategies on workloads’ perfor-
mance. 2011. In Proceedings of4th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC’11). 130–137.

M. B. Yehuda, J. Mason, J. Xenidis, O. Krieger, L. V. Doorn, J. Nakajima, A. Mallick, and E. Wahlig. 2006. Uti-
lizing IOMMUs for virtualization in Linux and Xen. In Proceedings of the 2006 Ottawa Linux Symposium
(OLS’06). 71–86.

A. J. Younge, R. Henschel, J. T. Brown, G. Laszewski, J. Qiu, and G. C. Fox. 2011. Analysis of virtualization
technologies for high performance computing environments. In Proceedings of IEEE 4th International
Conference on Cloud Computing (CLOUD’11). 9–16.

Q. Zhang, L. Liu, Y. Ren, K. Lee, Y. Tang, X. Zhao, and Y. Zhou. 2013a. Residency aware inter-VM com-
munication in virtualized cloud: Performance measurement and analysis. In Proceedings of IEEE 6th
International Conference on Cloud Computing (CLOUD’13). IEEE. 204–211.

Q. Zhang and L. Liu. 2015. Shared memory optimization in virtualized clouds. In Proceedings of IEEE 2015
International Conference on Cloud Computing (CLOUD’15).

J. Zhang, X. Lu, J. Jose, R. Shi, and D. K. Panda. 2014a. Can inter-VM shmem benefit MPI applications
on SR-IOV based virtualized Infiniband clusters? In Proceedings of Euro-Par 2014 Parallel Processing,
20th International Conference. Springer, 342–353.

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

http://www.cc.gatech.edu/protect $
elax sim $lingliu/papers/2015/TWEB-ServiceTrust.pdf

49:42 Y. Ren et al.

J. Zhang, X. Lu, J. Jose, M. Li, R. Shi, and D. K. Panda. 2014b. High performance MPI library over SR-IOV
enabled InfiniBand clusters. In Proceedings of 21st Annual IEEE International Conference on High
Performance Computing (HiPC’14).

X. Zhang and S. Mcintosh. 2013b. XVMSocket. Retrieved from http://sourceforge.net/projects/xvmsocket/.
X. Zhang, S. Mcintosh, P. Rohatgi, and J. L. Griffin. 2007. XenSocket: A high-throughput inter domain

transport for virtual machines. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference
on Middleware (Middleware’07). Springer-Verlag, New York, NY. 184–203.

Received September 2013; revised November 2015; accepted November 2015

ACM Computing Surveys, Vol. 48, No. 4, Article 49, Publication date: February 2016.

Copyright of ACM Computing Surveys is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

