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Abstract The mixing set with a knapsack constraint arises in deterministic equiv-
alent of chance-constrained programming problems with finite discrete distributions.
We first consider the case that the chance-constrained program has equal probabilities
for each scenario. We study the resulting mixing set with a cardinality constraint and
propose facet-defining inequalities that subsume known explicit inequalities for this
set. We extend these inequalities to obtain valid inequalities for the mixing set with a
knapsack constraint. In addition, we propose a compact extended reformulation (with
polynomial number of variables and constraints) that characterizes a linear program-
ming equivalent of a single chance constraint with equal scenario probabilities. We
introduce a blending procedure to find valid inequalities for intersection of multiple
mixing sets. We propose a polynomial-size extended formulation for the intersection
of multiple mixing sets with a knapsack constraint that is stronger than the original
mixing formulation. We also give a compact extended linear program for the intersec-
tion of multiple mixing sets and a cardinality constraint for a special case. We illustrate
the effectiveness of the proposed inequalities in our computational experiments with
probabilistic lot-sizing problems.
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32 S. Küçükyavuz

1 Introduction

Many optimization problems in practice contain quality of service (QoS) or reliability
constraints that result in probabilistic (chance) constraints. In this paper, we consider
mixed-integer programming (MIP) reformulations of chance-constrained programs
with joint probabilistic constraints in which the right-hand-side vector is random with
a finite discrete distribution [14,20]. The reformulation contains the mixing set [11]
with an additional cardinality/knapsack constraint as a substructure. We first study the
mixing set with a cardinality constraint and propose facet-defining inequalities that
subsume the explicit inequalities given by [14]. In addition, we propose a compact
extended reformulation (with polynomial number of variables and constraints) that
characterizes a linear programming equivalent of a single inequality in the proba-
bilistic constraint for a special case. This is in contrast to an exponential extended
formulation proposed in [14]. We extend the results derived for the mixing set with a
cardinality constraint to obtain valid inequalities for the mixing set with a knapsack
constraint. In addition, we introduce a blending procedure to find valid inequalities
for intersection of multiple mixing sets.

Charnes et al. [6] were first to define a chance-constrained program with disjoint
probabilistic constraints. Miller and Wagner [17] study chance-constrained program-
ming with joint probabilistic constraints for independent random variables. Joint prob-
abilistic constraints with dependent random variables were introduced in [18]. Sen
[22] studies chance-constrained programs with discrete distributions and gives a dis-
junctive programming reformulation by using so-called (1 − τ)-efficient points [19].
Valid inequalities are proposed based on the extreme points of the reverse polar of the
disjunctive program. The computational challenges of this approach are the enumer-
ation of the (1 − τ)-efficient points and the solution of a linear program for each cut
generation. Dentcheva et al. [10] use (1 − τ)-efficient points to obtain various refor-
mulations for chance-constrained programming with discrete random variables and
to derive valid bounds on the optimal objective function value. Ruszczynski [20] uses
the concept of (1 − τ)-efficient points to derive consistent orders on different scenar-
ios representing the discrete distribution. The consistent ordering is represented with
precedence constraints and valid inequalities for the resulting precedence-constrained
knapsack set are proposed. Beraldi and Ruszczynski [4] propose a branch-and-bound
method for chance-constrained integer programs using a partial enumeration of the
(1 − τ)-efficient points.

Some recent applications of chance-constrained programs with discrete distribu-
tions are probabilistic set covering [5,21], probabilistic lot/batch sizing [4,15], and
probabilistic production and distribution planning [12].

The particular MIP reformulation of the chance-constrained programs of interest
in this paper is proposed in [14]. This reformulation contains the mixing set as a
substructure. Günlük and Pochet [11] first introduced the mixing set and gave valid
inequalities that define the convex hull of feasible solutions. Because this is a funda-
mental substructure arising in different contexts, various extensions of the mixing set
has been studied, such as the continuous mixing set [16,23], mixing set with flows [7]
and mixing set with divisible capacities [25].
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On mixing sets arising in chance-constrained programming 33

Let ξ denote a d-variate random variable with a known finite discrete cumulative
distribution function, F(z) = P(ξ ≤ z). Given A, a d ×n matrix, c, an n-dimensional
cost vector, τ , a threshold probability with 0 ≤ τ ≤ 1, and X ⊆ R

n1 × Z
n2 , where

n1 + n2 = n, the chance-constrained programming problem is

min cT x

s.t. P(Ax ≥ ξ) ≥ 1 − τ

x ∈ X,

or equivalently

min cT x

s.t. y = Ax

P(y ≥ ξ) ≥ 1 − τ

x ∈ X.

Suppose that the random vector ξ has finitely many realizations (scenarios) given
by h1, h2, . . . , hn, where hi = (h1i , h2i , . . . , hdi ), with probabilities π1, π2, . . . , πn ,
respectively. By definition, 0 < π1, π2, . . . , πn < 1 and

∑n
i=1 πi = 1. Through-

out, we assume, without loss of generality, that hti ≥ 0 for all t = 1, . . . , d and
i = 1, . . . , n. (For each t = 1, . . . , d, if there exists i = arg min{hti : i = 1, . . . , n}
with hti < 0, then we can replace ht j by ht j − hti for all j = 1, . . . , n and let
y = Ax − hti et , where et is the unit vector of size d, with t th entry equal to 1 and
the other entries equal to 0). Throughout, we let [i, j] := {t ∈ Z : i ≤ t ≤ j}. A
deterministic equivalent of the chance-constrained program is

min cT x

s.t. y = Ax (1)

yt ≥ hti (1 − zi ) t ∈ [1, d], i ∈ [1, n] (2)
n∑

i=1

πi zi ≤ τ (3)

x ∈ X, 0 ≤ z ≤ 1 (4)

z ∈ Z
n, (5)

where zi = 0 implies that under scenario i we have no violated inequality in the proba-
bilistic constraint (i.e., y = Ax ≥ hi) at the solution (y, x). If at least one inequality in
the probabilistic constraint is violated (i.e., y = Ax �≥ hi) in a feasible solution, then
zi = 1. When zi = 1, we have yt ≥ 0, which trivially follows from the assumption
that hti ≥ 0 for all t = 1, . . . , d, i = 1, . . . , n. The total probability of violating the
joint chance constraint is then given by P(Ax �≥ ξ) ≤ ∑n

i=1 πi zi , which must not
exceed the threshold τ . Note that the inequalities (2)–(3) contain the intersection of
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34 S. Küçükyavuz

d mixing sets with a knapsack constraint as a substructure. We study this set in more
detail in Sects. 3 and 5.

Outline

In Sect. 2, we review earlier results from the study of related mixing sets. In Sect. 3,
we give facet-defining inequalities for the mixing set with a cardinality constraint that
subsume the known inequalities for this set. In Sect. 4, we give a compact extended for-
mulation that characterizes a linear programming equivalent of a single probabilistic
constraint with equal scenario probabilities.

In Sect. 5, we extend our results to give valid inequalities for the mixing set with a
knapsack constraint. In Sect. 6, we introduce a blending approach and reformulations
for intersection of multiple mixing sets with a cardinality/knapsack constraint.

In Sect. 7 we illustrate the effectiveness of the proposed inequalities in our com-
putational experiments with probabilistic lot-sizing problems. We conclude with
Sect. 8.

2 Mixing sets arising in chance-constrained programming

For t = 1, . . . , d, let

Kt =
{

(yt , z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ τ, yt + hti zi ≥ hti , i ∈ [1, p]
}

.

The set Kt is a mixing set with a knapsack constraint. We are interested in studying
the polyhedral structure of the intersection of mixing sets with a (single) knapsack
constraint given by ∩d

t=1Kt , which arises in deterministic equivalent of chance-con-
strained programs see (2)–(3).

First, we consider a single mixing set with a knapsack constraint, i.e., d = 1.
Dropping the subscript t we get

K =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ τ, y + hi zi ≥ hi , i ∈ [1, n]
}

.

We assume that hi are in non-increasing order, h1 ≥ h2 ≥ · · · ≥ hn . As observed
by [14], for ν such that

∑ν
i=1 πi ≤ τ and

∑ν+1
i=1 πi > τ , we must have y ≥ hν+1.

Then constraints y + hi zi ≥ hi for i = ν + 1, . . . , n are redundant. Furthermore,
given that y ≥ hν+1 in any solution, y + (hi − hν+1)zi ≥ hi is valid and at least
as strong as y + hi zi ≥ hi . To see this, note that for zi = 0 the two inequalities are
equivalent, and for zi = 1 the former reduces to y ≥ hν+1, whereas the latter reduces
to y ≥ 0. Therefore, we can rewrite K as K = {(y, z) ∈ R+ × {0, 1}n : ∑n

i=1 πi zi

≤ τ, y + (hi − hν+1)zi ≥ hi , i ∈ [1, ν]}. Note that we do not drop the variables zi

for i = ν + 1, . . . , n because they are necessary when we consider the intersection of
multiple mixing sets, Kt , t = 1, . . . , d.
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On mixing sets arising in chance-constrained programming 35

2.1 Basic mixing set

The basic mixing set is first defined in [11]. The mixing set arising in chance-con-
strained programming is given by

S = {(y, z) ∈ R+ × {0, 1}n : y + (hi − hν+1)zi ≥ hi , i ∈ [1, ν]}.
Theorem 1 ([11], [2]) For T = {t1, t2, . . . , ta} ⊆ {1, . . . , ν}, the inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ ht1, (6)

where t1 < t2 < · · · < ta and hta+1 = hν+1, are valid for S and facet-defining for
conv(S) when t1 = 1.

We illustrate inequalities (6) in an example.

Example 1 Let h = (40, 38, 34, 31, 26, 16, 8, 4, 2, 1) for n = 10, and ν = 6.

y + 32z1 ≥ 40

y + 30z2 ≥ 38

y + 26z3 ≥ 34

y + 23z4 ≥ 31

y + 18z5 ≥ 26

y + 8z6 ≥ 16.

For T = {1, 2, 4}, the mixing inequality is

y + (40 − 38)z1 + (38 − 31)z2 + (31 − 8)z4 ≥ 40.

�	

2.2 Mixing set with a cardinality constraint

Consider the chance-constrained program for which the scenarios are empirically
approximated through i.i.d. sampling. In this case, hi are independent observations of
ξ with πi = 1/n for all i = 1, . . . , n. For example, Luedtke and Ahmed [13] give
a sample approximation approach to get bounds for chance-constrained programs in
which the original distribution is replaced by an empirical distribution obtained by
independent Monte-Carlo sampling.

When πi = 1/n for all i , the knapsack constraint (3) can be written as a cardinality
constraint:

n∑

i=1

zi ≤ 
nτ� = p, (7)
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36 S. Küçükyavuz

and ν = p, where ν is such that
∑ν

i=1 πi ≤ τ and
∑ν+1

i=1 πi > τ . Let

Q =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

zi ≤ p, y + hi zi ≥ hi , i ∈ [1, n]
}

.

Also, for t = 1, . . . , d let

Qt =
{

(yt , z) ∈ R+ × {0, 1}n :
n∑

i=1

zi ≤ p, yt + hti zi ≥ hti , i ∈ [1, n]
}

.

Theorem 2 ([14]) For m ∈ Z+ with m ≤ p, let T = {t1, t2, . . . , ta} ⊆ {1, . . . , m}
where t1 < t2 < · · · < ta and Q = {q1, q2, . . . , qp−m} ⊆ {p + 1, . . . , n}, the
inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

i=1

�m
i (1 − zqi ) ≥ ht1 , (8)

where for m < p

�m
i =

{
hm+1 − hm+2 i = 1
max{�m

i−1, hm+1 − hm+i+1 − ∑i−1
j=1 �m

j } i ∈ [2, p − m], (9)

and hta+1 := hm+1, are valid for Q and facet-defining for conv(Q) when t1 = 1.

Example 1 (cont.) For T = {1, 2} and Q = {7, 8, 9}, m = 3, inequality (8) is

y + (40 − 38)z1 + (38 − 31)z2 + (31 − 26)(1 − z7) + (31 − 16 − 5)(1 − z8)

+10(1 − z9) ≥ 40.

3 Proposed valid inequalities for the mixing set with a cardinality constraint

In this section, we give a class of inequalities that contains inequalities (8) as a special
case.

Theorem 3 For m ∈ Z+ such that m ≤ p, let T = {t1, t2, . . . , ta} ⊆ {1, . . . , m} with
t1 < t2 < · · · < ta , L ⊆ {m + 2, . . . , n} and a permutation of the elements in L,
�L = {�1, �2, . . . , �p−m} such that � j ≥ m + 1 + j . The (T,�L) inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

α j (1 − z� j ) ≥ ht1, (10)
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On mixing sets arising in chance-constrained programming 37

are valid for Q, where ta+1 = m + 1 and for m < p

α j =
{

hm+1 − hm+1+ j j = 1

max
{
α j−1, hm+1 − hm+1+ j − ∑

i :i< j and �i ≥m+1+ j αi

}
j ∈ [2, p − m].

(11)

Proof First note that α1 ≤ α2 ≤ · · · ≤ αp−m . If y ≥ ht1 then inequality (10) is
trivially satisfied. If y ≥ hti for some i = 2, . . . , a and y < ht j for all j ∈ [1, i − 1],
then we must have zt j = 1 for all j ∈ [1, i − 1]. Thus,

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ hti +
i−1∑

j=1

(ht j − ht j+1) = ht1 ≥ ht1 −
p−m∑

j=1

α j (1 − z� j ),

and inequality (10) is satisfied. Therefore, we assume that y < hta and zt j = 1 for all
j = 1, . . . , a in the rest of the proof. Hence,

a∑

j=1

(ht j − ht j+1)zt j = ht1 − hm+1. (12)

Now suppose that y ≥ hm+1. Then

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ hm+1 + ht1 − hm+1 ≥ ht1 −
p−m∑

j=1

α j (1 − z� j ),

and inequality (10) is valid.
Otherwise, we must have hm+i ′ > y ≥ hm+i ′+1 for some i ′ = 1, . . . , p −m. Thus,

z j = 1 for all j = 1, . . . , m + i ′. Because
∑n

j=1 z j ≤ p, we have

n∑

j=m+i ′+1

z j ≤ p − m − i ′. (13)

Let i ′′ = |{ j : j ∈ [1, p − m] and � j ≤ m + i ′}|. Note that, due to the choice of the
ordering in L , �L , if � j ≤ m + i ′, then we must have j < i ′. As a result, i ′′ = |{ j :
j ∈ [1, i ′ −1] and � j ≤ m + i ′}| < i ′. So in the set L\[1, m + i ′] there are p −m − i ′′
elements. For j ∈ L\[1, m + i ′] we have |{ j ∈ L\[1, m + i ′] : z j = 1}| ≤ p − m − i ′
(from (13), and so |{ j ∈ L\[1, m + i ′] : z j = 0}| ≥ i ′ − i ′′. Thus,

p−m∑

j=1

α j (1 − z� j ) =
∑

j :� j ≥m+1+i ′
α j (1 − z� j ) ≥ αi ′ +

∑

j : j<i ′,� j ≥m+1+i ′
α j

≥ hm+1 − hm+1+i ′ . (14)
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38 S. Küçükyavuz

To see the first inequality in (14), note that the coefficients, α, are in increasing order,
so the i ′ − i ′′ elements of the set { j ∈ [1, i ′] : � j ≥ m + i ′ + 1} have the smallest α j

among all � j ∈ L\[1, m + i ′]. From (12), (14) and the assumption that y ≥ hm+i ′+1,
we have

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

α j (1 − z� j ) ≥ hm+1+i ′ + ht1 − hm+1

+hm+1 − hm+1+i ′ = ht1 .

�	
Theorem 4 Inequality (10) is facet-defining for conv(Q) if and only if t1 = 1. Fur-
thermore, for a given i = 1, . . . , d, assume without loss of generality, that hi1 ≥
hi2 ≥ · · · ≥ hin. Then the (T,�L) inequality:

yi +
a∑

j=1

(hit j − hit j+1)zt j +
p−m∑

j=1

α j (1 − z� j ) ≥ hit1, (15)

valid for Qi is facet-defining for conv(∩d
i=1Qi ) if and only if t1 = 1, where T, L and

�L = {�1, . . . , �p−m} are as previously defined, and α is given by (11) with h j = hi j

for j ∈ T ∪ L.

Proof Note that Q is full-dimensional. First, we show that t1 = 1 is a necessary
facet condition. Given a (T,�L) inequality (10) where t1 > 1, consider the (T ′,�L ′)
inequality with T ′ = T ∪ {1} and L ′ = L\{�p−m}:

y + (h1 − ht1)z1 +
a∑

j=1

(ht j − ht j+1)zt j +
p−m−1∑

j=1

α j (1 − z� j ) ≥ h1,

or equivalently,

(h1 − ht1)(z1 − 1) − αp−m(1 − z�p−m ) + y +
a∑

j=1

(ht j − ht j+1)zt j

+
p−m∑

j=1

α j (1 − z� j ) ≥ ht1 .

As (h1 − ht1)(z1 − 1) − αp−m(1 − z�p−m ) ≤ 0, (T ′,�L ′) inequality is at least as
strong as the (T,�L) inequality.

To show that inequalities (10) are facet-defining for conv(Q) when t1 = 1 we give
n + 1 affinely independent points on the face defined by the inequality (10). First, let
y0 = ht1 = h1, z0

j = 1 if j ∈ L and z0
j = 0 otherwise. Next, for each j �∈ (T ∪L), con-

sider the point (y j , z j ) = (y0, z0 + e j ), where e j is the unit vector of size n, with j th

123



On mixing sets arising in chance-constrained programming 39

entry equal to 1 and the other entries equal to 0. This point is feasible, because t1 = 1
implies that a ≥ 1, so

∑n
i=1 z j

i = p − a + 1 ≤ p. For each j ∈ [1, a], let yt j = ht j+1 ,

z
t j
i = 1 if i = 1, . . . , t j+1 − 1 or i ∈ L , and z

t j
i = 0 otherwise. Let y�1 = hm+2,

z�1
i = 1 if i = 1, . . . , m+1 and z�1

�i
= 1 for i > 1; z�1

i = 0 for all other values of i . For
each j = 2, . . . , p − m such that α� j = hm+1 − hm+1+ j − ∑

i :i< j and �i ≥m+1+ j αi ,

let y� j = hm+1+ j , z
� j
i = 1 if i = 1, . . . , m + j and z

� j
�i

= 1 for i > j ; z
� j
i = 0

for all other values of i . Finally, for each j = 2, . . . , p − m such that α j = α j−1,

let (y� j , z� j ) = (y� j−1 , z� j−1 + e� j−1 − e� j ). As z
� j−1
� j−1

= 0 and z
� j−1
� j

= 1, we have

z
� j
� j−1

= 1 and z
� j
� j

= 0. These n + 1 points on the face defined by inequality (10) are
affinely independent.

To prove the second part of the theorem for inequality (15), valid for Qi for some
i = 1, . . . , d, we first construct n+1 affinely independent points (yj, zj), j = 0, . . . , n,
from the n + 1 affinely independent points (y j

i , zj), j = 0, . . . , n listed above by let-

ting y j
t = ht[1]t for t = 1, . . . , d and t �= i , where [1]t = arg max{hti : i = 1, . . . , n}.

The corresponding (yj, zj), j = 0, . . . , n, are feasible in ∩d
t=1Qt . Let (ŷ, ẑ) be one of

these points. Now consider the d −1 additional points, (ŷ, ẑ)+εe j for ε > 0, for each
j = 1, . . . , d and j �= i , where e j is the j th unit vector of size n + d. These points
are affinely independent and hence inequality (10) is facet-defining for conv(∩d

t=1Qt ).
The necessity of the facet condition t1 = 1 in this case follows similarly to the case
of a single mixing set. �	

Note that if L = ∅ then inequalities (10) are equivalent to inequalities (6). In
addition, inequality (8) is a special case of inequality (10) with L ⊆ [p + 1, n] and
�1 ≤ �2 ≤ · · · ≤ �p−m .

Example 1 (cont.) For T = {1}, m = 1 and L = {4, 6, 7, 8, 9} the (T,�L) inequali-
ties corresponding to different permutations �L are

y +(h1− h2)z1+(h2 − h3)(1 − z4)+(h2 − h3)(1 − z6)+(h2 − h5 − α6)(1 − z7)

+(h2 − h6 − α6 − α7)(1 − z8) + (h2 − h7 − α7 − α8)(1 − z9) ≥ h1,

y +(h1 − h2)z1+(h2 − h3)(1 − z4)+(h2 − h3)(1 − z6)+(h2 − h5 − α6)(1 − z7)

+(h2 − h7 − α7 − α9)(1 − z8) + (h2 − h6 − α6 − α7)(1 − z9) ≥ h1,

y +(h1 − h2)z1+(h2 − h3)(1 − z4)+(h2 − h3)(1 − z6)+(h2 − h5 − α6)(1 − z9)

+(h2 − h6 − α6 − α9)(1 − z8) + (h2 − h7 − α8 − α9)(1 − z7) ≥ h1,

y +(h1 − h2)z1+(h2 − h3)(1 − z4)+(h2 − h5 − α7)(1 − z6)+(h2 − h3)(1 − z7)

+(h2 − h6 − α6 − α7)(1 − z8) + (h2 − h7 − α7 − α8)(1 − z9) ≥ h1,

y +(h1 − h2)z1+(h2 − h3)(1 − z4)+(h2 − h3)(1 − z8)+(h2 − h5 − α8)(1 − z6)

+(h2 − h6 − α6 − α8)(1 − z9) + (h2 − h7 − α8 − α9)(1 − z7) ≥ h1.

(16)

For example, in the first inequality �L = {4, 6, 7, 8, 9}, whereas in the last inequality
�L = {4, 8, 6, 9, 7}.
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Even though we propose a large class of facet-defining inequalities for conv(Q), we
show that the proposed inequalities are not enough to give the convex hull of solutions
in the original space of variables. The convex hull representation in the original space
of variables proves to be much richer. In particular, the following inequalities are valid
and facet-defining for this example:

y + (h1 − h2)z1 + (h2 − h3)z2 + (h3 − h6 − α7)z3

+ (h6 − h7)(1 − z7) + (h6 − h7)(1 − z9) ≥ h1,

y + (h1−h3)z1+(h3 − h6−α7)z3+(h6−h7)(1 − z7) + (h6 − h7)(1 − z9) ≥ h1,

y + (h1−h2)z1+(h2−h6 − α7)z2+(h6 − h7)(1 − z7)+(h6 − h7)(1 − z9) ≥ h1,

y + (h1 − h3)z1 + (h3 − h4)(1 − z4) + (h1 − h5 − α1)((1 − z6) + (1 − z7))

+ (h1 − h7 − α1 − α5 − α7)(1 − z9) + (h1 − h6 − α1 − α6 − α7)z5 ≥ h1,

y + (h1 − h2)z1 + (h1 − h3 − α1)(1 − z4) + h1 − h7 − α1

2
((1 − z7) + (1 − z9))

+ (h1 − h5 − α1 − α6)(1 − z5) + (h1 − h6 − α1 − α7)(1 − z6) ≥ h1.

These inequalities are different than the (T,�L) inequalities (10). In the first four
inequalities, the coefficient of the last element in T depends on the coefficient of ele-
ments in L , whereas in inequality (10), the coefficient of the last element in T depends
only on the cardinality of T . Finally, the last inequality is different because of the
coefficient h1−h7−α1

2 . Although we are able to prove the validity of these inequalities
for this example, we were not able to obtain a general form of these inequalities. (See
Appendix A for a proof of validity of the last inequality listed).

3.1 Separation of (T,�L) inequalities

In this section, we give a polynomial time exact separation algorithm for a special case
of the (T,�L) inequalities. This algorithm is used in our computational experiments
in Sect. 7. The special case we consider has S = {m +2, . . . , m +r +1} for m, r ∈ Z+
with m +r ≤ p, and Q ⊆ [p+1, n] such that L = S∪ Q. Note that with this choice of
S, we must have � j = m +1+ j for j = 1, . . . , r as the first r elements in the permu-
tation �L . As a result, α j in (11) simplifies as α j = max{α j−1, hm+1 − hm+1+ j } for
j = 2, . . . , r . (If S is not contiguous, then this simplification does not hold.) There-
fore, it is easy to calculate, in advance, all of the coefficients α j for all j = 1, . . . , r ,
which do not depend on the choice of Q. Next, observe that for �i ∈ Q ⊆ [p + 1, n],
�i ≥ p +1 ≥ m +1+ j for all j = r +1, . . . , p −m. As a result, α j in (11) simplifies

as α j = max{α j−1, hm+1 −hm+1+ j −∑ j−1
i=1 αi } for j = r +1, . . . , p −m. Note that,

assuming S = {m + 2, . . . , m + r + 1}, the coefficients α j , j = r + 1, . . . , p − m,
do not depend on a particular choice of Q, but depend only on αr .

Let (y∗, z∗) be a fractional solution. For given m, r ∈ Z+ with m+r ≤ p, we give an
algorithm to identify the most violated inequality (10) with S = {m+2, . . . , m+r+1}.
Note that the problem of finding the best set T in inequalities (10) can be solved
as a shortest path problem on a directed acyclic graph, G = (V, A), where
V = {1, . . . , m + 1}. There exists an arc (i, j) ∈ A for all 1 ≤ i < j ≤ m + 1
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with a cost of (hi − h j )z∗
i . There are O(p2) arcs in G. The vertices visited in the

shortest path on this graph, starting from node 1 before reaching the sink m + 1, give
the set T in the most violated (T,�L) inequalities. Note that we always include 1 ∈ T
to obtain violated facets, as this is a necessary and sufficient facet condition
(Theorem 4).

For a given m, r ∈ Z+ with m + r ≤ p, S is fixed. To find the set Q that gives
the most violated inequality (10) in the desired form, we keep an ordered list of the
elements in {p + 1, . . . , n}, denoted by Z = {q1, q2, . . . , qn−p}, in increasing order
of (1 − z∗

j ) for j = p + 1, . . . , n and we choose the first p − m − r elements in the
list Z to be in the set Q. This order also determines the order of the last p − m − r
elements in the permutation �L . In other words, �r+i = qi for i = 1, . . . , p − m − r .

As a result, for a given m, r ∈ Z+ with m + r ≤ p, the above algorithm runs in
O(p3). Therefore, for a given m ≤ p we can find the most violated inequality (10)
with L = S ∪ Q, S = {m +2, . . . , m +r +1} and Q ⊆ [p+1, n] in O(p4) by search-
ing over r , 0 ≤ r < p −m. Note that for m = p, the algorithm gives the most violated
basic mixing inequality (6), and for r = 0 and Q such that q1 < q2 < · · · < qk , it
gives the most violated inequality (8).

4 A compact extended formulation for the mixing set with a cardinality
constraint

In this section, we give a compact (polynomial-size) formulation for the mixing set
with a cardinality constraint based on disjunctive programming. Note that the extended
formulation given by [14] for the mixing set with a cardinality constraint has expo-
nentially many inequalities, which can be separated in polynomial time.

Theorem 5 The set D = {(y, z, λ, ω) ∈ R
2n+p+np+2: (17)–(23)}, where

p+1∑

j=1

λ j = 1 (17)

0 ≤ ω
j
i ≤ λ j j ∈ [1, p + 1], i ∈ [1, n] (18)

y ≥
p+1∑

j=1

h jλ j (19)

zi =
p+1∑

j=1

ω
j
i i ∈ [1, n] (20)

n∑

i= j

ω
j
i ≤ (p − j + 1)λ j j ∈ [1, p + 1] (21)

ω
j
i ≥ λ j j ∈ [1, p + 1], i ∈ [1, j − 1] (22)

λ j ≥ 0 j ∈ [1, p + 1] (23)
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is a compact extended formulation of the set conv(Q) and conv(Q) = projy,z(D).

Proof Observe that y takes at most p + 1 distinct values, h1, . . . , h p+1, in extreme
points of conv(Q). For j ∈ [1, p + 1] such that hi > h j for all i < j , let Q(h j )

= {(y, z) ∈ Q : y = h j }. Note that, all feasible points in Q(h j ) have zi = 1 for all
i = 1, . . . , j − 1. Therefore,

Q(h j ) =
⎧
⎨

⎩
(y, z) ∈ {h j } × {0, 1}n :

n∑

i= j

zi ≤ p − j + 1, zi ≥ 1, i ∈ [1, j − 1]
⎫
⎬

⎭
.

(24)

Observe that

conv(Q(h j ))=
⎧
⎨

⎩
(y, z)∈{h j } × R

n+ :
n∑

i= j

zi ≤ p− j +1, zi ≥1, i ∈ [1, j −1], z ≤1

⎫
⎬

⎭
,

because the constraint matrix defining Q(h j ) is totally unimodular.
As y ∈ {h1, . . . , h p+1} in extreme points of conv(Q), we have

conv(Q) = conv(∪p+1
j=1 conv

(Q(h j )
)
) + C,

where

C = {(y, z) ∈ R
n+1 : z = 0, y ≥ 0}

is the recession cone of the linear programming relaxation of Q. The theorem now
follows from Theorem 2.1 of [3] on union of polyhedra (see also Theorem 4 in [9]).

�	
Theorem 5 is a case when a compact formulation can be obtained as a union of

polyhedra as observed for related polyhedra without cardinality constraints [1,8,16].

5 Valid inequalities for the mixing set with a knapsack constraint

Until now we studied the mixing set with a cardinality constraint (7), Q, corresponding
to the chance-constrained program with equal scenario probabilities π1 = · · · = πn .
For the more general case that scenarios have unequal probabilities, if we can find p
such that the cardinality constraint (7) is valid for the set K, then we can derive (T,�L)

inequalities (10) valid for K. Let 〈1〉, 〈2〉, . . . , 〈n〉 be a nondecreasing order of scenario
probabilities, i.e, π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉. Also let p be such that

∑p
i=1 π〈i〉 ≤ τ and

∑p+1
i=1 π〈i〉 > τ . Then the extended (knapsack) cover inequality

n∑

i=1

zi ≤ p
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is valid (cf. [24]) and can be used as a cardinality constraint to derive inequalities
(10) valid for K. Recall that h1 ≥ h2 ≥ · · · ≥ hn , by assumption, and ν is such that∑ν

i=1 πi ≤ τ and
∑ν+1

i=1 πi > τ . Note that unlike the equal probability case, ν is not
necessarily equal to p and we have y ≥ hν+1 in every feasible solution. Therefore,
we can further strengthen inequalities (10) for the set K when ν < p.

Theorem 6 For m ∈ Z+ such that m ≤ ν, let T = {t1, t2, . . . , ta} ⊆ {1, . . . , m} with
t1 < t2 < · · · < ta , L ⊆ {m + 2, . . . , n} and a permutation of the elements in L,
�L = {�1, �2, . . . , �p−m} such that � j ≥ m + 1 + j . For ν < p, the strengthened
(T,�L) inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

α′
j (1 − z� j ) ≥ ht1, (25)

are valid for K, where ta+1 = m + 1, α′
1 = hm+1 − hmin{ν+1,m+2}, and for j =

2, . . . , p − m

α′
j = max

⎧
⎨

⎩
α′

j−1, hm+1 − hmin{ν+1,m+1+ j} −
∑

i :i< j and �i ≥m+1+ j

α′
i

⎫
⎬

⎭
.

Proof Note that for ν = p, inequality (25) is equivalent to inequality (10). Therefore,
we consider the case ν < p. The proof for the cases in which y ≥ hti for i = 1, . . . , a,
or hm+i ′ > y ≥ hm+i ′+1 ≥ hν+1 for i ′ = 1, . . . , p−m, is the same as that of Theorem
3. Therefore, we assume that zti = 1 for all i = 1, . . . , a and so (12) holds. For the
cases in which hm+i ′ > y ≥ hν+1 > hm+i ′+1 for some i ′ = 1, . . . , p − m, inequality
(13) holds. Hence,

p−m∑

j=1

α′
j (1 − z� j ) ≥ α′

i ′ +
∑

j : j<i ′,� j ≥m+1+i ′
α′

j ≥ hm+1 − hν+1,

following a similar argument to the proof of Theorem 3. Consequently,

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

α′
j (1 − z� j ) ≥ hν+1 + ht1 − hm+1 + hm+1 − hν+1

= ht1 .

�	

Note that as hmin{ν+1,m+1+ j} ≥ hm+1+ j , α′
j ≤ α j and inequality (25) is at least as

strong as inequality (10) when ν < p.
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Example 1 (cont.) Suppose that we have τ = 0.5 and π1 = π2 = · · · = π4 = τ/4
and π5 = π6 = · · · = π10 = τ/6. Thus, ν = 4 and p = 6. The strengthened (T,�L)

inequality with T = {1}, L = �L = {4, 6, 7, 8, 9} is

y+(h1−h2)z1 + (h2 − h3)(1 − z4)+(h2 − h3)(1 − z6)+(h2 − h5 − α′
6)(1 − z7)

+ (h2 − h5 − α′
6)(1 − z8) + (h2 − h5 − α′

6)(1 − z9) ≥ h1.

This inequality is stronger than inequality (16) for the same choice of (T,�L ), because
α′

j < α j for j = 8, 9. In fact, we can show that this inequality is facet-defining for the
convex hull of feasible solutions to the set Q with the additional constraint y ≥ hν+1.

6 Intersection of multiple mixing sets

Until now, we considered a single mixing set with a cardinality or a knapsack con-
straint. The single mixing set with a knapsack constraint, given by Kt , corresponds
to the deterministic equivalent of a single inequality in the probabilistic constraint.
In this section, we consider the case of a joint probabilistic constraint that contains
d > 1 inequalities, defined by an intersection of d mixing sets and a knapsack con-
straint, ∩d

t=1Kt . Inequalities (25) are valid for ∩d
t=1Kt . We also showed in Theorem

4 that inequalities (15), with arg max{hi j , j = 1, . . . , n} ∈ T , are facet-defining for
conv(∩d

t=1Qt ) when πt = 1/n for all t = 1, . . . , n (i.e., when the knapsack constraint
(3) reduces to the cardinality constraint (7). Furthermore, considering the intersection
of multiple mixing sets, we can derive new mixing sets and valid inequalities for them.
In particular, for β ∈ Z

d+, consider the single mixing set with a knapsack constraint
given by

Kβ =
{

(y′, z) ∈ R+ × {0, 1}n :
d∑

i=1

πi zi ≤ τ, y′ + h′
i zi ≥ h′

i , i ∈ [1, n]
}

, (26)

where y′ = ∑d
t=1 βt yt and h′

i = ∑d
t=1 βt hti . We call this the blending set with pro-

portions β. Note that using scaling arguments we can assume β ∈ Z
d+ without loss

of generality. Inequalities (25) valid for the mixing set Kβ are valid for ∩d
t=1Kt . In

Example 2 in Sect. 6.1, we illustrate that they may define facets that are not given by
inequalities (25) valid for each individual mixing set Kt , t = 1, . . . , d.

Next we give a formal definition of (1 − τ)-efficient points. Using (1 − τ)-effi-
cient points, we give conditions to find blending proportions for the intersection of
two mixing sets that may provide a violated inequality for a given fractional point.
Throughout, let ht[1]t ≥ ht[2]t ≥ · · · ≥ ht[n]t for each t = 1, . . . , d. Reordering h′, let

h′
1′ ≥ h′

2′ ≥ · · · ≥ h′
n′ . Finally, let νβ be such that

∑νβ

i=1 πi ′ ≤ τ and
∑νβ+1

i=1 πi ′ > τ .
Recall that the finite discrete cumulative distribution function of the random right-
hand-side vector ξ is given by F(z) = P(ξ ≤ z).
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Definition 1 [19] Let θ i ∈ R
d+, i = 1, . . . , S be such that F(θ i ) ≥ 1 − τ and

F(θ i − ε) < 1 − τ for any infinitesimally small ε ≥ 0, ε �= 0. The points θ i ,
i = 1, . . . , S are called (1 − τ)-efficient.

Note that all (1−τ)-efficient points can be obtained by total enumeration of all pos-
sible outcomes for each right-hand-side. Therefore, the total number of (1−τ)-efficient
points, S, is O(nd). However, the number of distinct values of any two components in
all (1 − τ)-efficient points is at most O(n2). Without loss of generality, we consider
the first two components of θ i , i = 1, . . . , S. We reorder the (1 − τ)-efficient points
θ i , i = 1, . . . , S such that the vectors (θ i

1, θ
i
2) are distinct for i = 1, . . . , S′.

Proposition 7 Let ȳ ∈ R
2 be a given a point with ȳ j ∈ projy j

(conv(K j )), j = 1, 2

and ȳ �∈ projy(conv(K1 ∩ K2)), and let θ i ∈ R
2, i = 1, . . . , S′ be the distinct values

of (θ i
1, θ

i
2) in all (1 − τ)-efficient points. If β�θ j = h′

(νβ+1)′ for some j = 1, . . . , S′
and

max
i=1,...,S′:θ i

1−ȳ1>0,θ i
2−ȳ2<0

{
θ i

2 − ȳ2

ȳ1 − θ i
1

}

<
β1

β2
< min

i=1,...,S′:θ i
1−ȳ1<0,θ i

2−ȳ2>0

{
θ i

2 − ȳ2

ȳ1 − θ i
1

}

,

(27)

then β� ȳ �∈ projy′(conv(Kβ)) for β ∈ Z
2+ with β > 0.

Proof Observe that Kβ is a relaxation of K1 ∩K2 for β > 0. As θ i ∈ projy(K1 ∩K2),
for all i = 1, . . . , S′, we haveβ�θ i ∈ projy′(Kβ). Therefore, we haveβ�θ i ≥ h′

(νβ+1)′
for all i = 1, . . . , S′. Note that ȳ �∈ projy(conv(K1 ∩ K2)) implies that we do not

have ȳ j ≥ θ i
j , j = 1, 2, for any i = 1, . . . , S′. For all i = 1, . . . , S′ such that

ȳ j < θ i
j for j = 1, 2, we have β� ȳ < βθ i for any β > 0. Similarly, for all i such

that ȳ1 = θ i
1 and ȳ2 < θ i

2 or ȳ1 < θ i
1 and ȳ2 = θ i

2, we have β� ȳ < β�θ i for
any β > 0. For all i = 1, . . . , S′ such that ȳ1 > θ i

1 and ȳ2 < θ i
2, the condition

β1
β2

<
θ i

2−ȳ2

ȳ1−θ i
1

in (27) implies that β� ȳ < β�θ i for such i . Similarly, for all i = 1, . . . , S′

such that ȳ1 < θ i
1 and ȳ2 > θ i

2, the condition β1
β2

>
θ i

2−ȳ2

ȳ1−θ i
1

in (27) implies that

β� ȳ < β�θ i for such i . As a result, β� ȳ < β�θ i for all i = 1, . . . , S′ when
β satisfies (27). In addition, β� ȳ < β�θ j = h′

(νβ+1)′ for some j = 1, . . . , S′.
Therefore, β� ȳ �∈ projy′(conv(Kβ)), as all feasible points (y′, z) of conv(Kβ) have
y′ ≥ h′

(νβ+1)′ . �	

As a result, for a point ȳ �∈ projy(conv(∩d
t=1Kt )), if the conditions in Propo-

sition 7 hold for β1, β2, then β� ȳ /∈ projy′(conv(K β)) for β ∈ Z
d+ with β =

(β1, β2, 0, . . . , 0). We illustrate this on Example 2. In what follows, we give a strong
reformulation for ∩d

t=1Kt . The reformulation can be further strengthened using blend-
ing set reformulations.
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Theorem 8 The formulation

νt +1∑

j=1

λt j = 1 t ∈ [1, d] (28)

0 ≤ ω
j
ti ≤ λt j t ∈ [1, d], j ∈ [1, νt + 1], i ∈ [1, n] (29)

yt ≥
νt +1∑

j=1

ht[ j]t λt j t ∈ [1, d] (30)

z[i]t =
νt +1∑

j=1

ω
j
t[i]t

t ∈ [1, d], i ∈ [1, n] (31)

n∑

i= j

ω
j
t[i]t

≤ (p − j + 1)λt j t ∈ [1, d], j ∈ [1, νt + 1] (32)

ω
j
t[i]t

≥ λt j t ∈ [1, d], j ∈ [1, νt + 1], i ∈ [1, j − 1] (33)
n∑

i=1

πi zi ≤ τ (34)

Ax = y (35)

x ∈ X, 0 ≤ λ ≤ 1 (36)

λ ∈ Z

∑d
t=1 νt +d , (37)

is an extended formulation for the set given by (1)–(5). The continuous relaxation of
the extended formulation defined by (28)–(36) is at least as strong as the continuous
relaxation of the mixing set formulation defined by (1)–(4).

Proof The validity of this formulation follows from the validity of the reformulation
given in Theorem 5 for a single mixing set. To show that formulation (28)–(36) is at
least as strong as the formulation given by (1)–(4), we show that for any (y, x, z, λ, ω)

satisfying (28)–(36), the vector (y, x, z) satisfies (1)–(4). Clearly, (y, x, z) satisfies
(1), (3)–(4). We show that inequalities (2) are also satisfied by this choice of (y, x, z).
For each t = 1, . . . , d and i = 1, . . . , νt + 1 from inequality (30) we have

yt ≥
νt +1∑

j=1

ht[ j]t λt j

≥ ht[i]t

i∑

j=1

λt j

≥ ht[i]t

i∑

j=1

(
λt j − ω

j
t[i]t

)
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= ht[i]t

⎛

⎝
i∑

j=1

(
λt j − ω

j
t[i]t

)
− z[i]t +

νt +1∑

j=1

ω
j
t[i]t

⎞

⎠ (from(31))

= ht[i]t

⎛

⎝
i∑

j=1

λt j +
νt +1∑

j=i+1

ω
j
t[i]t

− z[i]t

⎞

⎠

= ht[i]t

⎛

⎝1 −
νt +1∑

j=i+1

λt j +
νt +1∑

j=i+1

ω
j
t[i]t

− z[i]t

⎞

⎠ (from (28)

= ht[i]t

⎛

⎝1 −
νt +1∑

j=i+1

ω
j
t[i]t

+
νt +1∑

j=i+1

ω
j
t[i]t

− z[i]t

⎞

⎠ (from (29) and (33)

= ht[i]t (1 − z[i]t ).

From (30), yt is a convex combination of ht[1]t , ht[2]t , . . . , ht[νt +1]t . Therefore, yt ≥
ht[νt +2]t in any feasible solution and inequalities yt ≥ ht[i]t (1 − z[i]t ) are trivially
satisfied for i = νt + 2, . . . , n. �	

As a result, the set of feasible solutions given by (28)–(36) is a subset of the set of
feasible solutions given by (1)–(4). We show that the former set could be a strict subset
in Example 2 in Sect. 6.1. Observe that, we can strengthen the formulation (28)–(36)
further by appending it with the extended formulation of the set Kβ for β ∈ R

d+. We
illustrate this strengthening in Example 2.

Note that unlike in the single mixing set with a cardinality constraint, we must
have integer λ in formulation (28)–(37), as relaxing integrality does not necessar-
ily result in integral λ for the intersection of multiple mixing sets, even when the
knapsack constraint is a cardinality constraint. However, for the special case when
ht1 ≥ ht2 ≥ · · · ≥ htn for all t = 1, . . . , d, we give a more compact extended formu-
lation that describes the intersection of mixing sets with a cardinality constraint as a
linear program.

Theorem 9 Suppose that ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all t = 1, . . . , d and πi =
1/n for i = 1, . . . , n. A compact extended formulation of the polyhedron given by
conv(∩d

t=1Qt ) is

p+1∑

j=1

λ j = 1 (38)

0 ≤ ω
j
i ≤ λ j j ∈ [1, p + 1], i ∈ [1, n] (39)

y ≥
p+1∑

i=1

hiλi (40)

zi =
p+1∑

j=1

ω
j
i i ∈ [1, n] (41)
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n∑

i= j

ω
j
i ≤ (p − j + 1)λ j j ∈ [1, p + 1] (42)

ω
j
i ≥ λ j j ∈ [1, p + 1], i ∈ [1, j − 1] (43)

λ j ≥ 0 j ∈ [1, p + 1] (44)

y ∈ R
d+, (45)

where hi ∈ R
d+ for i = 1, . . . , p + 1.

Proof Note that if ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all t = 1, . . . , d, we have νt = p
for t = 1, . . . , d. In an extreme point of the convex hull of the intersection of mixing
sets with a cardinality constraint, the vector y ∈ R

d is one of at most p + 1 vectors
hj = (h1 j , h2 j , . . . , hd j ) for j = 1, . . . , p + 1. Therefore,

Q(hj) =
⎧
⎨

⎩
(y, z) ∈ {hj} × {0, 1}n :

n∑

i= j

zi ≤ p − j + 1, zi ≥ 1, i ∈ [1, j − 1]
⎫
⎬

⎭
.

Observe that

conv(Q(hj))=
⎧
⎨

⎩
(y, z)∈{hj}×R

n+ :
n∑

i= j

zi ≤ p − j + 1, zi ≥1, i ∈[1, j − 1], z ≤1

⎫
⎬

⎭
,

because the constraint matrix defining Q(h j ) is totally unimodular.
As y ∈ {h1, . . . , hp+1} in extreme points of conv(∩d

t=1Qt ), we have

conv(∩d
t=1Qt ) = conv

(
∪p+1

j=1 conv(Q(hj))
)

+ C,

where

C = {(y, z) ∈ R
d+n : z = 0, y ≥ 0}. (46)

Then the theorem follows from the result of [3] on union of polyhedra. �	
Note that the linear programming reformulation for the special case described in

Theorem 9 has p +1 many λ variables as compared to
∑d

t=1(νt +1) many λ variables
in the MIP reformulation given in Theorem 8 for the general case. Finally, note that
(ht j , ẑ j ), j = 1, . . . , p + 1, with ẑ j

i = 1 for i < j and ẑ j
i = 0 for i ≥ j are all

extreme point solutions of conv(Qt ) for all t = 1, . . . , d if ht1 ≥ ht2 ≥ · · · ≥ htp+1
for all t = 1, . . . , d. Also, (yt , z) = (1, 0) is the extreme ray of conv(Qt ) for each
t = 1, . . . , d and the conical combination of these extreme rays give C in (46). There-
fore, we have the following result.

Corollary 10 conv(∩d
t=1Qt ) = ∩d

t=1 conv(Qt ) if ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all
t = 1, . . . , d.
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Table 1 Joint probability density function of ξ

Scenario 1 2 3 4 5 6 7 8 9

ξ1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0

ξ2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25

Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

6.1 An example on the strength of alternative reformulations

In this section, we give a slight modification of the example in [22] to illustrate the
strength of the alternative reformulations. While the reformulation proposed in [22]
is stronger in most cases, there are several computational challenges in obtaining this
reformulation. In this approach, first all (1 − τ)-efficient points need to be enumer-
ated to obtain an equivalent disjunctive programming reformulation. In general, it is
computationally intensive to enumerate all (1 − τ)-efficient points [4]. The (1 − τ)-
efficient points are also used to define the reverse polar of this disjunctive program
whose extreme points give valid inequalities that define a linear inequality reformula-
tion of this disjunctive set [22]. It is also not practical to list all extreme points of the
reverse polar, in general.

Example 2 Consider the chance-constrained program

min x1 + x2

s.t. P

{
2x1 − x2 ≥ ξ1
x1 + 2x2 ≥ ξ2

}

≥ 0.6 = 1 − τ

x ≥ 0,

where ξ1 and ξ2 are dependent random variables with joint probability density function
given in Table 1.

Observe that the set of all (1 − τ)-efficient points, obtained by enumerating all
possible combinations of ξ1 and ξ2 and checking the condition in Definition 1, is
{(0.25, 2), (0.5, 1.5), (0.75, 1.25)}. For example, θ1 = (0.25, 2) is (1 − τ)-efficient,
because the cumulative distribution function evaluated at this point, F(θ1) = P(ξ j ≤
θ i

j , i = 1, 2) = 0.6 = 1 − τ and F(θ i − ε) < 0.6 for any infinitesimally small ε ≥ 0,

ε �= 0. Note that the (1−τ)-efficient point θ1 = (0.25, 2) is not given by any realization
hi, i = 1, . . . , n. Using the list of all (1 − τ)-efficient points, an alternative reformu-
lation of this chance-constrained program is given by the disjunctive program [22]:

min x1 + x2

s.t.

{
y1 ≥ 0.25
y2 ≥ 2

}

or

{
y1 ≥ 0.5
y2 ≥ 1.5

}

or

{
y1 ≥ 0.75
y2 ≥ 1.25

}
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y1 = 2x1 − x2

y2 = x1 + 2x2

x ≥ 0.

The optimal solution is (x, y) = (0.55, 0.35, 0.75, 1.25) with objective value 0.9.
Next, we illustrate the reformulations proposed in this paper on this example.

For this example, τ = 0.4, p = 6, ν1 = 3, ν2 = 5, y1 = 2x1−x2 and y2 = x1+2x2,
and the mixing set reformulation is

y1 + 0.75z1 ≥ 0.75 y2 + 2.00z7 ≥ 2

y1 + 0.50z2 ≥ 0.5 y2 + 1.75z4 ≥ 1.75

y1 + 0.50z3 ≥ 0.5 y2 + 1.50z2 ≥ 1.5

y1 + 0.25z4 ≥ 0.25 y2 + 1.50z5 ≥ 1.5

y1 + 0.25z5 ≥ 0.25 y2 + 1.50z8 ≥ 1.5

y1 + 0.25z6 ≥ 0.25 y2 + 1.25z1 ≥ 1.25
...

...
n∑

i=1

πi zi ≤ 0.4 = τ.

The initial linear programming (LP) relaxation solution of the mixing set reformu-
lation is (x, y) = (0.49, 0.38, 0.6, 1.25) with an objective value 0.87. After adding
the following violated cuts (25)

y1 + 0.25z1 + 0.25z3 ≥ 0.75

y1 + 0.25z1 + 0.25(1 − z4 + 1 − z5 + 1 − z7 + 1 − z8) ≥ 0.75

y2 + 0.25z7 + 0.25z4 + 0.25z5 ≥ 2

in that order, we get a solution (x, y) = (0.52, 0.365, 0.675, 1.25) with an objec-
tive value 0.885. There is no violated inequality (25) at this point valid for either
of the two individual mixing sets. Note that for β1 = β2 = 1 we have 1 = β1

β2
<

min
{

2−1.25
0.675−0.25 , 1.5−1.25

0.675−0.5

}
and β�θ2 = h′

(νβ+1)′ = 2, where νβ = 3 for Kβ . So, to

obtain violated inequalities using Proposition 7, we consider the blending set formed
by y′ = y1 + y2 with β1 = β2 = 1 in (26):

y′ + 2z1 ≥ 2

y′ + 2z2 ≥ 2

y′ + 2z4 ≥ 2

y′ + 2z7 ≥ 2

y′ + 1.75z3 ≥ 1.75
...
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The violated inequality (25) is

y1 + y2 ≥ 2,

and it is facet-defining for conv(∩d
t=1Kt ). After adding this inequality, we get the

solution (x, y) = (0.55, 0.35, 0.75, 1.25), which is optimal. However, z1 = 0.3 and
z2 = z4 = z5 = z7 = z8 = 1 and there are no violated inequalities (25) at this point.

In contrast, solving the LP relaxation of the extended reformulation of the chance-
constrained program given by (28)–(37), we get (x, y) = (0.52, 0.365, 0.675, 1.25)

with an objective function value 0.885. This example illustrates that the extended
formulation is a stronger formulation than the original mixing set formulation. Fur-
thermore, adding the extended formulation for the mixing set given by y1 + y2 to this
formulation, we get the optimal solution with integral λ, z.

Finally, consider the linear programming relaxation of the extended formulation
proposed in [14] given by the additional constraints:

yt +
νt∑

i=1

(ht[i]t − ht[i+1]t )wt[i]t ≥ ht[1]t t ∈ [1, d]

wt[i]t ≥ wt[i+1]t t ∈ [1, d], i ∈ [1, νt ]
zi ≥ wti t ∈ [1, d], i ∈ {[1]t , . . . , [νt ]t }

where wt[i]t = 1 if scenario [i]t is violated for the single constraint t and wt[νt +1]t = 0.
The LP relaxation solution to this extended formulation has an objective function value
0.8769, with (x, y) = (0.504, 0.373, 0.635, 1.25), which shows that this is a weaker
formulation. Luedtke et al. [14] propose a class of valid inequalities for this formu-
lation, which results in an exponential-size LP extended formulation for the case that
d = 1.

In the next section, we summarize our computational experience in solving larger
probabilistic lot-sizing problems effectively with a branch-and-cut algorithm incorpo-
rating inequalities (25).

7 Computations

To test the effectiveness of the proposed inequalities in solving chance-constrained
programs with finite discrete distributions, we implement a branch-and-cut algorithm
that incorporates inequalities (25). All computations are done on a 3.2 GHz Sun work-
station with 4 GB RAM, under 3,600 CPU seconds time limit.

We test our methods on the probabilistic lot-sizing problem described in [4], where
the right-hand-sides, hti , represent cumulative demands in time period t = 1, . . . , d
under scenario i = 1, . . . , n, and the probabilistic constraint represents a service level
requirement on the joint probability of a stock-out in any time period. We assume that
the demand in a time period is Uniform(1,50). Therefore, the right hand sides, h1i , for
row 1 of the probabilistic constraint is generated from discrete uniform distribution
between 1 and 50 for each scenario i = 1, . . . , n. To obtain the right-hand-side hti , we
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Table 2 Probabilistic lot-sizing experiments

f τ Gap % Gapimp Cuts Nodes Time (endgap)

CPX Mix TL CPX Mix TL CPX Mix TL CPX Mix TL

0 5 1.3 23 90 90 85 559 199 1,139 117 81 130 255 59

10 1.7 26 97 97 131 833 333 10,493 171 68 821 529 104

15 2.0 24 98 98 217 1360 559 36,765 265 209 T (0.4) 1,387 341

20 2.4 18 97 97 248 1,527 779 25479.0 291 418 T (1.0) 1,764 967

1 5 2.4 47 74 74 235 574 359 72,889 3,258 15,663 T (0.3) T (0.4) 3,476 (0.2)

10 2.7 43 78 77 288 846 499 39,773 1,323 4,169 T (0.7) T (0.5) T (0.4)

15 3.1 39 77 76 373 1,334 707 22,837 492 1,831 T (1.4) T (0.7) T (0.6)

20 3.5 36 75 76 452 1,849 1,089 17,031 245 939 T (1.7) T (0.9) T (0.7)

add a Uniform(1,50) random variable to the value of h(t−1)i for each t = 2, . . . , d and
i = 1, . . . , n. As a result, we have dependency between the rows of the probabilistic
constraints.

The variable production costs are generated from a discrete uniform distribution
between 0 and 10. We let τ ∈ {5, 10, 15, 20} be the threshold percentage on the
probabilistic constraint. In addition, production setup costs follow a discrete uniform
distribution between 0 and 1, 000 f , for f ∈ {0, 1}. In other words, when f = 0, there
are no setup costs and we get a chance-constrained linear program, whereas when
f = 1, we get a chance-constrained mixed-integer program. To test the performance
of our branch-and-cut algorithm for varying cost parameters and probability thresh-
olds, we generate five random instances for each combination of f and τ and report
the averages.

A summary of these experiments with d = 50, n = 500 is reported in Table 2.
In column gap, we report the average integrality gap, which is 100 × (zub −
zinit)/zub, where zinit is the objective value of the initial LP relaxation and
zub is the objective value of the best integer solution. In column % gapimp, we
compare the average percentage improvement of the integrality gap at the root node,
which is 100 × (zroot− zinit)/(zub− zinit), where zroot is the objective
value of the LP at the root node after the cuts are added. Columns cuts and nodes
compare the average number of cuts added, and the average number of branch-and-cut
tree nodes explored, respectively. In the last column, we report the average CPU time
elapsed (in seconds). We indicate the case that none of the five problem instances
could be solved within an hour with T. If the problem is not solved within the time
limit, then we also report, in parenthesis, the average percentage gap between the best
lower bound and the best integer solution found in the search tree (endgap). Except
for percentage gaps, all table entries are rounded to the nearest integer.

The set of experiments summarized in Table 2, is on solving probabilistic lot-sizing
problems with scenario probabilities generated from Uniform(0,1) distribution. We
implement a branch-and-cut algorithm using a separation algorithm for a subset of
inequalities (25) as described in Sect. 3.1 with the restriction that p −m ∈ {0, 1, 2, 3}.
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The problem instances are solved with the MIP solver of CPLEX1 Version 10.1. The
experiments with the branch-and-cut algorithm using inequalities (25) are summa-
rized under the columns TL. We solve the same instances with the default settings of
CPLEX (CPX) without adding any user cuts. We also report our experiments using
mixing inequalities (6) instead of inequalities (25) under the columns Mix.

In our experiments with no setup costs ( f = 0), we observe that even though the
initial gaps are small, the default CPLEX reaches the time limit in instances with large
τ , whereas the branch-and-cut algorithm using a subset of inequalities (25) takes less
than a few minutes on average for all problem instances. This can be attributed to the
close to 100 per cent gap improvement at the root node as compared to the less than
26 percent improvement made by default CPLEX. While adding inequalities (6) also
improve the percentage gap close to 100 per cent, Mix takes longer to solve. As the
objective function does not include the z variables, we see that even though the gap
improvement is almost always the same for Mix and TL, we get more fractional z’s
using Mix than using TL. CPLEX default adds about half the number of inequalities
in all problem instances, however, these inequalities are not very effective in clos-
ing the integrality gap and CPLEX resorts to enumerating thousands of nodes in the
branch-and-cut tree. The problems with setup costs ( f = 1) are harder to solve for
all methods as we have additional binary variables in the formulation. In addition, we
observe that for both f = 0 and f = 1, the problems are harder to solve for larger τ .

We have also tested the extended formulation proposed in Sect. 6. We found that
while the bounds given by this formulation are much stronger, the formulation is very
large to make it practical for large instances. This addresses a question posed in [8]
regarding the practicality of similar extended formulations.

8 Conclusion

In this paper, we study the mixing set with a cardinality constraint arising in chance-
constrained programs and propose facet-defining inequalities that subsume the explicit
inequalities given by [14]. We extend the results derived for the mixing set with a car-
dinality constraint to obtain valid inequalities for the mixing set with a knapsack con-
straint. Our computational tests illustrate the efficacy of a branch-and-cut algorithm
using these inequalities. In addition, we propose a compact extended reformulation
(with polynomial number of variables and constraints) that characterizes a linear pro-
gramming equivalent of a single inequality in the probabilistic constraint. We propose
an extended formulation for the intersection of multiple mixing sets with a knapsack
constraint that is stronger than the original mixing formulation and is polynomial in
size. We also give a compact extended linear program for the intersection of multiple
mixing sets and a cardinality constraint for a special case.

The complete linear description of the single mixing set with a cardinality con-
straint, in its original space, remains an open question. In addition, an efficient method
for finding blending proportions β for the intersection of multiple mixing sets mer-

1 CPLEX is a trademark of ILOG, Inc.

123



54 S. Küçükyavuz

its further research. In this paper, we give a simple condition on β for blending two
mixing sets.
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Appendix A: Example 1 (cont.)

In this section, we prove the validity of one of the inequalities that cannot be expressed
as a (T,�L) inequality:

y +(h1 − h2)z1 + (h1 − h3 − α1)(1 − z4) + h1−h7−α1
2 ((1 − z7) + (1 − z9))

+(h1 − h5 − α1 − α6)(1 − z5) + (h1 − h6 − α1 − α7)(1 − z6) ≥ h1. (47)

Consider each feasible value for y = hi , i = 1, . . . , 7 and a feasible assignment of z
values that minimizes the left-hand-side (LHS) of an inequality:

y+α1z1+α4(1 − z4)+α5(1 − z5)+α6(1 − z6)+α7(1 − z7) + α9(1 − z9) ≥ h1.

(48)

Case 1. For y = h1, a valid assignment that minimizes the LHS of (48) is z1 =
0, z4 = z5 = z6 = z7 = z9 = 1. In this case, inequality (48) is tight.

Case 2. For y = h2, a valid assignment that minimizes the LHS of (48) is z1 = z4 =
z5 = z6 = z7 = z9 = 1. In this case, we must have h2 + α1 ≥ h1, or

α1 ≥ h1 − h2. (49)

Case 3. For y = h3, a valid assignment that minimizes the LHS of (48) is z4 = 0z1 =
z2 = z5 = z6 = z7 = z9 = 1. In this case, we must have h3 +α1 +α4 ≥ h1,
or

α1 + α4 ≥ h1 − h3. (50)

Case 4. For y = h4, a valid assignment that minimizes the LHS of (48) is z4 =
z5 = 0 z1 = z2 = z3 = z6 = z7 = z9 = 1. In this case, we must have
h4 + α1 + α4 + α5 ≥ h1, or

α1 + α4 + α5 ≥ h1 − h4. (51)

Case 5. For y = h5, a valid assignment that minimizes the LHS of (48) is z5 =
z6 = 0 z1 = z2 = z3 = z4 = z7 = z9 = 1. In this case, we must have
h5 + α1 + α5 + α6 ≥ h1, or

α1 + α5 + α6 ≥ h1 − h5. (52)
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Case 6. For y = h6, a valid assignment that minimizes the LHS of (48) is z6 =
z7 = 0 z1 = z2 = z3 = z4 = z5 = z9 = 1. In this case, we must have
h6 + α1 + α6 + α9 ≥ h1, or

α1 + α6 + α9 ≥ h1 − h6. (53)

Alternatively, another valid assignment that minimizes the LHS of (48) is
z6 = z9 = 0 z1 = z2 = z3 = z4 = z5 = z7 = 1. In this case, we must have
h6 + α1 + α6 + α7 ≥ h1, or

α1 + α6 + α7 ≥ h1 − h6. (54)

Case 7. For y = h7, a valid assignment that minimizes the LHS of (48) is z7 =
z9 = 0 z1 = z2 = z3 = z4 = z5 = z6 = 1. In this case, we must have
h7 + α1 + α7 + α9 ≥ h1, or

α1 + α7 + α9 ≥ h1 − h7. (55)

To show validity of inequality (47), we select the six coefficients α in (48) such that
six of the seven inequalities (49)–(55) hold at equality and the remaining inequality
is satisfied. Assuming that inequalities (49)–(50) and (52)–(55) hold at equality and
solving for α, we get a unique solution for α that gives the inequality (47). With this
choice of α, α1 + α4 + α5 > h1 − h4 and (51) is satisfied. Therefore, inequality (47)
is a valid inequality for this example. We can also show that it is facet-defining.
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