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Abstract Semidefinite programming (SDP) bounds for the quadratic assignment
problem (QAP) were introduced in Zhao et al. (J Comb Optim 2:71–109, 1998). Empir-
ically, these bounds are often quite good in practice, but computationally demanding,
even for relatively small instances. For QAP instances where the data matrices have
large automorphism groups, these bounds can be computed more efficiently, as was
shown in Klerk and Sotirov (Math Program A, 122(2), 225–246, 2010). Continuing
in the same vein, we show how one may obtain stronger bounds for QAP instances
where one of the data matrices has a transitive automorphism group. To illustrate our
approach, we compute improved lower bounds for several instances from the QAP
library QAPLIB.
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1 Introduction

We study the quadratic assignment problem (QAP) in the following form:

min
π∈Sn

n∑

i, j=1

(
ai j bπ(i),π( j) + ci,π(i)

)
,
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76 E. de Klerk, R. Sotirov

where A = [ai j ] and B = [bi j ] are given symmetric n×n matrices, C = [ci j ] ∈ R
n×n ,

and Sn is the symmetric group on n elements, i.e. the group of all permutations of
{1, . . . , n}. The matrices A and B are often called the distance and flow matrices
respectively. The physical interpretation (when C = 0) is that we are given n facilities
with specified flows between facilities given by the matrix B, as well as n locations
with relative distances between these locations given as the entries of A. The objective
is to assign the facilities to locations such that the ‘flow × distance’ is minimal when
summed over all pairs.

The QAP may be rewritten in terms of n × n permutation matrices as follows:

min
X∈�n

tr(AX B + C)X T (1)

where �n is the set of n ×n permutation matrices. In this paper we will mostly restrict
our attention to the case where C = 0. We only need to deal with the linear term since
it arises when doing branch and bound. To be precise, fixing a partial assignment of
facilities to locations leads to a smaller QAP problem that always has a linear term,
even if the original QAP does not; see Sect. 3.3.

The quadratic assignment problem is a well-known NP-hard problem and difficult
to solve in practice for values n ≥ 30; see [1] and the references therein.

Anstreicher et al. [1] recently achieved computational success in solving QAP
instances by using nonlinear convex quadratic relaxations together with branch and
bound.

Another class of convex relaxations for QAP are the semidefinite programming
(SDP) bounds by Zhao et al. [25]. Empirically, these bounds are often quite good in
practice, but computationally demanding for interior point solvers, even for relatively
small instances (say n ≥ 15). Lower order methods can solve the SDP relaxations for
somewhat larger instances, but are known to be much slower than interior point meth-
ods; see Burer and Vandenbussche [3] for the state-of-the-art in lower order methods
for these problems.

For QAP instances where the data matrices have large automorphism groups, the
SDP bounds can be computed more efficiently, as was shown by De Klerk and Sotirov
[10], who computed the SDP bound by Zhao et al. for some instances with n up to
128 with interior point solvers.

Continuing in the same vein, we show how one may obtain stronger bounds for
QAP instances where one of the data matrices has a transitive automorphism group.
In particular, our approach is very suitable for QAP instances with Hamming distance
matrices. To illustrate our approach, we compute improved lower bounds for several
test problems from the QAP library QAPLIB [4].

Notation

The space of p×q matrices is denoted by R
p×q , the space of k×k symmetric matrices

is denoted by S
k×k . For index sets α, β ⊂ {1, . . . , n}, we denote the submatrix that

contains the rows of A indexed by α and the columns indexed by β as A(α, β). If
α = β, the principal submatrix A(α, α) of A is abbreviated as A(α). The i th column
of a matrix C we denote by C:,i .
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Improved semidefinite programming bounds 77

We use In to denote the identity matrix of order n, and Jn the n ×n all-ones matrix.
We omit the subscript if the order is clear from the context. Also, Eii = ei eT

i where
ei is the i-th standard basis vector.

The vec operator stacks the columns of a matrix, while the Diag operator maps an
n-vector to an n ×n diagonal matrix in the obvious way. The trace operator is denoted
by ‘tr’.

The Kronecker product A ⊗ B of matrices A ∈ R
p×q and B ∈ R

r×s is defined
as the pr × qs matrix composed of pq blocks of size r × s, with block i j given
by ai j Bi = 1, . . . , p), ( j = 1, . . . , q). The following properties of the Kronecker
product will be used in the paper, see e.g. [13] (we assume that the dimensions of the
matrices appearing in these identities are such that all expressions are well-defined):

(A ⊗ B)T = AT ⊗ BT , (2)

(A ⊗ B)(C ⊗ D) = AC ⊗ B D. (3)

2 SDP relaxation of QAP

The following SDP relaxation of QAP was studied by Povh and Rendl [20]:

min tr(B ⊗ A + Diag(vec(C)))Y
s.t. tr(In ⊗ E j j )Y = 1, tr(E j j ⊗ In)Y = 1 j = 1, . . . , n

tr(In ⊗ (Jn − In) + (Jn − In) ⊗ In)Y = 0
tr(Jn2 Y ) = n2

Y ≥ 0, Y � 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

Note that here Y ∈ S
n2×n2

. One may easily verify that (4) is indeed a relaxation of the
QAP (1) by noting that a feasible point of (4) is given by

Y := vec(X)vec(X)T if X ∈ �n,

and that the objective value of (4) at this point Y is precisely tr(AX B + C)X T .
Povh and Rendl [20] showed that the relaxation (4) is equivalent to the earlier

relaxation of Zhao et al. [25]. The latter relaxation is known to give good bounds in
practice, but is difficult to solve with interior point methods for n ≥ 15, due to its size.
De Klerk and Sotirov [10] showed how to exploit algebraic symmetry of the matrices
A and B when present, in order to reduce the computational effort of solving (4). In
the next section we give a brief overview of this approach.

3 Exploiting group symmetry in the SDP problems

3.1 General theory

The discussion in this subsection is condensed from De Klerk and Sotirov [10]. More
details may be found in the survey by Parrilo and Gatermann [12], or the thesis of
Gijswijt [9].
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78 E. de Klerk, R. Sotirov

Assume that the following semidefinite programming problem is given

p∗ := min
X�0, X≥0

{ tr(A0 X) : tr(Ak X) = bk, k = 1, . . . , m} , (5)

where Ai ∈ S
n×n(i = 0, . . . , m) are given. We also assume that this problem has an

optimal solution.

Assumption 1 (Group symmetry) We assume that there is a nontrivial multiplicative
group of orthogonal matrices G such that the associated Reynolds operator

RG(X) := 1

|G|
∑

P∈G
PT X P, X ∈ R

n×n

maps the feasible set of (5) into itself and leaves the objective value invariant, i.e.

tr(A0 R(X)) = tr(A0 X) if X is a feasible point of (5).

Since the Reynolds operator maps the convex feasible set into itself and preserves
the objective values of feasible solutions, we may restrict the optimization to feasible
points in the commutant (or centralizer ring) of G, defined as:

AG : = {X ∈ R
n×n : RG(X) = X}

= {X ∈ R
n×n : X P = P X ∀ P ∈ G}.

Note that RG gives an orthogonal projection onto AG .
The commutant AG is a matrix ∗-algebra over R, i.e. a subspace of R

n×n that is
closed under matrix multiplication and taking transposes.

Orthonormal eigenvectors of the linear operator RG corresponding to the eigen-
value 1 form an orthonormal basis of AG (seen as a vector space). This basis, say
B1, . . . , Bdd := dim(AG)), has the following properties:

– Bi ∈ {0, 1}n×n (i = 1, . . . , d);
–
∑d

i=1 Bi = J ;
– For any i ∈ {1, . . . , d}, one has BT

i = Bi∗ for some i∗ ∈ {1, . . . , d} (possibly
i∗ = i).

One may also obtain the basis B1, . . . , Bd from the orbitals of the group AG . The
orbital of the pair (i, j) is defined as

{(Pei , Pe j ) : P ∈ G}.

The corresponding basis matrix has an entry 1 at position (k, l) if (ek, el) belongs to
the orbital, and is zero otherwise.

The next result shows that one may replace the data matrices Ai (i = 0, . . . , m) in
the SDP formulation (5) by their projections R(Ai )(i = 0, . . . , m) onto the commu-
tant.
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Improved semidefinite programming bounds 79

Theorem 1 One has

p∗ = min
X�0, X≥0

{
tr(RG(A0)X) : tr(RG(Ak)X) = bk k = 1, . . . , m

}
.

Proof The proof is an immediate consequence of Assumption 1 and the observation
that tr(Ai RG(X)) = tr(RG(Ai )X) for any i . 	


By Theorem 1, we may assume without loss of generality that there exists an optimal
X ∈ AG .

Assume we have a basis B1, . . . , Bd of the commutant AG . One may write X =∑d
i=1 xi Bi . Moreover, the nonnegativity condition X ≥ 0 is equivalent to x ≥ 0, by

the properties of the basis.
Thus the SDP problem (5) reduces to

min∑d
i=1 xi Bi �0,x≥0

{
d∑

i=1

xi tr(RG(A0)Bi ) :
d∑

i=1

xi tr(RG(Ak)Bi ) = bk ∀ k

}
. (6)

Note that the values tr(RG(Ak)Bi )(i = 1, . . . , d), (k = 0, . . . , m) may be computed
beforehand.

The next step in reducing the SDP (6) is to block diagonalize the commutant AG ,
i.e. block diagonalize its basis B1, . . . , Bd .

This is always possible due to a classical ‘structure’ theorem for matrix ∗-algebras.
Before stating the result, recall that a matrix ∗-algebra A is called simple if its only
ideals are {0} and A itself.

Theorem 2 (Wedderburn [23]; see also [24]) Assume A ⊂ R
n×n is a matrix *-alge-

bra over R that contains the identity I . Then there is an orthogonal matrix Q and
some integer s such that

QT AQ =

⎛

⎜⎜⎜⎜⎝

A1 0 · · · 0

0 A2
...

...
. . . 0

0 · · · 0 As

⎞

⎟⎟⎟⎟⎠
,

where each At (t = 1, . . . , s) is a simple matrix ∗-algebra over R. This decomposition
is unique up to the ordering of the blocks.

Simple matrix ∗-algebras over R are completely classified and one can give a
more detailed statement of the above theorem. For our purposes, though, it suffices
to note that block-diagonal structure may be exploited by interior point software,
e.g. SeDuMi [22]. The final step in the symmetry reduction is therefore to replace
the linear matrix inequality

∑d
i=1 xi Bi � 0 in (6) by the block diagonal equivalent:∑d

i=1 xi QT Bi Q � 0, where Q block-diagonalizes AG (cf. Theorem 2). Note that
identical blocks appearing in the block diagonalization may be removed.
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80 E. de Klerk, R. Sotirov

3.2 The symmetry of the SDP relaxation of the QAP

We now apply the theory described in the last section to the SDP relaxation (4) of the
QAP.

Note that, if C = 0, the data matrices in (4) are

B⊗ A, E j j ⊗ I and I ⊗E j j ( j =1, . . . , n), J ⊗ J, and (I ⊗(J − I ) + (J − I )⊗ I ).

Definition 3 We define the automorphism group of a matrix Z ∈ R
n×n as

aut(Z) = {P ∈ �n : P Z PT = Z}.

Theorem 4 Define the multiplicative matrix group

GQ AP := {(PB ⊗ PA) : PA ∈ aut(A), PB ∈ aut(B)} =: Gaut(B) ⊗ Gaut(A). (7)

Then the SDP problem (4) with C = 0 satisfies Assumption 1 with respect to the
group GQ AP .

Proof We have to show that the Reynolds operator RGQ AP maps the feasible set of
(4) into itself and leaves the objective function invariant. Assume therefore that Y ∈
S

n2×n2
is a feasible point of (4).

The objective value at RGQ AP (Y ) is

tr
(
(B ⊗ A)RGQ AP (Y )

)

= tr
(
RGQ AP (B ⊗ A)Y

)

= 1

|GQ AP |
∑

PA∈aut(A),PB∈aut(B)

tr
(
(PB ⊗ PA)T (B ⊗ A)(PB ⊗ PA)Y

)

= 1

|GQ AP |
∑

PA∈aut(A),PB∈aut(B)

tr
(
(PT

B B PB ⊗ PT
A APA)Y

)

= tr ((B ⊗ A)Y ),

where we have used the properties (2) and (3) of the Kronecker product.
In exactly the same way we may show that the following two constraints are satis-

fied:

tr
(
(I ⊗ (J − I ) + (J − I ) ⊗ I )RGQ AP (Y )

) = 0,

tr(J RGQ AP (Y )) = n2.

Since RGQ AP (Y ) � 0 and RGQ AP (Y ) ≥ 0 it only remains to show that

tr(I ⊗ E j j )RGQ AP (Y ) = 1, tr(E j j ⊗ I )RGQ AP (Y ) = 1 j = 1, . . . , n.
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Improved semidefinite programming bounds 81

To this end, we fix j ∈ {1, . . . , n}. One has:

tr(I ⊗ E j j )RGQ AP (Y )

= tr
(
RGQ AP (I ⊗ E j j )Y

)

= 1

|GQ AP |
∑

PA∈aut(A),PB∈aut(B)

tr
(
(PB ⊗ PA)T (I ⊗ E j j )(PB ⊗ PA)Y

)

= 1

|GQ AP |
∑

PA∈aut(A),PB∈aut(B)

tr
(
(I ⊗ PT

A E j j PA)Y
)

= 1

|GQ AP |
∑

PA∈aut(A),PB∈aut(B)

1 = 1,

where we have again used the properties (2) and (3) of the Kronecker product as well
as tr(I ⊗ Ekk)Y = 1 for all k = 1, . . . , n. The proof of tr(E j j ⊗ I )RGQ AP (Y ) = 1
proceeds in the same way. 	


One may also construct the commutant of GQ AP form the commutants of aut(A)

and aut(B) as follows.

Theorem 5 (cf. Theorem 6.2 in [10]) Let Aaut(A) denote the commutant of aut(A),
etc. One has:

AGQ AP = Aaut(B) ⊗ Aaut(A) := {
X B ⊗ X A : X A ∈ Aaut(A), X B ∈ Aaut(B)

}
. (8)

The general theory of symmetry reduction may therefore be applied to the SDP
problem (4) in a mechanical way; this was done in detail in [10]. In what follows we
are interested in a different SDP relaxation, that is derived by considering a partial
assignment (assigning one facility to a location). Equivalently, we will consider relax-
ations in the first level of the branching tree for QAP.

3.3 Symmetry reduction in the first level of the branching tree

In the following lemma, we show that when we fix some entry in the permutation
matrix X to 1, we obtain a QAP problem that is one dimension smaller than the
original one. In terms of the physical interpretation of the QAP, we are assigning facil-
ity s to location r for a given index pair (r, s). In terms of branch and bound, we are
considering a child node at the first level of the branching tree.

Lemma 6 Let X ∈ �n, and r, s ∈ {1, . . . , n} such that Xr,s = 1. Then for α =
{1, . . . , n}\r and β = {1, . . . , n}\s one has

tr(AX B + C)X T = tr(A(α)X (α, β)B(β) + C̄(α, β))X (α, β)T + d,

where
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82 E. de Klerk, R. Sotirov

C̄(α, β) = C(α, β) + 2A(α, {r})B({s}, β)

and d = ar,r bs,s + cr,s .

Proof By fixing Xrs = 1, we get

tr(AX B X T ) =
n∑

i,k=1

(AX B)ik xik =
n∑

i,k, j,l=1

ai j x jlbkl xik

=
n∑

i �=r,k �=s, j �=r,l �=s

ai j x jlbkl xik +
n∑

i �=r,k �=s

air bks xik

+
n∑

j �=r,l �=s

ar j bsl x jl + arr bss

=
n∑

i �=r,k �=s, j �=r,l �=s

ai j x jlbkl xik + 2
n∑

i �=r,k �=s

air bks xik + arr bss .

Moreover,

tr(C X T ) =
n∑

i,k=1

cik xik =
n∑

i �=r,k �=s

cik xik + crs

which proves the lemma. 	

Since A(α), B(β) ∈ S

n−1×n−1 and X (α, β) ∈ �n−1, the reduced problem

min
X∈�n−1

tr(A(α)X B(β) + C̄(α, β))X T (9)

is also a quadratic assignment problem, and its SDP relaxation (4) becomes

min tr(B(β) ⊗ A(α) + Diag(c̄))Y
s.t. tr(I ⊗ E j j )Y = 1, tr(E j j ⊗ I )Y = 1 ∀ j

tr(I ⊗ (J − I ) + (J − I ) ⊗ I )Y = 0
tr((J ⊗ J )Y ) = (n − 1)2

Y ≥ 0, Y � 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10)

where I, J, E j j ∈ R
(n−1)×(n−1), c̄ = vec(C̄(α, β)), and Y ∈ S

(n−1)2×(n−1)2
.

Note that the data matrices of the SDP problem (10) are

B(β)⊗ A(α)+Diag(c̄), J ⊗ J, (I ⊗(J − I ))+(J − I )⊗ I ), E j j ⊗ I, I ⊗ E j j ,

(11)

where j = 1, . . . , n − 1 and all matrices are of order n − 1.
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Improved semidefinite programming bounds 83

In order to perform the symmetry reduction of the SDP (10), we therefore need to
find the automorphism groups of the matrices in (11). To this end, we need one more
definition.

Definition 7 For fixed r ∈ {1, . . . , n}, the subgroup of aut(A) that fixes r is:

stab(r, A) := {P ∈ aut(A) : Pr,r = 1}. (12)

This is known as the stabilizer subgroup of aut(A) with respect to r ; see e.g., [5,9].

The importance of the stabilizer group becomes clear from the following lemma.

Lemma 8 For α = {1, . . . , n}\r the automorphism group of A(α) is given by

aut(A(α)) = {P(α) : P ∈ stab(r, A)}.

Proof Follows directly from the definition of stabilizer (12). 	

Thus we may readily obtain aut(A(α)) from stab(r, A).
The next lemma will be used to describe the automorphism group of the matrix

Diag(c̄) in (11).

Lemma 9 Let A:,r be the rth column of the matrix A. Then,

PT Diag(A:,r )P = Diag(A:,r ), ∀P ∈ stab(r, A).

Proof For standard unit vectors er , ek ∈ R
n and P ∈ stab(r, A) we have

PT ekeT
r P = ek′eT

r and PT er ek P = er eT
k′

for some k′ ∈ {1, . . . , n}. Since P ∈ aut(A) it follows that akr = ak′r for all (k′, r)

such that (ek′ , er ) belongs to the same orbital as (ek, er ). Now from

PT ekeT
k P = ek′eT

k′

follows the proof of the lemma. 	

Finally, we derive the automorphism group of the matrix B(β) ⊗ A(α) + Diag(c̄)

in (11).

Theorem 10 Let r, s ∈ {1, . . . , n}, α = {1, . . . , n}\r, β = {1, . . . , n}\s. If C = 0,
then

aut (B(β) ⊗ A(α) + Diag(c̄)) = aut(B(β) ⊗ A(α)) = aut(B(β)) ⊗ aut(A(α))

where c̄ = vec(C̄(α, β)).
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84 E. de Klerk, R. Sotirov

Proof If C = 0, then C̄(α, β) = 2A(α, {r})B({s}, β) and vec(C̄) = 2B(β, {s}) ⊗
A(α, {r}). Now, from Lemma 9 and for PB ∈ aut(B(β)), PA ∈ aut(A(α)) one has

(PB ⊗ PA)T Diag(B(β, {s}) ⊗ A(α, {r}))(PB ⊗ PA)

= (PB ⊗ PA)T (Diag(B(β, {s})) ⊗ Diag(A(α, {r})))(PB ⊗ PA)

= PT
B Diag(B(β, {s}))PB ⊗ PT

A Diag(A(α, {r}))PA

= Diag(B(β, {s}) ⊗ A(α, {r})),
where we have used the properties (2) and (3) of the Kronecker product. 	


We are now in a position to formally describe in which sense the SDP (10) meets
Assumption 1 (the symmetry assumption).

Theorem 11 The SDP problem (10) satisfies Assumption 1 with respect to the group
Gr,s := aut(B(β)) ⊗ aut(A(α)).

Proof The proof is similar to that of Theorem 4 and is therefore omitted. 	

Thus we may again proceed in a mechanical way to perform the symmetry reduc-

tion of the SDP problem (10). In particular, we may restrict the variable Y in (10) to
lie in the commutant

AGr,s = Aaut(B(β)) ⊗ Aaut(A(α)), (13)

and we may obtain a basis of this algebra from the orbitals of aut(B(β)) and aut(A(α)),
as before.

4 Bounds if aut(A) or aut(B) is transitive

In the last section we showed how to obtain lower bounds at the first level of the
branching tree, i.e. by solving the SDP (10). In general, these bounds are not lower
bounds for the original QAP problem, but if aut(A) or aut(B) is transitive, we do obtain
such global lower bounds as the next lemma shows.

Lemma 12 If aut(A) or aut(B) is transitive and C = 0, then any lower bound for the
QAP subproblem (9) at the first level of the branching tree is also a lower bound for
the original QAP.

Proof Assume aut(B) is transitive and consider the QAP in the combinatorial formu-
lation

min
π∈Sn

n∑

i, j=1

ai j bπ(i),π( j).

Let π ′ denote the optimal permutation. Note that

n∑

i, j=1

ai j bσ(π ′(i)),σ (π ′( j))
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Improved semidefinite programming bounds 85

is also an optimal solution of the QAP for any σ in aut(B). Let r, s ∈ {1, . . . , n} be
given. There exists a σ ∈ aut(B) such that σ(π ′(r)) = s, since aut(B) is transitive.

Letting π∗ := σπ ′ one has π∗ is an optimal permutation for the QAP and π∗(r) =
s. This means that, for any given r, s there is an optimal assignment that assigns facility
r to location s. 	


Thus every child node at the first level yields a lower bound on the global min of
the QAP.

If one of the automorphism groups of the data matrices is transitive, say aut(B), then
the number of different subproblems in the first level of the branching tree depends
on the number of orbits of aut(A). We give the details in the following lemma.

Lemma 13 Let aut(B) be transitive, then there are as many different child subprob-
lems at the first level of the branching tree as there are orbits of aut(A).

Proof Suppose that ei , ek belong to the same orbit of aut(A). Thus, there is a P ∈
aut(A) for which Pei = ek .

Let X be a solution of the child problem where Xis = 1. Since A = PT AP , it
follows

tr(AX B X T ) = tr(PT AP X B X T ) = tr(A(P X)B(P X)T ).

Thus, X̄ = P X is a feasible solution for the subproblem for which X̄ks = 1, and with
the same value of the objective function as for the subproblem with Xis = 1. 	


The results of the last two lemmas are undoubtedly known, if not exactly in this
form. A detailed treatment on exploiting group symmetry in branch and bound trees
may be found in [18].

5 Example: the Terwilliger algebra of the Hamming scheme

In Sect. 6, we will present computational results for QAP instances where one of the
data matrix is a Hamming distance matrix. (Several QAP instances from QAPLIB [4]
have such data matrices, namely the ‘esc’ instances [8]).

In this section we therefore review the details of the relevant algebraic symmetry;
our presentation is condensed from the thesis of Gijswijt [9].

Consider the matrix A with 2d rows indexed by all elements of {0, 1}d , and Ai j

given by the Hamming distance between i ∈ {0, 1}d and j ∈ {0, 1}d .
The automorphism group of A arises as follows. Any permutation π of the index set

{1, . . . , d} induces an isomorphism of A that maps row (resp. column) i of A to row
(resp.column) π(i) for all i . There are d! such permutations. Moreover, there are an
additional 2d permutations that act on {0, 1}d by either ‘flipping’ a given component
from zero to one (and vice versa), or not.

Thus aut(A) has order d!2d and is transitive. The centralizer ring of aut(A) is a
commutative matrix ∗-algebra over R and is known as the Bose-Mesner algebra of
the Hamming scheme.

123



86 E. de Klerk, R. Sotirov

Now fix some u ∈ {0, 1}d , and consider the stabilizer subgroup of aut(A) with
respect to u.

The orbital matrices of this stabilizer group look as follows:

(Mt
i, j )v,w =

{
1 if d(u, v) = i, d(u, w) = j and t = |{k | uk �= vk = wk}|
0 otherwise.

Here d(u, v) is the Hamming distance between u and v, etc, and i, j, t take the val-

ues 0, 1, . . . , d. There are

(
d + 3

3

)
such orbital matrices. Note that we may assume

w.l.o.g. that u = 0, since we may label the rows and columns arbitrarily. Then the
above definition of Mt

i, j becomes:

(Mt
i, j )v,w =

{
1 if |S(v)| = i, |S(w)| = j and t = |S(v) ∩ S(w)|
0 otherwise,

where S(v) is the support of v, i.e. the set of indices {i : vi = 1}.
We now describe the blocks in the matrix

M̃t
i, j := QT Mt

i, j Q

where Q is the orthogonal matrix that block diagonalizes the Terwilliger algebra of
the Hamming scheme (cf. Theorem 2). The full details of this block diagonalization
were first derived by Schrijver [21].

Each matrix M̃t
i, j has �d/2�+1 blocks (when ignoring multiplicities of the blocks),

and the block sizes are

d + 1, d − 1, d − 3, . . .

We will index the blocks by k = 0, . . . , �d/2�, so that block k has size (d +1−2k)×
(d + 1 − 2k) and multiplicity

(
d
k

)
–

(
d

k − 1

)
.

Block k of M̃t
i, j has at most one nonzero entry. It has one nonzero entry if i, j ∈

{k, k + 1, . . . , d − k}, and then the entry takes the value:

(
d − 2k
i − k

)− 1
2
(

d − 2k
j − k

)− 1
2

β t
i, j,k,

where

β t
i, j,k =

(
d − 2k
i − k

) d∑

p=0

(−1)k−p
(

k
p

)(
i − p
t − p

)(
d + p − i − k
d + t − i − j

)
.

An alternative, equivalent definition of β t
i, j,k is given in (3.57) on page 30 of [9]. The

nonzero entry is in position (i − k + 1, j − k + 1) in the block.
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Table 1 Dimension of the commutant for esc instances

Instance dim AGQ AP
∩ S

n2×n2
dim AGrs ∩ S

(n−1)2×(n−1)2
dim S

n2×n2

esc32a 1,656 13,153 524,800

esc32b 72 6,207 524,800

esc32c 265 1,988 524,800

esc32d 249 2,479 524,800

esc32h 499 3,848 524,800

esc64a 517 6,110 8,390,656

Thus, after removing the repeated blocks from M̃t
i, j , one obtains a block diagonal

matrix, say:

⎛

⎜⎜⎜⎜⎝

B(i, j,t)
0

B(i, j,t)
1

. . .

B(i, j,t)
�d/2�

⎞

⎟⎟⎟⎟⎠
,

where B(i, j,t)
k ∈ R

(d+1−2k)×(d+1−2k)(k = 0, . . . , �d/2�), and B(i, j,t)
k has at most one

nonzero element given by:

[B(i, j,t)
k ]i−k+1, j−k+1

=

⎧
⎪⎨

⎪⎩

(
d − 2k
i − k

)− 1
2
(

d − 2k
j − k

)− 1
2

β t
i, j,k if i, j ∈ {k, k + 1, . . . , d − k}

0 otherwise.

6 Numerical results

In Table 1 we list dimensions of the commutants AGQ AP in (8) and AGr,s in (13) for
the esc instances [8] in the QAPlib library [4]. Recall that these dimensions determine
the sizes of the SDP relaxations (4) and (10) respectively. We also list the dimension
of S

n2×n2
in the table, to show how much the problem size is reduced.

The value n for these instances can be read from the name of the instance. The
distance matrix A for these instances has the algebraic symmetry described in Sect. 5,
i.e. it is a Hamming distance matrix.

In Table 2 we list the number of different child nodes at the first level of the branch-
ing tree for each instance (cf. Lemma 13).

In Table 3 we list the new SDP lower bounds (10) that we computed using symmetry
reduction. The previous best lower bounds are also listed together with the literature
reference where the bounds were reported.
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Table 2 Number of different
child nodes for the esc instances

Instance � of child nodes

esc32a 26

esc32b 2

esc32c 10

esc32d 9

esc32h 14

esc64a 13

Table 3 Bounds and solution
times for the larger esc instances

l.b. lower bound, u.b. upper
bound

Instance Previous l.b. (4) SDP l.b. (10) Best known u.b. Time(s)

esc32a 104 ([10]) 107 130 191,510

esc32b 132 ([3]) 141 168 21,234

esc32c 616 ([3]) 618 642 256

esc32d 191 ([3]) 194 200 132

esc32h 425 ([10]) 427 438 1,313

esc64a 98 ([10]) 105 116 24,275

It is clear from Table 3 that the new SDP bound (10) can be significantly better than
the SDP bound (4). In fact, improved lower bounds are obtained for all the instances
in the table.

The stronger bounds are obtained at a significant computational cost, though, as
may be seen from the solution times listed in Table 3. The bounds for esc32a, esc32b
and esc64a were computed by SDPA-DD solver1 (private communication with Kat-
suki Fujisawa), since these problems showed poor numerical conditioning. The high
running times for these instances reflect the fact that SDPA-DD uses high precision
computations. All other bounds were done with SeDuMi [22] using the Yalmip inter-
face [16] on a Pentium IV 3.4 GHz dual-core processor.

For problem esc128 in the QAPlib library, there are 16384 orbitals for stab(1, A).
Although we are able to compute them, we were not able to form the problem itself. We
note that it is possible to solve the SDP relaxation (4) for this instance using symmetry
reduction; see [10].

7 Concluding remarks

The approach in this paper has two potential areas of application, that we discuss here
in more detail.

7.1 QAP’s with Hamming distance matrices

QAP problems with Hamming distance matrices arise in several applications:

1 Available at http://sdpa.indsys.chuo-u.ac.jp/sdpa/software.html.
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– The esc instances in the QAPlib arise from the design of hardwired VLSI control
units [8]; see also the survey [7].

– In information theory, there are applications in channel coding; see [2] and [19].
– Harper [14] considered the problem of assigning the numbers 1, . . . , 2d to the

vertices of the 0-1 hypercube in d dimensions so as to minimize

2d∑

i, j=1

ai j |π(i) − π( j)|,

where π(i) is the number assigned to vertex i(i = 1, . . . , 2d), and A = [ai j ] is the
adjacency matrix of the hypercube. This is clearly a QAP where the matrix A is a
Hamming distance matrix and bi j := |π(i) − π( j)|. We should mention though,
that a simple algorithm for this specific problem is given in [14] — it need not be
solved as a QAP. Some variations of this problem remain unsolved, though. One
such example that also leads to a QAP is where

bi j := |π(i) − π( j)|s

for some given integer s ≥ 2; see page 135 in [14].

In a recent paper, Mittelmann and Peng [17] give a detailed review of these and
other QAP problems that involve Hamming distance matrices.

For problems of this type, we are therefore able to compute the SDP lower bound
(10) for sizes up to n = 64.

7.2 QAP’s where aut(A) is transitive

The second aspect of the research in this paper is that we obtained a new SDP bound
for all QAP instances where the automorphism group of one of the data matrices is
transitive.

One famous example of such an instance is the QAP reformulation of the traveling
salesman problems (TSP). Indeed, defining

A := 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 1
1 0 1 0 · · · 0

0 1 0 1
. . .

...
...

. . .
. . .

. . .
. . .

0 0 1
1 0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and B as the matrix of distances between cities, and C = 0, the QAP (1) reduces to
the TSP problem. The automorphism group of A is the dihedral group in this case,
which is transitive. Thus (10) provides a lower bound on the optimal value of the TSP
instance, that is as least as tight as the bound (4). The SDP relaxation (4) may be
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Table 4 Lower bounds for TSP
instances on 8 cities

SDP Held-Karp New SDP Optimal
bound (4) bound bound (10) value

1 2 2 2 2

2 1.628 2 2 2

3 1.172 2 1.893 2

4 8.671 9 10 10

5 9 9 10 10

6 8.926 9 10 10

7 8.586 9 10 10

8 8.926 9 10 10

9 9 9 10 10

10 8.902 9 10 10

11 8.899 9 10 10

12 0 0 0 0

13 10.667 11 11.777 12

14 12 12 12.777 13

15 12.444 12 2
3 13.663 14

16 14.078 14 15.651 16

17 16 16 17.824 18

18 16 16 17.698 18

19 16 16 18 18

20 15.926 16 18 18

21 18.025 18 19.568 20

22 20 20 21.287 22

23 23.033 23 25.460 26

24 34.739 35 37.141 38

simplified for TSP, and the TSP lower bound it provides is known to be independent
of the Held-Karp [15] bound; see [11] for details.

In Table 4 we show some computational results for TSP instances on 8 cities, con-
structed from the 24 classes of facet defining inequalities for the TSP polytope on 8
cities (described in [6]).

For the problems in Table 4, the new SDP bound (10) is better than the Held-Karp
[15] bound, except for instance 3. Moreover, 13 of the 24 classes of facet defining
inequalities are implied by the new relaxation (see Table 4). Since the data for these
problems is integer, the bounds in the table may be rounded up. After doing so, the
optimal value of the TSP is obtained in each case from the new SDP bound (10).

On the other hand, the new bound for TSP is computationally very intensive com-
pared to the Held-Karp bound, and will be mainly of theoretical interest. Having said
that, it is clear from the table that the new bound is strong, and it is a topic for future
research to investigate its theoretical properties.

Acknowledgments The authors would like to thank Katsuki Fujisawa for solving several SDP instances
for them using the SDPA-DD software.
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