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Abstract A great deal of research has been focusing, since the early seventies, on
finding strong relaxations for the stable set problem. Polyhedral combinatorics tech-
niques have been at first developed to strengthen the natural linear formulation. After-
ward, strong semidefinite programming relaxations have been deeply investigated.
Nevertheless, the resulting integer programming (IP) algorithms cannot be regarded
as being quite successful in practice, as most of the relaxations give rise to one out of
two extreme situations: either provide weak bounds at low computational cost or give
good bounds (sometimes excellent) but too demanding to compute. In this paper we
present a method to bridge such a gap. In particular, a new lift-and-project relaxation is
obtained by a problem-specific variant of the lifting operator M(K , K ) by Lovász and
Schrijver, combined with Benders decomposition. This yields strong cutting planes,
generated by solving a cut generating linear program. An extensive computational
experience shows that embedding these cuts in a branch-and-cut framework signifi-
cantly reduces the size of the enumeration trees as well as the CPU times with respect
to state-of-the-art IP algorithms.
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166 M. Giandomenico et al.

1 Introduction

Let G = (V, E) be an undirected graph with |V | = n vertices. A vertex subset S ⊆ V
is called stable if no two elements of S are adjacent. The stability number α(G) of G is
the size of a maximum cardinality stable set of G. The stable set problem (SSP) con-
sists in computing a stable set of maximum cardinality, or, if a weight vector w ∈ Qn+
is given, of maximum weight αw(G). The SSP is N P-hard in the strong sense and
hard even to approximate [17].

A natural 0–1 programming formulation for the SSP, known as edge formulation,
is obtained by associating a binary variable xi to each vertex i , taking value one if
vertex i lies into the stable set and zero otherwise; and enforcing that, for each edge
of G, at most one of its endpoints can belong to a stable set:

max
∑

i∈V

wi xi

s.t.

xi + x j ≤ 1 (∀{i, j} ∈ E) (1)

xi ∈ {0, 1} (∀i ∈ V )

Inequalities (1) are called edge inequalities. The stable set polytope, STAB(G) =
conv{x ∈ {0, 1}n : (1) hold ∀{i, j} ∈ E}, is the convex hull of the incidence vectors
of all stable sets of G. FRAC(G) := {x ∈ Rn+ : (1) hold ∀{i, j} ∈ E}, denotes the
polytope defined by the non negativity and edge inequalities.

Optimizing over FRAC(G) provides very weak upper bounds to αw(G). A great
effort has been devoted to strengthen the edge formulation by polyhedral combina-
torics methods, which investigate the structure of STAB(G) in order to obtain valid
inequalities. This kind of studies started in the early seventies, since Padberg [27]
introduced the clique inequalities

∑
i∈C xi ≤ 1, for any vertex set C ⊆ V inducing a

maximal clique in G. On the practical side, the experience has been showing that clique
inequalities are easy-to-manage cutting planes which do help close a relevant portion
of the gap left by the edge inequalities. Even though the associate separation prob-
lem is strongly NP-hard, effective heuristics can be designed to solve it, representing
mandatory ingredients of branch-and-cut algorithms for the SSP.

Padberg [27] also introduced the odd hole inequality
∑

i∈H xi ≤
⌊ |H |

2

⌋
for any

vertex set H , |H | ≥ 5, inducing a simple chordless cycle of odd cardinality (odd
hole); and the odd antihole inequality

∑
i∈H̄ xi ≤ 2 for any vertex set H̄ inducing an

odd antihole (i.e., the complement of an odd hole). Odd hole inequalities were tested
as cutting planes in [26] after being strengthened by sequential lifting, yielding some
advantage on random graphs with up to 120 vertices with respect to clique inequali-
ties. Several other families of valid inequalities have been investigated, such as web
and antiweb [35], wheel inequalities [6] and antiweb-wheel inequalities [7]. Despite
many nice theoretical results, none of them, to the best of our knowledge, gave any
computational outcome.

The aforementioned inequalities are indeed special cases (or lifted versions) of
rank inequalities, which have the form

∑
i∈W xi ≤ α(G[W ]), W ⊆ V . The overall

123



Strong lift-and-project cutting planes 167

computational contribution of general rank inequalities, regardless the structure of
G[W ], has been evaluated in [31], where an effective project-and-lift (see [1] for a
general description of such technique) separation heuristic was tested within a branch-
and-cut algorithm. The performance of this algorithm turned out to get closer to that
of pure combinatorial algorithms based on fast bounding techniques (valid only in
the cardinality case) and smart enumeration schemes [24,25,32,34], which typically
perform better. Nevertheless, not even general rank inequalities provide a conclusive
contribution in closing the integrality gap, and large enumeration trees are in most
cases unavoidable to certify optimality. This is also confirmed by a recent experience
carried out by branch-and-cut algorithm including many separation routines [29].

Other methods have been applied to strengthen the natural formulation, which dis-
dain the structure of STAB(G), namely, the lift-and-project methods developed by
Balas et al. [2], Sherali and Adams [33], Lovász and Schrijver [22]. These first lift the
initial formulation into a higher dimensional space where the formulation is strength-
ened, and then project it back onto the original space so as to obtain a relaxation
contained in the initial one (see [8] for a comprehensive survey of these methods and
references therein). The application of these procedures clearly highlighted the diffi-
culty of the SSP, as the standard lift-and-project by Balas et al. and the Sherali-Adams
procedures turned out to be impressively less effective than when applied to most 0–1
Programming problems.

Two lifting operators by Lovász and Schrijver [22] have been also investigated. The
operator M+(·) has been applied to FRAC(G), yielding very strong upper bounds;
unfortunately, it requires the lifted coefficient matrix to be positive semidefinite and
the resulting semidefinite programming (SDP) problems create a very hard compu-
tational challenge. Finally, the operator M(K , K ) has been applied to the polytope,
denoted by QSTAB(G), defined by all clique and non-negativity inequalities. This
yields a linear extended formulation which compares favourably to M+(FRAC(G))

from both theoretical and computational perspectives and represents the starting point
of this paper.

Overall, IP methods for the SSP suffer from the fact that most of the relaxations give
rise to one out of two extreme situations: either they provide weak bounds (sometimes
at low computational cost) or yield strong bounds but hardly available for practical
implementations. In this paper we present a method to bridge such a gap. In particular,
we introduce a relaxation of the extended formulation M(QSTAB(G), QSTAB(G))

which preserves nice theoretical properties but, in addition, proves to be computa-
tionally much more tractable. Specifically, such a relaxation is projected onto the
original space by the Benders decomposition. The resulting cutting planes, gener-
ated by solving a cut generating linear program (CGLP), are used in a branch-and-cut
framework. An extensive computational experience is presented, showing that the cuts
are very effective: upper bounds close (sometimes better) to those from SDP methods
are obtained, yielding relevant reductions in the size of enumeration trees and CPU
times.

The paper is organized as follows. In Sect. 2 a comparison among strong relaxations
for the SSP is presented. In Sect. 3 the projection of M (QSTAB(G), QSTAB(G)) by
the Benders decomposition is discussed. In Sect. 4 the new relaxation is introduced
and, in Sect. 5, theoretical results are illustrated about its theoretical strength. In Sect. 6

123



168 M. Giandomenico et al.

the implementation issues are discussed and in Sect. 7 the computational experience
is presented. Finally, in Sect. 8 some conclusions are drawn.

2 Survey of strong relaxations

In this section several known strong relaxations for the SSP are compared from both
theoretical and computational perspectives. We start by summarizing SDP relaxations
and then show how these compare to LP ones.

2.1 Semidefinite relaxations

A celebrated SDP relaxation for the SSP, known as theta relaxation, was introduced
by Lovász in the seminal paper [21]. Let us consider the n×n matrix X = xxT , where
products xi x j are replaced by quadratic variables xi j . Lovász and Schrijver [22] intro-
duce the augmented matrix Y

Y :=
(

1 xT

x X

)
.

representing the product
(1

x

)(1
x

)T
. Since Y is the product of a real matrix and its trans-

pose, it is real, symmetric, square and positive semidefinite (psd). Then, an upper
bound for the SSP is given by:

max
n∑

i=1

wi Y0i

s.t.

Y0i = Yii (i ∈ {1, . . . , n})
Yi j = 0 (i, j ∈ {1, . . . , n}, {i, j} ∈ E)

Y ∈ Sn+1+

where Sn+1+ denotes the cone of real symmetric square psd matrices of order n + 1.
This upper bound is denoted by θ(G, w) (or just θ(G) in the unweighted case). The
projection TH(G) of the feasible region of this relaxation onto the subspace defined by
the non-quadratic variables (convex, but not polyhedral in general) implies all clique
inequalities. Formally, we have STAB(G) ⊆ TH(G) ⊆ QSTAB(G), with equality
if and only if G is perfect [15]. In practice, θ(G) is much stronger than the bound
obtained by using non-negativity and clique inequalities. Some classes of graphs for
which this occurs are illustrated in Juhász [20].

It is worthwhile for our purposes to deepen this investigation by a computational
insight. We implemented an effective cutting plane algorithm based on a heuristic sep-
aration of clique inequalities (see Sect. 6 for the details). The upper bound computed
by such an algorithm is, from now on, denoted by U Bclq. In Table 1 this is compared
with θ(G) for all the DIMACS challenge benchmark instances [19] (see Sect. 7), with
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Table 1 DIMACS graphs: clique inequalities versus θ(G)

Graph |V | |E | α(G) U Bclq θ(G)
U Bclq−θ

U Bclq−α
%

brock200_1 200 5,066 21 38.06 27.50 61.90

brock200_2 200 10,024 12 21.33 14.22 76.21

brock200_3 200 7,852 15 27.34 18.82 69.04

brock200_4 200 6,811 17 30.67 21.29 68.62

C.125.9 125 787 34 43.06 37.89 57.06

C.250.9 250 3,141 44 71.38 56.24 55.30

c-fat200-1 200 18,336 12 12.00 12.00 −
c-fat200-2 200 16,665 24 24.00 24.00 −
c-fat200-5 200 11,427 58 66.67 60.34 73.01

DSJC125.1 125 736 34 43.15 38.39 52.02

DSJC125.5 125 3,891 10 15.44 11.47 72.98

DSJC125.9 125 6,961 4 4.69 4.00 100.00

mann_a9 45 72 16 18.50 17.47 41.20

mann_a27 378 702 126 135.00 132.76 24.89

gen200_p0.9_44 200 1,990 44 44.00 44.00 −
gen200_p0.9_55 200 1,990 55 55.00 55.00 −
hamming6-2 64 192 32 32.00 32.00 −
hamming6-4 64 1,312 4 5.33 5.33 0.00

hamming8-2 256 1,024 128 128.00 128.00 −
hamming8-4 256 11,776 16 16.00 16.00 −
johnson8-2-4 28 168 4 4.00 4.00 −
johnson8-4-4 70 560 14 14.00 14.00 −
johnson16-2-4 120 1,620 8 8.00 8.00 −
keller4 171 5,100 11 14.82 14.01 21.20

p_hat300_1 300 33,917 8 15.30 10.10 71.23

p_hat300_2 300 22,922 25 33.59 27.00 76.72

p_hat300_3 300 11,460 36 54.36 41.16 71.90

san200_0.7-1 200 5,970 30 30.00 30.00 −
san200_0.7-2 200 5,970 18 19.04 18.00 100.00

san200_0.9-1 200 1,990 70 70.00 70.00 −
san200_0.9-2 200 1,990 60 60.00 60.00 −
san200_0.9-3 200 1,990 44 44.00 44.00 −
sanr200_0.7 200 6,032 18 33.39 23.80 62.31

sanr200_0.9 200 2,037 42 59.82 49.30 59.03

less than 400 vertices. In 14 out of 34 instances the clique inequalities completely
close the integrality gap. In one of the remaining 20 instances (hamming6-4) U Bclq
equals θ(G); in three graphs, namely, mann_a9, mann_a27 and keller4 the per-
centage gap closed by θ(G) w.r.t. U Bclq (last column) is less than 50%; in 14 cases
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it ranges within [50%, 80%] and in two cases θ(G) completely closes the gap left by
the clique inequalities.

The results give evidence of the advantage of the theta relaxation with respect to the
linear relaxation based on clique inequalities (i.e., a reference relaxation for traditional
methods from polyhedral combinatorics). Thanks to recent progress in dedicated SDP
solvers [28,23], implementing branch-and-bound algorithms based on the theta bound
looks viable, although not straightforward. One such algorithm has been recently tested
in [37], showing a quite promising behaviour. A new relaxation, having the form of
an ellipsoid, has been also recently proposed in [13], providing an upper bound equal
to θ(G).

Even stronger relaxations than TH(G) have been considered. In Burer and Vanden-
bussche [5] the application of the Lovász-Schrijver M+(·) operator to FRAC(G) is
investigated. Indeed, M+(FRAC(G)) can be seen as being obtained by adding some
linear inequalities to the Lovász θ relaxation (see [12] for a detailed description).
N+(FRAC(G)), i.e., the projection of M+(FRAC(G)) onto the non-quadratic space,
has stronger theoretical properties than TH(G). In particular, Lovász and Schrijver
[22] showed that N+(FRAC(G)) satisfies all clique, odd cycle, odd antihole and odd
wheel inequalities. Giandomenico and Letchford [11] showed that it also satisfies all
web inequalities.

On the computational side, M+(FRAC(G)) represents a very tough computational
challenge. Burer and Vandenbussche [5] report experiments carried out by a tailored
lagrangian method, showing that the upper bounds can be very strong. Unfortunately,
in many instances of the DIMACS challenge benchmark library (with up to 300 ver-
tices), the best solution value found by their algorithm is higher than θ(G), and often
takes long CPU times to be computed.

Other related relaxations, still dominating the Lovász theta relaxation, have been
investigated by Gruber and Rendl [16] and Dukanovic and Rendl [9] (see [12] for fur-
ther details). Again, the upper bounds obtained were very good but computationally
very hard to compute.

In summary, although SDP problems can be solved (to arbitrary precision) in poly-
nomial time, optimizing over SDP relaxations dominating the Lovász theta relaxation
turned out to be much harder than computing θ(G). Therefore, such valuable upper
bounds are hardly accessible in a branch-and-bound scheme. This motivates the inves-
tigation of strong linear relaxations, addressed in the next subsections.

2.2 SDP versus LP relaxations

Another insightful experiment by Burer and Vandenbussche [5] compare the bound
given by M+(FRAC(G)) with the one of the Sherali-Adams (linear) relaxation
M(FRAC(G)). Their results are reported in Table 2, in which we also included U Bclq.

The table highlights that the Sherali-Adams relaxation is impressively weaker than
M+(FRAC(G)), where matrix Y is imposed to be positive semidefinite. Notice that
M(FRAC(G)) is even much worse than U Bclq.

Another insightful comparison between SDP and LP relaxations is illustrated in [3].
The authors compare the lift-and-project relaxation of Balas, Ceria and Cornuéjols [2]
(which is dominated by M(FRAC(G))) with two stronger procedures in which the
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Table 2 M+(FRAC(G)) versus
M(FRAC(G))

Graph α(G) U Bclq M(FRAC(G)) M+(FRAC(G))

brock200_1 21 38.06 66.66 27.98

brock200_2 12 21.33 66.66 17.08

brock200_3 15 27.34 66.66 20.79

brock200_4 17 30.67 66.66 22.84

c-fat200-5 58 66.67 66.66 58.17

mann_a9 16 18.50 18.00 17.17

hamming6-4 4 5.33 21.33 4.54

keller4 11 14.82 57.00 15.41

p_hat300_1 8 15.30 100.00 18.66

p_hat300_2 25 33.59 100.00 30.1

p_hat300_3 36 54.36 100.00 43.32

san200_0.7-2 18 19.04 66.66 20.01

sanr200_07 18 33.39 66.66 24.97

sanr200_09 42 59.82 66.66 49.31

disjunctions based on clique inequalities (in complemented version, as they address
the maximum clique problem) replace simple disjunctions. In addition, the condition
Y � 0 is replaced by an infinite family of linear inequalities, namely, the positive
semidefinite (psd) constraints. This paper represents the only attempt to embed strong
(unstructured) cutting planes within a branch-and-cut algorithm for the SSP. Two rel-
evant indications come out of this study. First, although the psd constraints can be
separated in polynomial time, they are not easily manageable as cutting planes (after
being projected onto the linear space) and they do not look promising in practice.
Second, the experimental indications highlights that clique inequalities may play an
important role. This direction has been extensively investigated in [12], as described
in the next subsection.

2.3 The M(QSTAB(G), QSTAB(G)) relaxation

The M(K , K ) operator, introduced in Lovász-Schrijver [22], works as follows. For
any pair of linear inequalities αx − β ≥ 0 and α′x − β ′ ≥ 0, of the initial relaxation

K , the ‘product’ inequality
(−β αT

)
Y

(−β ′
α′

)
≥ 0 is computed. The products xi x j ,

for all 1 ≤ i < j ≤ n, are then replaced with new variables xi j , and the terms x2
i ,

for 1 ≤ i ≤ n, are replaced with xi (which is valid when xi is binary.) This yields an
extended LP formulation which is provably stronger than the original.

In [12] the M(K , K ) operator has been applied to the polytope QSTAB(G):

∑

i∈C

xi ≤ 1 (C ∈ Ω) (2)

xi ≥ 0 (i ∈ V ) (3)
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where Ω denotes the set of all maximal cliques of G. This gives the relaxation
M(QSTAB(G),QSTAB(G)) of the following form:

max
∑

i∈V

xi

s.t.∑

i∈C

xi ≤ 1 (C ∈ Ω) (4)

∑

i∈C∪C ′
xi −

∑

{i, j}∈Ē(C :C ′)
xi j ≤ 1 (C, C ′ ∈ Ω, C 
= C ′) (5)

−xi +
∑

j∈C :{i, j}∈Ē

xi j ≤ 0 (C ∈ Ω, i ∈ V \C) (6)

xi j = 0 ({i, j} ∈ E)

xi j ≥ 0 ({i, j} ∈ Ē)

xi ≥ 0 (i ∈ V ) (7)

where Ē := {{i, j} ⊂ V : {i, j} /∈ E} denotes the set of ‘non-edges’, and Ē(C : C ′) ={{i, j} ∈ Ē : i ∈ C, j ∈ C ′
}
.

Inequalities (4) (5) are obtained by multiplying two clique inequalities ((4) cor-
responding to C = C ′) and are referred to as clique-product inequalities (CPIs).
Inequalities (6) (7) are obtained by multiplying a clique with a non-negativity inequal-
ity ((7) corresponding to i ∈ C) and are referred to as clique-variable inequalities
(CVIs). Therefore, M(QSTAB(G), QSTAB(G)) contains |Ω|+|Ω|(|Ω|−1)/2+n|Ω|
inequalities, and is non-compact, as |Ω| is exponential in n in general.

For the sake of brevity, we refer to M(QSTAB(G), QSTAB(G)) simply as M(K , K )

and let N(K , K ) denote its projection onto the subspace of the original (non-quadratic)
variables. N(K , K ) is stronger than the Sherali-Adams relaxation. Precisely, the fol-
lowing inclusions hold [22]:

N(K , K ) ⊆ N(QSTAB(G)) ⊆ N(FRAC(G)).

Moreover, N(K , K ) neither contains nor is contained in TH(G) or N+(FRAC(G)).
However, it was proved in [12] that N(K , K ) implies all web and antiweb inequali-
ties (and therefore all edge, clique, odd hole and odd antihole inequalities), together
with various lifted versions. A summary of theoretical results, showing how N(K , K )

compares favourably to strong SDP relaxations, is illustrated in Table 3. The relax-
ations N j (K , K ) and ∩ j∈V N j (K , K ) reported in the last two lines of the table will
be defined in Sect. 4.

These encouraging theoretical indications have an experimental confirmation. An
extensive computational experience [12] showed that, in several cases, M(K , K ) pro-
vides upper bounds which are smaller than θ(G). This valuable result still does not
lead to a practical branch-and-cut algorithm, since M(K , K ) is an extended non-com-
pact formulation showing also huge degeneracy. As a first step towards a practical
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Table 3 Summary of
theoretical results

Relaxation Implied inequalities

TH(G) Clique [15]

N+(FRAC(G)) Clique, odd-cycle, odd-antihole, odd-wheel [22]

and web [11]

N(K , K ) Clique, web, antiweb (⇒ odd-hole and

odd-antihole) and their lifted versions [12]

N j (K , K ) Clique

∩ j∈V N j (K , K ) Clique, antiweb (⇒ odd-hole and
odd-antihole), a subclass of web and their
lifted versions

implementation, in the next section the projection of M(K , K ) onto the linear space
by the Benders decomposition is illustrated.

3 Projection

Representing variables xi j by the vector y, the M(K , K ) relaxation can be rewritten
in the following compact form:

max 1T x + 0T y

s.t.

Ax ≤ 1 (8)

Bx + Dy ≤ d

x ∈ Rn+, y ∈ R
q
+

where A ∈ {0, 1}m×n is the coefficient matrix corresponding to the clique inequalities,
B ∈ {−1, 0, 1}p×n and D ∈ {−1, 0, 1}p×q the matrices corresponding to CVIs and
the remaining CPIs, and d ∈ {0, 1}p. One way to obtain the relaxation N(K , K ) is to
apply the Benders reformulation [4] to M(K , K ). This yields the following form for
N(K , K ):

max 1T x + η

s. t.

Ax ≤ 1 (9)

uT (d − Bx) ≥ η (u ∈ Ext(Q)) (10)

vT (d − Bx) ≥ 0 (v ∈ Ray(Q)) (11)

x ∈ Rn+, η ∈ R

where sets Ext(Q) and Ray(Q) contain respectively the extreme points and extreme
rays of the polyhedron Q := {v ∈ Rp : vT D ≥ η, v ≥ 0}. Here, η represents the
contribution of the y variables to the objective value. In our case, η = 0. Therefore,
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Q = {v ∈ Rp : vT D ≥ 0, v ≥ 0} is a polyhedral cone and Ext(Q) contains only the
zero vector. As a consequence, constraints (10) disappear from the formulation.

Since Ray(Q) has an exponential size, a cutting plane algorithm is needed to opti-
mize over N(K , K ). In particular, constraints (11), often referred to as feasibility cuts,
have to be dynamically generated. This can be done by solving a linear program, as
described in [10]. If x∗ denotes the (fractional) point to be separated, the cut generating
linear program (CGLP) reads as:

min vT (d − Bx∗)
s.t.

vT D ≥ 0

1T v = 1 (12)

v ≥ 0

where the objective function measures the cut violation and the constraint (12), referred
to as normalization constraint, is used to truncate the cone Q. Indeed, the extreme rays
of Q are in a one-to-one correspondence to the vertices of the polyhedron {v ∈ Rp :
vT D ≥ 0, 1T v = 1, v ≥ 0}.

If we denote by vCC ′ the dual variables associated to inequalities (5), and by uCi

the dual variables associated to inequalities (6), the CGLP takes the form:

min
∑

C∈Ω,i∈V \C
x∗i uCi +

∑

C,C ′∈Ω

(
1−

∑

i∈C∪C ′
x∗i

)
vCC ′

s.t.∑

C∈Ω: j∈C

uCi +
∑

C∈Ω:i∈C

uC j −
∑

C,C ′∈Ω:i∈C, j∈C ′
vCC ′ ≥ 0 (∀{i, j} ∈ Ē)

∑

C∈Ω,i∈V \C
uCi +

∑

C,C ′∈Ω
vCC ′ = 1

uCi , vCC ′ ≥ 0 (C, C ′ ∈ Ω, C 
= C ′, i ∈ V \C)

A preliminary experience showed that a cutting plane algorithm based on this CGLP
can reach upper bounds close to those computed in [12] by optimizing over M(K , K )

(the bound impairment due to the projection does not exceed 10%) for sparse (up to
15% density) and small graphs (up to 150 vertices). However, generating these cuts
turned out to be too computationally expensive for denser and larger graphs. In fact,
although the number of rows of the CGLP decreases, the number of columns, that
roughly depends on the square of |Ω|, considerably increases with graph density and
size. In addition, Benders cuts alternate between sparse cuts with “nice” coefficients
and dense cuts with large coefficients dynamism. The latter tend to interfere with
the branching process and worsen the branch-and-cut performance, even if they are
effective in closing the integrality gap.

In summary, the method has the great merit of providing strong bounds by a lin-
ear formulation in the space of the original variables. However, some computational
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difficulties still limit its applicability to several graphs of interest. In the next section,
we introduce a new relaxation able to preserve the quality of the bounds but showing
a remarkably easier computational tractability.

4 The N j (K, K ) relaxation

The structure of the SSP can be exploited so as to obtain a more compact relaxation,
while preserving the strength of M(K , K ).

For each j ∈ V , we denote by V ( j) the neighborhood of j , that is, the set of vertices
adjacent to j ; let also V̄ ( j) = V \V ( j). By extension, we let V (S) = ∪ j∈S V ( j), for
a given vertex subset S. Let also Ω( j) be the set of all maximal cliques containing j
and Ω̄( j) = Ω\Ω( j). Note that each clique in Ω̄( j) contains at least one vertex in
V̄ ( j).

The idea is to consider, for a given vertex j ∈ V , only CPIs containing variables
x jk , for { j, k} ∈ Ē . These CPIs are in fact those associated to clique pairs C, C ′ in
which C ∈ Ω( j) and C ′ ∈ Ω̄( j) and may contain variables xhk , for {h, k} ∈ Ē and
h, k 
= j . The relaxation then includes only CVIs containing such variables. Formally,
we define the relaxation M j (K , K ) as follows:

max
∑

i∈V

xi

s.t.∑

i∈C∪C ′
xi −

∑

{i,k}∈Ē(C :C ′)
xik ≤ 1 (C ∈ Ω( j), C ′ ∈ Ω̄( j)) (13)

−xi +
∑

k∈C :{i,k}∈Ē

xik ≤ 0 (C ∈ Ω̄( j), i ∈ { j} ∪ V ( j)) (14)

−xi +
∑

k∈C :{i,k}∈Ē

xik ≤ 0 (C ∈ Ω( j), i ∈ V̄ ( j) ∪ V (V̄ ( j))) (15)

xik = 0 ({i, k} ∈ E)

xik ≥ 0 ({i, k} ∈ Ē)

xi ≥ 0 (i ∈ V ) (16)

Observe that the CVIs associated with a clique-vertex pair (C, i) such that C ∈
Ω̄( j) and i ∈ V̄ ( j), or C ∈ Ω( j) and i ∈ V ( j) but i 
∈ C ′, for any C ′ ∈ Ω̄( j), are
discarded. Moreover, variables xik , {i, k} ∈ Ē such that i, k ∈ V̄ ( j) or i, k ∈ V ( j)
but i, k 
∈ C ′, for any C ′ ∈ Ω̄( j), do not appear in M j (K , K ).

Example 1 Consider the graph in Fig. 1 and let j = 1; we have Ω( j) =
{{1, 2}, {1, 7}}, Ω̄( j) = {{2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}}. A CVI of the form (14)
is generated by C = {4, 5} ∈ Ω̄(1) and i = 2 ∈ V (1); a CVI of the form (15) by
C = {1, 7} ∈ Ω(1) and i = 3 ∈ V̄ (1) or C = {1, 7} ∈ Ω(1) and i = 2 ∈ V (V̄ (1)).
An example of a discarded CVI is C = {4, 5} and i = 3.
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Fig. 1 Example

A CPI of the form (13) is generated by C = {1, 7} ∈ Ω(1) and C ′ = {4, 5} ∈ Ω̄(1).
An example of a discarded CPI is given by C = {1, 7}, C ′ = {1, 2} and C = {2, 3},
C ′ = {4, 5}. Overall, twelve CVIs out of thirty-five (non trivial) and eleven CPIs
out of twenty-one (non-clique) are discarded. Finally, three of the fourteen quadratic
variables (namely, x35, x36 and x46) are dropped.

The projection of M j (K , K ) onto the space of the original variables is denoted by
N j (K , K ). This has the following nice property:

Theorem 1 N j (K , K ) ⊆ QSTAB(G), ∀ j ∈ V .

Proof We show that all maximal clique inequalities can be obtained by conic combi-
nation of CVIs (14) and CPIs (13). Let Q ∈ Ω( j), the corresponding clique inequality
is obtained by choosing a generic clique Q′ ∈ Ω̄( j) and summing up the (single) CPI
(13) where C = Q and C ′ = Q′, together with all the CVIs (15) where C = Q
and i ∈ Q′\Q. Similarly, let Q ∈ Ω̄( j), then the corresponding clique inequality is
obtained by choosing a generic clique Q′ ∈ Ω( j) and summing up the CPI (13) where
C ′ = Q and C = Q′, together with all the CVIs (14) where C = Q, and i ∈ Q′\Q.

��
By construction, we have ∩ j∈V M j (K , K ) = M(K , K ). When the relaxations are

projected this is no longer true, that is, N(K , K ) ⊆ ∩ j∈V N j (K , K ). In the next
section we show that most of the theoretical results proved in [12] for N(K , K ) still
hold for ∩ j∈V N j (K , K ). But the great advantage of M j (K , K ) is on the practical
side. The projection technique described in Sect. 3 applied to M j (K , K ) results in
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CGLPs impressively more tractable than those obtained from the M(K , K ) relaxa-
tion. Indeed, the actual reduction in CGLPs size is crucial to develop a cost-effective
implementation, as shown in Sect. 7.

5 On the strength of the closure ∩ j∈V N j (K, K )

Let p and q be integers such that q ≥ 2 and p > 2q + 1. Here arithmetic modulo
p is used. A (p, q)−web, denoted by W (p, q), is a graph with vertices {1, . . . , p}
and edges from i to i + q, . . . , i + p − q, for every i = 1, . . . , p. The web inequal-
ity takes the form

∑
i=1,...,p xi ≤ q. A (p, q)−antiweb, denoted by AW (p, q), is

the complement graph of the web W (p, q). The antiweb inequality takes the form∑
i=1,...,p xi ≤ �p/q�. Web and antiweb inequalities have been introduced in [35].

Note that they have odd hole and antihole inequalities as special cases. In what follows
we denote by r = p−� p

q � ·q the reminder in the Euclidean division of p by q and by
ω = �p/q� the cardinality of a maximum clique in a web. We will also use the fact
that inequalities (13), (14) and (15), are implied by M j (K , K ) even when C and C ′
are not maximal cliques.

Theorem 2 N j (K , K ) satisfies all antiweb inequalities corresponding to antiwebs
containing vertex j .

Proof Let AW (p, q) be an antiweb containing vertex j . Because of the symmetry,
without loss of generality, we can suppose j = 1. Let us consider:
� p

q � CPIs (13) defined by the following clique pairs

– C = {1, . . . , q}, C ′ = {hq + 1, hq + 2, . . . , (h + 1)q}, ∀h = 1, . . . , � p
q � − 1;

– C = {1, . . . , q}, C ′ = {p − q + 1, p − q + 2, . . . , p};
q(� p

q � − 1) CVIs (14) where

– i ∈ {1, . . . , q} and C = {i + hq, i + hq + 1, . . . , i + (h + 1)q − 1}, ∀h =
1, . . . , � p

q � − 1

and (q − r) CVIs (15) where

– C = {1, 2, . . . , q} and i ∈ {p − q + 1, p − q + 2, . . . , p − r}.
Summing all the above CPIs we obtain:

∑

i=1,...,p

xi + (�p/q� − 1)
∑

i=1,...,q

xi +
∑

i=p−q+1,...,p−r

xi +

−
∑

i=1,...,q; k=i+q,...,i+p−q

xik −
∑

i=1,...,q; k=p−q+1,...,k̄

xik ≤ �p/q�

where k̄ = min{p − r, p + i − q}.
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Summing all the above CVIs we obtain:

−(�p/q� − 1)
∑

i=1,...,q

xi −
∑

i=p−q+1,...,p−r

xi +
∑

i=1,...,q; k=i+q,...,i+p−q

xik

+
∑

i=1,...,q; k=p−q+1,...,k̄

xik ≤ 0

Finally, summing the last two inequalities the antiweb inequality
∑

i=1,...,p xi ≤
�p/q� is obtained. ��

Theorem 3 N j (K , K ) satisfies all web inequalities corresponding to webs containing
vertex j and such that r ≤ ω.

Proof Let W (p, q) be a web, with r ≤ ω, containing vertex j . Again, we can suppose
j = 1. If r = 0, the web inequality is nothing but the sum of q clique inequali-
ties corresponding to the maximal cliques C = {i + hq, h = 0, . . . , ω − 1}, for all
i = 1, . . . , q. Therefore, in what follows, we consider r > 0. Let us consider q CPIs
(13) defined by the following pairs of cliques

– C = {1 + hq : h = 0, . . . , ω − r} ∪ {2 + hq : h = ω − r + 1, . . . , ω − 1} and
C ′ = {i + hq : h = 0, . . . , ω− r} ∪ {i + hq + 1 : h = ω− r + 1, . . . , ω− 1} for
all i = 2, . . . , q;

– C = {1 + hq : h = 0, . . . , ω − r} ∪ {2 + hq : h = ω − r + 1, . . . , ω − 1} and
C ′ = {p − h(q + 1) : h = 0, . . . , r − 1};

here, the assumption r ≤ ω guarantees C ′ is a clique. Note that in the last CPI, C ′
may not be maximal. Next we consider ω(q − 1) CVIs (14) where

– i ∈ {1 + hq : h = 0, . . . , ω − r} ∪ {2 + hq : h = ω − r + 1, . . . , ω − 1} and
C = {i + h, i − q + h} for all h = 1, . . . , q − 1.

here the clique C is always an edge. Summing all the above CPIs we obtain:

∑

i=1,...,p

xi + (q − 1)
∑

h=0,...,ω−r

x1+hq + (q − 1)
∑

h=ω−r+1,...,ω−1

x2+hq +

−
∑

h=0,...,ω−r; k=2+hq,...,h(q+1)

x1+hq k −
∑

h=0,...,ω−r; k=hq,...,2+h(q−1)

x1+hq k +

−
∑

h=ω−r+1,...,ω−1; k=3+hq,...,1+h(q+1)

x2+hq k +

−
∑

h=ω−r+1,...,ω−1; k=1+hq,...,3+h(q−1)

x2+hq k ≤ q
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Summing all the above CVIs we obtain:

−(q − 1)
∑

h=0,...,ω−r

x1+hq − (q − 1)
∑

h=ω−r+1,...,ω−1

x2+hq

+
∑

h=0,...,ω−r; k=2+hq,...,h(q+1)

x1+hq k +
∑

h=0,...,ω−r; k=hq,...,2+h(q−1)

x1+hq k

+
∑

h=ω−r+1,...,ω−1; k=3+hq,...,1+h(q+1)

x2+hq k

+
∑

h=ω−r+1,...,ω−1; k=1+hq,...,3+h(q−1)

x2+hq k ≤ 0

Finally, summing the last two inequalities the web inequality
∑

i=1,...,p xi ≤ q is
obtained. ��

This theorem gives only a sufficient condition, that is, there exist web inequalities
(containing vertex j) which are implied by N j (K , K ) but do not satisfy r ≤ ω. Indeed,
one can prove that not all such web inequalities are implied by N j (K , K ).

Overall, Theorems 2 and 3 imply the following

Corollary 1 ∩ j∈V N j (K , K ) satisfies all clique, antiweb (and therefore all odd hole
and antihole) and a subclass of web inequalities which includes those with r ≤ ω.

This differs from what was proved in [12] for N(K , K ) only because it implies
all the web inequalities as well. However, the class of web inequalities implied by
∩ j∈V N j (K , K ) is very large. It includes all inequalities associated to (p, q)−webs
with p ≥ (q−1)(q+1) in addition to those with r = 0, 1, 2. In particular, it includes
all web inequalities with q = 3 and q = 4.

5.1 Sequential lifting

We now deal with inequalities obtained by the lifting procedure described in [12],
which works as follows. Let aT x ≤ b be a valid inequality for STAB(G), and let S
be a stable set in G. Let us look at the new graph G̃ = (Ṽ , Ẽ) obtained from G by
adding an extra vertex w adjacent to every vertex in S ∪ V (S). A valid inequality
ãT x ≤ b for STAB(G̃), obtained by lifting on S, is given by ãi = ai for all i ∈ V and
ãw =∑

i∈S ai .
If a valid inequality for STAB(G) is implied by N(K , K ), then any inequality

obtained by lifting on a given stable set S is also valid [12]. In this subsection, we
prove that the same result holds for N j (K , K ).

Theorem 4 Let aT x ≤ b be implied by N j (K , K ), and S be a stable set in G. The
inequality ãT x ≤ b, obtained by lifting on S, is also implied by N j (K , K ).

Proof Assume that the inequality aT x ≤ b can be expressed by a conic combination
of: (i) a family R of CVIs of the form (14) (possibly (16) if i ∈ C) associated to the

123



180 M. Giandomenico et al.

clique-vertex pairs {(Cr , ir ) : r ∈ R}; (i i) a family Z of CVIs of the form (15) (pos-
sibly (16) if i ∈ C) associated to the clique-vertex pairs {(Cz, iz) : z ∈ Z}; and (i i i) a
family T of CPIs of the form (13) associated to clique-clique pairs {(Ct , C ′t ) : t ∈ T }.

For a given vertex i , let Ri (Zi ) and Ti be the sets of CVIs in R (in Z) and CPIs in
T in which the variable xi has a non zero coefficient. Analogously, for a given pair of
vertices {i, k} ∈ Ē , let Rik (Zik) and Tik be the sets of CVIs in R (Z ) and CPIs in T
in which the variable xik has a non zero coefficient.

Let λr > 0, λz > 0 and λt > 0, for r ∈ R, z ∈ Z and t ∈ T , be the multipliers given
to the corresponding CVIs and CPIs in the combination. The following equalities hold

−
∑

r∈Ri

λr −
∑

z∈Zi

λz +
∑

t∈Ti

λt = ai (∀i ∈ V ). (17)

∑

r∈Rik

λr +
∑

z∈Zik

λz −
∑

t∈Tik

λt = 0 (∀{i, k} ∈ Ē). (18)

We now show that the lifted inequality ãT x ≤ b can be obtained by combining
some new CVIs with the CVIs in R, Z and CPIs in T after (eventually) being modified
to include vertex w. We use the notation Ē+ := {{i, k} ⊆ Ṽ : {i, k} /∈ Ẽ}.

For each r ∈ R such that ir ∈ S, the new CVI

− xw +
∑

k∈Cr :{w,k}∈Ē+
xwk ≤ 0 (19)

associated to vertex w and clique Cr , is added to the conic combination with multiplier
λr . This is still of the form (14) or (16). To explain this, recall that w is adjacent to
all vertices in S ∪ V (S), ir ∈ S and ir ∈ { j} ∪ V ( j); therefore w ∈ V ( j). Note that
w could be adjacent to all vertices in Cr and the inequality (19) reduces to −xw ≤ 0.
The same construction is applied for each z ∈ Z such that iz ∈ S.

The CVIs in R are added to the conic combination with the original multipliers λr .
Those with ir /∈ S and |Cr ∩ S| = 1 are modified by adding vertex w to the clique Cr .
The resulting CVI (still of the form (14) or (16)) is:

− xir +
∑

k∈Cr∪{w}:{ir ,k}∈Ē+
xir k ≤ 0. (20)

Again, the same construction is applied for each z ∈ Z .
The CPIs in T are included in the conic combination with (original) multipliers λt .

These are modified if S intersects Ct ∪C ′t . Specifically, if S intersects only one clique,
say Ct , vertex w is inserted in Ct :

∑

i∈Ct∪{w}∪C ′t

xi −
∑

{i,k}∈Ē+(Ct∪{w}:C ′t )
xik ≤ 1; (21)

Else, if |Ct ∩ S| = |C ′t ∩ S| = 1 vertex w is inserted both in Ct and C ′t :
∑

i∈Ct∪C ′t∪{w}
xi −

∑

{i,k}∈Ē(Ct :C ′t )
xik ≤ 1. (22)

Clearly, all these CPIs are of the form (13).

123



Strong lift-and-project cutting planes 181

Let us now look at the variable coefficients in the conic combination. The coefficient
of xiw, for each i ∈ V \(S ∪ V (S)), is:

∑

k∈S

⎛

⎝
∑

r∈Rik

λr +
∑

z∈Zik

λz −
∑

t∈Tik

λt

⎞

⎠ ,

which, by Eq. (18), is equal to zero. The coefficient of variable xw is

∑

t∈⋃i∈S Ti

λt −
∑

r∈R:ir∈S,Cr∩S=∅
λr −

∑

z∈Z :iz∈S,Cz∩S=∅
λz,

equivalent to

∑

i∈S

⎛

⎝
∑

t∈Ti

λt −
∑

r∈Ri

λr −
∑

z∈Zi

λz

⎞

⎠−
∑

{i,k}⊂S

⎛

⎝
∑

r∈Rik

λr +
∑

z∈Zik

λz −
∑

t∈Tik

λt

⎞

⎠ .

By Eqs. (17) and (18), this is equal to
∑

i∈S ai , as required. The coefficients of all
other variables are unchanged, and so is the right hand side b. ��

In summary, Theorems 1–4 show that most of the theoretical results proved for
N(K , K ) still hold for ∩ j∈V N j (K , K ). The whole picture of the strong relaxations
is illustrated in Table 3.

6 Implementation

Several implementation issues have to be dealt with when generating cutting planes
from ∩ j∈V N j (K , K ) by solving a CGLP. One major concern is to detect a collec-
tion Ω of tractable size, as generating (and storing) all the cliques of G is clearly
impractical. On the other hand, deriving the CGLP from a subset of the cliques may
return weaker cuts. In our implementation Ω is dynamically generated by a separation
heuristic for clique inequalities, as explained below.

Let P be the current formulation and x∗ the associated (optimal) fractional point.
We denote by ΩP the collection of cliques associated to the clique inequalities in P
and by Ω(P,x∗) the subset of the cliques (almost) tight to x∗, i.e., the cliques C ∈ ΩP
such that (1−∑

i∈C x∗i ) < σ , σ ∈ R+.

Initial formulation The clique inequalities associated to any set of cliques covering
all edges of G provide a valid formulation for the SSP. In our experience, comput-
ing a clique-cover of G by a greedy heuristic allows to quickly obtain a good initial
formulation.

Clique-based cutting plane The upper bound U Bclq, introduced in Sect. 2 (see
Tables 1, 2), has been computed by a cutting plane algorithm based on clique inequal-
ities. We implemented a separation routine [14] that is an advanced, yet efficient,
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variant of the greedy-like heuristic introduced in [18] and also used in [31]. Clique
inequalities violated by at least ε = 10−5 are then added to P . The cutting plane
algorithm is also used in the lift-and-project cut generation.

CGLP set-up For a given j ∈ V , the CGLP associated to relaxation N j (K , K ) (see
the development of Sect. 4) is built from the collection Ω(P,x∗). The parameter σ is
chosen in the range [0.1, 0.5] for sparse graphs (i.e., graph with density≤ 15%), while
for dense graphs it is enough to consider tighter cliques (i.e., σ ≤ 10−3).

Cut generation algorithm Cuts valid for ∩ j∈V N j (K , K ) are generated by applying
independently the separation procedure to each N j (K , K ), j ∈ V . The algorithm
performs n_i ter iterations: in each iteration a lift-and-project cut for each j ∈ V is
(if possible) generated. The whole cut generation procedure for ∩ j∈V N j (K , K ) is
described in Algorithm 1.

Algorithm 1 Cut generation algorithm
Input: A formulation P , an integer n_i ter ;
Output: An updated formulation P
for i := 1 to n_i ter do

for j := 1 to |V | do
Optimize over P , get x∗
Setup and solve the CGLP for N j ;

if a violated cut aT x ≤ b is found then
P ← P ∪ {aT x ≤ b}
Optimize over P , get x∗;
Execute clique cutting plane;

end if
end for

end for

Every time a violated cut from the CGLP has been added the clique cutting plane
algorithm is executed. This is crucial to avoid that the next CGLP returns a clique
inequality not in ΩP .

The vertex sequence in the inner loop does not appear to be a crucial issue, although
slightly better performance can be observed if the vertices are ranked by non-increasing
degree.

All algorithms are implemented within the IBM CPLEX 11.2 framework. The
CGLPs are solved by the interior point method hybbaropt (default settings) that
significantly outperforms simplex methods. The computations were run on a machine
equipped by 2 Intel Xeon 5150 processors clocked at 2.6 GHz and having 8 GB of
RAM. However, all experiments have been performed in a single thread mode.

7 Computational results

The purpose of this section is to demonstrate that lift-and-project cuts generated to
optimize over ∩ j∈V N (K , K ), denoted by C(N )-cuts, do help bridge the gap between
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quality of the upper bound and computational tractability of the relaxation. Two exper-
iments are presented. In the first experiment, described in Sect. 7.1, the upper bound
achievable by a cutting plane algorithm based on C(N )-cuts is compared to the other
representative (either LP or SDP) bounds. In the second experiment, described in
Sect. 7.2, the performance of the C(N )-cuts in a branch-and-cut framework is inves-
tigated.

The test bed consists of three families of graphs:

– graphs from the DIMACS Second Challenge [19] available at the web site [30].
We consider the 19 out of 34 instances with n < 400 which are not solved to
optimality by clique inequalities (see Table 1) and the graph mann_a45;

– uniform random graphs tested in [12] and [9], downloadable from [36] in comple-
mented version. Graph x .y has |V | = x and percentage density y;

– very sparse uniform random graphs, tested in [12] and generated with the same
parameters as [16].

All instances are unweighted, as they tend to be the most difficult in practice.

7.1 Comparison among upper bounds

According to the overview presented in Sects. 1 and 2, representative upper bounds
for α(G) are: U Bclq, θ(G) and U BM(K ,K ), i.e., the bound obtained by optimizing
over M(K , K ) [12]. These give reference values achievable with standard polyhedral
combinatorics techniques, semidefinite relaxations and linear lifting operators respec-
tively. In Tables 4, 6 and 8, these three upper bounds are compared with the upper
bound U BC(N ), computed by Algorithm 1. Tables 5, 7 and 9 complete the picture
with several computational details. For each upper bound, we report the number of
inequalities of the corresponding relaxation and the CPU time spent in bound evalu-
ation. For C(N ) the number of “pure” C(N )-cuts (that is, those different from clique
inequalities) and the number of clique inequalities are reported separately; the number
of C(N )-cut iterations is also included. Let us discuss the experimental findings for
each family of graphs.

DIMACS challenge graphs Table 4 shows that U BC(N ) is fairly close to U BM(K ,K ),
which reveals that optimizing over∩ j N j (K , K ) instead of M(K , K ) does not signifi-
cantly weaken the bound. U BC(N ) turns out to be much stronger than U Bclq and, most
notably, outperforms θ(G) on C.125.9, c-fat200-5, DSJC125.1, mann_a9,
mann_a27, mann_a45, hamming6-4 and coincides with it on san200_0.7-2.
It is worthwhile mentioning that no such a clear improvement on θ(G) could be accom-
plished even with the quite strong SDP relaxations investigated in [16,9] and [5] (see
also [12] for a summary of results).

Furthermore, one can infer from Table 5 that such a strong bound is now accessible
in a short time by a relatively small number of inequalities. CPU time is in most cases
considerably shorter than that required to compute U BM(K ,K ).

A careful look at Table 5 also reveals a surprisingly long CPU time elapsed for
graph keller4, especially if compared to larger graphs (even with similar densities)
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Table 4 Upper bound comparison: DIMACS graphs

Graph |V | |E | α(G) U Bclq θ(G) U BM(K ,K ) U BC(N )

brock200_1 200 5,066 21 38.06 27.50 30.25 33.59

brock200_2 200 10,024 12 21.33 14.22 16.09 18.27

brock200_3 200 7,852 15 27.34 18.82 21.16 23.55

brock200_4 200 6,811 17 30.67 21.29 23.80 26.77

C.125.9 125 787 34 43.06 37.89 36.53 37.81

C.250.9 250 3,141 44 71.38 56.24 59.96 63.95

c-fat200-5 200 11,427 58 66.67 60.34 58.00 58.00

DSJC125.1 125 736 34 43.15 38.39 36.99 38.22

DSJC125.5 125 3,891 10 15.44 11.47 11.41 13.21

mann_a9 45 72 16 18.50 17.47 16.85 17.11

mann_a27 378 702 126 135.00 132.76 131.39 132.44

mann_a45 1,035 1,980 345 360.00 356.04 − 355.86

hamming6-4 64 1,312 4 5.33 5.33 4.00 4.64

keller4 171 5,100 11 14.82 14.01 13.17 14.29

p_hat300-1 300 33,917 8 15.30 10.10 11.40 13.45

p_hat300-2 300 22,922 25 33.59 27.00 30.00 30.73

p_hat300-3 300 11,460 36 54.36 41.16 47.32 49.79

san200_0.7-2 200 5,970 18 19.04 18.00 18.00 18.00

sanr200_0.7 200 6,032 18 33.39 23.80 26.12 29.45

sanr200_0.9 200 2,037 42 59.82 49.30 50.73 54.52

with much larger clique collections (and, therefore, larger CGLPs). This is due to a
quite slow convergence of Cplex hybbaropt algorithm.

Another issue to be remarked is that a larger number of clique inequalities are gen-
erated by Algorithm 1. This is a relevant side-effect of adding deep lift-and-project
cuts, as these additional clique inequalities could not be discovered without “pushing
forward” the current fractional point.

Uniform random graphs The results, presented in Tables 6 and 7, substantially con-
firm the previous observations. U BC(N ) outperforms θ(G) on 100.10 and 150.75
and coincides with it on 100.90 and 150.90. Table 7 shows that for 10 out of 20
instances the time saving with respect to computing U BM(K ,K ) exceeds one order of
magnitude.

Very sparse random graphs Here graph densities do not exceed 5%. In this setting
C(N )-cuts are exceptionally effective, yielding in all cases upper bounds lower than
θ(G) (Table 8). In fact, these are very close to U BM(K ,K ).

Overall, the results give evidence of the relevant contribution of C(N )-cuts in clos-
ing the integrality gap by a fairly small number of cuts. Remarkably, we observed that
the very first iterations of Algorithm 1 close a relevant portion of the gap. One can
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Table 5 Cutting plane details: DIMACS graphs

Graph U Bclq U BM(K ,K ) U BC(N )

Clique Time M(K , K ) Time C(N ) Clique Time n_i ter
ineq. ineq. ineq. ineq.

brock200_1 1,997 0.34 737,410 17,670 152 3,151 373 2

brock200_2 3,924 3.02 712,705 26,501 30 5,624 190 1

brock200_3 2,861 1.41 786,606 22,386 64 4,297 338 1

brock200_4 2,542 1.04 823,317 25,362 116 4,142 196 1

C.125.9 486 0.01 286,800 227 625 517 391 5

C.250.9 1,722 0.12 1,549,908 9,397 500 1,952 8,908 2

c-fat200-5 7,561 0.25 345,779 265 68 7561 45 1

DSJC125.1 460 0.01 270,201 274 622 468 297 5

DSJC125.5 1,540 0.47 222,677 377 25 2,368 27 1

mann_a9 48 0.01 3,744 0.41 90 48 0.26 1

mann_a27 468 0.01 432,969 393 302 468 120 1

mann_a45 1,320 0.01 − − 314 1,320 1,062 1

hamming6-4 161 0.01 9,934 4 22 412 5 2

keller4 877 0.15 696,634 15,324 171 1,897 9,586 1

p_hat300-1 7,197 30.62 526,513 4,910 24 9,800 767 1

p_hat300-2 3,280 2.28 679,808 24,337 233 5,618 2,207 1

p_hat300-3 3,968 1.68 985,233 46,408 407 5,941 2,419 2

san200_0.7-2 1,480 0.35 48,057 300 195 2,291 151 2

sanr200_0.7 2,352 0.70 1,424,109 9,971 297 4,726 762 1

sanr200_0.9 1,170 0.04 757,854 8,483 200 1,264 949 1

also observe that, unlike what typically happens with Benders cuts, C(N )-cuts tend to
be surprisingly sparse and seldom show nasty coefficients. This does not hold when
cuts are generated from N(K , K ) (see Sect. 3).

All these facts suggest that C(N )-cuts may be effective in a branch-and-cut frame-
work. This is indeed the case, as demonstrated in the next section.

7.2 Branch-and-cut results

In this section we show that, despite the computational burden of solving the CGLP,
embedding Algorithm 1 into the CPLEX 11.2 branch-and-cut framework is cost-effec-
tive. Three algorithms are compared:

1. The CPLEX default algorithm;
2. A branch-and-cut algorithm (Clique-B&C) in which clique cuts are generated

by our separation heuristic;
3. A branch-and-cut algorithm (C(N )-B&C) in which lift-and-project cuts are gen-

erated by Algorithm 1.
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Table 6 Upper bounds comparison: random graphs from [9]

Graph |V | |E | α(G) U Bclq θ(G) U BM(K ,K ) U BC(N )

100.10 100 490 31 37.18 33.16 31.76 32.75

100.25 100 1,216 17 23.19 19.49 19.03 20.70

100.50 100 2,419 9 13.86 10.82 10.58 11.79

100.75 100 3,710 5 7.34 5.82 5.47 6.07

100.90 100 4,463 4 4.16 4.00 4.00 4.00

150.10 150 1,096 37 48.88 41.99 41.56 43.12

150.25 150 2,724 19 31.48 24.33 25.25 27.91

150.50 150 5,510 10 18.14 12.90 13.61 15.20

150.75 150 8,373 6 9.54 6.86 6.86 6.64

150.90 150 10,038 5 5.22 5.00 5.00 5.00

200.10 200 1,958 42 61.19 50.14 51.28 53.55

200.25 200 4,851 22 39.34 28.68 31.21 35.07

200.50 200 9,874 11 21.80 14.68 16.57 18.09

200.75 200 14,801 7 11.56 7.81 8.34 9.66

200.90 200 17,853 4 5.97 4.44 4.66 5.16

250.10 250 2,998 46 73.44 58.06 62.18 67.36

250.25 250 7,584 23 45.78 31.83 37.20 40.60

250.50 250 15,457 11 25.49 16.19 19.52 23.30

250.75 250 23,199 7 14.11 8.53 9.89 11.91

250.90 250 27,976 4 7.01 4.80 5.25 5.89

In Clique-B&C and in C(N )-B&C the CPLEX cut generation procedures and the
dynamic search option are turned off, while the direction of the first branch is set
to up branch first. The clique separation heuristic is invoked only if the depth
of the current subproblem is less than k (k = 5 for graphs with density < 30%, k = 2
otherwise) and the branching variable is fixed to 1. Exactly one iteration of Algorithm 1
in C(N )-B&C is executed at the root node with σ ∈ [10−3, 10−5]. Finally, all cut gen-
eration algorithms are implemented by the CPXcutcallbackadd procedure, that
is, the cut pool management is completely left to CPLEX. It is important to remark that
Clique-B&C is a quite strong competitor, as it often outperforms dedicated branch-
and-cut algorithms [31] and [29], that embed several separation routines, dedicated
cut pool management, and specialized branching strategies.

Tables 10 and 11 report the CPU time (in seconds) and number of enumerated
subproblems (on DIMACS and random graphs respectively) for the three algorithms,
where a time limit of 4 hours is imposed. Random graphs with density > 50% and some
very sparse random graphs are not included, as they are quickly solved by CPLEX
enumeration and do not provide information.

From Tables 10 and 11 one observes that C(N )-B&C always outperforms the other
algorithms in terms of tree size. For DIMACS graphs (Table 10) in nine cases (out of
20) this does not lead to a time saving. However, such cases corresponds to the easiest
instances, where a great effort for improving the upper bounds is not justified. On the
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Table 7 Cutting plane details: random graphs from [9]

Graph U Bclq U BM(K ,K ) U BC(N )

Clique Time M(K , K ) Time C(N ) Clique Time n_i ter
ineq. ineq. ineq. ineq.

100.10 331 0.01 135,834 92 496 339 66 5

100.25 541 0.03 688,960 364 288 679 81 5

100.50 952 0.09 620,566 3,408 92 2,095 55 1

100.75 1,327 0.35 161,008 4,381 34 3,412 29 1

100.90 1,402 0.70 184,426 296 98 1,402 24 1

150.10 676 0.01 627,802 1,977 750 708 752 5

150.25 1,171 0.11 1,047,928 1,918 426 1,801 671 5

150.50 2,207 0.72 927,532 3,523 121 5,624 366 1

150.75 3,874 4.52 1,564,190 4,921 9 8,190 127 1

150.90 4,634 5.95 130,894 5 149 4,634 739 1

200.10 1,124 0.04 1,761,137 15,777 1,000 1,232 4,425 5

200.25 2,028 0.27 1,332,884 10,948 336 3,238 573 5

200.50 3,953 2.61 787,324 4,903 36 5,766 143 1

200.75 9,350 24.30 1,265,892 3,274 8 12,930 205 1

200.90 10,341 34.31 663,423 1,126 3 14,651 50 1

250.10 1,679 0.11 1,636,414 16,225 216 1,883 432 5

250.25 3,055 0.91 1,108,108 22,201 764 5,222 3,045 5

250.50 6,497 9.39 677,402 23,011 32 7,878 240 1

250.75 16,113 40.21 809,039 623 11 19,879 171 1

250.90 25,925 82.68 909,830 188 4 34,150 122 1

Table 8 Upper bounds comparison: very sparse random graphs

Graph |V | |E | α(G) U Bclq θ(G) U BM(K ,K ) U BC(N )

150.4 150 459 58 67.50 62.40 60.21 60.80

150.5 150 556 55 62.00 58.01 55.33 56.19

170.3 170 451 70 79.50 73.51 70.00 70.00

200.2 200 420 93 97.50 94.77 93.00 93.00

200.3 200 603 80 89.00 83.63 80.38 81.13

300.2 300 905 121 142.00 128.10 123.80 124.62

350.2 350 1,206 132 156.00 141.94 137.77 139.25

400.1 400 816 187 199.00 191.42 187.00 187.19

contrary, the time saving with respect to Clique-B&C is significant for some of the
hardest instances, namely: 13% for phat300_3, 23% for sanr200_09, 42% for
mann_a45.

The results for random graphs (Table 11) highlights that the lift-and-project cuts
are quite effective for sparse graphs. When densities go below 5%, Clique-B&C
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Table 9 Cutting plane details: very sparse random graphs

Graph U Bclq U BM(K ,K ) U BC(N )

Clique Time M(K , K ) Time C(N ) Clique Time n_i ter
ineq. ineq. ineq. ineq.

150.4 398 0 208,524 557 705 398 95 5

150.5 440 0 231,585 660 720 440 148 5

170.3 413 0 115,748 23 336 413 72 5

200.2 394 0 96,406 15 356 394 80 5

200.3 534 0 376,927 3,955 948 534 233 5

300.2 848 0 909,963 13,906 1,435 848 904 5

350.2 1,082 0 694,174 8,435 1,548 1,082 1,798 5

400.1 803 0 465,437 101 953 803 915 3

Table 10 DIMACS graphs: branch-and-cut results

Graph CPLEX default Clique-B&C C(N )-B&C

Time Subprob. Time Subprob. Time Subprob.

brock200_1 1,691.88 303,352 1,153.54 119,613 1,096.41 99,078

brock200_2 118.70 9,808 91.42 2,498 91.25 2,340

brock200_3 202.18 19,461 233.10 8,239 197.00 5,983

brock200_4 484.30 71,580 435.08 22,488 384.14 19,368

C.125.9 6.27 3,458 3.51 3,291 7.54 2,783

C.250.9 +++ +++ +++ +++ +++ +++

c-fat200-5 12.11 47 7.04 47 48.73 0

DSJC125.1 7.07 4,887 3.16 3,805 5.76 3,456

DSJC125.5 11.00 1,626 7.93 412 9.24 305

mann_a9 0.02 3 0.02 7 0.28 1

mann_a27 1.87 1,888 1.57 6,961 2.19 6,185

mann_a45 109.45 67,300 61.09 55,044 35.47 20,214

hamming6-4 0.11 6 0.09 5 0.40 1

keller4 23.40 5,814 27.86 2,713 38.99 2,602

p_hat300-1 136.23 4549 245.10 2,736 259.12 2,736

p_hat300-2 210.02 5,773 94.31 1,345 92.53 1,258

p_hat300-3 +++ +++ 4,040.84 79,090 3,509.32 74,319

san200_0.7-2 6.34 517 4.07 170 12.21 0

sanr200_0.7 1,008.83 161,673 689.58 34,250 675.25 30,885

sanr200_0.9 2,795.50 853,581 1,357.64 395,538 1,039.78 278,983

Bold values indicate the best performance

gets worse, as most of the cliques correspond to edges. Interestingly, in these cases,
CPLEX default gomory and zero-half cuts become more effective. However, C(N )-
B&C largely outperforms the other algorithms showing up to one order magnitude
subproblem and more than 50% time savings (350.2).
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Table 11 Random graphs: branch-and-cut results

Graph Cplex default Clique cuts C(N )-cuts

Time Subprob. Time Subprob. Time Subprob.

150.10 60.03 30,856 33.55 20,468 33.05 15,753

150.25 118.34 37,313 80.85 15,611 82.07 14,452

150.50 25.65 3,613 36.84 1,365 31.26 1,327

200.10 4,382.40 1,363,378 2,144.67 670,667 1,772.01 538,902

200.25 2,014.49 396,785 1,027.56 107,697 1,018.57 79,669

200.50 147.59 11,754 289.88 5,472 243.17 4,271

250.10 +++ +++ +++ +++ +++ +++

250.25 +++ +++ +++ +++ +++ +++

250.50 934.49 61,076 2,124 31,473 2,171 30,734

200.3 3.94 983 1.32 2,365 5.68 809

300.2 166.23 44,261 151.16 247,322 108.79 29,723

350.2 5,457.14 1,394,187 7,946.75 5,517,857 3,346.76 539,245

Bold values indicate the best performance

Tables 12 and 13 report the number of clique cuts generated by Clique-B&C and
that of C(N ) cuts generated by C(N )-B&C (in brackets clique cuts generated at the
root node). One can observe that, although a similar total number of clique inequalities
are generated by the two algorithms, a larger number of them is detected by C(N )-
B&C at the root node. This may let some “important” clique inequalities be available
at the early stage of the enumeration. The parameters σ and ε, which control the
size of Ω have been assigned with reference values for sparse and dense graphs.
However, we experienced that an instance-specific setting can indeed give some
improvement.

In summary, even though the lift-and-project cuts come at the price of solving a
(potentially huge) CGLP, our basic implementation turns out to be cost-effective. We
believe that this experience demonstrates that these cuts represent an important ingre-
dient to be considered when implementing a state-of-the-art branch-and-cut algorithm
for the SSP.

8 Conclusions

We showed that optimizing over the new relaxation ∩ j N j (K , K ) yields strong and
numerically robust Benders cutting planes. An open line of research deals with inves-
tigating a more advanced implementation of the cut generation algorithm, possibly
exploiting some structural properties of CGLPs. This could help generate cuts more
aggressively (i.e., increase |Ω|, n_i ter ) as well as tackle larger graphs. Finally, even
if some problem structure has been exploited in order to identify the new relaxa-
tion, the proposed lift-and-project method looks adaptable to other 0–1 Programming
problems.
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Table 12 DIMACS graphs: branch-and-cut details

Graph Clique-B&C C(N)-B&C

# Clique
inequalities

Separation
time

# C(N) ineq. # Clique
inequalities

Separation
time

brock200_1 3,089 (1,997) 1.56 80 2,926 (2,129) 80.48

brock200_2 3,924 (3,924) 3.02 14 4,028 (4,028) 6.61

brock200_3 4,413 (2,861) 2.87 10 4,460 (2,911) 6.75

brock200_4 4,007 (2,542) 2.52 29 3,971 (2,646) 12.38

C.125.9 556 (486) 0.07 49 604 (506) 3.99

c-fat200-5 7,561 (7,561) 0.25 116 10,929 (10,929) 47.59

DSJC125.1 530 (460) 0.14 31 487 (466) 2.31

DSJC125.5 1,912 (1,540) 0.16 28 1,981 (1,611) 2.13

mann_a9 48 (48) 0.01 90 48 (48) 0.26

mann_a27 468 (468) 0.47 3 468 (468) 1.22

mann_a45 1,320 (1,320) 0.01 5 1,320 (1,320) 9.09

hamming6-4 161 (161) 0.01 17 310 (310) 0.29

keller4 1,340 (877) 0.32 2 1,219 (907) 15.44

p_hat300-1 7,197 (7,197) 30.67 0 7,197 (7,197) 45.13

p_hat300-2 3,597 (3,280) 4.00 3 3,592 (3,289) 11.01

p_hat300-3 5,072 (3,968) 5.86 15 4,862 (4,001) 46.89

san200_0.7-2 1,510 (1,480) 1.03 31 1,670 (1,670) 11.86

sanr200_0.7 3,290 (2,352) 1.92 51 3,331 (2,471) 25.59

sanr200_0.9 1,259 (1,170) 0.31 56 1,263 (1,217) 14.33

Table 13 Random graphs: branch-and-cut details

Graph Clique-B&C C(N)-B&C

# Clique
inequalities

Separation
time

# C(N) ineq. # Clique
inequalities

Separation
time

150.10 701 (676) 0.10 32 701 (689) 4.70

150.25 1,488 (1,171) 0.34 17 1,560 (1,201) 4.15

150.50 2,893 (2,207) 0.37 20 2,973 (2,285) 2.66

200.10 1,194 (1,124) 0.20 45 1,215 (1,140) 14.41

200.25 3,056 (2,028) 1.03 22 2,741 (2,078) 10.52

200.50 5,229 (3,953) 3.63 2 5,502 (3,994) 4.97

250.50 11,471 (6,497 ) 13.06 60 11,587 (6,602) 38.49

200.3 534 (534) 0 50 534 (534) 4.33

300.2 848 (848) 0 103 848 (848) 32.21

350.2 1,086 (1,082) 0 314 1,475 (1,082) 416.02
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