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Abstract In this paper, we study 0−1 mixed-integer bilinear covering sets. We
derive several families of facet-defining inequalities via sequence-independent lifting
techniques. We then show that these sets have a polyhedral structure that is similar
to that of a certain fixed-charge single-node flow set. As a result, we also obtain new
facet-defining inequalities for the single-node flow set that generalize well-known
lifted flow cover inequalities from the integer programming literature.

Mathematics Subject Classification 90C11 · 90C20 · 90C30 · 90C57

1 Introduction and motivation

Nonlinear branch-and-bound is a method to solve mixed-integer nonlinear program-
ming (MINLP) problems to global optimality; see [10,16]. This method has been
implemented in commercial solvers such as BARON [25] and LINDO Global [17].
It requires that convex relaxations of the problem be recursively solved over smaller
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404 K. Chung et al.

and smaller subsets of the feasible region obtained by branching on variables. Most
existing commercial software use a method proposed in [20] to obtain these convex
relaxations for factorable problems. McCormick’s relaxation is an instance of a more
general technique that relaxes (nonconvex) constraints of the form g(x) ≥ r into (con-
vex) constraints of the form ḡ(x) ≥ r where ḡ(x) is a concave overestimator of g(x).
This technique does not use the right-hand-side of the inequality in the process. As a
result, the relaxation obtained is typically not the strongest possible.

Some of the functional forms that appear most frequently in the formulation of
nonlinear programs are probably multilinear inequalities and equalities. In particular,
bilinear inequalities of the covering type

n∑

j=1

a j x j y j ≥ d, (1)

where a j > 0, x j ∈ S ⊆ R+, and y j ∈ S′ ⊆ R+ are among the simplest nonconvex
inequalities that can be studied. Therefore, sets of the form (1) provide an important
test bed for the derivation of new and stronger convexification methods that use right-
hand-side information.

In this paper, we study the convex hull of feasible solutions to (1) when variables
are bounded. In particular, we consider 0−1 mixed-integer bilinear covering sets of
the form

B =
⎧
⎨

⎩(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣∣∣

n∑

j=1

a j x j y j ≥ d

⎫
⎬

⎭ ,

where n ∈ Z++, a j > 0 ∀ j ∈ N := {1, . . . , n}, and d > 0. We will throughout refer
to the convex hull of B, conv(B), as PB. Although our focus in this paper will be on
the study of PB, similar results can be obtained for sets defined through constraints of
the form

∑n
j=1(a j x j y j + b j x j + c j y j ) ≥ d, where (a j , b j , c j ) ∈ R × R+ × R+ and

a j +min{b j , c j } ≥ 0 for all j ∈ N . Through scaling and translation, this generalization
allows us to extend the applicability of our study to problems where the bounds on y are
not 0 and 1 and, in addition, to problems where some of the x variables are fixed. Our
proofs extend easily to such a setup because the two sets share strong relationships that
are described in Proposition 24 and the discussion following it. The set B and its more
general variant discussed above appear in a variety of application contexts. Consider,
for example, the linearization strategy of [6,26] for xT Qx ≥ d, where x ∈ {0, 1}n

and Q ∈ R
n×n+ . The authors define z = Qx and then replace the original constraint

with xT z ≥ d, where 0 ≤ z ≤ Q1 and 1 is the vector in R
n whose components are

all equal to 1. Let a = Q1 and yi = zi
ai

. Then, xT Qx ≥ d reduces to the constraint
defining B. The set B also appears as an objective function cut for problems involving
maximization of bilinear functions of the form

∑n
j=1 a j x j y j where x j ∈ {0, 1} and

y j ∈ [0, 1]; see [23] for an application to fixed-charge network flow problems and
see [27] for an application to shortest path interdiction with asymmetric information.
We also mention that B is related to several packing and covering sets including those
discussed in [4,14,31,34].

In order to guarantee that B is not empty, we impose
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Lifted inequalities for 0−1 MIBCS 405

Assumption 1
∑n

j=1 a j ≥ d.

When faced with the problem of constructing a convex relaxation of B, two exist-
ing techniques can be used. The first technique reformulates B as B E ∩H where
H = {(x, y, u) ∈ R

2n+1|u ≥ d} and B E = {
(x, y, u) ∈ {0, 1}n × [0, 1]n × R|∑

j∈N a j x j y j ≥ u
}
. It then relaxes conv(B) as proj(x,y)(conv(B E ) ∩ H), where

proj(x,y)S denotes the projection of S onto the space of (x, y) variables. It is clear
that conv(B E ) can be obtained directly by computing the concave envelope of∑

j∈N a j x j y j over {0, 1}n × [0, 1]n . Further, it follows from the separability of∑
j∈N a j x j y j over j ∈ N that this concave envelope is obtained directly from the

concave envelope of each bilinear term a j x j y j over {0, 1}×[0, 1]; see [1]. Because the
concave envelope of each bilinear term is known to be obtained through McCormick
constraints, we conclude that the tightest relaxation of the type ḡ(x) ≥ d, where ḡ(x)
is a concave overestimator of

∑
j∈N a j x j y j restricted to {0, 1}n ×[0, 1]n over [0, 1]2n ,

is the relaxation that uses McCormick constraints. Observe that this relaxation con-
tains an exponential number of linear constraints that can be separated in polynomial
time.

The second technique requires that upper bounds on the variables be relaxed, thereby
yielding a bilinear covering set BU = {(x, y) ∈ Z

n+ × R
n+ | ∑ j∈N a j x j y j ≥ d}. It

is shown in [30] that the convex hull of BU can be obtained explicitly using a variant
of disjunctive programming. The inequalities again are linear and can be separated in
polynomial time.

In this paper, we are interested in studying stronger relaxation techniques for B that
will take both the right-hand-side d and upper bounds on the variables into account.
Even though we show in Proposition 1 that the simultaneous presence of upper bounds
and right-hand-sides makes it NP-hard to optimize a linear function over B and hence
to develop a separation oracle for its convex hull, many new strong inequalities that
take advantages of both features can still be derived.

On the practical side, we are interested in studying B as a way to obtain improved
convex relaxations for problems in variables (x, z)∈R

n ×R
p with constraints of the

form
∑n

j=1 f j (z)x j ≥d, where f j : R
p →[b j , b j + a j ] and (a j , b j )∈R

2+ for all j∈ N .
It is easy to see that these constraints can be reformulated as

∑n
j=1(a j y j +b j )x j ≥ d

through the introduction of new variables y j = f j (z)−b j
a j

where y j ∈[0, 1]. Convex relax-
ations stronger than those currently used in commercial solvers can then be constructed
through strong inequalities of the convex hull of the 0-1 mixed integer bilinear covering
set defined by the constraint

∑n
j=1(a j y j + b j )x j ≥ d, and through concave/convex

envelopes of the functions
f j (z)−b j

a j
for each j ∈ N . We are also interested in studying

B because of its relations to the fixed-charge single-node flow set without inflows

F =
⎧
⎨

⎩(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣∣∣

n∑

j=1

a j y j ≥ d, x j ≥ y j ∀ j ∈ N

⎫
⎬

⎭ , (2)

an important mixed-integer linear set whose convex hull, conv(F), we denote by PF .
In particular, we will show in Lemma 3 that the set B is a relaxation of F , thereby
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establishing that valid inequalities for B are also valid for F . Further, we will show
in Sect. 4 that facet-defining inequalities of either PF or PB can be easily identified
if facet-defining inequalities for the other set are known. As a result, the inequalities
we derive for PB reveal new families of facet-defining inequalities for PF which are
structurally different from those described in the literature.

We next argue that it is typically difficult to find globally optimal solutions to
problems containing B as a constraint by showing that it is NP-hard to optimize a
linear function over B. To this end, consider the following optimization problem (Q):

min

⎧
⎨

⎩

n∑

j=1

η j x j +
n∑

j=1

κ j y j

∣∣∣∣ (x, y) ∈ B

⎫
⎬

⎭ (Q)

where η ∈ R
n and κ ∈ R

n .

Proposition 1 Problem (Q) is NP-hard.

Proof The proof is by reduction from the 0−1 knapsack problem, which is proven to
be NP-hard in [11]. Consider the following 0−1 knapsack instance:

zK = min

⎧
⎨

⎩

n∑

j=1

η j x j

∣∣∣∣
n∑

j=1

a j x j ≥ d, x j ∈ {0, 1} ∀ j ∈ N

⎫
⎬

⎭ . (K)

We define a corresponding instance of (Q) by setting κ j = −1 for all j ∈ N , i.e.,

z P =min

⎧
⎨

⎩

n∑

j=1

η j x j −
n∑

j=1

y j

∣∣∣∣
n∑

j=1

a j x j y j ≥d, x j ∈{0, 1}, y j ∈[0, 1] ∀ j ∈ N

⎫
⎬

⎭ .

(P)

The reduction from (K ) to (P) is clearly polynomial. Observe further that if x∗ is
a feasible solution to (K ), then (x∗, 1) is feasible to (P), therefore showing that
z P ≤ zK − n. Similarly, if (x∗, y∗) is an optimal solution to (P), then x∗ is feasible
to (K ) as

∑n
j=1 a j x∗

j ≥ ∑n
j=1 a j x∗

j y∗
j ≥ d. Therefore, zK ≤ z P + 1T y∗ ≤ z P + n.

We conclude that z P = zK − n and that x∗ is an optimal solution to (K ) if and only
if (x∗, 1) is an optimal solution to (P). ��

In this paper, we are interested in studying PB. Since B is a finite union of polytopes,
PB is polyhedral.

Proposition 2 PB is a polytope.

It follows from Proposition 2 that, when studying PB, it is sufficient to consider
linear inequalities. Proposition 1 suggests that finding a complete closed-form expres-
sion for PB is difficult. As a result, we will focus our efforts on constructing families
of strong cutting planes for optimization problems containing the constraints of B by
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Lifted inequalities for 0−1 MIBCS 407

studying PB. To construct these inequalities, we will use lifting. Lifting is a well-
known integer programming technique that generates strong inequalities for a given
set by transforming an inequality valid for a restricted subset of the feasible region
into a globally valid constraint. Early work on lifting in integer programming can
be found in [32,33]. A generalization to nonlinear programming is given in [24].
In particular, lifting is said to be sequence-independent if the order in which the
restrictions are removed does not change the derived inequality. Subadditivity of a
certain perturbation function, called the lifting function, is a sufficient condition for
lifting to be sequence-independent when the restrictions involve fixing the variables
at their bounds; see Proposition 13 and [24]. In this paper, we derive large families of
facet-defining inequalities for PB by performing sequence-independent lifting. These
results illustrate that lifting can successfully use bounds on variables in the genera-
tion of cuts for MINLPs. Further, the results have implications for fixed-charge flow
models, a family of theoretically and practically important problems in mixed-integer
linear programming.

The paper is structured as follows. In Sect. 2, we derive basic polyhedral results
about PB. We provide necessary and sufficient conditions for trivial inequalities to be
facet-defining. Then, we derive a linear description of PB for the special case where
n = 2. This result is used to identify the seed inequalities that will be used in lifting
procedures. In Sect. 3, we review lifting techniques and present two families of subad-
ditive functions. Then, we use sequence-independent lifting techniques, to derive, in
closed-form, three families of facet-defining inequalities for PB. One family is derived
using a subadditive approximation of the lifting function. In Sect. 4, we prove that there
are some tight connections between the facet-defining inequalities of PB and those
of PF . In particular, we show that the lifted inequalities developed for PB generalize
certain families of flow cover cuts and yield new facet-defining inequalities for the
fixed-charge single-node flow set without inflows, F , as defined in (2). We summarize
the contributions of our work and conclude with directions of future research in Sect. 5.

2 Basic polyhedral results

In this section, we analyze the polyhedral structure of PB. The omitted proofs are
relatively straightforward and can be found in [9]. First, we provide necessary and
sufficient conditions for PB to be full-dimensional.

Proposition 3 PB is a full-dimensional polytope if and only if
∑n

j=1 a j − ai ≥ d for
all i ∈ N. ��

In the remainder of this paper, we will assume that PB is full-dimensional.

Assumption 2
∑n

j=1 a j − ai ≥ d for all i ∈ N.

Observe that Assumption 2 strictly dominates Assumption 1 and implies that n ≥ 2.
We next identify some basic characteristics of the facet-defining inequalities of PB.

Proposition 4 Let
∑n

j=1 α j x j +∑n
j=1 β j y j ≥ δ be a facet-defining inequality for

PB that is not a scalar multiple of xi ≤ 1 for i ∈ N or yi ≤ 1 for i ∈ N. Then, (i)
αi ≥ 0, ∀i ∈ N, (ii ) βi ≥ 0, ∀i ∈ N, and (ii i ) δ ≥ 0. ��
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The following proposition further studies facet-defining inequalities whose right-
hand-sides are zero.

Proposition 5 Let
∑n

j=1 α j x j +∑n
j=1 β j y j ≥ 0 be a facet-defining inequality for

PB. Then, this inequality is a scalar multiple of x j ≥ 0 for j ∈ N or of y j ≥ 0 for
j ∈ N. ��

We now focus on these inequalities that play a special role in Propositions 4 and 5
and characterize when they are facet-defining for PB. We refer to these inequalities
as bound inequalities.

Proposition 6 The upper bound inequalities xi ≤ 1, yi ≤ 1 are facet-defining for PB
for all i ∈ N. Further, for i ∈ N, the lower bound inequalities xi ≥ 0, yi ≥ 0 are
facet-defining for PB if and only if

∑n
j=1 a j −ai −al(i) ≥ d where l(i) ∈ argmax{a j |

j ∈ N\{i}}. ��
We mention that the above results are also valid when yi ∈ {0, 1} instead of yi ∈

[0, 1] for some subset J ⊆ N . We next study another simple facet-defining inequality
for PB.

Proposition 7 The inequality
∑n

j=1 a j y j ≥ d is facet-defining for PB.

Proof Validity is easily verified since
∑n

j=1 a j y j ≥ ∑n
j=1 a j x j y j ≥ d. To prove

that
∑n

j=1 a j y j ≥ d is facet-defining, we present 2n points (xi , yi ) in B that satisfy∑n
j=1 a j yi

j ≥ d at equality and such that the system αxi +βyi = δ for i = 1, . . . , 2n
only has solutions (α, β, δ) that are scalar multiples of (0, a, d). Consider the 2n points
pk = (1,Δk(1 − ek)) and qk = (1 − ek,Δk(1 − ek)) where Δk = d∑n

j=1 a j −ak
for

k ∈ N . Note that because of Assumption 2, 0 < Δk ≤ 1 for all k ∈ N . Clearly, pk

and qk belong to B and satisfy
∑n

j=1 a j y j ≥ d at equality. These 2n points yield the
system:

n∑

j=1

α j +Δk

⎛

⎝
n∑

j=1

β j − βk

⎞

⎠ = δ ∀k ∈ N , (3)

n∑

j=1

α j − αk +Δk

⎛

⎝
n∑

j=1

β j − βk

⎞

⎠ = δ ∀k ∈ N . (4)

By subtracting (3) from (4), we obtain that αk = 0 for all k ∈ N . From (3) and the
definition of Δk , we then conclude that, for all k, l ∈ N ,

n∑

j=1

β j − βk = δ

d

⎛

⎝
n∑

j=1

a j − ak

⎞

⎠ and
n∑

j=1

β j − βl = δ

d

⎛

⎝
n∑

j=1

a j − al

⎞

⎠ .

Subtracting these expressions yieldsβk − δ
d ak = βl − δ

d al . After definingβk − δ
d ak = θ

for k ∈ N and using these relations in (3), we obtain that θ = 0, which implies
βk = δ

d ak for all k ∈ N . Therefore, we conclude that all solutions (α, β, δ) to the
system (3) and (4) are scalar multiples of (0, a, d). ��
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Lifted inequalities for 0−1 MIBCS 409

In the remainder of this paper, we will often use the term facet to refer to a facet-
defining inequality. We will also refer to inequalities xi ≤ 1, yi ≤ 1, and

∑n
j=1 a j y j ≥

d as trivial facets of PB. To illustrate the richness of the polyhedral structure of PB,
we present an example next. The linear inequalities describing the convex hull of this
set were obtained using PORTA; see [7].

Example 1 Consider the 0−1 mixed-integer bilinear covering set

B =
{
(x, y) ∈ {0, 1}4 × [0, 1]4

∣∣∣∣ 19x1 y1 + 17x2 y2 + 15x3 y3 + 10x4 y4 ≥ 20

}
.

The linear description of PB has 58 inequalities. They include:

50x1 + 90x3 + 45x4 + 76y1 + 153y2 ≥ 135 (5)

70x1 + 90x2 + 27x4 + 38y1 + 135y3 ≥ 117 (6)

19x1 + 17x2 + 15y3 + 10y4 ≥ 20 (7)

17x2 + 15x3 + 19y1 + 10y4 ≥ 20 (8)

19y1 + 17y2 + 15y3 + 10y4 ≥ 20 (9)

14x1 + 10x3 + 5x4 + 17y2 ≥ 15 (10)

12x2 + 10x3 + 5x4 + 19y1 ≥ 15 (11)

10x3 + 5x4 + 19y1 + 17y2 ≥ 15 (12)

x1 + x2 + x3 + 10y4 ≥ 2 (13)

x1 + x2 + x3 + x4 ≥ 2 (14)

x1 ≥ 0 (15)

y1 ≥ 0 (16)

x1 ≤ 1 (17)

y1 ≤ 1. (18)

Among the inequalities in Example 1, we recognize the upper bound inequalities
(17) and (18) that are shown to be facet-defining for PB in Proposition 6. In this
example, the lower bound inequalities (15) and (16) are also facet-defining, as can
be established from Proposition 6. Further, (9) is the trivial facet-defining inequality
studied in Proposition 7. Our goal is to now discover families of valid inequalities for
PB that would explain (5–8) and (10–14).

To derive these nontrivial facet-defining inequalities, we first study the convex
hull of B when n = 2 with the goal of identifying seed inequalities for subse-
quent lifting procedures. We show that the linear description of PB has at most
three nontrivial inequalities. In this study, Assumption 2 requires that a1 ≥ d and
a2 ≥ d.

Proposition 8 Let B2 = {
(x, y) ∈ {0, 1}2 × [0, 1]2

∣∣ a1x1 y1 + a2x2 y2 ≥ d
}
, where

a1 ≥ d, a2 ≥ d and d > 0. Then,
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conv(B2) = X :=

⎧
⎪⎪⎨

⎪⎪⎩
(x, y) ∈ [0, 1]2 × [0, 1]2

∣∣∣∣∣∣∣∣

x1 + x2≥ 1
dx1 + a2 y2≥ d
a1 y1 + dx2≥ d
a1 y1 + a2 y2≥ d

⎫
⎪⎪⎬

⎪⎪⎭
.

Proof We prove the result using disjunctive programming techniques; see [5]. We
define

X10 := B2 ∩
{

x1 = 1, x2 = 0
}

=
{
(1, y1, 0, y2)

∣∣∣ d
a1

≤ y1 ≤ 1, 0 ≤ y2 ≤ 1
}
,

X01 := B2 ∩
{

x1 = 0, x2 = 1
}

=
{
(0, y1, 1, y2)

∣∣∣0 ≤ y1 ≤ 1, d
a2

≤ y2 ≤ 1
}
,

X11 := B2 ∩
{

x1 = 1, x2 = 1
}

=
{
(1, y1, 1, y2)

∣∣∣a1 y1 + a2 y2 ≥ d, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1
}
.

It is easily verified that conv(B2) = conv(X10 ∪ X01 ∪ X11) = conv(X2 ∪ X11)where
X2 := conv(X10 ∪ X01). We first use disjunctive programming techniques to obtain
a linear description of X2 and then compute conv(B2) as conv(X2 ∪ X11). Using
Theorem 2.1 in [5], we write

X2 =

proj(x,y)

⎧
⎪⎪⎨

⎪⎪⎩
(x1, y1, x2, y2, z̄1, z̄2, ẑ1, ẑ2, λ)

∣∣∣∣∣∣∣∣

(x1, y1, x2, y2) = (
λ, z̄1 + ẑ1, 1 − λ, z̄2 + ẑ2

)
,

d
a1
λ ≤ z̄1 ≤ λ, 0 ≤ z̄2 ≤ λ,

0 ≤ ẑ1 ≤ 1 − λ, d
a2
(1 − λ) ≤ ẑ2 ≤ 1 − λ,

0 ≤ λ ≤ 1

⎫
⎪⎪⎬

⎪⎪⎭
.

We then use Fourier-Motzkin elimination [35] to compute the projection. We first
eliminate the variables λ, ẑ1 and ẑ2 using the equations λ = x1, ẑ1 = y1 − z̄1, and
ẑ2 = y2 − z̄2. Then, we project z̄1 and z̄2 to obtain

X2 = conv(X10 ∪ X01) =
{
(x1, y1, x2, y2)

∣∣∣∣
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0,
d
a1

x1 ≤ y1 ≤ 1, d
a2

x2 ≤ y2 ≤ 1

}

since x1 ≤ 1 and x2 ≤ 1 are implied by x1 + x2 = 1, x1 ≥ 0 and x2 ≥ 0. Similarly,
we can now derive a linear description of conv(X2 ∪ X11) by first formulating this set
as the projection of a polyhedron using disjunctive programming and then projecting
the resulting formulation onto the space of x and y variables using Fourier-Motzkin
elimination; see [9] for details. ��

Next, we give generalizations of the nontrivial facets of conv(B2) that we prove
are facet-defining for more general instances of conv(B). In particular, we give a
generalization of inequalities dx1 + a2 y2 ≥ d and a1 y1 + dx2 ≥ d in Proposition 9
and of inequality x1 + x2 ≥ 1 in Proposition 11. We will use these generalizations as
seed inequalities for lifting procedures in Sect. 3.

Proposition 9 Let L ⊆ N be such that
∑

j∈N\L a j > d. Define ā =∑
j∈N\L a j −

maxi∈N\L ai and assume that
S ={(x, ȳ)∈{0, 1}|L|×[0, 1] | ∑i∈L min{ai , d}xi + ā ȳ =d} �=∅.
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Lifted inequalities for 0−1 MIBCS 411

Then,
∑

j∈L

min{a j , d}x j +
∑

j∈N\L

a j y j ≥ d (19)

is facet-defining for PB. In particular, (19) is facet-defining for PB if (i ) L ∩ L≥ �= ∅,
or (i i ) L = ∅, or (i i i ) ā ≥ maxi∈L min{ai , d}, or as a special case (iv) ā ≥ d where
L≥ := { j ∈ N | a j ≥ d}.
Proof We first argue that inequality

∑

j∈N

min{dx j , a j x j , a j y j } ≥ d (20)

is valid for PB, which will directly imply that (19) is valid for PB. To this end, we show
next that

∑
j∈N min{dx j , a j x j y j } ≥ d is valid for B. Consider (x, y) ∈ B. If there

exists j ∈ N such that dx j < a j x j y j then x j = 1 and, consequently, the inequality
is satisfied. Otherwise, the inequality reduces to the defining inequality of B. Since
(x j , y j ) ∈ [0, 1]2 implies that x j y j ≤ min{x j , y j } and a j ≥ 0 for j ∈ N , it follows
that min{dx j , a j x j y j } ≤ min{dx j , a j x j , a j y j } and, therefore, (20) is valid for PB.

We now prove that (19) is facet-defining for PB by providing 2n affinely indepen-
dent points (xi , yi ) in B that satisfy (19) at equality. Assume without loss of generality
that L = {1, . . . , l}. Define n′ = |N\L| and denote the points as (xL , xN\L , yL , yN\L).
Let (x ′, ȳ′) ∈ S and define a′ = ∑

j∈N\L a j . Let p0 = (0, 1, 0, d
a′ 1) and

p j = p0 + ε(0, 0, 0, 1
a j

e j − 1
a j+1

e j+1) for j = 1, . . . , n′ − 1. For i ∈ L , define

qi = (ei , 1, ei ,
d−min{ai ,d}

a′ 1), r i = p0+(0, 0, ei , 0) if ai ≤ d, and r i = (ei , 1, d
ai

ei , 0)

if ai > d. For j ∈ {1, . . . , n′}, s j = (x ′
L , 1 − e j , 1, ȳ′ ā∑

i∈N\(L∪{ j}) ai
(1 − e j )). It

can be easily verified that p0, qi , s j and r i belong to B and that p j belongs to B
when ε is sufficiently small. We now show that the above points are affinely indepen-
dent. Clearly, for j ∈ {0, . . . , n′ − 2}, p0, . . . , p j satisfy

∑ j+1
i=1 ai (

d
a′ − yl+i ) = 0,

whereas p j+1 does not. Therefore, p j are affinely independent. Further, for i ∈ L
and j ∈ {0, . . . , n′ − 1}, qi are affinely independent of p j since the latter satisfy
(xi , yi ) = (0, 0). For i ∈ L , j ∈ {0, . . . , n′ − 1} and i ′ ∈ L , r i are independent of p j

and qi ′ since the latter satisfy yi = xi . Finally, for j ∈ {1, . . . , n}, j ′ ∈ {1, . . . , n′ −1},
i ∈ L , and i ′ ∈ L , s j are affinely independent of p j ′ , qi , r i ′ since the latter satisfy
x|L|+ j = 1. ��

The family of inequalities described in Proposition 9 is typically exponential in
size. In the case of Example 1, it contains multiple inequalities including (7)–(9).

We next relate (19) to existing relaxation techniques. In particular, we argue that
it does not arise as a direct application of factorable or orthogonal disjunction prin-
ciples but can be obtained through a strengthening of orthogonal disjunction results
described in [29]. First, the set of solutions in [0, 1]2n that satisfy (20) is contained
in the factorable convex relaxation of B discussed in Sect. 1. In particular, when
each bilinear term is outer-approximated using McCormick envelopes, we obtain∑

j∈N a j min{x j , y j } ≥ d, which is clearly implied by (20). Further, using orthogonal
disjunctions, see [30], it can be shown that
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O := conv

⎧
⎨

⎩(x, y) ∈ R
2n+
∣∣∣
∑

j∈N

a j x j y j ≥ d

⎫
⎬

⎭

=
⎧
⎨

⎩(x, y) ∈ R
2n+
∣∣∣
∑

j∈N

√
a j x j y j ≥ √

d

⎫
⎬

⎭ .

This convex relaxation is obtained without making use of the bounds or the integrality
of the variables x . It follows from the inequality relating elementary means (see The-
orem 5 in [15]) that

√
da j x j y j ≥ min{dx j , a j y j }. Therefore, the feasible solutions

to (20) are contained in O . However, when (x, y) ∈ C � R
2n+ , a procedure described

in [29] allows a strengthening of the relaxation O by restricting attention to C . When
one exploits the fact that (x, y) ∈ C = {0, 1}n × [0, 1]n , this construction yields (20).

In the remainder of the paper, we will obtain strong inequalities for PB by lifting
(19). To describe these liftings, we will use the following notation extensively. For
N0, N1 ⊆ N such that N0 ∩ N1 = ∅ and Ñ0, Ñ1 ⊆ N such that Ñ0 ∩ Ñ1 = ∅, we let

B(N0, N1, Ñ0, Ñ1) :=
{
(x, y) ∈ B

∣∣∣∣
x j = 0 for j ∈ N0, x j = 1 for j ∈ N1,

y j = 0 for j ∈ Ñ0, y j = 1 for j ∈ Ñ1

}
.

We also define PB(N0, N1, Ñ0, Ñ1) := conv(B(N0, N1, Ñ0, Ñ1)). With a slight
abuse of notation, we say B(N0, N1, Ñ0, Ñ1) is full-dimensional if its affine hull,
aff(B(N0, N1, Ñ0, Ñ1)), satisfies:

aff
(

B(N0, N1, Ñ0, Ñ1)
)

=
{
(x, y) ∈ R

2n
∣∣∣∣

x j = 0 for j ∈ N0, x j = 1 for j ∈ N1,

y j = 0 for j ∈ Ñ0, y j = 1 for j ∈ Ñ1

}
.

Observe that, B(∅,∅,∅, N ) is equivalent to the classical 0−1 knapsack set

{
x ∈ {0, 1}n

∣∣∣∣
n∑

j=1

a j x j ≥ d

}
,

whose polyhedral structure was first studied in [4,14], and [31]. The following result,
as a special case, relates the bilinear set B to the 0−1 knapsack set B(∅,∅,∅, N ).

Proposition 10 Let I ⊆ N. Assume that

∑

j∈N

α j x j +
∑

j∈I

β j y j ≥ δ (21)

is an inequality for PB(∅,∅,∅, N\I ) that is not a scalar multiple of a bound inequality.
Then, (21) is facet-defining for PB(∅,∅,∅, N\I ) if and only if (21) is facet-defining
for PB.

Proof We first prove that if (21) is facet-defining for PB(∅,∅,∅, N\I ), then (21)
is facet-defining for PB. To show that (21) is valid for B, we assume for a contra-
diction that there exists a point (x ′, y′) ∈ B with

∑
j∈N α j x ′

j + ∑
j∈I β j y′

j < δ.
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Since (x ′, y′) ∈ B, we have that
∑

j∈N a j x ′
j y′

j ≥ d. Next, we define (x̄, ȳ)
as x̄ = x ′, ȳ j = y′

j for j ∈ I , and ȳ j = 1 for j ∈ N\I . Observe that
(x̄, ȳ) ∈ B(∅,∅,∅, N\I ) as

∑
j∈I a j x̄ j ȳ j + ∑

j∈N\I a j x̄ j ≥ ∑
j∈N a j x ′

j y′
j ≥ d.

Since (21) is valid for B(∅,∅,∅, N\I ), (x̄, ȳ) satisfies
∑

j∈N α j x ′
j +∑

j∈I β j y′
j =∑

j∈N α j x̄ j +∑
j∈I β j ȳ j ≥ δ. This is the desired contradiction.

Next, we show that (21) is facet-defining for PB. Since (21) is facet-defining for
PB(∅,∅,∅, N\I ) and δ �= 0 as (21) is not a bound, there exist n + |I | linearly
independent points in B(∅,∅,∅, N\I ), call them (xk, yk), that satisfy (21) at equality.
Clearly, these points belong to B and satisfy (21) at equality. Now, for each j ∈ N\I ,
we construct one new point in B\B(∅,∅,∅, N\I ) that satisfies (21) at equality. Choose
j arbitrarily in N\I . Since (21) is not a scalar multiple of x j ≤ 1, there exists k j ∈
{1, . . . , n +|I |} such that x

k j
j = 0. Now define (x̄ k j , ȳk j ) such that x̄

k j
i = x

k j
i ∀i ∈ N ,

ȳ
k j
i = y

k j
i ∀i ∈ N\{ j} and ȳ

k j
j = 0. Clearly, the point (x̄ k j , ȳk j ) belongs to B and

satisfies (21) at equality. Further, it is easily seen that the points (xk, yk) and (x̄ k j , ȳk j )

for j ∈ N\I are linearly independent and therefore show that (21) is facet-defining
for PB.

To prove the reverse implication, we assume that (21) is a facet-defining inequal-
ity for PB that is not a scalar multiple of a bound. Validity is trivial since
B(∅,∅,∅, N\I ) ⊆ B. Now, we show that (21) is facet-defining for PB(∅,∅,∅, N\I ).
Since δ �= 0 as (21) is not a bound (see Proposition 5), the origin does not satisfy
(21) at equality. Therefore, any 2n affinely independent points, say (xk, yk) in B for
k = 1, . . . , 2n, that satisfy (21) at equality must also be linearly independent. In other
words,

∣∣∣∣∣∣∣∣∣∣∣

x1
1 . . . x1

n y1
1 . . . y1

n

x2
1 . . . x2

n y2
1 . . . y2

n

. . . . . .

x2n
1 . . . x2n

n y2n
1 . . . y2n

n

∣∣∣∣∣∣∣∣∣∣∣

�= 0. (22)

Without loss of generality, assume that I = {1, . . . , |I |}. Consider the submatrix
formed by the first n + |I | columns of (22). There exist n + |I | rows of the submatrix
that are linearly independent. For each of these rows, define a point by setting y j = 1
for j > |I |. The resulting points are linearly independent, feasible to B(∅,∅,∅, N\I ),
and satisfy (21) at equality. Therefore, (21) is facet-defining for PB(∅,∅,∅, N\I ). ��

Using a proof technique similar to that of Proposition 10, it can also be shown that
facet-defining inequalities of PB that are of the form

∑
i∈J αi xi + ∑

i∈I βi yi ≥ δ

are also facet-defining for PB(∅, N\J,∅, N\I ). In particular, if I ∩ J = ∅ then there
is a mixed 0−1 knapsack whose facet is also defined by the inequality. Furthermore,
Proposition 10 implies that all nontrivial facets of the pure 0−1 knapsack polytope
can be found in PB and that it is sufficient to study the facets of PB to obtain the
facets of the 0−1 knapsack polytope. Next, we use Proposition 10 to generalize the
inequality x1 + x2 ≥ 1 of Proposition 8 into an inequality that will be used as a seed
for lifting procedures in Sect. 3.4.
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Proposition 11 Assume that
∑

j∈N a j − ak − am < d for all k,m ∈ N with k �= m.
The clique inequality

∑

j∈N

x j ≥ |N | − 1 (23)

is facet-defining for PB.

Proof By Proposition 10, it is sufficient to prove that (23) is facet-defining for
PB(∅,∅,∅, N ). The remaining result follows from Proposition II.2.2.3(b) in [21]
after using the transformation x̄i = 1 − xi for all i ∈ N . ��

3 Lifted inequalities

In this section, we derive three families of strong valid inequalities for PB via lifting.
The first two families are obtained using sequence-independent lifting from (19) and
are facet-defining for PB. In this case, lifting is simple since the lifting function is
subadditive. The third family is obtained by lifting (23). Although the lifting function
associated with this seed inequality is not subadditive, we obtain lifted inequalities
using approximate lifting. We then identify conditions under which these inequalities
are facet-defining for PB.

3.1 Sequence-independent lifting for bilinear covering sets

Sequence-independent lifting is a well-known technique to construct strong valid
inequalities for mixed-integer linear programs; see [13] and [33]. We next give a
brief description of how this technique can be used to derive strong valid inequalities
for PB. A more general treatment of lifting in nonlinear programming is given in [24].

Given ∅ �= S � N , we consider B(S,∅, S,∅), which is the restriction of B obtained
when all variables (x j , y j ) for j ∈ S are fixed to (0, 0). Without loss of generality, let
S = {s, . . . , n} for some s ≥ 2 and define Si = {i + 1, . . . , n} for i ∈ S. Assume that
the inequality

s−1∑

j=1

α j x j +
s−1∑

j=1

β j y j ≥ δ (24)

is facet-defining for PB(S,∅, S,∅). In sequential lifting, we reintroduce the variables
(x j , y j ) for j ∈ S one at a time in (24). Assuming that variables (x j , y j ) have already
been lifted in the order j = s, . . . , i − 1, we next review how to lift variables (xi , yi )

in the inequality

i−1∑

j=1

α j x j +
i−1∑

j=1

β j y j ≥ δ, (25)
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which is assumed to be facet-defining for PB(Si−1,∅, Si−1,∅). To perform this lifting,
we first compute the lifting function

Pi (w) = max δ −
⎧
⎨

⎩

i−1∑

j=1

α j x j +
i−1∑

j=1

β j y j

⎫
⎬

⎭

s.t.
i−1∑

j=1

a j x j y j ≥ d − w

x j ∈ {0, 1}, y j ∈ [0, 1] j = 1, . . . , i − 1.

Once the lifting function Pi (w) is computed, the lifting coefficients (αi , βi ) are
obtained from Pi (w) as follows.

Proposition 12 (Richard and Tawarmalani [24]) Let (25) be a valid inequality for
B(Si−1,∅, Si−1,∅). Assume that there exist (αi , βi ) ∈ R

2 such that

αi xi + βi yi ≥ Pi (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{0, 0}. (26)

Then, the inequality
∑i

j=1 α j x j +∑i
j=1 β j y j ≥ δ is valid for B(Si ,∅, Si ,∅). ��

The result of Proposition 12 can be applied recursively to construct a valid inequality
for PB from (24). Note that, at each step, the lifting function Pi (w)must be recomputed
to account for the changes in the lifted inequality. Further, if B(S,∅, S,∅) is full-
dimensional, the seed inequality (24) is facet-defining for PB(S,∅, S,∅), and for each
i ∈ S, the lifting coefficients (αi , βi ) of the variables (xi , yi ) are chosen so that (26) is
satisfied at equality by two points (x1

i , y1
i ) and (x2

i , y2
i ) such that (0, 0), (x1

i , y1
i ) and

(x2
i , y2

i ) are affinely independent (a feature we refer to as maximal lifting), then the final
lifted inequality will be facet-defining for PB. In this scheme, (re)computing the lifting
functions Pi (w) for each i ∈ S is often the most computationally demanding task.
However, this computational work is unnecessary when the lifting function Ps(w) is
subadditive. This observation, first made in [33], leads to the following result.

Proposition 13 (Richard and Tawarmalani [24]) Assume that (24) is valid for
B(S,∅, S,∅). Assume also that (i) Ps(w) is subadditive over R+, i.e., Ps(w1) +
Ps(w2) ≥ Ps(w1 + w2) ∀w1, w2 ∈ R+, and (ii) there exist (αi , βi ) ∈ R

2 for all
i ∈ S such that

αi xi + βi yi ≥ Ps(ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{0, 0}. (27)

Then, the inequality

n∑

j=1

α j x j +
n∑

j=1

β j y j ≥ δ (28)

is valid for PB. Further, if (i) Inequality (24) is facet-defining for PB(S,∅, S,∅), (i i)
B(S,∅, S,∅) is full-dimensional, and (i i i) coefficients (αi , βi ) are chosen in a way
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that two linearly independent points satisfy (27) at equality, then (28) is facet-defining
for PB. ��

The fundamental difference between Proposition 12 and Proposition 13 lies in
equations (26) and (27). In the latter, the lifting coefficients of all variables (xi , yi ) are
obtained from the same lifting function Ps(w) while in the former, they are obtained
from Pi (w) for i ∈ S. Although this difference might seem minor, it has important
practical implications. In particular, the subadditivity of lifting functions typically
permits the derivation of closed-form expressions for lifting coefficients that would
otherwise be difficult to obtain. Observe also that in Proposition 13, the subadditivity
of Ps(w) is required only over R+ since all coefficients ai in PB are assumed to be
nonnegative.

Proposition 12 describes how to perform lifting when the variables (x j , y j ) for
j ∈ S are fixed at (0, 0). When variables (x j , y j ) are fixed at (1, 1), similar results
are obtained when (26) is replaced by

αi (xi − 1)+ βi (yi − 1) ≥ Pi (ai xi yi − ai ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{1, 1}.
(29)

Similarly, Proposition 13 can be adapted to allow sequence-independent lifting for
variables (x j , y j ) fixed at (1, 1) by replacing Pi (w)with Ps(w) in (29) and by requir-
ing that the lifting function Ps(w) is subadditive over R−. Subadditive lifting can
also be used to generate facets of PB if B(∅, S,∅, S) is full-dimensional, the seed
inequality (24) is facet-defining for PB(∅, S,∅, S), and for each i ∈ S, the lifting
coefficients (αi , βi ) of the variables (xi , yi ) are chosen so that (29) is satisfied at
equality by two points (x1

i , y1
i ) and (x2

i , y2
i ) such that (1, 1), (x1

i , y1
i ) and (x2

i , y2
i ) are

affinely independent.
We show in the following proposition that all interesting lifted inequalities that

can be obtained by fixing variables (xi , yi ) at (0, 1) or (1, 0) can also be obtained by
fixing variables (xi , yi ) at (0, 0). Intuitively this result can be understood as follows.
We first observe that the projections of PB(Si−1,∅, Si−1,∅), PB(Si−1,∅,∅, Si−1) and
PB(∅, Si−1, Si−1,∅) over the space of non-fixed variables are identical. Therefore,
these sets share the same seed inequalities for lifting. Next, we argue that lifting a pair
of variables (xi , yi ) fixed at (1, 0) yields maximal lifting coefficients (αi , βi ) where
αi = 0, while lifting a pair of variables (xi , yi ) fixed at (0, 1) yields maximal lifting
coefficients (αi , βi ) where βi = 0. The result then follows by arguing that the above
lifting coefficients can also be obtained by lifting the pair of variables (xi , yi ) from
(0, 0).

Proposition 14 Assume that (25) defines a nonempty face of PB(Si−1,∅, Si−1,∅) (or
equivalently of PB(Si−1,∅,∅, Si−1), or of PB(∅, Si−1, Si−1,∅)). Then any inequality
obtained by maximally lifting (25) in PB(Si−1,∅,∅, Si−1) or PB(∅, Si−1, Si−1,∅)
could also have been obtained by maximally lifting (25) in PB(Si−1,∅, Si−1,∅).
Proof First, we consider the case where (xi , yi ) is fixed at (1, 0). In this situation,
valid lifting coefficients must satisfy
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αi (xi − 1)+ βi yi ≥ Pi (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]. (30)

We next show that maximal lifting coefficients (αi , βi ) in (30) must also satisfy

αi xi + βi yi ≥ Pi (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1] (31)

and be maximal for (31). This is sufficient to prove the result since restricting (xi , yi ) =
(0, 0) instead of (1, 0) does not change the projection in the space of the non-fixed
variables and, therefore, the seed inequality is still a face of same dimension. Consider
(0, y∗

i ) satisfying (30) at equality. Such a point exists since lifting is assumed to be
maximal. Then,

0 ≥ αi = βi y∗
i ≥ Pi (ai y∗

i ) ≥ 0,

where the first inequality follows from (30) by setting (xi , yi ) = (0, 0), the equality
holds since (0, y∗

i ) satisfies (30) at equality, the second inequality is satisfied from
(30) with (xi , yi ) = (1, y∗

i ) and the last inequality follows since ai y∗
i ≥ 0. Therefore,

equality holds throughout and, in particular, αi = 0. It follows that αi (xi −1)+βi yi =
αi xi + βi yi and, consequently, (αi , βi ) is valid and maximal to (31).

Now, we fix (xi , yi ) at (0, 1). Then, we show that any (αi , βi ) that is valid and
maximal to

αi xi + βi (yi − 1) ≥ Pi (ai xi yi ) (32)

is also valid and maximal to (31). Let y∗
i = min{yi ∈ [0, 1] | αi + βi (yi − 1) =

Pi (ai yi )}, i.e., (1, y∗
i ) satisfies (32) at equality. It follows that

0 ≤ βi
(
y∗

i − 1
) = Pi (ai y∗

i

)− αi ≤ Pi (ai y∗
i

)− Pi (ai ) ≤ 0,

where the first inequality follows from (32) by substituting (xi , yi ) = (0, y∗
i ), the

equality is satisfied since (1, y∗
i ) satisfies (32) at equality, the second inequality is

verified by substituting (1, 1) in (32), and the last inequality holds since Pi (·) is non-
decreasing and ai y∗

i ≤ ai . Therefore, the equality holds throughout and, in particular,
βi (y∗

i − 1) = 0. It follows that either βi = 0 or y∗
i = 1. We show that βi = 0 in the

latter case as well. If y∗
i = 1, because lifting is assumed to be maximal and because

of the definition of y∗
i , there is a y′

i ∈ [0, 1) such that (0, y′
i ) satisfies (32) at equality.

Therefore, βi (y′
i −1) = 0 and soβi = 0. It follows thatαi xi +βi (yi −1) = αi xi +βi yi

and, consequently, (αi , βi ) is valid and maximal for (31). ��

3.2 Subadditivity of lifting functions

In this section, we present two families of functions that are subadditive. These func-
tions will appear as lifting functions of the seed inequalities described in Sect. 2. Direct
proofs of these results can be found in [8]; see Propositions 5.17 and 5.22 respectively.
An alternate proof technique can also be found in [9].
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Corollary 1 Let ν and Di for i = 0, 1, . . . , r be nonnegative integers that satisfy
ν > 0, D0 = 0, and Di ≥ Di−1 + ν for i = 1, . . . , r . Then, the function

g1(w) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if w < D0
w − iν if Di ≤ w < Di+1 − ν, i = 0, . . . , r − 1,
Di − iν if Di − ν ≤ w < Di , i = 1, . . . , r − 1,
Dr − rν if Dr − ν ≤ w

is subadditive over R if and only if Di + D j ≥ Di+ j for 0 ≤ i ≤ j ≤ r with
i + j ≤ r . ��

Corollary 1 equivalently shows the superadditivity ofw−g1(w), generalizing prior
similar results in the literature. In particular, see Lemmas 6 and 7 in [3] and Definition 4
in [18].

Corollary 2 Let λ and Ci for i = 0, 1, . . . , s be nonnegative integers that satisfy
λ > 0, C0 = 0, and Ci−1 + λ ≤ Ci for i = 1, . . . , s. Then, the function

g2(w) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if w < C0

i + w−Ci
λ

if Ci ≤ w < Ci + λ, i = 0, . . . , s,
i if Ci−1 + λ ≤ w < Ci , i = 1, . . . , s,
s + 1 if Cs + λ ≤ w.

is subadditive over R if and only if Ci + C j ≤ Ci+ j for 0 ≤ i ≤ j ≤ s with
i + j ≤ s. ��

3.3 Lifted inequalities by sequence-independent lifting

In this section, we derive strong inequalities for PB through lifting using (19) as seed
inequality. To describe the general form of these inequalities, we use the notion of a
cover, which is adapted from the definition of a cover for the 0−1 knapsack polytope;
see [4,14,31]. We also use the notation (x)+ to denote max{x, 0} and the notation
(x)− to denote min{x, 0}.
Definition 1 Let C ⊆ N. We say that C is a cover for B if

∑
j∈C a j > d. Further,

we define the excess of the cover as μ = ∑
j∈C a j − d > 0.

We create lifted inequalities by first partitioning the set of variables N into
(C ′, {l},M, T ) such that:

(A1) C := C ′ ∪ {l} is a cover for B with excess μ,
(A2) al ≥ a j , ∀ j ∈ C ′,
(A3) al > μ,
(A4)

∑
j∈C∪T a j > d + al , i.e.,

∑
j∈T a j > al − μ.

Note that (A1) and (A3) might be reminiscent of conditions that make a cover minimal
for the 0−1 knapsack polytope. We note however that minimal covers require a j > μ

for all j ∈ C and not simply al > μ. Note also that (A4) implies that T �= ∅. To obtain
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lifted inequalities from the partition (C ′, {l},M, T ), we first fix the variables (x j , y j )

for j ∈ M to (0, 0) and the variables (x j , y j ) for j ∈ C ′ to (1, 1). The resulting
(full-dimensional) set B(M,C ′,M,C ′) is then defined by the inequality

al xl yl +
∑

j∈T

a j x j y j ≥ d −
∑

j∈C ′
a j = al − μ.

Since al > μ and
∑

j∈T a j > al − μ from Conditions (A3) and (A4), we conclude
from Proposition 9(i) that

(al − μ)xl +
∑

j∈T

a j y j ≥ al − μ (33)

is facet-defining for PB(M,C ′,M,C ′). We will create two different families of lifted
inequalities for PB by reintroducing the variables (x j , y j ) for j ∈ M ∪C ′ in different
orders. To derive both families, we use the lifting function

P(w) := max(al − μ)−
⎧
⎨

⎩(al − μ)xl +
∑

j∈T

a j y j

⎫
⎬

⎭

s.t. al xl yl +
∑

j∈T

a j x j y j ≥ al − μ− w (34)

x j ∈ {0, 1}, y j ∈ [0, 1] ∀ j ∈ {l} ∪ T,

where w ∈ R. We next derive a closed-form expression for P(w).

Proposition 15 The lifting function P(w) defined in (34) takes the values

P(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if w < −∑ j∈T a j − μ,

w + μ if −∑ j∈T a j − μ ≤ w < −μ,
0 if −μ ≤ w < 0,
w if 0 ≤ w < al − μ,

al − μ if al − μ ≤ w

over R. Further, P(w) is subadditive over R− and R+ respectively.

Proof We first derive a closed-form expression for P(w). Observe that, if (34) is
feasible, there exists an optimal solution (x∗, y∗) to (34) for which x∗

j = 1 for j ∈ T
and y∗

l = 1 since the coefficients of x j for j ∈ T and yl in the objective are equal

to 0. Defining ā = ∑
j∈T a j and ȳ =

∑
j∈T a j y j

ā , we can simplify the formulation of
P(w) in (34) as:

P(w) = max(al − μ)− {(al − μ)xl + ā ȳ}
s.t. al xl + ā ȳ ≥ al − μ− w (35)

xl ∈ {0, 1}, ȳ ∈ [0, 1].
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When w < −ā − μ, (35) is infeasible and so P(w) = −∞. When w ≥ al − μ, the
optimal solution is x∗

l = 0 and ȳ∗ = 0 with P(w) = al −μ. For −ā−μ ≤ w < al −μ,
there are two cases. When −ā −μ ≤ w < al − ā −μ, every feasible solution (x∗

l , ȳ∗)
has x∗

l = 1. Further, the optimal solution has ȳ∗ = max{−μ−w
ā , 0}. It follows that

P(w) = min{w + μ, 0}. When al − ā − μ ≤ w ≤ al − μ, an optimal solution

must be found among the solutions (1, (−μ−w)+
ā ) and (0, al−μ−w

ā ). It follows that
P(w) = max{(w + μ)−, w} from which we obtain the desired expression for P(w)
after considering both the cases where al − ā < 0 and al − ā ≥ 0.

Subadditivity of P(w) over R− and R+ follows from Karamata/Hardy-Littlewood-
Polya inequality [15], concavity of P(w) over these domains, and P(0) = 0. ��

We note that, although P(w) is subadditive over R+ and over R−, P(w) is not
subadditive over R as P(2al −μ)+ P(−al) = (al −μ)+ (−al +μ) = 0 < al −μ =
P(al − μ).

3.3.1 Lifted bilinear cover inequalities

To obtain lifted bilinear cover inequalities, we will lift first the variables (xi , yi ) for
i ∈ C ′ from (1, 1) and then lift the variables (xi , yi ) for i ∈ M from (0, 0). Since P(w)
is subadditive over R−, we can apply sequence-independent lifting for the variables
(xi , yi ) for i ∈ C ′.

Proposition 16 Under Conditions (A1), (A2), (A3) and (A4),

∑

j∈C

(a j − μ)+x j +
∑

j∈T

a j y j ≥
∑

j∈C

(a j − μ)+ (36)

is facet-defining for PB(M,∅,M,∅).
Proof The seed inequality (33) is facet-defining for the full-dimensional polytope
PB(M,C ′,M,C ′). Since P(w) is subadditive over R−, we obtain from (29) that the
lifting coefficients (αi , βi ) for (xi , yi ) for i ∈ C ′ are valid if they satisfy

αi (xi − 1)+βi (yi −1)≥ P(ai xi yi −ai ) for (xi , yi )∈{0, 1} × [0, 1]\{1, 1}. (37)

This condition can be also written as

βi ≤ inf
0≤φ<1

−P(aiφ − ai )

1 − φ
, (38)

αi + sup
0≤φ≤1

βi (1 − φ) ≤ −P(−ai ). (39)

From Conditions (A2) and (A4), we know that ai ≤ al <
∑

j∈T a j + μ, ∀i ∈ C ′.
Therefore, in (38), aiφ−ai ∈ (−∑ j∈T a j −μ, 0) for all φ ∈ [0, 1). Since P(w) ≤ 0
for w ≤ 0, we conclude that

−P(aiφ − ai )

1 − φ
≥ 0, ∀ 0 ≤ φ < 1,
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and therefore choosing βi = 0 for i ∈ C ′ satisfies (38). Further, as βi = 0, it is simple
to verify that choosing αi = −P(−ai ) = (ai − μ)+ satisfies (39). Finally, observe

that (37) is satisfied at equality by the two points (0, 0) and
(

1, (ai −μ)+
ai

)
that are

affinely independent of (1, 1). Therefore, we conclude that (36) is facet-defining for
PB(M,∅,M,∅). ��

Now, we lift the variables (x j , y j ) for j ∈ M in (36). The corresponding lifting
function is

PC (w) := max
∑

j∈C

(a j − μ)+ −
⎧
⎨

⎩
∑

j∈C

(a j − μ)+x j +
∑

j∈T

a j y j

⎫
⎬

⎭

s.t.
∑

j∈C∪T

a j x j y j ≥
∑

j∈C

a j − μ− w (40)

x j ∈ {0, 1}, y j ∈ [0, 1] ∀ j ∈ C ∪ T .

We next derive a closed-form expression for PC (w). To this end, we assume without
loss of generality that C = {1, . . . , p} and that a1 ≥ a2 ≥ · · · ≥ ap. Let q =
max{ j ∈ C | a j > μ}. We define A0 = 0 and Ai = ∑i

j=1 a j for all i ∈ {1, . . . , q}.
Proposition 17 For w ≥ 0,

PC (w) =
⎧
⎨

⎩

w − iμ if Ai ≤ w < Ai+1 − μ, i = 0, . . . , q − 1,
Ai − iμ if Ai − μ ≤ w < Ai , i = 1, . . . , q − 1,
Aq − qμ if Aq − μ ≤ w.

Proof First, observe that there exists an optimal solution (x∗, y∗) of (40) in which
x∗

j = 1 for j ∈ T and y∗
j = 1 for j ∈ C since the corresponding objective coefficients

are zero. It follows from the definition of q that aq > μ ≥ aq+1. We thus have
(a j − μ)+ = 0 for j = q + 1, . . . , p, which implies that we can assume x∗

j = 1

for j = q + 1, . . . , p. Defining ā = ∑
j∈T a j and ȳ =

∑
j∈T a j y j

ā , we simplify the

expression of PC (w) as

PC (w) = max
q∑

j=1

(a j − μ)−
⎧
⎨

⎩

q∑

j=1

(a j − μ)x j + ā ȳ

⎫
⎬

⎭

s.t.
q∑

j=1

a j x j + ā ȳ ≥ Aq − μ− w (41)

x j ∈ {0, 1}, ∀ j = 1 . . . , q, ȳ ∈ [0, 1].

Next, we solve (41). When w ≥ Aq − μ, it is clear that x∗
j = 0 for j = 1, . . . , q

and ȳ∗ = 0 is an optimal solution for (41), showing that PC (w) = Aq − qμ. It is
therefore sufficient to consider w ∈ [0, Aq − μ). We distinguish two cases:

123



422 K. Chung et al.

1. Assume that Ai−μ ≤ w < Ai+1−μ for i ∈ {1 . . . , q−1}. Let θ = (Ai+1−μ)−w.
Clearly, 0 < θ ≤ ai+1. Define first the solution (x∗, ȳ∗) where x∗

j = 0 for

j = 1, . . . , i +1, x∗
j = 1 for j = i +2, . . . , q, and ȳ∗ = θ

ā . When θ ≤ ā, (x∗, ȳ∗)
is a feasible solution to (41) with objective value z∗ = Ai+1−(i+1)μ−θ = w−iμ.
Next consider the solution (x ′, ȳ′) where x ′

j = 0 for j = 1, . . . , i , x ′
j = 1 for

j = i +1, . . . , q, and ȳ′ = 0. Solution (x ′, ȳ′) is feasible to (41) and has objective
value z′ = Ai −iμ. It is clear that z∗ ≥ z′ when θ ≤ ai+1−μ and that z′ ≥ z∗ when
ai+1 −μ ≤ θ ≤ ai+1. Further, solution (x∗, ȳ∗) is feasible when θ ≤ ai+1 −μ as
ai+1 − μ ≤ a1 − μ ≤ ā because of Condition (A4). Therefore, we conclude that
PC (w) ≥ w − iμ if Ai ≤ w ≤ Ai+1 − μ and PC (w) ≥ Ai − iμ if Ai − μ ≤
w < Ai . We now prove that the proposed solutions are optimal. Pick any feasible
solution (x◦, ȳ◦) to (41). Define N1 = { j ∈ {1, . . . , q} | x◦

j = 1}. Consider first

the case where |N1| = q − i + k for k ∈ {0, . . . , i}. Since
∑q

j=1 a j x◦
j + ā ȳ◦ ≥∑q

j=1 a j x◦
j ≥ Aq − Ai−k , the objective value associated with (x◦, ȳ◦) satisfies

z◦ = ∑q
j=1(a j −μ)(1−x◦

j )−ā ȳ◦ ≤ Ai−k−(i−k)μ = Ai −iμ−∑i
j=i−k+1(a j −

μ) ≤ z′. Second, consider the case where |N1| = q − i − k for k ∈ {1, . . . , q − i}.
Since

∑q
j=1 a j x◦

j + ā ȳ◦ ≥ Aq − Ai+1 + θ from feasibility, the corresponding

objective value is z◦ = ∑q
j=1(a j −μ)(1−x◦

j )− ā ȳ◦ ≤ Ai+1 −θ−(i +k)μ ≤ z∗.
Since whenever z∗ ≥ z′, the solution (x∗, ȳ∗) corresponding to z∗ is feasible, the
result is proven.

2. Assume that 0 ≤ w < A1 −μ. An argument similar to that presented above shows
that the feasible solution x∗

1 = 0, x∗
j = 1 for j = 2, . . . , q, and ȳ∗ = A1−μ−w

ā is

optimal for (41), which implies that PC (w) = w. ��
In the following result, we argue that PC (w) is subadditive. This result enables us

to use Proposition 13 to perform sequence-independent lifting for the variables in M .

Corollary 3 The lifting function PC (w) is subadditive over R+.

Proof In Corollary 1, define ν = μ, r = q, and Di = Ai . Since ai ≥ μ for i =
1, . . . , q, it follows that Ai ≥ Ai−1 + μ. Further, since Ai is the sum of the largest i
coefficients in C , it is clear that Ai + A j ≥ Ai+ j for 0 ≤ i, j ≤ q with i + j ≤ q.
Therefore, Corollary 1 shows that PC (w) is subadditive over R+. ��

We next illustrate the results of Proposition 16, Proposition 17, and Corollary 3 on
an example.

Example 2 Consider the 0−1 mixed-integer bilinear covering set

B =
{
(x, y) ∈ {0, 1}5×[0, 1]5

∣∣∣∣ 21x1 y1+19x2 y2+17x3 y3+15x4 y4+10x5 y5 ≥20

}
.

Let (C ′, {l},M, T ) = ({5}, {4}, {1, 2}, {3}). Clearly, (C ′, {l},M, T ) satisfies Condi-
tions (A1)–(A4) since C = C ′ ∪ {l} is a cover with μ = 5, a4 ≥ a5, a4 > μ and∑

j∈C∪T a j = 17 + 15 + 10 > 20 + 15 = d + al . By Proposition 16, the inequality

17y3 + 10x4 + 5x5 ≥ 15 (42)
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is facet-defining for PB(M,∅,M,∅). Using Proposition 17, the lifting function PC (w)

is given by

PC (w) =

⎧
⎪⎪⎨

⎪⎪⎩

w if 0 ≤ w < 10,
10 if 10 ≤ w < 15,
w − 5 if 15 ≤ w < 20,
15 if 20 ≤ w.

Function PC (w) is shown in Fig. 1(a). Corollary 3 shows that this function is subad-
ditive over R+.

We now compute the lifting coefficients of variables (xi , yi ) for i ∈ M from
PC (w). It follows from Proposition 13 that lifting coefficients (αi , βi ) for i ∈ M must
be chosen to satisfy

αi xi + βi yi ≥ PC (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{0, 0}. (43)

For the problem described in Example 2, PC (a1x1 y1) is represented in Fig. 1(b). In
this figure, we observe that PC (a1x1 y1) is equal to zero when x1 = 0 and is equal to
PC (a1 y1) when x1 = 1. Condition (43) requires that the lifting coefficients (α1, β1)

be chosen in such a way that the plane α1x1 +β1 y1 (passing through the origin (0, 0))
overestimates the function PC (a1x1 y1) over {0, 1} × [0, 1]. To obtain strong lifting
coefficients, the plane created must touch the function described in Fig. 1(b) in at
least two independent points that are not (0, 0). Intuitively, there are two ways of
selecting these points. The first is to have the plane pass through the point (0, 1) and
a point of the form (1, yi ). The second is to have the plane pass through two points
(1, y1) and (1, y′

1). In the second case, the line passing through (y1, PC (a1 y1)) and
(y′

1, PC (a1 y′
1)) must be a facet of the concave envelope of PC (a1 y) over 0 ≤ y ≤ 1.

This is because, by (43) it overestimates PC (a1 y) over the region. On the other hand,
any linear overestimator of PC (a1 y) is implied by the facets of the concave envelope.
A similar geometric interpretation was used in [24] to obtain lifted inequalities for 0−1
mixed-integer bilinear knapsack sets. Possible overestimating planes are represented
in Fig. 1(c). It is now clear from Fig. 1(c) that good overestimating planes α1x1 +β1 y1
are in direct correspondence with the concave envelope p(w) of PC (w) over [0, a1].
We also mention that because the concave envelope of PC (w) over [0, a1] is different
from that over [0, a2], new functions pi (w) will have to be built for each new pair of
variables (xi , yi ) that is lifted. These observations motivate the following result.

Lemma 1 For i ∈ M, define

qi :=
⎧
⎨

⎩

0 if ai ≤ A1 − μ,

j if A j − μ < ai ≤ A j+1 − μ, j = 1, . . . , q − 1,
q if Aq − μ < ai .

Let Qi
0 = 0, Qi

j = A j − μ for j = 1, . . . , qi and Qi
qi +1 = ai . Further, define Δi

j =
Qi

j+1−Qi
j for j = 0, . . . , qi . Define pi

j (w) = PC (Qi
j )+

PC (Qi
j+1)−PC (Qi

j )

Δi
j

(w−Qi
j )

for j = 0, . . . , qi . Then, the function
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(c)(b)
(a)

Fig. 1 Deriving lifting coefficients for Example 3

pi (w) := min
{

pi
j (w)

∣∣∣ j ∈ {0, . . . , qi }
}

(44)

is a concave overestimator of PC (w) over [0, ai ].
Proof Clearly, pi (w) is concave since it is defined as the minimum of affine functions.
We next verify that it overestimates PC (w), i.e., PC (w) ≤ pi

k(w) for all k and w.
Consider w ∈ [Qi

j , Qi
j+1]. It follows from construction that PC (w) ≤ pi

j (w). It

remains to argue that PC (w) ≤ pi
k(w) when k �= j . To this end, observe that, for

j = 0, . . . , qi , pi
j (w) ≥ pi

j+1(w) when w ≥ Qi
j+1 and pi

j (w) ≤ pi
j+1(w) when

w < Qi
j+1. ��

Observe that the concave overestimator of PC (w) derived in Lemma 1 has qi + 1
linear pieces. Also note that the definition of qi implies that Δi

j > 0 for all j =
0, . . . , qi . Next, we compute maximal lifting coefficients for the variables (xi , yi )

where i ∈ M using sequence-independent lifting; see Proposition 13 and Lemma 1.

Theorem 1 Under Conditions (A1), (A2), (A3) and (A4), the lifted bilinear cover
inequality

∑

j∈C

(a j − μ)+x j +
∑

j∈T

a j y j +
∑

i∈M

αi xi +
∑

i∈M

βi yi ≥
∑

j∈C

(a j − μ)+ (45)

is facet-defining for PB if

(αi , βi ) ∈
qi⋃

j=0

⎧
⎨

⎩

⎛

⎝PC
(

Qi
j

)
−

PC (Qi
j+1)−PC

(
Qi

j

)

Δi
j

Qi
j ,

PC
(

Qi
j+1

)
−PC

(
Qi

j

)

Δi
j

ai

⎞

⎠

⎫
⎬

⎭

⋃{(
PC (ai ), 0

)}

for i ∈ M in (45) where Qi
j , Δ

i
j , and qi are as defined in Lemma 1.
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Proof Because PC (w) is subadditive over R+, we know that (45) is valid for PB if
the lifting coefficients (αi , βi ) of (xi , yi ) for i ∈ M are chosen to satisfy the condition

αi xi + βi yi ≥ PC (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{0, 0}. (46)

Condition (46) can be rewritten as

βiφ ≥ PC (0) for 0 < φ ≤ 1, (47)

αi + βiφ ≥ PC (aiφ) for 0 ≤ φ ≤ 1. (48)

To prove that (45) is facet-defining for PB, we also need to show two linearly inde-
pendent points (xi , yi ) for which (46) is satisfied at equality. First, consider the case
where (αi , βi ) = (PC (ai ), 0). Condition (47) is satisfied sinceβi = 0 and PC (0) = 0.
Condition (48) also holds because αi = PC (ai ) and PC (w) is non-decreasing over
R+. Further, (46) is satisfied at equality at the two points, (0, 1) and (1, 1). Finally,
consider

(αi , βi )=
⎛

⎝PC
(

Qi
j

)
−

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

Qi
j ,

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

ai

⎞

⎠

for any j ∈ {0, . . . , qi }. Clearly, (αi , βi ) satisfies (47) since βi ≥ 0 and PC (0) = 0.
From Lemma 1, we have that

PC (aiφ) ≤ PC
(

Qi
j

)
+

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

(
aiφ − Qi

j

)

=
⎛

⎝PC
(

Qi
j

)
−

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

Qi
j

⎞

⎠

+
PC

(
Qi

j+1

)
− PC

(
Qi

j

)

Δi
j

aiφ

= αi + βiφ,

showing that (αi , βi ) satisfy (48) for j = 0, . . . , qi . Further, (46) is satisfied at equality

at the two points

(
1,

Qi
j

ai

)
and

(
1,

Qi
j+1
ai

)
. Therefore, we conclude that (45) is facet-

defining for PB. ��
The concave overestimator pi (w) of Lemma 1 is in fact the concave envelope of

PC (w) over w ∈ [0, ai ]. The concave envelope of PC (ai xy) over {0, 1} × [0, 1]
implicit in the proof of Theorem 1 can also be obtained using the technique for con-
structing envelopes of functions that satisfy pairwise complementarity described in
[28]. We refer to Sect. 3 of [28] for definitions and, in particular, Proposition 3 therein
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for relevant constructions. The same construction also yields the concave envelope of
Ψ (ai xy) over {0, 1}×[0, 1] proved later in Theorem 3 using the concave overestimator
of Ψ (w) derived in Lemma 2.

Recall that Fig. 1(b) depicts PC (a1x1 y1) for inequality (42). Observe that in
Fig. 1(c), lifting coefficients (0, a1) define the plane passing through (0, 0) and (1, 0)
while lifting coefficients (PC (ai ), 0) define the plane passing through (0, 0) and (0, 1)
(which is identical to the plane obtained when j = q1 = 2). Since there are several
choices for the values of each of the pairs of lifting coefficients (αi , βi ), the family
of inequalities (45) contains an exponential number of members. Theorem 1 there-
fore provides a new illustration that sequence-independent lifting from a single seed
inequality can produce exponentially large families of inequalities, a property that was
discussed in a more general setting in Sect. 2 of [24]. We illustrate this characteristic
of lifted bilinear cover inequalities in Example 3.

Example 3 In Example 2, we established that (42) is facet-defining for PB(M,∅,
M,∅) and described the corresponding lifting function PC (w). We compute that
q1 = 2 (with Q1

0 = 0, Q1
1 = 10, Q1

2 = 20, Q1
3 = 21) and q2 = 1 (with Q2

0 = 0,
Q2

1 = 10, Q2
2 = 19). Applying Theorem 1, we obtain the nine inequalities

⎧
⎨

⎩

21y1

5x1 + 21
2 y1

15x1

⎫
⎬

⎭+
⎧
⎨

⎩

19y2
50
9 x2 + 76

9 y2
14x2

⎫
⎬

⎭+ 17y3 + 10x4 + 5x5 ≥ 15

which are all facet-defining for PB. The three possible choices for the lifting coeffi-
cients of (x1, y1) are depicted in Fig. 1(c). The fact that there are three possible choices
for (x2, y2) follows similarly, with the exception that coefficient a2 falls in the second
interval (A1 − μ, A2 − μ].

Another look at Fig. 1(b) also suggests that if we had fixed (x1, y1) at (0, 1) or
(1, 0), we would only have been able to obtain a single lifted inequality and so fixing
variables at (0, 0) in this case is crucial in discovering the exponential family of lifted
inequalities. This provides a graphical illustration of Proposition 14, which states that
all interesting lifting coefficients that can be obtained from fixing variables at (0, 1) or
(1, 0) can also be obtained from fixing variables at (0, 0). We also note that, although
there is typically an exponential number of lifted bilinear cover inequalities that can
be generated from a given seed inequality, it is simple to determine the one that is most
violated since lifting is sequence-independent in this case. In fact, given a fractional
solution (x∗, y∗), it suffices to choose, for each i ∈ M , the coefficients (αi , βi ) for
which the quantity αi x∗

i + βi y∗
i is minimized.

3.3.2 Lifted reverse bilinear cover inequalities

In Theorem 1, we derived lifted bilinear cover inequalities by first lifting the variables
(x j , y j ) for j ∈ C ′ and then lifting the variables (x j , y j ) for j ∈ M . Here, we
derive another family of lifted inequalities that we call lifted reverse bilinear cover
inequalities by changing the lifting order: we start the lifting procedure with the same
seed inequality (33), but we now lift the variables (x j , y j ) for j ∈ M before the
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variables (x j , y j ) for j ∈ C ′. In this case, we do not assume that al ≥ ai for i ∈ C ,
i.e., we do not require Condition (A2).

Proposition 18 Under Conditions (A1), (A3), and (A4), the inequality

(al − μ)xl +
∑

j∈M

min{a j , al − μ}x j +
∑

j∈T

a j y j ≥ al − μ (49)

is facet-defining for PB(∅,C ′,∅,C ′).

Proof The proof follows from Proposition 9 by letting N = M ∪ {l} ∪ T and L =
M ∪ {l}. ��

For brevity, we included a direct proof here based on Proposition 9. Proposition 18
can also be derived by lifting (33); see [9]. We emphasize that the above result does
not require Condition (A2).

To obtain facet-defining inequalities for PB, we lift the remaining variables (x j , y j )

for j ∈ C ′ in (49). To this end, we first compute the function

P M (w) := max(al − μ)−
⎧
⎨

⎩(al − μ)xl +
∑

j∈M

min{a j , al − μ}x j +
∑

j∈T

a j y j

⎫
⎬

⎭

s.t. al xl yl +
∑

j∈M∪T

a j x j y j ≥ al − μ− w

x j ∈ {0, 1}, y j ∈ [0, 1] ∀ j ∈ {l} ∪ M ∪ T (50)

for w ∈ R−.
Let M = M1 ∪ M2 where M1 = {i ∈ M | ai > al −μ} and M2 = M\M1. Assume

without loss of generality that {l} ∪ M1 = {1, . . . , q} and a1 ≥ a2 ≥ · · · ≥ aq

where q = |M1| + 1. Further, define A0 = 0 and Ai = ∑i
j=1 a j for i = 1, . . . , q.

Observe that al +∑ j∈M∪T a j = Aq +∑ j∈M2
a j +∑ j∈T a j . We derive a closed-form

expression for P M (w) in the following proposition.

Proposition 19 The lifting function P M (w) defined in (50) takes the values

P M (w)

=

⎧
⎪⎪⎨

⎪⎪⎩

−∞ if w < −μ−∑
j∈M∪T a j ,

w + Aq − q(al − μ) if −μ−∑
j∈M∪T a j ≤ w < −Aq + (al − μ),

−i(al − μ) if −Ai+1 + (al − μ) ≤ w < −Ai , i = 0, . . . , q − 1,
w + Ai − i(al − μ) if −Ai ≤ w < −Ai + (al − μ), i = 1, . . . , q − 1,

for w ∈ R−.

Proof First, we observe that, if (50) has a feasible solution, then it has an optimal
solution (x∗, y∗) that satisfies x∗

j = 1 for j ∈ T and y∗
j = 1 for j ∈ M ∪ {l} since

the objective coefficients corresponding to these variables are zero. Using the notation

ā = ∑
j∈T a j and ȳ =

∑
j∈T a j y j

ā , we simplify the expression of P M (w) as
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P M (w) = max(al − μ)−
⎧
⎨

⎩
∑

j∈{l}∪M1

(al − μ)x j +
∑

j∈M2

a j x j + ā ȳ

⎫
⎬

⎭

s.t.
∑

j∈{l}∪M1

a j x j +
∑

j∈M2

a j x j + ā ȳ ≥ al − μ− w (51)

x j ∈ {0, 1} ∀ j ∈ {l} ∪ M1 ∪ M2, ȳ ∈ [0, 1].

After introducing â = ∑
j∈M2

a j + ā and ŷ =
∑

j∈M2
a j x j +ā ȳ

â , we claim that P M (w)

can be written as

P M (w) = max(al − μ)−
⎧
⎨

⎩

q∑

j=1

(al − μ)x j + â ŷ

⎫
⎬

⎭

s.t.
q∑

j=1

a j x j + â ŷ ≥ al − μ− w (52)

x j ∈ {0, 1} ∀ j ∈ {1, . . . , q}, ŷ ∈ [0, 1].

We next prove that (51) and (52) are equivalent. To do so, we show that (51) has a
feasible solution (x∗

l , x∗
M1
, x∗

M2
, ȳ∗) with objective value ζ ∗ if and only if (52) has

a feasible solution (x∗
l , x∗

M1
, ŷ∗) with objective value ζ ∗. On the one hand, given

(x∗
l , x∗

M1
, x∗

M2
, ȳ∗), we can obtain (x∗

l , x∗
M1
, ŷ∗) directly from the definition of ŷ. The

objective values of these two solutions are identical. On the other hand, let M2 =
{q +1, . . . ,m}. Define Â0 = 0 and Âi = ∑q+i

j=q+1 a j for i = 1, . . . ,m −q. Then, for
a given (x∗

l , x∗
M1
, ŷ∗), we build (x∗

l , x∗
M1
, x∗

M2
, ȳ∗) as follows. Define m̂ = max{i ∈

{0, . . . ,m − q} | Âi ≤ â ŷ∗} and set x∗
q+ j = 1 for j ≤ m̂, x∗

q+ j = 0 for j > m̂

and ȳ∗ = â ŷ∗− Âm̂
ā . We argue next that this solution is feasible. First observe that

â ŷ∗ − Âm̂ ≤ aq+m̂+1 when m̂ ≤ m −q −1 and that â ŷ∗ − Âm̂ ≤ ā when m̂ = m −q.
Since ā = ∑

j∈T a j > al −μ ≥ ai for all i ∈ M2 because of Condition (A4) and the

definition of M2, we easily conclude that 0 ≤ â ŷ∗− Âm̂
ā ≤ 1. Also,

∑
j∈{l}∪M1

a j x∗
j +

∑
j∈M2

a j x∗
j + ā ȳ∗ = ∑

j∈{l}∪M1
a j x∗

j + Âm̂ + â ŷ∗ − Âm̂ = ∑
j∈{l}∪M1

a j x∗
j + â ŷ∗.

This shows that the proposed solution is feasible for (51) and has the same objective
value as (x∗

l , x∗
M1
, ŷ∗).

Next, we study (52). It is clear that this problem is infeasible if and only if w <

al −μ− Aq −â = −μ−∑ j∈M∪T a j . Therefore, assume thatw ≥ −μ−∑ j∈M∪T a j .
Consider now any optimal solution (x∗, ŷ∗) for which x∗

i < x∗
t and i < t for some

i, t ∈ {1 . . . , q}. Then the solution (x̄, ŷ∗) where x̄k = x∗
k if k �= i and k �= t ,

x̄i = x∗
t , and x̄t = x∗

i is also feasible for (52) since ai ≥ at and has the same
objective value as (x∗, ŷ∗). It follows that (52) has an optimal solution that satisfies
x∗

j = 0 for j = 1, . . . , i and x∗
j = 1 for j = i + 1, . . . , q for some i ∈ {0, . . . , q}.

Consider such a solution further. On the one hand, if
∑i

j=1 a j ≥ al − μ − w, then
∑i−1

j=1 a j < al −μ−w and ŷ∗ = 0. Otherwise the solution x◦
j = 1 for j = 1, . . . , i−1,
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x◦
j = 0 for j = i, . . . , q and ŷ◦ = 0 would be feasible and would have a better

objective value. On the other hand, if
∑i

j=1 a j < al − μ − w for i ≤ q − 1 then
∑i+1

j=1 a j ≥ al −μ−w. Otherwise the solution x◦
j = 1 for j = 1, . . . , i + 1, x◦

j = 0

for j = i + 2, . . . , q and ŷ◦ = ŷ∗ − ai+1
â would be feasible and would have an

objective value ai+1 − (al − μ) larger than that of (x∗, y∗). This is a contradiction
since ai+1 > al − μ.

We consider two situations. First, assume−Aq+(al−μ)−â ≤ w < −Aq+(al−μ).
It follows from the above discussion that there is an optimal solution (x∗, ŷ∗) with
x∗ = 1. Then ŷ∗ = al−μ−w−Aq

â . Clearly, ŷ∗ ∈ [0, 1] and so P M (w) = w + Aq −
q(al − μ). Second, assume −Ai+1 + (al − μ) ≤ w < −Ai + (al − μ) for some
i ∈ {0, . . . , q − 1}. It follows from the above discussion that one of the following two
solutions

xΥ1 = xΥ2 = · · · = xΥi+1 = 1, xΥi+2 = · · · = xΥq = 0, ŷΥ = 0, and

xΛ1 = xΛ2 = · · · = xΛi = 1, xΛi+1 = · · · = xΛq = 0, ŷΛ = al − μ− w − Ai

â

with objective values zΥ = −i(al − μ) and zΛ = −i(al − μ)+ (w + Ai ) is optimal
for (52) since al − μ − w ∈ (Ai , Ai+1]. Note that the second solution is feasible
only when al − μ− w − Ai ≤ â. We now consider two cases. When w ≤ −Ai then
zΥ ≥ zΛ and so P M (w) = −i(al − μ). When w > −Ai , then zΛ > zΥ . Further,
solution (xΛ, ŷΛ) is feasible since al −μ−w− Ai < al −μ ≤ â because of Condition
(A4). It follows that P M (w) = −i(al − μ)+ (w + Ai ). ��

To perform sequence-independent lifting for the variables (x j , y j ) for j ∈ C ′, we
verify that the function P M (w) is subadditive over R−.

Proposition 20 The lifting function P M (w) is subadditive over R−.

Proof First, note that P M (w) is subadditive over R− if it is subadditive over I =
[−μ − ∑

j∈M∪T a j , 0]. Consider Corollary 1 and define Di = Ai , ν = al − μ,

and r = q. Observe that P M (w) = g1(−w) + w. Clearly, Ai + A j ≥ Ai+ j for
0 ≤ i ≤ j ≤ q with i + j ≤ q since Ai is the sum of the largest i coefficients in
M1 ∪ {l}. It then follows from Corollary 1 that P M (w) is subadditive over I , proving
the result. ��

We next illustrate the results of Propositions 18, 19, and 20 via an example.

Example 4 For the set B of Example 2, consider the partition (C ′, {l},M, T ) =
({3}, {4}, {5}, {1, 2}). This partition satisfies Conditions (A1), (A3), and (A4) since
C is a cover withμ = 12, a4 > μ, and

∑
j∈C∪T a j = 21+19+17+15 > 20+15 =

d + al . We obtain from Proposition 18 that

3x4 + 3x5 + 21y1 + 19y2 ≥ 3 (53)

is facet-defining for PB(∅,C ′,∅,C ′). Further, the lifting function P M (w) over R− is
given by
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P M (w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if w < −62
w + 19 if −62 ≤ w < −22
−3 if −22 ≤ w < −15
w + 12 if −15 ≤ w < −12
0 if −12 ≤ w ≤ 0,

as described in Proposition 19 since q = 2, A0 = 0, A1 = 15, and A2 = 25.

Similar to Theorem 1, we compute the lifting coefficients for the variables (xi , yi )

for i ∈ C ′ using sequence-independent lifting; refer to the discussion following Propo-
sition 13.

Theorem 2 Suppose that Conditions (A1), (A3), and (A4) hold. Then, the lifted reverse
bilinear cover inequality

(al − μ)xl −
∑

j∈C ′
P M (−a j )x j

+
∑

j∈M

min{a j , al − μ}x j +
∑

j∈T

a j y j ≥ (al − μ)−
∑

j∈C ′
P M (−a j ) (54)

is facet-defining for PB.

Proof Since P M (w) is subadditive over R−, the lifting coefficients (αi , βi ) of the
variables (xi , yi ) for i ∈ C ′ are valid if they are chosen to satisfy

αi (xi − 1)+ βi (yi − 1) ≥ P M (ai xi yi − ai ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{1, 1}.
(55)

Condition (55) can be rewritten as

βi ≤ inf
0≤φ<1

−P M (aiφ − ai )

1 − φ
, (56)

αi + sup
0≤φ≤1

βi (1 − φ) ≤ −P M (−ai ). (57)

Because of Assumption 2, we know that ai ≤ ∑
j∈N a j − d = ∑

j∈C∪M∪T a j −
(
∑

j∈C a j −μ) = μ+∑
j∈M∪T a j for all i ∈ C ′ ⊆ N and so P M (aiφ− ai ) > −∞

for all φ ∈ [0, 1). Choosing βi = 0 satisfies (56) since P M (aiφ − ai ) ≤ 0 for all
φ ∈ [0, 1). Moreover, as βi = 0, it is easily verified that choosing αi = −P M (−ai )

satisfies (57). Finally, note that (55) is tight at the points (0, 0) and
(

1, (ai −A1+al−μ)+
ai

)
,

which proves that (54) is facet-defining for PB. ��
Note that the lifted reverse bilinear cover inequality (54) we obtained through lifting

is unique. This is a significant difference from lifted bilinear cover inequalities (45).
We next show that not all lifted reverse bilinear cover inequalities (54) can be derived
as lifted bilinear cover inequalities (45).
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Example 5 For the partition (C ′, {l},M, T ) = ({3}, {4}, {5}, {1, 2}), we established
in Example 4 that (53) is facet-defining for PB(∅,C ′,∅,C ′). Applying Theorem 2, we
obtain the following lifted reverse bilinear cover inequality

3x3 + 3x4 + 3x5 + 21y1 + 19y2 ≥ 6, (58)

which is facet-defining for PB. Inequality (58) cannot be obtained as a lifted bilinear
cover inequality (45). In fact, if (58) was of the form (45), it should be that C ⊆ {3, 4, 5}.
However, none of the four possible covers C1 = {3, 4}, C2 = {3, 5}, C3 = {4, 5} and
C4 = {3, 4, 5} yields (58).

3.4 Lifted inequalities by approximate lifting

We now derive another family of lifted inequalities from the seed inequality (23)
developed in Proposition 11. To this end, we first identify a partition (K ,M) of the
set of variables N that satisfies the following conditions

(C1)
∑

j∈K a j − ak ≥ d for all k ∈ K ,
(C2)

∑
j∈K a j −ak −am < d for all k �= m ∈ K , i.e., ak +am > μ for all k �= m ∈ K ,

where μ = ∑
j∈K a j − d is the excess of K . Note that Condition (C1) implies that K

is a cover. Further, Condition (C1) requires that K\{k} is also a cover for all k ∈ K and
so ak ≤ μ for all k ∈ K . It also follows from Condition (C1) that |K | ≥ 2. We refer
to a set K satisfying Conditions (C1) and (C2) as a clique. After fixing the variables
(xi , yi ) for i ∈ M to (0, 0), it follows from Proposition 11 that the clique inequality

∑

j∈K

x j ≥ |K | − 1 (59)

is facet-defining for PB(M,∅,M,∅).
We now lift the remaining variables (xi , yi ) for i ∈ M in two steps. We assume

without loss of generality that K = {1, . . . , r} and that a1 ≤ a2 ≤ . . . ≤ ar . We define
μ′ = a1+a2−μ. We assume that ar+1 ≤ · · · ≤ an and define p such that

∑p
i=r+1 ai <

μ′ and either p = n or μ′ ≤ ∑p+1
i=r+1 ai . Let M̂ = {ar+1, . . . , ap}. (More generally,

M̂ can be taken to be any maximal subset of M such that
∑

i∈M̂ ai < μ′ without
altering the form of the derived inequality.) We show that (59) is facet-defining for
PB(M\M̂,∅,M\M̂,∅). First, we show by contradiction that the inequality is valid.
Let (x, y) be such that

∑
j∈K x j < r − 1. Then,

p∑

j=1

a j x j y j ≤
p∑

j=3

a j = d − μ′ +
p∑

j=r+1

a j < d,

where the first inequality holds since a1 ≤ · · · ≤ ar and
∑

j∈K x j < r − 1 and the

last inequality follows since
∑p

j=r+1 a j < μ′. This inequality implies that (x, y) �∈
B(M\M̂,∅,M\M̂,∅), the desired contradiction. By Proposition 10, it suffices to
show that (59) is facet-defining for PB(M\M̂,∅,M\M̂, K ∪ M̂). Define χ ∈ R

|N |
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to be an indicator vector for the elements of K , i.e., χ j = 1 for j ∈ K and χ j = 0
otherwise. Then, by (C1), pk = χ − ek for k ∈ K and qk = χ − e1 + ek for k ∈ M̂ ,
are feasible. Since these points are linearly independent, (59) is facet-defining for
PB(M\M̂,∅,M\M̂,∅).

We now lift variables (xi , yi ) for i ∈ M := M\M̂ . The lifting function correspond-
ing to (59) is defined as

Φ(w) := max (|K | − 1)−
∑

j∈K

x j

s.t.
∑

j∈K

a j x j y j +
∑

j∈M̂

a j x j y j ≥ d − w (60)

x j ∈ {0, 1}, y j ∈ [0, 1] ∀ j ∈ K ∪ M̂ .

We define a′ = ∑
j∈M̂ a j , μ̄ = μ′ − a′, B0 = 0, and Bi = ∑i

j=1 a j+2−a′ for

i = 1, . . . , r −2. It follows from the definition of M̂ that μ̄ > 0. Observe that B0 ≤ B1
because a3 − a′ ≥ a3 − μ′ = a3 − a1 − a2 + μ ≥ −a2 + μ ≥ 0, where the last
inequality follows from (C1). Also, observe that Br−2 +μ̄ = d −a′ and, for all i ∈ M ,
ai ≥ ap+1 ≥ μ′ − a′ = μ̄, where the last inequality follows from the definition of
M̂ . Using the observation that, in an optimal solution to the lifting problem, clique
variables with larger coefficients can always be chosen to have larger values than
clique variables with smaller coefficients, we obtain the following result.

Proposition 21 The lifting function Φ(w) defined in (60) takes the values

Φ(w) =
⎧
⎨

⎩

0 if 0 ≤ w < μ̄,

i if Bi−1 + μ̄ ≤ w < Bi + μ̄, i = 1, . . . , r − 2,
r − 1 if Br−2 + μ̄ ≤ w

for w ≥ 0. ��
In Sect. 3.3.1, all lifting functions were subadditive over appropriate ranges.

As a result, strong valid inequalities for PB were easily obtained using sequence-
independent lifting. The lifting function Φ(w) derived in Proposition 21, however, is
not subadditive. To circumvent the difficulties associated with sequence-dependent
lifting in such a situation, [13] proposed to use approximate lifting. Following
their approach, we say that Ψ (w) is a valid subadditive approximation of Φ(w) if
Ψ (w) ≥ Φ(w) for allw ∈ R+ andΨ (w) is subadditive. We say that a valid subadditive
approximation Ψ (w) is nondominated if there is no other valid subadditive approxi-
mation Ψ ′(w) of Φ(w) with Ψ ′(w) ≤ Ψ (w) for all w ∈ R+ and Ψ ′(w′) < Ψ (w′)
for some w′ ∈ R+. We also define the notion of maximal set E = {w ∈ R+ |
Φ i (w) = Φ(w) ∀i ∈ M, for all coefficients ai ∈ R+and for all lifting orders}, where
Φ i denotes the lifting function associated with sequentially lifting the i th variable. A
valid subadditive approximation Ψ (w) of Φ(w) is called maximal if Ψ (w) = Φ(w)

for all w ∈ E . It is clear that a maximal nondominated approximation of Φ leads
to strong inequalities that can be obtained efficiently for PB. The approximation of
Φ(w) we use has the form of g2(w) presented in Corollary 2.
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We next describe in Proposition 22 a subadditive, nondominated and maximal
approximation of Φ(w) over R+.

Proposition 22 The function

Ψ (w) :=
⎧
⎨

⎩

i + w−Bi
μ̄

if Bi ≤ w < Bi + μ̄, i = 0, . . . , r − 2,
i if Bi−1 + μ̄ ≤ w < Bi , i = 1, . . . , r − 2,
r − 1 if Br−2 + μ̄ ≤ w,

is a valid subadditive approximation ofΦ(w) that is nondominated and maximal over
R+.

Proof Note that Ψ (w) = Φ(w) when w ∈ [Bi−1 + μ̄, Bi ] for i ∈ {1, . . . , r − 2} and
when w ≥ Br−2 + μ̄. Further,

Ψ (w) = Φ(w)+ w − Bi

μ̄
≥ Φ(w)

whenw ∈ (Bi , Bi +μ̄) for i ∈ {0, . . . , r −2}. Next, we show thatΨ (w) is subadditive
over R+. In Corollary 2, let s = r − 2, Ci = Bi and λ = μ̄. Since Bi is the
sum of the smallest i coefficients in K\{1, 2}, it is clear that Bi + B j ≤ Bi+ j for
0 ≤ i ≤ j ≤ r − 2 with i + j ≤ r − 2. Therefore, Ψ (w) is subadditive over R+.We
now argue nondominance and maximality over R+. To this end, we first observe that
for all w′ ∈ R+ there exists w′′ ∈ R+ such that

Ψ (w′)+ Ψ (w′′) = Φ(w′ + w′′). (61)

In particular,w′′ can be chosen to be Bi +μ̄−w′ whenw′ ∈ (Bi , Bi +μ̄) andw′′ can be
chosen to be 0 otherwise. IfΨ ′ dominatesΨ strictly atw′ thenΨ ′(w′+w′′) ≤ Ψ ′(w′)+
Ψ ′(w′′) < Ψ (w′)+Ψ (w′′) = Φ(w′ +w′′) yielding a contradiction to the assumption
that Ψ ′ is an overestimator of Φ. Similarly, if Φ(w′) < Ψ (w′) then (61) implies that
Φ(w′) < Ψ (w′) = Φ(w′ + w′′) − Ψ (w′′) ≤ Φ(w′ + w′′) − Φ(w′′). Therefore,
Φ(w′) does not yield a valid lifting coefficient for the sequential perturbation of w′
after w′′. ��
Example 6 For the bilinear set B studied in Example 2, consider K = {3, 4, 5}. Set
K satisfies Conditions (C1) and (C2) with μ = 22. It follows from Proposition 11 that

x3 + x4 + x5 ≥ 2 (62)

is facet-defining for B({1, 2},∅, {1, 2},∅). Let M̂ = ∅. The lifting function of (62)
obtained using Proposition 21 and its valid subadditive approximationΨ (w) obtained
in Proposition 22 are given by

Φ(w) =
⎧
⎨

⎩

0 if 0 ≤ w < 3,
1 if 3 ≤ w < 20,
2 if 20 ≤ w

and Ψ (w) =

⎧
⎪⎪⎨

⎪⎪⎩

w
3 if 0 ≤ w < 3,
1 if 3 ≤ w < 17,
1 + w−17

3 if 17 ≤ w < 20,
2 if 20 ≤ w

as r = 3, μ̄ = 3, B0 = 0, and B1 = 17.
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Fig. 2 A valid subadditive
approximation Ψ (w) of Φ(w)
for Example 6

In Fig. 2, we present the lifting function Φ(w) of the clique inequality derived in
Proposition 21 and its valid subadditive approximation Ψ (w) obtained in Proposi-
tion 22 for the particular case of inequality (62) discussed in Example 6. The func-
tion Φ(w) is depicted with a dotted line while Ψ (w) is represented using a solid
line. Observe that, for 0 < w ≤ μ̄ = 3, the approximation is exact only when
w = μ̄ = 3, i.e., Ψ (μ̄) = Φ(μ̄). For w ≥ μ̄ = 3, the approximation is exact when
3 = μ̄ ≤ w ≤ B1 = 17 and w ≥ B1 + μ̄ = 20. Next, we obtain a concave over-
estimator of Ψ (w) in Lemma 2, in a manner similar to Lemma 1, that we will use in
Theorem 3 to compute lifting coefficients for the variables in M .

Lemma 2 For i ∈ M, define

qi :=
⎧
⎨

⎩

0 if ai ≤ μ̄,

j + 1 if B j + μ̄ < ai ≤ B j+1 + μ̄, j = 0, . . . , r − 3,
r − 1 if Br−2 + μ̄ < ai .

Let W i
0 = 0, W i

j = B j−1 + μ̄ for j = 1, . . . , qi and W i
qi +1 = ai . Define Δi

j =
W i

j+1−W i
j for j =0, . . . , qi . Define alsoψ i

j (w)=Ψ (W i
j )+

Ψ (W i
j+1)−Ψ (W i

j )

Δi
j

(w−W i
j )

for j = 0, . . . , qi . Then, the function

ψ i (w) := min
{
ψ i

j (w)

∣∣∣ j ∈ {0, . . . , qi }
}

(63)

is a concave overestimator of Ψ (w) over [0, ai ]. ��
The concave overestimator ψ i (w) of Lemma 2 can be used to obtain lifting coef-

ficients in a manner similar to that of Theorem 1. Because of the way the concave
overestimator is built, it can be observed that all of its affine pieces (except possibly
ψ i

qi
) touch the original lifting function Φ at two points and therefore can be used to

generate strong lifting coefficients. To describe whether ψ i
qi

touches Φ in two points,
we define I (ai ) to be the function that returns 0 if Φ(ai ) = Ψ (ai ) and returns 1
otherwise, i.e.,
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I (ai ) :=
{

0 if Bqi −1 + μ̄ < ai ≤ Bqi or ai > Br−2 + μ̄,

1 if Bqi < ai ≤ Bqi + μ̄.

We observe that, when I (ai ) = 0, it is possible to derive maximal lifting coefficients
(with respect toΦ) from all affine pieces ofψ i since each affine piece ofψ i touchesΦ
in at least two points. When I (ai ) = 1, however, we can only guarantee the derivation
of maximal lifting coefficients (with respect to Φ) from ψ i

j for j = 0, . . . , qi − 1.

In fact, the last affine piece of ψ i , i.e., ψ i
qi

touches Φ in a single point. This, in turn,
implies that the lifting coefficients derived from the last affine piece of ψ i might not
be maximal. Since the only two pairs of lifting coefficients derived from the last affine
piece of ψ i are (α j

i , β
j

i ) where j = qi and j = qi + 1, we introduce the notation
1{ ji ≥qi } to represent the indicator function that returns 1 if ji ≥ qi and 0 otherwise.
Using this notation, it is clear that two new tight affinely independent points are added
after lifting variables (xi , yi ), unless I (ai ) = 1 and 1{ ji ≥qi } = 1, in which case only
a single tight point is guaranteed to be added. It also follows that a facet-defining
inequality of PB will be produced if I (ai ) × 1{ ji ≥qi } = 0 for all i ∈ M . These
intuitive observations are formalized in the following theorem.

Theorem 3 Under Conditions (C1) and (C2),

∑

j∈K

x j +
∑

i∈M

α
ji
i xi +

∑

i∈M

β
ji

i yi ≥ |K | − 1 (64)

defines a face of PB of dimension at least (2n − 1) −∑
i∈M I (ai ) × 1{ ji ≥qi } for all

ji ∈ {0, . . . , qi + 1} and for all i ∈ M where

(
α

j
i , β

j
i

)
=
⎛

⎝Ψ
(

W i
j

)
−
Ψ
(

W i
j+1

)
−Ψ

(
W i

j

)

Δi
j

W i
j ,
Ψ
(

W i
j+1

)
− Ψ

(
W i

j

)

Δi
j

ai

⎞

⎠

for j = 0, . . . , qi ,(
α

qi +1
i , β

qi +1
i

)
= (Ψ (ai ), 0) , (65)

and μ̄, W i
j , Δ

i
j and qi are as defined in Lemma 2. For a given inequality of the form

(64), let L = {i ∈ M | ji ≥ qi , I (ai ) = 1}. Then (64) is facet-defining for PB if one
of the following conditions holds:

1. L = ∅.
2. ∃ī ∈ M such that jī = 0.

Proof It follows from Proposition 22 that Ψ (w) is a valid subadditive approximation
of Φ(w) for w ≥ 0. Hence, lifting coefficients (αi , βi ) of (xi , yi ) for i ∈ M are valid
if they satisfy the condition

αi xi + βi yi ≥ Ψ (ai xi yi ) for (xi , yi ) ∈ {0, 1} × [0, 1]\{0, 0}. (66)
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Condition (66) can be restated as

βiφ ≥ Ψ (0) for 0 < φ ≤ 1, (67)

αi + βiφ ≥ Ψ (aiφ) for 0 ≤ φ ≤ 1. (68)

To prove that (64) defines a face of PB of dimension at least (2n −1)−∑i∈M I (ai )×
1{ ji ≥qi } when lifting coefficients are chosen according to (65), we will show that, for
each i ∈ M ,

αi xi + βi yi = Φ(ai xi yi ) (69)

is satisfied at equality by at least 2 − I (ai )× 1{ ji ≥qi } independent points.
First, consider the case where (αi , βi ) = (Ψ (ai ), 0). Observe that (67) is satisfied

since βi = 0 and Ψ (0) = 0. Further, (68) holds as αi = αi +βiφ = Ψ (ai ) ≥ Ψ (aiφ)

sinceΨ is a non-decreasing function. It is easily verified that (69) is satisfied at equality
at the point (0, 1). Further, when I (ai ) = 0, then (69) is also satisfied at equality at
the point (1, 1).

Second, consider the case where

(αi , βi ) =
⎛

⎝Ψ
(

W i
j

)
−
Ψ
(

W i
j+1

)
− Ψ

(
W i

j

)

Δi
j

W i
j ,
Ψ
(

W i
j+1

)
− Ψ

(
W i

j

)

Δi
j

ai

⎞

⎠ .

Clearly, (αi , βi ) satisfies (67) since βi ≥ 0. From Lemma 2, we have that

Φ(aiφ) ≤ Ψ (aiφ) ≤ Ψ
(

W i
j

)
+ Ψ (W i

j+1)−Ψ
(

W i
j

)

Δi
j

(
aiφ − W i

j

)

=
(
Ψ (W i

j )− Ψ
(

W i
j+1

)
−Ψ

(
W i

j

)

Δi
j

W i
j

)
+ Ψ

(
W i

j+1

)
−Ψ

(
W i

j

)

Δi
j

aiφ

= αi + βiφ.

We now present points that satisfy (69) at equality. Observe first that, for j = 0, . . . , qi ,

the point (x∗
i , y∗

i ) = (1,
W i

j
ai
) satisfies (69) at equality since Ψ (ai x∗

i y∗
i ) = Ψ (W i

j ) =
Ψ (B j−1 + μ̄) = Φ(B j−1 + μ̄). Similarly, for j = 0, . . . , qi − 1, the point (x∗

i , y∗
i ) =(

1,
W i

j+1
ai

)
satisfies (69) at equality. For j = qi , the point

(
1,

W i
j+1
ai

)
reduces to

(1, 1) which satisfies (69) at equality when Ψ (ai ) = Φ(ai ), i.e., when I (ai ) = 0.
Therefore, we conclude that (64) defines a face of PB of dimension at least (2n −1)−∑

i∈M I (ai )× 1{ ji ≥qi }.
We also conclude from the above derivation that when, for all i ∈ M , either ji < qi

or I (ai ) = 0, i.e., L = ∅, then the face of PB that (64) defines has dimension 2n − 1
showing that (64) is facet-defining for PB and proving Condition 1. Now, we show
that (64) is also facet-defining if Condition 2 holds, i.e., jı̄ = 0 for some ı̄ ∈ M . We
first lift (xı̄ , yı̄ ). Since aı̄ ≥ μ̄ (see discussion preceding Proposition 21), it follows
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that (α0
ı̄ , β

0
ı̄ ) = (0, aı̄

μ̄
). Then, we lift the variables in M\{L ∪ {ı̄}} and choose any

ji ≤ qi + 1 for these variables. The above proof shows that the resulting inequality
is facet-defining for PB(L\{ı̄},∅, L\{ı̄},∅). Since PB(L\{ı̄},∅, L\{ı̄},∅) ⊆ PB, all
the points tight for (64) are feasible to PB. Now, we lift a variable i ′ ∈ L\{ı̄}. Let

F(w, a) =
{
(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
∑

i∈K

ai xi yi ≥ d − a′ − w and

∑

i∈K

xi = |K | − 1 − a

}
.

We show that there exists p ∈ F(Bqi ′ + μ, qi ′ + 1) which is feasible to PB and tight
on (64). First note that F(Bqi ′ +μ, qi ′ + 1) �= ∅ because Φ(Bqi ′ +μ) = qi ′ + 1. Let
p = (x ′, y′). By the definition of F(w, a), we are free to redefine (x ′

i , y′
i ) for i �∈ K .

Let x ′
i = y′

i = 0 for i ∈ M\{L ∪ {ı̄}} and let x ′
i = y′

i = 1 for i ∈ M̂ . Let x ′̄
ı = 1 and

y ′̄
ı = Bqi ′ +μ̄−ai ′

aı̄
. Since aı̄ ≥ μ̄ and Bqi ′ < ai ′ ≤ Bqi ′ + μ̄, it follows that 0 < yı̄ ≤ 1.

Finally, we set (x ′
i ′ , y′

i ′) = (1, 1). Note that aı̄ x ′̄
ı y ′̄

ı + ai ′ x ′
i ′ y

′
i ′ = Bqi ′ + μ̄ and

α0
ı̄ x ′̄

ı + β0
ı̄ y ′̄

ı + α
ji ′
i ′ x ′

i ′ + β
ji ′

i ′ y′
i ′ = Bqi ′ + μ̄− ai ′

μ̄
+ qi ′ + ai ′ − Bqi ′

μ̄

= qi ′ + 1 = Ψ (Bqi ′ + μ) = Φ(Bqi ′ + μ),

where the first equality holds since (α0
ı̄ , β

0
ı̄ ) = (0, aı̄

μ̄
), (α

ji ′
i ′ , β

ji ′
i ′ ) = (qi ′ −

θ
Bqi ′−1

+μ̄
ai ′

, θ) when ji ′ = qi ′ and
(
α

ji ′
i ′ , β

ji ′
i ′
)

= (Ψ (ai ′), 0) when ji ′ = qi ′ + 1

where θ = (Ψ (ai ′ )−qi ′ )ai ′
ai ′−Bqi ′ −1−μ̄ and Ψ (ai ′) = qi ′ + ai ′−Bqi ′

μ̄
. Therefore, p ∈ PB and is tight

for (64). For ji ′ = qi ′ , we have already demonstrated that there exists a point of PB

tight for (64) that sets (xi ′ , yi ′) =
(

1,
W i ′

ji ′
ai ′

)
. For ji ′ = qi ′ + 1, there is a point of PB

tight for (64) such that (xi ′ , yi ′) = (0, 1). For ji ′ = qi ′ , affine independence follows

since ai ′ > W i ′
ji ′ implies that (0, 0), (1, 1), and

(
1,

W i ′
ji ′

ai ′

)
are affinely independent.

For ji ′ = qi ′+1, affine independence follows from the affine independence of (0, 0),
(1, 1), and (0, 1). ��

Inequalities (64) can be facet-defining depending on the value of the coefficients
ai and the choice of lifting coefficients (αi , βi ) for i ∈ M . As mentioned before, M̂
may be chosen to be any subset of M that satisfies

∑
i∈M̂ ai < μ′. In this case, (64)

will be facet-defining if max{ai | i ∈ M, ji = 0} ≥ μ̄ but it may not be facet-defining
otherwise. The next example illustrates the use of (64) in deriving facets of PB.

Example 7 Consider the clique inequality (62) of Example 6 and its corresponding
approximate lifting function. We have q1 = 2 and q2 = 1 with W 1

0 = 0, W 1
1 = 3,

W 1
2 = 20, W 1

3 = 21, and W 2
0 = 0, W 2

1 = 3, W 2
2 = 19. Applying Theorem 3, we

obtain the following nine inequalities
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⎧
⎪⎪⎨

⎪⎪⎩

21
3 y1

14
17 x1 + 21

17 y1

2x1

⎫
⎪⎪⎬

⎪⎪⎭
+

⎧
⎪⎪⎨

⎪⎪⎩

19
3 y2

21
24 x2 + 19

24 y2

5
3 x2

⎫
⎪⎪⎬

⎪⎪⎭
+ x3 + x4 + x5 ≥ 2,

which define faces of PB of dimension at least 8 since I (a1) = 0 and I (a2) = 1. It
follows from the first condition of Theorem 3 that the following three inequalities

⎧
⎪⎪⎨

⎪⎪⎩

21
3 y1

14
17 x1 + 21

17 y1

2x1

⎫
⎪⎪⎬

⎪⎪⎭
+ 19

3
y2 + x3 + x4 + x5 ≥ 2

are facet-defining for PB since j2 < q2. The following two inequalities also define
facets of PB

21

3
y1 +

{
21
24 x2 + 19

24 y2

5
3 x2

}
+ x3 + x4 + x5 ≥ 2,

since they satisfy the second condition for facet-defining inequalities in Theorem 3 as
j1 = 0.

4 Relations to fixed-charge single-node flow model without inflows

In Sect. 3, we derived strong valid inequalities for the bilinear set B using lifting. In
this section, we show that many of these lifted inequalities are also facet-defining for
the convex hull of the fixed-charge single-node flow model without inflows F defined
in Sect. 1. It is easy to see that F ⊆ B; see [9] for a proof.

Lemma 3 The bilinear covering set B is a relaxation of the flow set F. ��
Fixed-charge single-node flow sets are important in practice since they can be used

as a source of cutting planes for 0−1 mixed-integer programs. Further, they naturally
arise in the formulation of fixed-charge network problems; see [2,12,18,19,22]. The
fixed-charge single-node flow set F without inflows was first studied by [22] under
the assumptions that (i) ai ≤ d and (i i)

∑n
j=1 a j > d + ai for all i ∈ N . In the

following, we relate the facets of PF to those of PB without assuming that the sets
are full-dimensional.

Lemma 4 (Adapted from Proposition 8 in [22]) Every facet-defining inequality of
PF that is not a multiple of yi ≤ xi can be expressed as αx + βy ≥ δ, where β ≥ 0.

Proof If for some i , βi < 0 then the only points tight on this inequality are such that
yi = xi . If F satisfies this equality then we may rewrite the facet-defining inequality
as αx + βi xi + βy − βi yi ≥ δ. ��

In the following, we refer to the facet-defining inequalities of PF that are not
multiples of yi ≤ xi as non-trivial facet-defining inequalities.
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Lifted inequalities for 0−1 MIBCS 439

Lemma 5 aff(F) = aff(B).

Proof Clearly, aff(F) ⊆ aff(B) since F ⊆ B by Lemma 3. It therefore remains to
prove that aff(B) ⊆ aff(F). Consider any point (x, y) ∈ B. If (x, y) ∈ F , then
clearly (x, y) ∈ aff(F). We may therefore assume that (x, y) ∈ B\F . Define p =
(x ′, y′) where (x ′

i , y′
i ) = (xi , xi yi ) for i ∈ N . It is easy to see that

∑
i∈N ai y′

i =∑
i∈N ai xi yi ≥ d and y′

i ≤ x ′
i for i ∈ N and so p ∈ F . Let I ′ = {i ∈ N | yi >

xi }. We show next that for each i ∈ I ′, pi = p + (0, ei ) ∈ aff(F). To this end,
observe that x ′

i = 0 for each i ∈ I ′. It follows easily that qi = p + (ei , 0) and
r i = p + (ei , ei ) belong to F . Therefore, pi = p + (r i − qi ) ∈ aff(F). Now, observe
that (x, y) = p+∑i∈I ′ yi (pi − p) ∈ aff(F). It follows that B ⊆ aff(F) and therefore
aff(B) ⊆ aff(F). ��
Proposition 23 Assume that

αx + βy ≥ δ (70)

is valid for PF and, for each i ∈ N, either αi ≤ 0 or βi ≥ 0. Then, (70) is valid for
PB. Further, for every non-trivial facet (70) of PF with β ≥ 0, (70) is facet-defining
inequality for PB.

Proof We first show that (70) is valid for B. Consider (x, y) ∈ B. Let I = {i ∈ N |
αi ≤ 0}. Define (x ′, y′) such that (x ′

i , y′
i ) = (1, yi ) for i ∈ I and (x ′

i , y′
i ) = (xi , xi yi )

for i ∈ N\I . Then,

∑

i∈N

ai y′
i =

∑

i∈I

ai yi +
∑

i∈N\I

ai xi yi ≥
∑

i∈N

ai xi yi ≥ d,

where the last inequality holds because (x, y) ∈ B. Further, since y′
i ≤ x ′

i , it follows
that (x ′, y′) ∈ F . Then,

δ ≤ αx ′ + βy′ ≤ αx + βy,

where the first inequality holds because (x ′, y′) ∈ F and the second inequality is
satisfied since, by construction, α(x ′ − x)+β(y′ − y) ≤ 0. It follows that (70) is valid
for PB.

Consider a non-trivial facet-defining inequality α′x +β ′y ≥ δ′ of PF with β ′ ≥ 0.
Then, by the first part of this result, it follows that α′x + β ′y ≥ δ′ is valid for PB.
Since, by Lemmas 3 and 5 respectively, B ⊇ F and dim(B) = dim(F), it follows
that α′x + β ′y ≥ δ defines a facet of PB. ��

In Proposition 23, the assumption that β ≥ 0 for a facet-defining inequality is
without loss of generality because of Lemma 4. As a consequence of Proposition 23,
it can be shown that lifting functions associated with inequalities αx +βy ≥ δ, where
for each i either αi ≤ 0 or βi ≥ 0, are identical when computed over B or over F .
Since the seed and lifted inequalities we derived for PB satisfy these assumptions, our
results in Sect. 3 extend to the study of F . We record this observation in the following
corollary.
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Corollary 4 Let (α, β) ∈ R
2n and, for each i ∈ N, assume that either αi ≤ 0

or βi ≥ 0. Let B(w) = {
(x, y) ∈ {0, 1}n × [0, 1]n

∣∣ ∑
i∈N ai xi yi ≥ d − w

}
, and

F(w) = {
(x, y) ∈ {0, 1}n ×[0, 1]n

∣∣ ∑
i∈N ai yi ≥ d−w and yi ≤ xi for all i ∈ N

}
,

where ai ≥ 0 for all i ∈ N. Let zB(w) = min
{
αx + βy

∣∣ (x, y) ∈ B(w)
}

and
zF (w) = min

{
αx + βy

∣∣ (x, y) ∈ F(w)
}
. Then, zB(w) = zF (w).

Proof By Lemma 3, B(w) ⊇ F(w). It follows that zB(w) ≤ zF (w). We now argue
that zB(w) ≥ zF (w). Because zF (w) is defined as the minimum value that αx + βy
takes over F(w),αx+βy ≥ zF (w) is valid for F(w), which is a flow-set. Let (x ′, y′) ∈
argmin{αx + βy | (x, y) ∈ B(w)}. Then, zB(w) = αx ′ + βy′ ≥ zF (w), where the
inequality follows from Proposition 23. We conclude that zB(w) = zF (w). ��

Now, we illustrate Proposition 23 via an example.

Example 8 Consider the fixed-charge single-node flow set without inflows

F =
{
(x, y) ∈ {0, 1}4 × [0, 1]4

∣∣∣∣ 19y1 + 17y2 + 15y3 + 10y4 ≥ 20,

x j ≥ y j , ∀ j = 1, . . . , 4

}
,

corresponding to the bilinear covering set B discussed in Example 1. We obtained a
complete linear description of PF using PORTA; see [7]. We observe that inequalities
(5), (6), (12), and (13) are facets for both PB and PF. However, it can be verified that
inequalities (7), (8), (10), and (11) are facet-defining for PB but not for PF.

Proposition 23 is surprising in light of Lemma 3 because on the one hand F ⊆ B
and on the other hand, the nontrivial facets of PF are facets of PB. In other words,
a polyhedral description of PF can be derived from that of PB by adding the trivial
facets of PF . The converse, however, is not true. As an illustration, inequality

14x1 + 10x3 + 5x4 + 17y2 ≥ 15 (71)

is a non-trivial facet-defining inequality of PB that is not facet-defining of PF . Sur-
prisingly, a partial converse to Proposition 23 does hold.

We will show that an inequality description of PB can be obtained using the facet-
defining inequalities for PF . The key to this construction is the result of Lemma 6
which shows that F and B can be viewed as projections of the same set onto different
subspaces. Let

S =
⎧
⎨

⎩(x, y, z) ∈ {0, 1}n × [0, 1]n × R
n

∣∣∣∣∣∣

n∑

j=1

a j z j ≥ d, z j = x j y j ,∀ j ∈ N

⎫
⎬

⎭ .

Lemma 6 The projection of S onto the (x, z) space is F while the projection of S onto
(x, y) space is B. Consequently, proj(x,z)conv(S) = PF and proj(x,y)conv(S) = PB.
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Proof First, we show that proj(x,z)S = F . If (x, y, z) ∈ S, it is clear that (x, z) ∈ F
since 0 ≤ z j ≤ x j and

∑n
j=1 a j z j ≥ d. If (x, z) ∈ F , then 0 ≤ z j ≤ x j and

x j ∈ {0, 1} imply that z j = x j z j . Therefore, (x, z, z) ∈ S. Second, we show that
proj(x,y)S = B. This follows by substituting x j y j for z j in

∑n
j=1 a j z j ≥ d. The last

statement follows since proj(x,y)conv(S) = conv(proj(x,y)S) = conv(B) = PB and
proj(x,z)conv(S) = conv(proj(x,z)S) = conv(F) = PF as conv(AS) = Aconv(S) for
any linear transformation A. ��

Surprisingly, conv(S) can be described using the facet-defining inequalities of PF .
We write that (α, β, γ ) ∈ F(PF) if αx +βy ≥ γ is a facet-defining inequality of PF
that is not a multiple of y j ≤ x j . Define

G =
{
(x, y, z)∈R

3n
∣∣∣∣ αx+βz ≥γ ∀(α, β, γ )∈F(PF), z ≤min{x, y}, y ≤ z+1−x

}
.

Theorem 4 G = conv(S).

Proof (⊇) To show that conv(S) ⊆ G, it suffices to show that S ⊆ G because G
is convex. Consider (x, y, z) ∈ S. Then, by Lemma 6, (x, z) ∈ F and, therefore,
αx + βz ≥ γ for all (α, β, γ ) in F(PF). Further, McCormick envelopes of x j y j

yield, x j + y j − 1 ≤ x j y j ≤ min{x j , y j }. Therefore, (x, y, z) satisfies the defining
inequalities of G.
(⊆) Now, we show that G ⊆ conv(S). If (x, y, z) ∈ G, then (x, z) ∈ PF and

z ≤ y ≤ z + 1 − x . Therefore, there exists a set of points (xi , zi ) ∈ F indexed by
I , such that (x, z) = ∑

i∈I λi (xi , zi ) where λi ≥ 0 for i ∈ I , and
∑

i∈I λi = 1. We

define f j = y j −z j
1−x j

if x j < 1 and 0 otherwise. Let I 1
j = {i ∈ I | xi

j = 1}. Now,

consider (xi , yi , zi ) where yi
j = zi

j if i ∈ I 1
j and yi

j = f j if i ∈ I\I 1
j . Then, zi

j ≤ xi
j

and xi
j ∈ {0, 1} imply that zi

j = xi
j yi

j . Further,

∑

i∈I

λi yi
j =

∑

i∈I 1
j

λi z
i
j +

∑

i∈I\I 1
j

λi f j = z j + (1 − x j ) f j = y j ,

where the second equality follows since z j = ∑
i∈I λi zi

j = ∑
i∈I 1

j
λi zi

j ,
∑

i∈I 1
j
λi =

x j , and
∑

i∈I λi = 1, and the last equality since x j = 1 implies that z j = y j .
Therefore, (x, y, z) = ∑

i∈I λi (xi , yi , zi ) ∈ conv(S). ��
Finally, we show that the projections of G to the (x, z) and (x, y) spaces are not

altered even if G is relaxed in a certain way. Let

R =
{
(x, y, z) ∈ R

3n
∣∣∣∣ αx + βz ≥ γ ∀(α, β, γ ) ∈ F(PF), z ≤ min{x, y}, y ≤ 1

}
.

Corollary 5 PF = proj(x,z)R and PB = proj(x,y)R.

Proof We will show that proj(x,z)R = proj(x,z)G and proj(x,y)R = proj(x,y)G. The
result then follows from Lemma 6 and Theorem 4. Since z + 1 − x ≤ 1, we know
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that R ⊇ G. It follows that proj(x,z)R ⊇ proj(x,z)G and proj(x,y)R ⊇ proj(x,y)G. To
complete the proof, we first show that proj(x,z)R ⊆ proj(x,z)G. Assume that (x, y, z) ∈
R. Then, define y′ = z + 1 − x . Since z + 1 − x ≥ z it follows that (x, y′, z) ∈ G.
Second, we show that proj(x,y)R ⊆ proj(x,y)G. Assume that (x, y, z) ∈ R. Then, let
z′ = max{z, x + y − 1}. By Lemma 4, for all (α, β, γ ) ∈ F(PF), β ≥ 0. Therefore,
αx + βz′ ≥ αx + βz ≥ γ . Further, z′ = max{z, x + y − 1} ≤ min{x, y} since
z ≤ min{x, y} and x, y ∈ [0, 1]2. Finally, by construction, y ≤ z′ + 1 − x . Therefore,
(x, y, z′) ∈ G. ��

Corollary 5 implies every non-trivial facet of PB arises as a conic combination of a
single non-trivial facet of PF and (possibly multiple) trivial facet-defining inequalities
y j ≤ x j .

Corollary 6 Let αx + βy ≥ γ be a facet-defining inequality for PB where β ≥ 0.
Then, αx +βy ≥ γ defines a non-empty face of PF. Further, there exists (α′, β ′) and
λ ≥ 0 such that (α, β) = (α′ + λ, β ′ − λ), where α′x + β ′y ≥ γ is facet-defining for
PF and λ jβ j = 0 for j = 1, . . . , n.

Proof Let δ = min{αx + βy | (x, y) ∈ PF}. Since, by Lemma 3, F ⊆ B, it follows
that δ ≥ γ . By Proposition 23, αx + βy ≥ δ is valid for PB. Therefore, δ ≤ γ . In
other words, δ = γ and αx +βy ≥ γ defines a non-empty face of PF . By Corollary 5
and Fourier-Motzkin elimination of z from R, it follows that,

PB =
{
(x, y)

∣∣∣∣ α
′x+β ′ J x+β ′N\J y ≥γ ′ ∀(α′, β ′, γ ′) ∈ F(PF)and J ⊆ N , y ≤1

}
,

where β ′ J
j = β ′

j if j ∈ J and β ′ J
j = 0 otherwise. Since (α, β, γ ) is not a multiple

of y j ≤ 1, it follows that there exists J ⊆ N and (α′, β ′, γ ′) ∈ F(PF) such that
(α, β) = (α′ + β ′ J

, β ′ − β ′ J
). ��

Example 9 Consider the inequality 126x1 + 90x3 + 45x4 + 153y2 ≥ 135, which is
(71) scaled by a factor of 9. This inequality is facet-defining for the bilinear covering
set of Example 1 but not facet-defining for the corresponding flow set presented in
Example 8. Then, as Corollary 6 proves, this inequality can be expressed as the sum
of 50x1 + 90x3 + 45x4 + 76y1 + 153y2 ≥ 135 and 76x1 − 76y1 ≥ 0, which are
facet-defining inequalities for the corresponding flow set.

Proposition 23 and Corollary 5 show that a polyhedral description of either PF or
PB can be derived explicitly given the facet-defining inequalities of the other. In fact,
Proposition 23 also shows that an affine function over either B or F can be optimized
if we have an oracle for optimizing an affine function over the other set. We discuss the
reduction below. Let l(x, y) = αx +βy −γ and define I = {i ∈ N | αi > 0, βi < 0}.
Let zB(l) = min{l(x, y) | (x, y) ∈ B} and zF (l) = min{l(x, y) | (x, y) ∈ F}. First,
consider minimizing l(x, y) over B using an oracle for minimizing an affine function
over F . Define l ′(x, y) = αx + ∑

i∈N\I βi yi + ∑
i∈I βi − γ . While minimizing

l(x, y) over B, yi can be set to 1 whenever βi ≤ 0. Therefore, it follows that zB(l) =
zB(l ′). However, by Proposition 23, zF (l ′) = zB(l ′). Therefore, zB(l) = zF (l ′).
If (x, y) is an optimal solution to zF (l ′), then (x, y′) where y′

i = 1 if i ∈ I and
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y′
i = yi otherwise, is an optimal solution to zB(l). Now, consider minimizing l(x, y)

over F using an oracle for minimizing an affine function over B. Define l ′′(x, y) =
αx + ∑

i∈I βi xi + ∑
i∈N\I βi yi − γ . While minimizing l(x, y) over F , yi can be

set to xi whenever βi ≤ 0. Therefore, zF (l) = zF (l ′′). However, by Proposition 23,
zF (l ′′) = zB(l ′′). Therefore, zF (l) = zB(l ′′). If (x, y) is an optimal solution to zB(l ′′),
then (x ′, y′), where (x ′

i , y′
i ) = (xi , xi ) for i ∈ I , (x ′

i , y′
i ) = (1, yi ) if αi ≤ 0, and

(x ′
i , y′

i ) = (xi , xi yi ) otherwise is an optimal solution to zF (l).
Given the relationships between the polyhedra PB and PF , it is reasonable to expect

that the inequalities we developed in Sect. 3 reveal facets of PF . We now provide a
detailed discussion of which inequalities are facet-defining for PF . For the remainder
of this section, we assume, as we did for PB, that

Assumption 3
∑n

j=1 a j ≥ d + ai for all i ∈ N.

Under Assumption 3, it follows from Lemma 5 that PF is a full-dimensional polytope.

Theorem 5 A lifted bilinear cover inequality (45) is facet-defining for PF if and only
if

(αi , βi ) ∈
qi⋃

j=0

⎧
⎨

⎩

⎛

⎝PC
(

Qi
j

)
−

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

Qi
j ,

PC
(

Qi
j+1

)
− PC

(
Qi

j

)

Δi
j

ai

⎞

⎠

⎫
⎬

⎭

(72)

for all i ∈ M.

Proof The proof of Proposition 9 already shows that (33) is facet-defining for
PF(M,C ′,M,C ′) since all the points considered are feasible to the flow set.

Now, it suffices to show that sufficiently many of the tight points added when lifting
variables (xi , yi ) for i ∈ M ∪ C ′ also belong to PF . When we lifted variables (xi , yi )

for i ∈ C ′ in the proof of Proposition 16, we added the two affinely independent points

(0, 0) and
(

1, (ai −μ)+
ai

)
that both correspond to feasible solutions of F ; see (33) and

Corollary 4. When lifting the variables (xi , yi ) for i ∈ M in Theorem 1, we added the

two points

(
1,

Qi
j

ai

)
and

(
1,

Qi
j+1
ai

)
that both correspond to feasible solutions of F ;

see (36) and Corollary 4.
Next, we show that if (45) is facet-defining for PF , then (αi , βi ) must be chosen

as in (72). It suffices to show that if (αi , βi ) = (PC (ai ), 0) for some i ∈ M and if at
least one of the coefficients pair (PC (ai ), 0) does not reduce to coefficients studied
before (which happens when PC (av) �= PC (Qv

qv ) for some v), then (45) is not facet-
defining for PF . We will do so by showing that in such a case, (45) can be obtained by
combining a different (facet-defining) inequality of the form (45) for PF with trivial
facets yi ≤ xi of PF . Let V ⊆ M be the set of lifting coefficients (αv, βv) chosen to
be (PC (av), 0). Inequality (45) then reduces to
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∑

v∈V

PC (av)xv+
∑

i∈C

(ai −μ)+xi +
∑

j∈T

a j y j +
∑

i∈M\V

αi xi +
∑

i∈M\V

βi yi ≥
∑

i∈C

(ai −μ)+.

(73)

Using the first part of this proof, we know that choosing lifting coefficients

⎛

⎝

⎛

⎝PC
(

Qv
qv

)
−

PC
(

Qv
qv+1

)
−PC

(
Qv

qv

)

Δvqv
Qv

qv

⎞

⎠ ,

⎛

⎝
PC

(
Qv

qv+1

)
−PC

(
Qv

qv

)

Δvqv
av

⎞

⎠

⎞

⎠

for v ∈ V yields the following facet-defining inequality

∑

v∈V

⎛

⎝PC
(

Qv
qv

)
−

PC
(

Qv
qv+1

)
− PC

(
Qv

qv

)

Δvqv
Qv

qv

⎞

⎠ xv

+
⎛

⎝
PC

(
Qv

qv+1

)
− PC

(
Qv

qv

)

Δvqv
av

⎞

⎠ yv

+
∑

i∈C

(ai − μ)+xi +
∑

j∈T

a j y j +
∑

i∈M\V

αi xi +
∑

i∈M\V

βi yi ≥
∑

i∈C

(ai − μ)+

(74)

for PF . Summing (74) with

⎛

⎝
PC

(
Qv

qv+1

)
− PC

(
Qv

qv

)

Δvqv
av

⎞

⎠ (xv − yv) ≥ 0,∀v ∈ V (75)

we obtain (73) since Qv
qv+1 = av and Δvqv = av − Qv

qv . Since we assumed that

PC (av) − PC (Qv
qv ) > 0 for some v ∈ V and because it is easy to see that (75)

does not define the same face of PF that (74) defines, we conclude that (73) is not
facet-defining for PF . ��

We remark that in the proof of Theorem 5, we proved that a few inequalities of
the type (45) are facet-defining for PB but not for PF . This was shown by expressing
these inequalities using another non-trivial facet of PF and the inequalities y j ≤ x j .
We have already shown in Corollary 6 that such construction can be used to describe
all facet-defining inequalities of PB that are not facet-defining for PF . We will use
similar constructions later in the section. As a consequence of Theorem 5, we obtain
the following result initially obtained in [22].

Corollary 7 (Adapted from Proposition 12 in [22]) Assume that (i) C is a cover with
excess μ̄ = ∑

j∈C a j − d such that ā = max j∈C a j > μ̄ and (ii) L ⊆ N\C is chosen
so that 0 < ā − μ̄ < ak ≤ ā for all k ∈ L and

∑
j∈N\L a j > d + ā. Then
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∑

j∈C
(a j − μ̄)+x j +

∑

j∈L
(ā − μ̄)x j +

∑

j∈N\(C∪L)
a j y j ≥

∑

j∈C
(a j − μ̄)+ (76)

is facet-defining for PF.

Proof Let C and L ⊆ N\C be given that satisfy conditions (i) and (i i) of Corollary 7.
Select l ∈ argmax{a j | j ∈ C}. Define C ′ = C\{l}, M = L, and T = N\(C ∪ L).
Clearly, μ = μ̄. Observe further that al = ā > μ and that

∑
j∈T a j > al − μ̄ since∑

j∈N\L a j > d + ā. It follows that (C ′, {l},M, T ) is a partition of N that satisfies
Conditions (A1), (A2), (A3), and (A4) of Theorem 1. We obtain from Assumption
(i i) that A1 − μ < ai ≤ A1 < A2 − μ for i ∈ M , which implies that qi = 1 for all
i ∈ M in Lemma 1. Further, since Qi

1 = A1 − μ and Qi
2 = ai for i ∈ M , we can

select (αi , βi ) as (A1 − μ, 0) in (45), yielding

∑

j∈C

(a j − μ)+x j +
∑

j∈T

a j y j +
∑

j∈M

(A1 − μ)x j ≥
∑

j∈C

(a j − μ)+,

which is exactly (76) after substituting C = C, T = N\(C ∪ L), M = L, A1 = ā and
μ = μ̄. ��

Observe that in (76), for each j ∈ N , either the coefficient of x j or that of y j is zero,
whereas this is not the case for (45). Therefore, the family of facet-defining inequal-
ities obtained via (76) is strictly contained in the family of facet-defining inequal-
ities obtained via (45). In [22], the authors did not explicitly impose the condition∑

j∈N\L a j > d + ā. However, in its absence, the inequalities are not necessarily
facet-defining as we show in Example 10. The authors’ proof implicitly used this
assumption during an induction step.

Example 10 Consider the flow set defined by

F =
{
(x, y)∈{0, 1}4×[0, 1]4

∣∣∣∣ 7y1+6y2+5y3+4y4 ≥10, x j ≥ y j ∀ j =1, . . . , 4

}
.

Define C = {1, 3} and L = {2} where ā = 7 and μ̄ = 2. Clearly ā − μ̄ < a2 ≤ ā.
However, the assumption that

∑
j∈N\L a j > d + ā does not hold. Inequality (76)

takes the form

5x1 + 5x2 + 3x3 + 4y4 ≥ 8. (77)

Observe that whenever (77) is satisfied at equality by a point of F, the inequality
x1 + x2 ≥ 1 is also tight. Since x1 + x2 ≥ 1 is clearly valid for F, it follows that (77)
is not facet-defining for PF.

We next show that the family of lifted bilinear cover inequalities that are proven to
be facet-defining for PF in Theorem 5 is larger than the family given by (76).

Example 11 As established in Example 8, (5) and (6) are facet-defining lifted bilin-
ear cover inequalities (45) for both PB and PF. They are obtained by choosing
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(C ′, l,M, T ) = ({4}, {3}, {1}, {2}) and (C ′, l,M, T ) = ({4}, {2}, {1}, {3}) respec-
tively in Theorems 1 and 5. However, as mentioned above, (5) and (6) cannot be
obtained using Corollary 7.

Next, we describe when the lifted reverse bilinear cover inequalities (54) that define
facets of PB also define facets of PF .

Theorem 6 Lifted bilinear reverse cover inequalities (54) are facet-defining for PF
if and only if ai > al − μ for all i ∈ M. ��

The proof is similar to that of Theorem 5, constructing tight points when ai >

al − μ for i ∈ M and showing that (54) can be obtained as a conic combination of
the lifted reverse bilinear cover inequality based on partition (C ′, {l},M1, T ∪ M2)

where M2 = {i ∈ M | ai ≤ al − μ} �= ∅ and M1 = M\M2 and the inequalities
a j (x j − y j ) ≥ 0 for j ∈ M2 when ai ≤ al − μ for some i ∈ M ; see [9] for details.

The inequalities of Theorem 6 are known to be valid for PF , as first shown in [12].

Corollary 8 (Adapted from Theorem 12 in [12]) Assume that (i) C ⊆ N is a gen-
eralized cover for F such that

∑
j∈C a j = d − λ with λ > 0 and (ii) L �= ∅

and
∑

j∈N\L a j > d where L = { j ∈ N\C | a j > λ}. Assume also that
L = { j1, j2, . . . , jr } with a ji ≥ a ji+1 for i = 1, . . . , r − 1. Let r = |L|, A0 = 0, and

Ai = ∑i
k=1 a jk for i = 1, . . . , r . Further, let d ′ = ∑

j∈N\C a j − λ. Define

f (z) =
⎧
⎨

⎩

iλ if Ai ≤ z ≤ Ai+1 − λ, i = 0, . . . , r − 1,
z − Ai + iλ if Ai − λ ≤ z ≤ Ai , i = 1, . . . , r − 1,
z − Ar + rλ if Ar − λ ≤ z ≤ d ′.

(78)

Then, the lifted simple generalized flow cover inequality (LSGFCI)

∑

j∈L
λx j +

∑

j∈C
f (a j )x j +

∑

j∈N\(C∪L)
a j y j ≥ λ+

∑

j∈C
f (a j ) (79)

is facet-defining for PF.

Proof For a given generalized cover C of F , we define C = C ∪ {l} where l ∈ L �= ∅.
Set C is a cover since a j > λ for all j ∈ L. Further,

∑
j∈C a j = d + al − λ > d and

so μ = al − λ > 0, i.e., C satisfies Conditions (A1) and (A3) in Theorem 2. Now set
M = L\{l} in (54). Condition (A4) in Theorem 2 also holds since

∑
j∈N\(L\{l}) a j −

d = ∑
j∈N\L a j + al − d > al . Next, we observe that C ∪ M = C ∪ L and that

min{ai , al − μ} = min{ai , λ} = λ = al − μ for all i ∈ M . Substituting al − μ = λ

in Proposition 19, we obtain that f (w) = −P M (−w) since M ∪ {l} = L. Therefore,
we conclude that (79) is a lifted reverse bilinear cover inequality (54). ��

Because in [12] the fixed-charge single-node flow set studied is more general than
F , the authors focused mainly on the derivation of valid inequalities and discussed
only indirectly whether the resulting inequalities are facet-defining. The result of
Corollary 8 is therefore different from that of Theorem 12 in [12] in two ways. First
we added the condition

∑
j∈N\L a j > d. This condition guarantees that the simple
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generalized flow cover inequality (SGFCI) that is used as seed inequality for lifting
procedures in [12] is facet-defining for the problem restriction. Second, we replaced
the statement that inequality (79) is valid for PF with the stronger statement that it is
facet-defining for PF .

We conclude this section by presenting conditions under which the lifted clique
inequalities (64) are facet-defining for the flow set PF .

Theorem 7 A lifted clique inequality (64) is facet-defining for PF if (i)
∑

j∈K a j −
ak > d for all k ∈ K , (ii) lifting coefficients are chosen according to (65) and (iii)
one of the following conditions holds:

1. L = ∅.
2. ∃ı̄ ∈ M such that jı̄ = 0 and, for all i ∈ L\{ı̄}, ji = qi .

Proof Using a proof technique similar to that used in Theorems 5 and 6, we show
that seed inequality (59) is facet-defining for PF(M\M̂,∅,M\M̂,∅) and that lifting
(xi , yi ) for i ∈ M adds two tight independent points in (64) that belong to F . Let K =
{1, . . . , l} and M̂ = {l + 1, . . . , h}. Define the vector χ ∈ R

|N | such that χ j = 1 for
j ≤ l andχ j = 0 for l+1 ≤ j ≤ |N |. Consider pi = (χ−ei , χ−ei ) for i = 1, . . . , l,
qi = (χ − ei , χ − ei − εei+1) for i = 1, . . . , l − 1, ql = (χ − el , χ − el − εe1)

where ε is positive, and, for j = l + 1, . . . , h, r j = (
χ − e1 + e j , χ − e1) and

s j = (χ − e1 + e j , χ − e1 + e j ). These points satisfy (59) at equality, are affinely
independent and, because of Assumption (i), belong to F when ε is sufficiently small.
This shows that (59) is facet-defining for PF(M,∅,M,∅). Assume first that L = ∅ and
consider now the lifting of variables (xi , yi ) for i ∈ M in the proof of Theorem 3. For

ji ∈ {0, . . . , qi }, lifting adds the two independent points

(
1,

W i
j

ai

)
and

(
1,

W i
j+1
ai

)
that

both correspond to feasible solutions of F because of (59) and Corollary 4, proving the
result. Then it follows from the first part of this proof that the inequality obtained after
lifting the variables in M\L is facet-defining for PF(L\{ı̄},∅, L\{ı̄},∅). Consider
now the lifting of variables (xi , yi ) for i ∈ L\{ı̄}. When ji = qi , we derived in the

proof of Theorem 3 that lifting adds the two independent points (1, 1) and

(
1,

W i
ji

ai

)

that both correspond to feasible solutions of F because the first point sets (xı̄ , yı̄ ) =(
1,

Bqi +μ̄−ai

aı̄

)
, and the structure of (59) satisfies the assumptions of Corollary 4. ��

To the best of our knowledge, Theorem 7 presents a new family of facet-defining
inequalities for fixed-charge single-node flow models without inflows. We remark
that the facet-defining inequalities hitherto known in the literature are such that, for
all j ∈ N , only one of x j or y j has a non-zero coefficient in the inequality; see (76)
and (79). However, the families of lifted bilinear cover inequalities (72) and of lifted
clique inequalities (64) each contain exponentially many facet-defining inequalities
in which there exists an index j ∈ N such that both x j and y j variables have non-
zero coefficients. Therefore, the inequalities we have obtained exhibit a fundamentally
more general structure. In particular, it follows from Proposition 10 and the ensuing
discussion that these inequalities do not arise as facet-defining inequalities of mixed
0-1 knapsack sets obtained by fixing some x and y variables to one.
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5 Discussion and conclusion

Many of the results presented in this paper extend to 0−1 mixed integer nonlinear sets
defined by constraints of the form

∑
i∈N (ai xi yi + bi xi + ci yi ) ≥ d where a linear

term has been added to the left-hand-side, provided that ai + bi ≥ 0 and ai + ci ≥ 0
for all i ∈ N . The primary reason that the techniques extend to this case is that the
lifting functions are equal to those derived in Sect. 3 if the seed inequalities contain
no more than one of the variables (xi , yi ) for each i ∈ N . We give a proof of this
assertion in the next proposition.

Proposition 24 Let ai ∈ R and (bi , ci ) ∈ R
2+ be such that ai + min{bi , ci } ≥ 0

for each i ∈ N. Let (αi , βi ) ∈ R
2 be such that αiβi = 0 for each i ∈ N. Define

I = {i ∈ N | αi = 0} and I c = N\I . Also define

z A(w) = min

{
∑

i∈N

(αi xi + βi yi )

∣∣∣∣ (x, y) ∈ A(w)

}

where A(w) = {(x, y) ∈ {0, 1}n × [0, 1]n | ∑n
i=1(ai xi yi + bi xi + ci yi ) ≥ d − w},

and

zB(w) = min

{
∑

i∈N

(αi xi + βi yi )

∣∣∣∣ (x, y) ∈ B(w)

}

where B(w) = {(x, y) ∈ {0, 1}n ×[0, 1]n | ∑i∈I (ai +ci )xi yi +∑i∈I c (ai +bi )xi yi ≥
d − ∑

i∈I bi − ∑
i∈I c ci − w}. Then z A(w) = zB(w). Further, for H+ = {(x, y) ∈

R
2n | ∑i∈N (αi xi + βi yi ) ≥ γ }, H+ ⊇ A(w) if and only if H+ ⊇ B(w).

Proof We first claim that, for any point (x ′, y′) ∈ {0, 1}n × [0, 1]n with x ′
i = 1 for

each i ∈ I and y′
i = 1 for each i ∈ I c, (x ′, y′) ∈ A(w) if and only if (x ′, y′) ∈ B(w).

Consider such a point (x ′, y′). Then, for i ∈ I , ai x ′
i y′

i +bi x ′
i +ci y′

i = (ai +ci )x ′
i y′

i +bi .
Similarly, for i ∈ I c, ai x ′

i y′
i + bi x ′

i + ci y′
i = (ai + bi )x ′

i y′
i + ci . In other words,∑

i∈I (ai + ci )x ′
i y′

i +∑
i∈I c (ai + bi )x ′

i y′
i +∑

i∈I bi +∑
i∈I c ci = ∑n

i=1(ai x ′
i y′

i +
bi x ′

i + ci y′
i ); proving the claim.

Defining α and β to be vectors with components αi and βi respectively, we see that

z A(w) = min{αx + βy | (x, y) ∈ A(w)}
= min{αx + βy | (x, y) ∈ A(w), xi = 1∀i ∈ I, yi = 1∀i ∈ I c}
= min{αx + βy | (x, y) ∈ B(w), xi = 1∀i ∈ I, yi = 1∀i ∈ I c}
= min{αx + βy | (x, y) ∈ B(w)} = zB(w),

where the second and the second last equalities follow from the assumptions which
imply that ai xi yi +bi xi +ci yi ≤ min{ai xi +bi xi +ci , ai yi +bi +ci yi }, (ai +ci )xi yi ≤
(ai + ci )yi , and (ai + bi )xi yi ≤ (ai + bi )xi for each i ∈ N . Since z A(w) = zB(w)

and H+ ⊇ A(w) (resp. H+ ⊇ B(w)) if and only if z A(w) ≥ γ (resp. zB(w) ≥ γ ), it
follows that H+ ⊇ A(w) if and only if H+ ⊇ B(w). ��
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In Proposition 24, z A(w) can be thought of as the lifting function of an inequality
of the form αx + βy ≥ δ for some δ in a 0-1 mixed integer bilinear covering set with
linear term while zB(w) can be thought of as the lifting function of the same inequality
in PB. Because the seed inequalities we use for lifting satisfy the condition αiβi = 0,
Proposition 24 essentially shows that the lifting functions derived for the problem
with only bilinear terms on the left-hand-side carry over to problems containing linear
terms. For example, it is shown in [8] that the two families of lifted bilinear cover
inequalities and lifted reverse bilinear cover inequalities have natural extensions for
bilinear covering sets with linear terms where, for all i ∈ N , ai ≥ 0, bi ci = 0, bi ≥ 0
and ci = ai whenever ci �= 0. Such sets occur naturally after 0-1 and continuous
branching is performed in PB.

In this paper, we study the polyhedral structure of the 0−1 mixed-integer bilinear
covering set. We give a complete linear description of its convex hull when n = 2.
We then derive three families of strong inequalities for PB that can be obtained using
sequence-independent lifting. Among them, two families have an exponential number
of members. We study relations between 0−1 mixed-integer bilinear covering sets and
fixed-charge single-node flow sets without inflows. We show that valid inequalities for
bilinear sets are also valid for flow sets and prove that all nontrivial facets of PF can be
obtained through the study of facets of PB. We then show that the inequalities we derive
generalize two classical families of lifted flow cover inequalities for PF and provide
a new family for PF . Future research will focus on evaluating the computational
benefits of using these lifted cuts in branch-and-bound frameworks for both linear and
nonlinear mixed integer programming.
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