
Math. Program., Ser. A (2014) 145:565–599
DOI 10.1007/s10107-013-0675-7

FULL LENGTH PAPER

Semi-continuous network flow problems

Gustavo Angulo · Shabbir Ahmed ·
Santanu S. Dey

Received: 27 April 2012 / Accepted: 11 March 2013 / Published online: 3 April 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract We consider semi-continuous network flow problems, that is, a class of net-
work flow problems where some of the variables are restricted to be semi-continuous.
We introduce the semi-continuous inflow set with variable upper bounds as a relax-
ation of general semi-continuous network flow problems. Two particular cases of this
set are considered, for which we present complete descriptions of the convex hull in
terms of linear inequalities and extended formulations. We consider a class of semi-
continuous transportation problems where inflow systems arise as substructures, for
which we investigate complexity questions. Finally, we study the computational effi-
cacy of the developed polyhedral results in solving randomly generated instances of
semi-continuous transportation problems.

Keywords Mixed-integer programming · Network flow problems · Semi-continuous
variables

Mathematics Subject Classification 90C11 · 90C35 · 90C57

1 Introduction

A variable x is said to be semi-continuous if x is required to belong to a set of the
form {0} ∪ [l, u] for some 0 ≤ l ≤ u. We call l and u lower and upper bounds of x ,

G. Angulo (B) · S. Ahmed · S. S. Dey
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
765 Ferst Drive NW, Atlanta, GA, USA
e-mail: gangulo@gatech.edu

S. Ahmed
e-mail: sahmed@isye.gatech.edu

S. S. Dey
e-mail: sdey@isye.gatech.edu

123



566 G. Angulo et al.

respectively. Note that in this definition we consider continuous variables as a special
case where l = 0. A semi-continuous variable can be regarded as a generalization of
a binary variable. In fact, by setting l = u = 1 in the above definition, we have that
x is binary. As such, the presence of these variables may lead to hard optimization
problems.

Semi-continuous variables appear in inventory management models where ship-
pings from a given supplier are required to be between prestablished minimum and
maximum quantities whenever an order is placed [14]. In portfolio optimization, semi-
continuous constraints are known as minimum transaction levels, and are studied in [2]
and [12]. Semi-continuous variables are also common when modeling petrochemical
processes as described in [8] and [9]. Furthermore, as [9] and [14] suggest, supply
chain models may involve network flow structures with semi-continuity constraints
on flow variables whenever production, purchases, and shipping in low quantities are
undesirable from the operational point of view.

Although semi-continuity can be modeled by means of introducing additional
binary variables and constraints, this approach may have some drawbacks. We increase
the size of the problem at hand, which can already be large-scale. Additionally, the
presence of binary variables may lead to unnecessary branching decisions and large
LP relaxations in a branch-and-bound procedure. On the other hand, models that
incorporate auxiliary binary variables may benefit from presolve and bound tighten-
ing procedures available in state-of-the-art MIP solvers such as CPLEX and may be
solved efficiently. To overcome difficulties with auxiliary binary variables, branching
rules and cuts without the use of binary variables for some combinatorial problems
have been studied in [5] and [6]. In particular, in [4] and [7] the semi-continuous
knapsack problem is introduced and cutting-planes are presented.

In the present work, we study some particular semi-continuous sets. Specifically,
given their wide applicability, we focus on network flow problems having semi-
continuous flow variables. Our main contributions are complete descriptions of the
convex hull of two particular cases of a semi-continuous inflow set with variable
upper bounds and a computational study of the effectiveness of the derived inequali-
ties on a class of semi-continuous transportation problems. We observe that the poly-
hedral results derived from the semi-continuous sets can significantly improve the
performance of both the semi-continuous and the standard mixed integer formulation
involving auxiliary binary variables. The rest of the paper is organized as follows. In
Sect. 2 we introduce the semi-continuous inflow set along with some basic properties.
In Sects. 3 and 4 we present polyhedral studies of two particular cases of this set. Then,
in Sect. 5 we introduce a class of semi-continuous transportation problems for which
we give complexity results. We devote Sect. 6 to computational results regarding the
performance of the polyhedral results when solving semi-continuous transportation
problems. Finally, in Sect. 7 we conclude with some remarks.

2 The semi-continuous inflow set

Consider the network substructure shown in Fig. 1. Let N := {1, . . . , n} be a set of
nodes, where n ≥ 2, and let d > 0 be the required total flow from nodes in N to

123



Semi-continuous network flow problems 567

Fig. 1 Inflow relaxation

another node 0. For i ∈ N , let yi be the flow from node i to node 0, and xi be the
flow into node i . Let li and hi be the lower bounds on flows xi and yi whenever these
variables are positive. Let ti be the exogenous supply into node i . The semi-continuous
inflow set with variable upper bounds is the set S(t, h) ⊆ R

n × R
n defined as

S(t, h) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
n × R

n :

∑

i∈N

yi ≥ d (1)

yi ≤ ti + xi ∀ i ∈ N (2)

xi ∈ {0} ∪ [li ,∞) ∀ i ∈ N (3)

yi ∈ {0} ∪ [hi ,∞) ∀ i ∈ N (4)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Constraint (1) ensures that the minimum total inflow into the node 0 is met. Con-
straints (2) bound yi by the total available inflow ti + xi for node i ∈ N . Finally,
constraints (3) and (4) are semi-continuity requirements on x and y, respectively. As
we shall see, the structure and tractability of the above set are essentially determined
by t and h only, and therefore the dependence on l is not made explicit in the notation.

Next we discuss how the set S(t, h) arises as a substructure in general semi-
continuous network flow problems. Consider a network represented by a directed
graph G = (V, E), where each node v ∈ V satisfies a constraint of the form

∑

u∈V +(v)

fvu −
∑

u∈V −(v)

fuv = dv, (5)

where variable fvu ≥ 0 is the flow through the arc (v, u) ∈ E , V +(v) := {u ∈ V :
(v, u) ∈ E}, V −(v) := {u ∈ V : (u, v) ∈ E}, and dv is a given real parameter.
Suppose that fuv ∈ {0} ∪ [luv, uuv], that is, fuv is semi-continuous. We refer to such
problems as semi-continuous network flow problems. We obtain S(t, h) as a relaxation
as follows.

123



568 G. Angulo et al.

Fig. 2 Nodes v and u, where
u ∈ V −(v) and dv < 0

Consider a node v ∈ V with dv < 0 as depicted in Fig. 2. Since the first sum in (5)
is nonnegative, we have

∑

u∈V −(v)

fuv ≥ −dv = |dv|,

which has the form of the semi-contiuous knapsack set introduced in [4]. However,
since we are dealing with a network flow problem, there is more structure to be
exploited when looking for tighter relaxations. Indeed, consider (u, v) ∈ E . Then
v ∈ V +(u) and (5) applied to u can be written as

∑

w∈V +(u)\{v}
fuw + fuv −

∑

w∈V −(u)

fwu = du . (6)

As before, since the first sum in (6) is nonnegative, we arrive at

fuv ≤
∑

w∈V −(u)

fwu + du ≤
∑

w∈V −(u)

fwu + max{du, 0}. (7)

Note that fu := ∑
w∈V −(u) fwu is a semi-continuous variable taking values in

{0}∪ [lu, uu], where lu := minw∈V −(u){lwu} and uu := ∑
w∈V −(u) uwu . We obtain the

system

∑

u∈V −(v)

fuv ≥ |dv|

fuv ≤ fu + max{du, 0} ∀ u ∈ V −(v)

fu ∈ {0} ∪ [lu, uu] ∀ u ∈ V −(v) (8)

fuv ∈ {0} ∪ [luv, uuv] ∀ u ∈ V −(v), (9)

which is a relaxation for the original network flow set. Finally, removing the upper
bounds from (8) and (9) we arrive at a relaxation having the form of S(t, h).

A similar approach can be followed when dv > 0, in which case we drop the
second sum in (5) and relax the balance equation for nodes in V +(v). In either case,
by appropriately manipulating (5) applied to v ∈ V and u ∈ V +(v) ∪ V −(v), we
obtain the set S(t, h) as a relaxation.

123



Semi-continuous network flow problems 569

We omit the case d = 0 since (1) becomes redundant and then S(t, h) is the product
of n simple 2-dimensional sets.

2.1 Complexity of optimization

It is not difficult to verify that having finite upper bounds as in (8) and (9) would yield
a set that is already hard to deal with. We show that in our setting optimization over
S(t, h) is intractable.

Proposition 1 Optimizing a linear function over S(t, h) is NP-hard, even if l = 0.

Proof We will show that the Binary Knapsack problem, which is NP-hard, can be
reduced to optimization of a linear function over S(t, h).

We start with a feasible instance of the Binary Knapsack problem of the form

min
∑

i∈N

fi zi

s.t.
∑

i∈N

wi zi ≥ d

zi ∈ {0, 1} ∀ i ∈ N ,

where d ∈ Z+, w ∈ Z
n+, and f ∈ Z

n+. Consider the change of variables yi = wi zi

for all i ∈ N . Given that zi ∈ {0, 1}, we have that yi ∈ {0, wi }. Furthermore, this is
equivalent to requiring yi ∈ {0} ∪ [wi ,∞) and yi ≤ wi . Thus, the optimal value of
the instance is the same as that of

min α	y

s.t.
∑

i∈N

yi ≥ d

yi ≤ wi ∀ i ∈ N

yi ∈ {0} ∪ [wi ,∞) ∀ i ∈ N ,

where αi = fi
wi

for each i ∈ N . Now, consider the problem

min c	x + α	y

s.t.
∑

i∈N

yi ≥ d

yi ≤ wi + xi ∀ i ∈ N

xi ≥ 0 ∀ i ∈ N

yi ∈ {0} ∪ [wi ,∞) ∀ i ∈ N ,

where ci = M > 0 for all i ∈ N . Let (x∗, y∗) be an optimal solution and let
N∗ := {i ∈ N : y∗

i > 0}. Given that c > 0, we must have y∗
i = wi + x∗

i for all

123



570 G. Angulo et al.

i ∈ N∗. If 0 <
∑

i∈N x∗
i < 1, then we have

d ≤
∑

i∈N

y∗
i =

∑

i∈N∗
y∗

i =
∑

i∈N∗
(wi + x∗

i )

�⇒ d ≤
⌊

∑

i∈N

y∗
i

⌋

=
∑

i∈N∗
wi =

∑

i∈N

y∗
i �.

Thus, given that α > 0, rounding down each component of y∗ improves the solution.
Hence, either x∗ = 0 or

∑
i∈N x∗

i ≥ 1. However, if M is sufficiently large, say
M = ∑

i∈N αiwi = ∑
i∈N fi , then we must have x∗ = 0. Therefore, the optimal

values of this problem, which is an instance of linear optimization over S(t, h), and
the instance of the Binary Knapsack problem we started with are the same. Given that
the transformation is polynomial in the original input size, the proof is complete. ��

Despite the general complexity result in Proposition 1, there are at least two situa-
tions where S(t, h) is tractable, namely when ti = 0 for all i ∈ N and when hi = 0
for all i ∈ N . Note that the first case is a restriction. The second one is a relaxation as
y becomes continuous. These cases will be discussed in Sects. 3 and 4, respectively.

2.2 Basic polyhedral results

For a set C of real vectors, let conv(C) denote its convex hull.
In [4], the semi-continuous knapsack is introduced. This set is of the form

K =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ R
n :

∑

i∈N

wi xi ≤ r

xi ∈ [0, pi ] ∪ [li , ui ] ∀ i ∈ N+
xi ∈ [0, pi ] ∪ [li ,∞) ∀ i ∈ N+∞ ∪ N−

⎫
⎪⎪⎬

⎪⎪⎭

,

where N+, N+∞, N− constitute a partition of N , wi > 0 for all i ∈ N+ ∪ N+∞, and
wi < 0 for all i ∈ N−. Several classes of valid inequalities are presented along with
lifting procedures. Note that when r < 0 and N− = N , this set is a relaxation of
S(t, h) as we can aggregate constraints and arrive at a system having the above form.
Thus, valid inequalities for K give rise to valid inequalities for S(t, h). In some cases,
a complete description of conv(K ) can be found. In particular, if N = N−, pi = 0
for each i ∈ N , and r < 0, then

conv(K ) =
⎧
⎨

⎩
x ∈ R

n :
∑

i∈N

wi

min{r, wi li } xi ≥ 1

0 ≤ xi ∀ i ∈ N

⎫
⎬

⎭
.

As we shall see, an exponential family of inequalities similar to the one above will
suffice to describe conv(S(t, h)) when t = 0 or h = 0. We first establish some
fundamental results regarding S(t, h).

123



Semi-continuous network flow problems 571

Proposition 2 S(t, h) is full-dimensional.

Proof Consider the point (x̄, ȳ) ∈ R
n × R

n given by x̄i = max{d, li , hi } + 1 and
ȳi = max{d, hi } for all i ∈ N . We have that (x̄, ȳ) belongs to S(t, h), and adding any
standard unit vector from R

n ×R
n to (x̄, ȳ) yields another point that is also feasible to

S(t, h). The collection of such 2n points along with (x̄, ȳ) is an affinely independent
set, and therefore S(t, h) is of full dimension. ��
Proposition 3 conv(S(t, h)) is a polyhedron.

Proof Proposition 3 is a particular case of Proposition 23 given in the “Appendix”.
��

We now proceed to identify the trivial facets of conv(S(t, h)).

Proposition 4 For each each i ∈ N, yi ≥ 0 and yi ≤ ti + xi are facet-defining for
conv(S(t, h)). In addition, xi ≥ 0 is facet-defining if and only if ti > 0.

Proof Let i ∈ N . Choose a point x̄ ∈ R
n satisfying x̄ j > max{d, l j , h j } for all j ∈ N .

Set ȳi = 0 and ȳ j = x̄ j for all j ∈ N , j �= i . We have that (x̄, ȳ) belongs to S(t, h).
Now for each j ∈ N , j �= i , consider the points

(
x j , y j

)
and

(
xn+ j , yn+ j

)
given by

(
x j

k , y j
k

)
=

{
(x̄ j + ε, ȳ j ) k = j
(x̄k, ȳk) k �= j,

(
xn+ j

k , yn+ j
k

)
=

{
(x̄ j , ȳ j − ε) k = j
(x̄k, ȳk) k �= j.

Finally, let
(
xi , yi

) = (x̄, ȳ) and let
(
xn+i , yn+i

)
be given by

(
xn+i

k , yn+i
k

)
=

{
(x̄i + ε, ȳi ) k = i
(x̄k, ȳk) k �= i.

For ε > 0 sufficiently small,
{(

x j , y j
)
,

(
xn+ j , yn+ j

) : j ∈ N
}

is contained in S(t, h).
Moreover, it is an affinely independent set, and since these 2n points satisfy yi ≥ 0 at
equality, this constraint defines a facet of conv(S(t, h)). The proof for yi ≤ ti + xi is
analogous by setting ȳi = ti + x̄i and defining

(
xn+i , yn+i

)
as

(
xn+i

k , yn+i
k

)
=

{
(x̄i + ε, ȳi + ε) k = i
(x̄k, ȳk) k �= i.

For the last part, if ti > 0, set x̄i = 0 and ȳi = ti . Again, the proof is similar by
defining

(
xn+i , yn+i

)
as

(
xn+i

k , yn+i
k

)
=

{
(x̄i , ȳi − ε) k = i
(x̄k, ȳk) k �= i.

Finally, note that if ti = 0, then xi ≥ 0 is dominated by yi ≥ 0. ��
In the following two sections we turn our attention to polyhedral results for S(0, h)

and S(t, 0), respectively.

123



572 G. Angulo et al.

3 The case t = 0

In this section we assume that t = 0, and therefore S(0, h) ⊆ R
n × R

n is the set of
vectors (x, y) satisfying

∑

i∈N

yi ≥ d (10)

yi ≤ xi ∀ i ∈ N (11)

xi ∈ {0} ∪ [li ,∞) ∀ i ∈ N (12)

yi ∈ {0} ∪ [hi ,∞) ∀ i ∈ N . (13)

3.1 Inequality description of conv(S(0, h))

Define the sets

L := {i ∈ N : max{d, hi } < li },
H := {i ∈ N : hi ≥ d},

and consider the family of inequalities given by

∑

i∈T

xi

li
+

∑

i∈N\T

yi

max{d, hi } ≥ 1 ∀ T ⊆ L. (14)

Recalling that d > 0, we have that li = 0 implies i ∈ N \ L . Thus, (14) is well-defined
for all T ⊆ L . Furthermore, note that if l = 0, then L = ∅ and (14) reduces to the
single inequality

∑

i∈N

yi

max{d, hi } ≥ 1,

which in Sect. 2.2 was seen to be the semi-continuous cut derived in [4].

Proposition 5 For each T ⊆ L, (14) is valid and facet-defining for conv(S(0, h)).

Proof To show validity, consider (x, y) ∈ S(0, h) and T ⊆ L . If for some i ∈ T
we have xi > 0, then xi

li
≥ 1. If for some i ∈ (N\T ) ∩ H we have yi > 0, then

yi
max{d,hi } = yi

hi
≥ 1. In both cases (14) is satisfied. If none of them occur, then yi = 0

for all i ∈ T ∪ [(N\T ) ∩ H ]. Since (x, y) ∈ S(0, h), we must have
∑

i∈N yi ≥ d,
and therefore

∑

i∈(N\T )\H

yi

max{d, hi } =
∑

i∈(N\T )\H

yi

d
=

∑

i∈N

yi

d
≥ 1.

Hence, (14) is satisfied in this case as well.

123



Semi-continuous network flow problems 573

Now, given T ⊆ L , we will show that (14) is facet-defining by showing 2n affinely
independent points in S(0, h) that satisfy (14) at equality. Let

(
xi , yi

)
, i = 1, . . . , 2n,

be such points defined as follows:
If i ∈ T , then

(
xi

j , yi
j

)
=

{
(li , max {d, hi }) j = i
(0, 0) j �= i,

(
xn+i

j , yn+i
j

)
=

{
(li , max {d, hi } + ε) j = i
(0, 0) j �= i.

If i ∈ N \T , then

(
xi

j , yi
j

)
=

{
(max {d, hi , li } , max{d, hi }) j = i
(0, 0) j �= i,

(
xn+i

j , yn+i
j

)
=

{
(max {d, hi , li } + ε, max{d, hi }) j = i
(0, 0) j �= i.

The points previously defined belong to S(0, h) for ε > 0 sufficiently small. Finally,{(
xi , yi

)
,

(
xn+i , yn+i

) : i ∈ N
}

is a linearly independent set of points satisfying (14)
at equality. Thus this constraint defines a facet of conv(S(0, h)). ��

Theorem 6 below shows that all the non-trivial facets of conv(S(0, h)) are given by
(14).

Theorem 6 conv(S(0, h)) is given by the following facet-defining inequalities

∑

i∈T

xi

li
+

∑

i∈N\T

yi

max{d, hi } ≥ 1 ∀ T ⊆ L

yi ≤ xi ∀ i ∈ N (15)

yi ≥ 0 ∀ i ∈ N . (16)

Proof We already showed that (14) is facet-defining for each T ⊆ L , and that (15)
and (16) are also facet-defining for each i ∈ N . To show that (14)–(16) completely
describe conv(S(0, h)), we apply the technique presented in [11]: it suffices to show
that if we optimize any non-zero linear function over S(0, h), then there exists one
inequality from (14)–(16) such that all optimal solutions, if one exists, belong to the
facet defined by that inequality.

Let (c, α) ∈ R
n × R

n be a non-zero vector and consider the problem

min
{

c	x + α	y : (x, y) ∈ S(0, h)
}

.

Assumption 1 c ≥ 0 and c + α ≥ 0.
If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded.

Thus, we may assume c ≥ 0, c + α ≥ 0. ♦

123



574 G. Angulo et al.

In particular, Assumption 1 implies that the optimal value is nonnegative and that
an optimal solution exists. Let (x∗, y∗) be any such solution.

Assumption 2 α ≥ 0.
If for some i ∈ N , αi < 0, then y∗

i = x∗
i , that is, (15) is satisfied as an equality.

To see this, suppose that y∗
i < x∗

i . If y∗
i > 0, then we can increase it and get a better

solution. If y∗
i = 0, since x∗

i > 0 and ci > 0 by Assumption 1 and αi < 0, we can
decrease x∗

i to zero and get a better solution. Thus, we may assume α ≥ 0. ♦

Assumption 3 c + α > 0.
Suppose that ci = αi = 0 for some i ∈ N . Then the optimal value is zero. Since

(c, α) �= (0, 0), by Assumptions 1 and 2, there must exist j ∈ N , j �= i , such that
either α j > 0 or c j > 0. By optimality, in the former case we must have y∗

j = 0,
while in the latter x∗

j = 0 must hold. Therefore, either (16) or (15) must be satisfied
at equality by all optimal solutions. Thus, we may assume c + α > 0. ♦

Claim 1 y∗
i > 0 ⇒ ci x∗

i + αi y∗
i > 0.

If y∗
i > 0, then x∗

i > 0, and by Assumption 3, ci x∗
i + αi y∗

i > 0 holds. ♦

Let T = {i ∈ L : αi = 0}. Then ci > 0 for all i ∈ T by Assumption 3, and αi > 0
for all i ∈ L\T . We claim that

∑

i∈T

x∗
i

li
+

∑

i∈N\T

y∗
i

max{d, hi } = 1.

We prove the claim by contradiction. Let T + = {i ∈ T : x∗
i > 0} and (N\T )+ =

{i ∈ N\T : y∗
i > 0}. Then

∑

i∈T +

x∗
i

li
+

∑

i∈(N\T )+

y∗
i

max{d, hi } > 1. (17)

Claim 2 T + = ∅.
Suppose i ∈ T +, that is, x∗

i ≥ li > max{d, hi }. Since αi = 0 and α j > 0 for
all j ∈ L \T , by optimality we must have y∗

j = 0 for all j ∈ L\T . In addition, by

Claim 1, we must have y∗
j = 0 for all j ∈ N\L as well. Thus (N\T )+ = ∅. Moreover,

given that c j > 0 for any j ∈ T +, we must have T + = {i}. Then (17) takes the form
x∗

i > li , a contradiction with optimality as ci > 0. ♦

By Claim 2, we arrive at

∑

i∈(N\T )+

y∗
i

max{d, hi } > 1. (18)

Claim 3 (N \T )+ ∩ H = ∅.
Let i ∈ (N\T )+ be such that hi ≥ d. By Claim 1 and optimality, (N \T )+ = {i}.

Then (18) implies y∗
i > hi ≥ d. If i ∈ L\T , then αi > 0 and by optimality we have a

123



Semi-continuous network flow problems 575

contradiction. If i ∈ N\L, then li ≤ max{hi , d} = hi . Since ci +αi > 0, by optimality
we must have y∗

i = hi , a contradiction as well. ♦
By Claim 3, we arrive at

∑

i∈(N\T )+
y∗

i > d. (19)

Claim 4 |(N\T )+| ≥ 2.
Since (N\T )+ cannot be empty, suppose (N\T )+ = {i}. Then (19) and Claim 3

imply y∗
i > d > hi . Again, if i ∈ L\T , then αi > 0 and we have a contradiction. If

i ∈ N \ L, then li ≤ max{hi , d} = d. Since ci + αi > 0, by optimality we must have
y∗

i = d, a contradiction as well. ♦
Let

i0 ∈ arg min
{
ci + αi : i ∈ (N\T )+

}
,

and let i1 ∈ (N \T )+, i1 �= i0, which exists by Claim 4. Recall that from Assumption 3,
ci0 + αi0 > 0. For ε > 0 sufficiently small, define (x̄, ȳ) as

(x̄i , ȳi ) =

⎧
⎪⎨

⎪⎩

(
x∗

i0
+ y∗

i1
− ε, y∗

i0
+ y∗

i1
− ε

)
i = i0

(0, 0) i = i1
(x∗

i , y∗
i ) i �= i0, i �= i1.

Certainly x̄i ≥ li whenever x̄i > 0, ȳi ≥ hi whenever yi > 0, and ȳi ≤ x̄i for all
i ∈ N . Thus, given that

∑
i∈N y∗

i > d, we conclude that (x̄, ȳ) is a feasible solution.
Moreover,

∑

i∈N

ci (x∗
i − x̄i ) + αi (y∗

i − ȳi ) = −ci0(y∗
i1

− ε) − αi0(y∗
i1

− ε) + ci1 x∗
i1

+ αi1 y∗
i1

= − (
ci0 + αi0

)
(y∗

i1
− ε) + ci1 x∗

i1
+ αi1 y∗

i1

> − (
ci0 + αi0

)
y∗

i1
+ ci1 y∗

i1
+ αi1 y∗

i1

≥ 0,

where the two inequalities follow from ci0 +αi0 > 0, y∗
i1

> 0, and x∗
i1

≥ y∗
i1

, and from
the definition of i0, respectively.

Hence, (x̄, ȳ) improves upon (x∗, y∗) and we get the required contradiction. ��

3.2 Extreme points of conv(S(0, h))

Since by Theorem 6 an outer description of conv(S(0, h)) in terms of linear inequalities
is available, we look for an inner description in terms of extreme points.

Proposition 7 Let (x, y) be an extreme point of conv(S(0, h)). Then both x and y
have exactly one non-zero entry.

123



576 G. Angulo et al.

Proof We claim that if xi > 0, then yi > 0. By contradiction, suppose xi > 0 and
yi = 0. We can set

(xi , yi ) = 1

2
[(2xi , 0) + (0, 0)] .

Thus, (x, y) can be written as the average of two distinct points in S(0, h).
Now, suppose that x has more than one non-zero entry, say xi > 0 and x j > 0. By

the claim, yi > 0 and y j > 0. We can set

hi ≤ yi = λxi , 0 < λ ≤ 1

h j ≤ y j = μxi , 0 < μ ≤ 1.

Finally, we can write

(xi , x j , yi , y j ) = (xi , x j , λxi , μx j )

= λxi

λxi + μx j
(xi + μ

λ
x j , 0, λxi + μx j , 0)

+ μx j

λxi + μx j
(0, x j + λ

μ
xi , 0, λxi + μx j ).

Hence, (x, y) can be written as a strict convex combination of two distinct points
in S(0, h). ��

Combining Theorem 6 and Proposition 7, we have the following result.

Proposition 8 If (x, y) is an extreme point of conv(S(0, h)), then the non-zero entries
of (x, y) are one of the following:

• i ∈ N\L ⇒ xi = max{d, hi }, yi = max{d, hi },
• i ∈ L ⇒

{
xi = li , yi = li
xi = li , yi = max{d, hi }.

Proof Let (x, y) be an extreme point of conv(S(0, h)). From Proposition 7, (x, y)

has exactly one pair of non-zero entries, say (xi , yi ). From Theorem 6, (xi , yi ) has to
satisfy either yi ≥ max{d, hi } if i ∈ N\L , or both xi ≥ li and yi ≥ max{d, hi } if
i ∈ L . From these inequalities together with yi ≤ xi , at least two have to be satisfied
at equality since xi > 0, yi > 0, and y j = x j = 0 for all j ∈ N , j �= i . The possible
solutions are exactly the combinations indicated above. ��

From Proposition 8, optimization over S(0, h) can be done by enumeration in O(n)

time.

3.3 Extended formulation for conv(S(0, h))

Now, let us consider the separation problem associated to (14). Given (x∗, y∗), let

T ∗ =
{

i ∈ L : x∗
i

li
≤ y∗

i

max{d, hi }
}

.

123



Semi-continuous network flow problems 577

If (14) is satisfied for T ∗, then it is satisfied for any T ⊆ L , and if in addition (16)
and (15) hold, then (x∗, y∗) belongs to conv(S(0, h)). Otherwise, T ∗ gives the most
violated inequality from (14), and therefore it can be used to separate (x∗, y∗) from
conv(S(0, h)). Clearly, computing T ∗ and its corresponding inequality can be done in
O(n) time.

Further note that (x, y) satisfies (14) for all T ⊆ L if and only if

∑

i∈N\L

yi

max{d, hi } +
∑

i∈L

min

(
xi

li
,

yi

max{d, hi }
)

≥ 1.

If fact, this is the separation routine for (14) given a point (x, y). Now, the above
condition holds if and only if there exists π ∈ R

|L| such that

xi

li
≥ πi ∀ i ∈ L

yi

max{d, hi } ≥ πi ∀ i ∈ L

∑

i∈N\L

yi

max{d, hi } +
∑

i∈L

πi ≥ 1.

Thus, introducing variables π , we obtain an extended formulation W of conv(S(0, h))

in a space of higher dimension given by

W =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y, π) ∈ R
n × R

n × R
|L| :

∑

i∈N\L

yi

max{d, hi } +
∑

i∈L

πi ≥ 1

xi

li
≥ πi ∀ i ∈ L

yi

max{d, hi } ≥ πi ∀ i ∈ L

yi ≥ 0 ∀ i ∈ N
xi − yi ≥ 0 ∀ i ∈ N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Let projx,y(W ) denote the projection of W onto the (x, y)-space.

Corollary 9 conv(S(0, h)) = projx,y(W ).

This extended formulation is compact in the sense that we have, at most, doubled
the number of variables and constraints.

4 The case h = 0

In this section we assume that h = 0 and then S(t, 0) ⊆ R
n × R

n takes the form

∑

i∈N

yi ≥ d (20)

yi ≤ ti + xi ∀ i ∈ N (21)

123



578 G. Angulo et al.

xi ∈ {0} ∪ [li ,∞) ∀ i ∈ N (22)

yi ≥ 0 ∀ i ∈ N . (23)

4.1 Inequality description of conv(S(t, 0))

Proposition 10
∑

i∈N yi ≥ d is facet-defining for conv(S(t, 0)).

Proof Choose a point x̄ ∈ R
n satisfying x̄i > max{d, li } for all i ∈ N and set ȳi = d

n
for all i ∈ N . We have that (x̄, ȳ) belongs to S(t, 0) and satisfies

∑
i∈N ȳi = d. Now

for each j ∈ N , j < n, consider the points
(
x j , y j

)
and

(
xn+ j , yn+ j

)
given by

(
x j

i , y j
i

)
=

{
(x̄ j + ε, ȳ j ) i = j
(x̄i , ȳi ) i �= j,

(
xn+ j

i , yn+ j
i

)
=

⎧
⎨

⎩

(x̄ j , ȳ j − ε) i = j
(x̄n, ȳn + ε) i = n
(x̄i , ȳi ) i �= j, i �= n.

Finally, let
(
x2n, y2n

) = (x̄, ȳ) and let (xn, yn) be given by

(
xn

i , yn
i

) =
{

(x̄n + ε, ȳn) i = n
(x̄i , ȳi ) i �= n.

For ε > 0 sufficiently small,
{(

x j , y j
)
,

(
xn+ j, yn+ j

) : j ∈ N
}

is contained in
S(t, 0). Moreover, it is an affinely independent set, and since these 2n points satisfy∑

i∈N yi ≥ d at equality, this constraint defines a facet of conv(S(t, 0)). ��
Definition 11 A subset R ⊆ N is a reverse cover if dR := d − ∑

i∈R ti > 0.

Let R ⊆ 2N be the set of all reverse covers. For a reverse cover R ∈ R, consider
the inequality

∑

i∈R

xi

max{li , dR} +
∑

i∈N\R

yi

dR
≥ 1. (24)

Also, let L R := {i ∈ R : li > dR}. Note that if R = ∅, we recover (20).

Proposition 12 For each reverse cover R ∈ R, (24) is valid for conv(S(t, 0)).

Proof Let (x, y) ∈ S(t, 0). If there exists i ∈ L R with xi > 0, then (24) is satisfied.
Otherwise, xi = 0 for all i ∈ L R . Then

d ≤
∑

i∈N

yi =
∑

i∈L R

yi +
∑

i∈R\L R

yi +
∑

i∈N\R

yi ≤
∑

i∈L R

ti +
∑

i∈R\L R

(ti + xi ) +
∑

i∈N\R

yi

�⇒ dR = d −
∑

i∈R

ti ≤
∑

i∈R\L R

xi +
∑

i∈N\R

yi .

Since max{li , dR} = dR > 0 for each i ∈ R\L R , (24) is satisfied. ��

123



Semi-continuous network flow problems 579

Definition 13 A reverse cover R ∈ R is proper if

1. L R �= ∅.
2. ti > 0 for all i ∈ R\L R .

Proposition 14 For each reverse cover R ∈ R, (24) is facet-defining if and only if R
is empty or if R is proper.

Proof The case R = ∅ follows from Proposition 10. Thus, let R be a proper reverse
cover and let i ∈ L R . For each j ∈ N , consider the points

(
x j, y j

)
and

(
xn+ j , yn+ j

)

defined as follows.
If j ∈ R,

(
x j

k , y j
k

)
=

⎧
⎨

⎩

(max{l j , dR}, t j + dR) k = j
(0, tk) k ∈ R, k �= j
(0, 0) k ∈ N\R.

Then
∑

k∈N

y j
k =

∑

k∈R

tk + dR = d

and

∑

k∈R

x j
k

max{lk, dR} +
∑

k∈N\R

y j
k

dR
= max{l j , dR}

max{l j , dR} = 1.

If j ∈ L R ,

(
xn+ j

k , yn+ j
k

)
=

⎧
⎨

⎩

(l j , t j + dR + ε) k = j
(0, tk) k ∈ R, k �= j
(0, 0) k ∈ N\R.

Then
∑

k∈N

yn+ j
k =

∑

k∈R

tk + dR + ε ≥ d

and

∑

k∈R

xn+ j
k

max{lk, dR} +
∑

k∈N\R

yn+ j
k

dR
= l j

max{l j , dR} = 1.

If j ∈ R\L R ,

(
xn+ j

k , yn+ j
k

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(li , ti + dR + ε) k = i
(0, t j − ε) k = j
(0, tk) k ∈ R, k �= i, k �= j
(0, 0) k ∈ N \ R.

123



580 G. Angulo et al.

Then
∑

k∈N

yn+ j
k =

∑

k∈R

tk − ε + dR + ε = d

and

∑

k∈R

xn+ j
k

max{lk, dR} +
∑

k∈N\R

yn+ j
k

dR
= li

max{li , dR} = 1.

If j ∈ N\R,

(
x j

k , y j
k

)
=

⎧
⎨

⎩

(max{l j , dR}, dR) k = j
(0, tk) k ∈ R
(0, 0) k ∈ N\R, k �= j,

(
xn+ j

k , yn+ j
k

)
=

⎧
⎨

⎩

(max{l j , dR} + ε, dR) k = j
(0, tk) k ∈ R
(0, 0) k ∈ N\R, k �= j.

Then
∑

k∈N

y j
k =

∑

k∈N

yn+ j
k =

∑

k∈R

tk + dR = d

and

∑

k∈R

x j
k

max{lk, dR} +
∑

k∈N\R

y j
k

dR
=

∑

k∈R

xn+ j
k

max{lk, dR} +
∑

k∈N\R

yn+ j
k

dR
= dR

dR
= 1.

Given that dR < l j for all j ∈ L R and 0 < t j for all j ∈ R\L R , for ε > 0 sufficiently
small, we have that

{(
x j , y j

)
,

(
xn+ j , yn+ j

) : j ∈ N
}

is contained in S(t, 0). More-
over, it is an affinely independent set, and since these 2n points satisfy (24) at equality,
this constraint defines a facet of conv(S(t, 0)).

For the converse, let R be a nonempty cover that is not proper, thus either L R = ∅
or there exists i ∈ R\L R having ti = 0. In the former case, max{li , dR} = dR for
all i ∈ R, and then (24) is generated as the sum of (20) and (21) for i ∈ R. In the
latter, since ti = 0, we have dR\{i} = dR and yi ≤ xi . Since i ∈ R \ L R , we also have
max{li , dR} = dR . Thus

∑

j∈R

x j

max{l j , dR} +
∑

j∈N\R

y j

dR
=

∑

j∈R\{i}

x j

max{l j , dR} + xi

max{li , dR} +
∑

j∈N\R

y j

dR

≥
∑

j∈R\{i}

x j

max{l j , dR} + yi

dR
+

∑

j∈N\R

y j

dR

=
∑

j∈R\{i}

x j

max{l j , dR} +
∑

j∈N\(R\{i})

y j

dR
.

123



Semi-continuous network flow problems 581

Hence, the inequality given by R is implied by the one given by R\{i}, and therefore
it cannot be facet-defining. ��

We now present the main result of this section.

Theorem 15 conv(S(t, 0)) is given by the following inequalities

∑

i∈R

xi

max{li , dR} +
∑

i∈N\R

yi

dR
≥ 1∀ R ∈ R

yi ≤ xi + ti ∀ i ∈ N (25)

xi ≥ 0 ∀ i ∈ N (26)

yi ≥ 0 ∀ i ∈ N . (27)

Proof Let (c, α) ∈ R
n × R

n be a non-zero vector and consider the problem

min
{

c	x + α	y : (x, y) ∈ S(t, 0)
}

.

As in the proof of Theorem 6, we will show that if this problem has finite optimal
value, then there exists one inequality from (24)–(27) that is satisfied at equality by
all optimal solutions.

Assumption 1 c ≥ 0 and c + α ≥ 0.
If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded.

Thus, we may assume c ≥ 0 and c + α ≥ 0. ♦

In particular, Assumption 1 implies that the objective value is bounded and there
exists an optimal solution. Let (x∗, y∗) be any such solution.

Assumption 2 α ≥ 0.
If for some i ∈ N we have αi < 0, then y∗

i = ti + x∗
i by optimality, that is, (25) is

satisfied at equality. Thus, we may assume α ≥ 0. ♦

From Assumptions 1 and 2, we have that the optimal value is nonnegative.

Assumption 3 c	x∗ + α	y∗ > 0.
Suppose that the optimal value is zero. Since (c, α) �= (0, 0), by Assumptions 1 and

2, there must exist i ∈ N such that either αi > 0 or ci > 0. By optimality, in the former
case we must have y∗

i = 0, while in the latter x∗
i = 0 must hold. Therefore, either

(27) or (26) must be satisfied at equality. Thus, we may assume c	x∗ + α	y∗ > 0.
♦

Claim 1 c + α > 0.
If ci = αi = 0 for some i ∈ N, then the optimal value is zero, contradicting

Assumption 3. ♦

Let R := {i ∈ N : αi = 0}. From Assumption 3 and the definition of R, we have∑
i∈R ti < d, since otherwise the optimal value is zero. Hence, R is a reverse cover.

We also have ci > 0 for all i ∈ R by Claim 1, and αi > 0 for all i ∈ N\R.

123



582 G. Angulo et al.

We claim that

∑

i∈R

x∗
i

max{li , dR} +
∑

i∈N\R

y∗
i

dR
= 1.

Suppose not. Let L+
R := {i ∈ L R : x∗

i > 0}, (R\L R)+ := {i ∈ R\L R : x∗
i > 0},

and (N\R)+ := {i ∈ N\R : y∗
i > 0}. Then

∑

i∈L+
R

x∗
i

li
+

∑

i∈(R\L R)+

x∗
i

dR
+

∑

i∈(N\R)+

y∗
i

dR
> 1. (28)

Claim 2 L+
R = ∅.

Suppose i ∈ L+
R , that is, i ∈ R and x∗

i ≥ li > dR. Note that since α j = 0 for all
j ∈ R, we can set y∗

j = t j for each j ∈ R, j �= i , and y∗
i = ti +dR without affecting the

feasibility and objective value of the solution. Recalling that ci > 0 for all i ∈ R and
αi > 0 for all ∈ N\R, from (28) and optimality we have (R\L R)+ = (N\R)+ = ∅
and L+

R = {i}. Then (28) implies x∗
i > li > dR, contradicting optimality since setting

x∗
i = li improves the objective value. ♦

Now, we have
∑

i∈(R\L R)+
x∗

i +
∑

i∈(N\R)+
y∗

i > dR . (29)

Claim 3 (N\R)+ = ∅.
From (29) and Claim 2, we have

d <
∑

i∈(R\L R)+
x∗

i +
∑

i∈R

ti +
∑

i∈(N\R)+
y∗

i =
∑

i∈R

(x∗
i + ti ) +

∑

i∈(N\R)+
y∗

i .

If (N\R)+ is nonempty, we can set y∗
i = ti +x∗

i for each i ∈ R without changing the
objective value, and then decrease y∗

i for some i ∈ (N\R)+, contradicting optimality
as αi > 0 for all i ∈ (N\R)+. ♦

We arrive at
∑

i∈(R\L R)+
x∗

i > dR .

Then we can improve upon (x∗, y∗) by taking i ∈ arg min{c j : j ∈ (R \ L R)+} and
defining (x̄, ȳ) by

(x̄ j , ȳ j ) =
⎧
⎨

⎩

(dR, t j + dR) j = i
(0, t j ) j ∈ R, j �= i
(0, 0) j ∈ N\R.

��

123



Semi-continuous network flow problems 583

4.2 Extended formulation for conv(S(t, 0))

At first sight, it is not clear how to separate the inequalities given by (24). We will
show that this can be done using an extended formulation. We first state a result similar
to Proposition 7.

Proposition 16 If (x, y) is an extreme point of conv(S(t, 0)), then x has at most one
non-zero entry.

Proof We claim that if xi > 0, then yi > ti . By contradiction, suppose xi > 0 and
yi ≤ ti . We can write

(xi , yi ) = 1

2
[(2xi , yi ) + (0, yi )] .

Thus, (x, y) can be written as the average of two distinct points in S(t, 0).
Now, suppose that x has more than one non-zero entry, say xi > 0 and x j > 0. By

the claim, yi > ti and y j > t j . Thus, there exist λ,μ ∈ (0, 1] such that yi = ti + λxi

and y j = t j + μx j . Then we can write

(xi , x j , yi , y j ) = (xi , x j , ti + λxi , t j + μx j )

= λxi

λxi + μx j

(
xi + μ

λ
x j , 0, ti + λxi + μx j , t j

)

+ μx j

λxi + μx j

(

0, x j + λ

μ
xi , ti , t j + λxi + μx j

)

.

Also, notice that

ti + λxi + μx j = ti + λ
(

xi + μ

λ
x j

)
≤ ti +

(
xi + μ

λ
x j

)
,

t j + λxi + μx j = t j + μ

(
λ

μ
xi + x j

)

≤ t j +
(

λ

μ
xi + x j

)

.

Hence, (x, y) can be written as a strict convex combination of two distinct points
in S(t, 0). ��

Now consider the polyhedra

S0 := {(x, y) ∈ S(t, 0) : x j = 0 ∀ j ∈ N }=

⎧
⎪⎪⎨

⎪⎪⎩

(x, y) ∈ R
n+ × R

n+ :
∑

j∈N y j ≥ d

−y j ≥−t j ∀ j ∈ N

−x j ≥ 0 ∀ j ∈ N

⎫
⎪⎪⎬

⎪⎪⎭

,

Si := {(x, y)∈ S(t, 0) : xi ≥ li , x j =0 ∀ j �= i}=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
n+ × R

n+ :

∑
j∈N y j ≥ d

xi −yi ≥−ti

−y j ≥−t j ∀ j �= i

xi ≥ li

−x j ≥ 0 ∀ j �= i

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, i ∈ N .

123



584 G. Angulo et al.

Note that Si is nonempty for each i ∈ N , while S0 is nonempty if and only if
∑

j∈N t j ≥
d. Set N̄ = {0} ∪ N .

For a set C , let conv(C) denote the closure of its convex hull. If C is convex, let
ext (C) and rec(C) denote the set of extreme points and the recession cone of C ,
respectively.

Proposition 17 conv(S(t, 0)) = conv(∪i∈N̄ Si ).

Proof The reverse inclusion is easy as Si ⊆ S(t, 0) for all i ∈ N̄ and conv(S(t, 0)) is
closed by Proposition 3.

For the forward inclusion, let (x, y) ∈ ext (conv(S(t, 0))). From Proposition 16,
(x, y) belongs to some Si , i ∈ N̄ , thus ext (conv(S(t, 0))) ⊆ conv(∪i∈N̄ Si ).
It remains to show that rec(conv(S(t, 0))) ⊆ rec(conv(∪i∈N̄ Si )). Let (x, y) ∈
rec(conv(S(t, 0))). From Theorem 15, we can conclude that x ≥ 0, y ≥ 0, and
x ≥ y. Write (x, y) = ∑

i∈N (xi ei , yi ei ), where ei is the i-th canonical vec-
tor in R

n . On the other hand, from a result in disjunctive programming [1], we
have rec(conv(∪i∈N̄ Si )) = conv(∪i∈N̄ rec(Si )). Since rec(Si ) is a convex cone
for each i ∈ N̄ , we also have conv(∪i∈N̄ rec(Si )) = ∑

i∈N̄ rec(Si ). Given that
(xi ei , yi ei ) ∈ rec(Si ) for each i ∈ N , we have that (x, y) ∈ rec(conv(∪i∈N̄ Si )),
which completes the proof. ��

From Proposition 17, conv(S(t, 0)) admits a compact representation as the projec-
tion onto (x, y) of a higher dimensional polyhedron which can be used to find violated
inequalities. Specifically, given (x̄, ȳ) ∈ R

n ×R
n , let P ⊆ R

(n+1)n
+ ×R

(n+1)n
+ ×R

n+1+
be the set of vectors (x, y, λ) satisfying

∑

j∈N
y0

j − dλ0 ≥ 0 (α0)

−y0
j + t jλ

0 ≥ 0 ∀ j ∈ N (β0 j )

−x j ≥ 0 ∀ j ∈ N
∑

j∈N
yi

j − dλi ≥ 0 ∀ i ∈ N (αi )

xi
i − yi

i + tiλi ≥ 0 ∀ i ∈ N (βi i )

−yi
j + t jλ

i ≥ 0 ∀ i ∈ N , ∀ j �= i (βi j )

xi
i − liλi ≥ 0 ∀ i ∈ N (γi )

−xi
j ≥ 0 ∀ i ∈ N , ∀ j �= i

xi
i = x̄i ∀ i ∈ N (νi )

∑

j∈N̄

y j
i = ȳi ∀ i ∈ N (ηi )

∑

j∈N̄

λ j = 1 (π).

Thus, (x̄, ȳ) belongs to conv(∪i∈N̄ Si ), and therefore to conv(S(t, 0)), if and only if P

is nonempty. Let Q ⊆ R
n+1+ × R

(n+1)n
+ × R

n+ × R
n × R

n × R be the set of vectors

123



Semi-continuous network flow problems 585

(α, β, γ, η, ν, π) such that

α0 − β0 j + ν j ≤ 0 ∀ j ∈ N

−dα0 +
∑

j∈N

t jβ0 j + π ≤ 0

αi − βi j + ν j ≤ 0 ∀ i ∈ N , ∀ j ∈ N

βi i + γi + ηi ≤ 0 ∀ i ∈ N

−dαi +
∑

j∈N

t jβi j − liγi + π ≤ 0 ∀ i ∈ N

π +
∑

i∈N

ηi x̄i +
∑

i∈N

νi ȳi > 0.

After removing unnecessary variables and constraints from P , by Farkas’ Lemma,
P is nonempty if and only if Q is empty. Moreover, given (x̄, ȳ) in the continuous
relaxation of (20)–(23), there is a violated inequality from (24) if and only if the
problem

min
∑

i∈N

ηi x̄i +
∑

i∈N

νi ȳi − π

s.t. α0 − β0 j − ν j ≤ 0 ∀ j ∈ N

−dα0 +
∑

j∈N

t jβ0 j + π ≤ 0

αi − βi j − ν j ≤ 0 ∀ i ∈ N , ∀ j ∈ N

βi i + γi − ηi ≤ 0 ∀ i ∈ N

−dαi +
∑

j∈N

t jβi j − liγi + π ≤ 0 ∀ i ∈ N

∑

i∈N

ηi +
∑

i∈N

νi + π = 1

α, β, γ, η, ν, π ≥ 0 (30)

has negative optimal value. In this case, any optimal solution to (30) yields a valid
inequality for conv(S(t, 0)) that is not satisfied by (x̄, ȳ).

5 A semi-continuous transportation problem

5.1 The problem and its complexity

Consider now the case where we intersect m ≥ 1 sets of the form S(t, h). Specifically,
let M := {1, . . . , m} be a set of nodes that receive flow from nodes in N , where
each j ∈ M has a demand d j > 0 to be met. In this context, we refer to N and M
as suppliers and customers, respectively. In this setting, l ∈ R

n+ is a vector of lower

123



586 G. Angulo et al.

Fig. 3 Semi-continuous transportation problem

bounds for supplier capacities, h ∈ R
nm+ is a vector of lower bounds for arc flows, and

t ∈ R
n+ is a vector of initial supplier capacities.

Let S∗ ⊆ R
n × R

nm be the set of vectors (x, y) such that

∑

i∈N

yi j ≥ d j ∀ j ∈ M (31)

∑

j∈M

yi j ≤ ti + xi ∀ i ∈ N (32)

xi ∈ {0} ∪ [li ,∞) ∀ i ∈ N (33)

yi j ∈ {0} ∪ [hi j ,∞) ∀ i ∈ N , ∀ j ∈ M . (34)

Constraints (31), (33), and (34) are analogous to (1), (3), and (4) of S(t, h), respec-
tively. In addition, constraints (32) ensure that the total outflow from any supplier does
not exceed its available capacity. As with the inflow set, a graphical interpretation is
given in Fig. 3.

Now we address the complexity of optimization over S∗.

Proposition 18 Optimizing a linear function over S∗ is NP-hard, even if t = 0 and
h = 0.

Proof We will show that the Uncapacitated Facility Location Problem (UFLP), which
is NP-hard, can be reduced to optimization of a linear function over S∗. An instance
of UFLP is defined by a set of potential facilities N , a set of customers M , and cost
functions f : N → R+ and e : N × M → R+. The objective is to compute

min
N ′⊆N

⎧
⎨

⎩

∑

i∈N ′
fi +

∑

j∈M

min
i∈N ′ ei j

⎫
⎬

⎭
.

We can formulate UFLP as an integer programming problem. Let zi = 1 if and
only if facility i is open, and wi j = 1 if and only if customer j is assigned to facility
i . The corresponding formulation is

123



Semi-continuous network flow problems 587

z1 = min
∑

i∈N

fi zi +
∑

j∈M

∑

i∈N

ei jwi j

s.t. wi j ≤ zi ∀ i ∈ N , ∀ j ∈ M
∑

i∈N

wi j = 1 ∀ j ∈ M

wi j ∈ {0, 1} ∀ i ∈ N , ∀ j ∈ M

zi ∈ {0, 1} ∀ i ∈ N .

Given an instance π1 of UFLP, we want to construct an instance π2 of linear
optimization over S∗ with the same objective value. We identify N with the set of
supply nodes and M with the set of customers. Let li = m + 1 for all i ∈ N , d j = 1
for all j ∈ M , ci = fi

m+1 for all i ∈ N , and αi j = ei j for all i ∈ N and j ∈ M . We also
set ti = 0 for each i ∈ N , and hi j = 0 for each i ∈ N and j ∈ M . The corresponding
instance π2 is then

z2 = min
∑

i∈N

fi

m + 1
xi +

∑

i∈N

∑

j∈M

ei j yi j

s.t.
∑

j∈M

yi j ≤ xi ∀ i ∈ N

∑

i∈N

yi j ≥ 1 ∀ j ∈ M

yi j ≥ 0 ∀ i ∈ N , ∀ j ∈ M

xi ∈ {0} ∪ [m + 1,∞) ∀ i ∈ N .

Let (z∗, w∗) be an optimal solution to π1. If we set xi = li if z∗
i = 1 and 0 otherwise,

and yi j = d j if w∗
i j = 1 and 0 otherwise, then we get a feasible solution (x, y) to π2

with cost z1. Hence, z2 ≤ z1.
Now, let (x∗, y∗) be an optimal solution to π2. Since c ≥ 0, α ≥ 0, and li ≥ m +1,

we may assume that x∗
i ∈ {0, li } for all i ∈ N . In addition, by integrality property of

networks, we may also assume that y∗
i j ∈ {0, d j } for any i ∈ N and j ∈ M . Setting

zi = 1 if x∗
i = li and 0 otherwise, and wi j = 1 if y∗

i j = d j and 0 otherwise, we get a
feasible solution (z, w) to π1 with cost z2. Hence, z1 ≤ z2. ��

5.2 Analysis of a relaxation of S∗

A special case of S∗ arises when h = 0, which constitutes a relaxation for this class
of problems. In such a case, we shall present structural characteristics of the convex
hull of this set that will give us some insight into the complexity of optimization over
it. In fact, we will show some results for a slightly more general set.

123



588 G. Angulo et al.

For lower bounds l ∈ R
n+, demands d ∈ R

m+, not necessarily positive, and initial
capacities t ∈ R

n+, we define

S∗(l, d, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
n × R

nm :

∑

i∈N

yi j ≥ d j ∀ j ∈ M

∑

j∈M

yi j ≤ ti + xi ∀ i ∈ N

yi j ≥ 0 ∀ i ∈ N , j ∈ M
xi ∈ {0} ∪ [li ,∞) ∀ i ∈ N

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Once more, we begin with a result in the spirit of Propositions 7 and 16.

Proposition 19 If (x, y) is an extreme point of conv(S∗(l, d, t)), then
∑

j∈M yi j > ti
for all i ∈ N such that xi > 0.

Proof Suppose that xi > 0 and
∑

j∈M yi j ≤ ti for some i ∈ N . Then we can write

(xi , yi1, . . . , yim) = 1

2
[(2xi , yi1, . . . , yim) + (0, yi1, . . . , yim)] ,

that is, (x, y) is the strict convex combination of two distinct points in S∗(l, d, t), and
thus it cannot be an extreme point of conv(S∗(l, d, t)). ��

For (x̄, ȳ) ∈ S∗(l, d, t), we define the support σ(x̄) of x̄ as the subset of suppliers
with positive production, that is

σ(x̄) := {i ∈ N : x̄i > 0}.

We will prove that if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then |σ(x̄)| ≤ m.
We need the following key lemma.

Lemma 20 If t = 0 and (x̄, ȳ) is an extreme point of conv(S∗(l, d, 0)), then |σ(x̄)| ≤
m.

Proof For a contradiction, suppose that for some positive integers n > m the claim
does not hold. Choose n and m so that n + m is minimum among all such instances.
Note that by Proposition 16, m > 1. Let (x̄, ȳ) be an extreme point of S∗(l, d, 0)

having |σ(x̄)| > m, where l ∈ R
n+ and d ∈ R

m+.
By minimality of n + m, we may assume that |σ(x̄)| = n, since otherwise xi = 0

for some i ∈ N , and removing this supplier from the instance would yield a smaller
counterexample.

Claim 1 n = m + 1.
If n > m + 1, let N̂ := N\{n}. We define d̂ ∈ R

m+ by

d̂ j :=
∑

i∈N̂

ȳi j ∀ j ∈ M.

123



Semi-continuous network flow problems 589

Let (̂x, ŷ) ∈ R
n−1+ × R

(n−1)m
+ and l̂ ∈ R

n−1+ be the restrictions of (x̄, ȳ) and l with
respect to N̂ , respectively. We have that (̂x, ŷ) is feasible for S∗(̂l, d̂, 0) and |σ (̂x)| =
n − 1 ≥ m + 1. By minimality of n + m, (̂x, ŷ) cannot be an extreme point of
conv(S∗(̂l, d̂, 0)). Thus, we can write

(̂x, ŷ) =
q∑

p=1

λp(x p, y p),

where q ≥ 2, {(x py p) : p = 1, . . . , q} are distinct points in S∗(̂l, d̂, 0), λp > 0 for
all p = 1, . . . , q, and

∑q
p=1 λp = 1. For each p = 1, . . . , q, we extend (x p, y p) to

(̃x p, ỹ p) ∈ R
n × R

nm by setting x̃ p
n = x̄n and ỹ p

nj = ȳn j for all j ∈ M. Since x p ≥ l̂
and x̄n ≥ ln, we have x̃ p ≥ l. In addition, for each j ∈ M, we have

∑

i∈N

ỹ p
i j =

∑

i∈N̂

y p
i j + ȳn j ≥ d̂ j + ȳn j ≥ d j .

Thus, {(̃x p, ỹ p) : p = 1, . . . , q} are distinct points in S∗(l, d, 0). We can see that

(x̄, ȳ) =
q∑

p=1

λp
(
x̃ p, ỹ p)

and therefore (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, 0)). The claim is thus
proved. ♦

Let G = (N ∪ M, E) be a bipartite graph where i ∈ N is adjacent to j ∈ M if and
only if ȳi j > 0. Notice that since σ(x̄) = N , by Proposition 19 we have that for each
i ∈ N , there exists j ∈ M having ȳi j > 0, and therefore deg(i) ≥ 1 for all i ∈ N .
Furthermore, we may assume deg( j) ≥ 1 for all j ∈ M , since if deg( j) = 0, then
d j = 0 and removing this customer from the instance yields a smaller counterexample.
Therefore, given that n = m + 1, there must exist some component of G having more
suppliers than customers. Hence, we may assume that G is connected, since otherwise
some component of G induces a smaller counterexample. We may also assume that G
is acyclic, since otherwise we can modify ȳ along the arcs in a cycle and write (x̄, ȳ)

as the average of two different solutions in S∗(l, d, 0). Thus, we may assume that G
is a tree.

Claim 2 deg( j) = 2 ∀ j ∈ M.
We first argue that deg( j) ≥ 2 for all j ∈ M. By contradiction, we may assume that

deg(m) = 1 and that m is supplied by n. As before, let N̂ := N\{n} and M̂ := M\{m}.
We define d̂ ∈ R

m−1+ by

d̂ j :=
∑

i∈N̂

ȳi j ∀ j ∈ M̂ .

123



590 G. Angulo et al.

Taking the restrictions of (x̄, ȳ) and l with respect to N̂ and M̂, and proceeding
as in the proof of Claim 1, we conclude that (x̄, ȳ) cannot be an extreme point of
conv(S∗(l, d, 0)). Hence, deg( j) ≥ 2 ∀ j ∈ M. However, since G is a tree, we have
|E | = |N ∪ M | − 1 = m + 1 + m − 1 = 2m, and thus deg( j) = 2 for each j ∈ M.
The claim is thus proved. ♦

Now, for each i ∈ N , let

M(i) := { j ∈ M : (i, j) ∈ E},
N (i) := {l ∈ N \ {i} : ∃ j ∈ M such that (i, j), (l, j) ∈ E}.

In other words, M(i) are the customers served by i , while N (i) are the suppliers
that share a customer with i , which we refer to as its neighbors. Clearly l ∈ N (i)
if and only if i ∈ N (l). Note that since G is acyclic, any two suppliers can have at
most one common customer. Thus, given neighbors i and l in N , there exists a unique
j =: j (i, l) ∈ M connecting them in G.

Let (c, α) ∈ R
n × R

nm be such that (x̄, ȳ) is the unique minimizer in S∗(l, d, 0)

with respect to this function. For each i ∈ N , consider the solution (xi , yi ) given by

xi
l =

⎧
⎨

⎩

0 l = i
x̄l + ȳi j (i,l) l ∈ N (i)
x̄l otherwise,

yi
l j =

⎧
⎨

⎩

0 l = i
ȳl j + ȳi j (i,l) l ∈ N (i), j = j (i, l)
ȳl j otherwise.

Thus, we obtain (xi , yi ) from (x̄, ȳ) by moving the production from i to its neighbors
and removing i from the solution. It is straightforward to verify that (xi , yi ) is feasible
to S∗(l, d, 0). However, since (x̄, ȳ) is the unique minimizer for (c, α), we have that the
cost incurred by (x̄, ȳ) is less than the cost incurred by (xi , yi ). Since these solutions
only differ in the variables associated to i and its neighbors, we have

ci x̄i +
∑

j∈M(i)

αi j ȳi j <
∑

l∈N (i)

(cl + αl j (i,l))ȳi j (i,l).

Recalling that
∑

j∈M(i) ȳi j ≤ x̄i , we have

∑

j∈M(i)

(ci + αi j )ȳi j <
∑

l∈N (i)

(cl + αl j (i,l))ȳi j (i,l).

Rewriting the left-hand-side in the last inequality, we obtain

∑

l∈N (i)

(ci + αi j (i,l))ȳi j (i,l) <
∑

l∈N (i)

(cl + αl j (i,l))ȳi j (i,l).

Hence, there must exist some l ∈ N (i) such that

ci + αi j (i,l) < cl + αl j (i,l).

123



Semi-continuous network flow problems 591

For neighbors i and l, we say that i dominates l if the above inequality holds. Thus,
we have that any supplier has to dominate at least one of its neighbors.

Let G ′ = (N , E ′) be a graph where (i, j) ∈ E ′ if and only if i and j are neighbors
in G, and note that G ′ is also a tree. Let L ⊆ N be the set of leaves of G ′. Since
n = m + 1 ≥ 3, L has at least two elements and N\L is nonempty. Note that any leaf
dominates its unique neighbor. Now, pick some r ∈ L as a root of G ′, and let i ∈ N\L
be such that all of its children are leaves of G ′. Since i is dominated by its children,
it must dominate its parent. Reasoning by induction, we have that any supplier has
to dominate its parent. In particular, we conclude that r is dominated by its child, a
contradiction since r is a leaf. This completes the proof. ��

With Proposition 19 and Lemma 20 at hand, we can prove the main result of this
section.

Theorem 21 For any t ≥ 0, if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then
|σ(x̄)| ≤ m.

Proof For a contradiction, suppose that for some positive integers n > m the claim
does not hold. Let (x̄, ȳ) be an extreme point of S∗(l, d, t) having |σ(x̄)| > m, where
l, t ∈ R

n+ and d ∈ R
m+.

For each i ∈ N , let j (i) ∈ M be such that
∑

j∈M, j< j (i) ȳi j ≤ ti and∑
j∈M, j≤ j (i) ȳi j > ti . Since (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), by Propo-

sition 19, j (i) is well defined for all i ∈ N . We define ŷ ∈ R
nm+ and d̂ ∈ R

m+ by

ŷi j =

⎧
⎪⎪⎨

⎪⎪⎩

0 j < j (i)
∑

k∈M, k≤ j (i)

ȳik − ti j = j (i)

ȳi j j > j (i),

d̂ j =
∑

i∈N

ŷi j ∀ j ∈ M.

Also, let x̂ = x̄ . Then
∑

j∈M ŷi j = ∑
j∈M ȳi j − ti ≤ x̄i = x̂i for all i ∈ N . Moreover,

(̂x, ŷ) is feasible to S∗(l, d̂, 0). Since |σ (̂x)| = |σ(x̄)| > m, by Lemma 20, (̂x, ŷ)

cannot be an extreme point of conv(S∗(l, d̂, 0)). Thus, we can write

(̂x, ŷ) =
q∑

p=1

λp(x p, y p),

where q ≥ 2, {(x p, y p) : p = 1, . . . , q} are distinct points in S∗(l, d̂, 0), λp > 0 for
all p = 1, . . . , q, and

∑q
p=1 λp = 1. Notice that for each p = 1, . . . , q and i ∈ N ,

y p
i j = 0 for all j < j (i). Then we can define w ∈ R

nm by

wi j =
⎧
⎨

⎩

ȳi j j < j (i)
ȳi j − ŷi j j = j (i)
0 j > j (i),

123



592 G. Angulo et al.

and set x̃ p = x p and ỹ p = y p + w. Notice that for all i ∈ N ,

wi j (i) = ȳi j (i) − ŷi j (i) = ȳi j (i) −
∑

j∈M, j≤ j (i)

ȳi j + ti = −
∑

j∈M, j< j (i)

ȳi j + ti ≥ 0.

Thus, w ≥ 0 and ỹ p is nonnegative for all p = 1, . . . , q. Also, for all i ∈ N we
have

∑

j∈M

ỹ p
i j =

∑

j∈M

y p
i j +

∑

j∈M, j≤ j (i)

ȳi j − ŷi j (i) =
∑

j∈M

y p
i j + ti ≤ x p

i + ti = x̃ p
i + ti .

Finally, for all j ∈ M we have

∑

i∈N

ỹ p
i j =

∑

i∈N

y p
i j +

∑

i∈N : j≤ j (i)

ȳi j −
∑

i∈N : j= j (i)

ŷi j

≥ d̂ j +
∑

i∈N : j≤ j (i)

ȳi j −
∑

i∈N : j= j (i)

ŷi j

=
∑

i∈N

ŷi j +
∑

i∈N : j≤ j (i)

ȳi j −
∑

i∈N : j= j (i)

ŷi j

=
∑

i∈N : j= j (i)

ŷi j +
∑

i∈N : j> j (i)

ŷi j +
∑

i∈N : j≤ j (i)

ȳi j −
∑

i∈N : j= j (i)

ŷi j

=
∑

i∈N

ȳi j

≥ d j .

Thus, (̃x p, ỹ p) ∈ S∗(l, d, t) for all p = 1, . . . , q and are all distinct by the definition
of ỹ p. Furthermore, it is straightforward to verify that

∑q
p=1 λp (̃x p, ỹ p) = (x̄, ȳ).

Hence (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, t)), yielding the required
contradiction. ��
Corollary 22 Minimizing a linear function over S∗(l, d, t) can be done by solving
O(nm) linear programming problems.

In other words, optimization over S∗(l, d, t) can be done in polynomial time when
m is fixed.

As an algorithmic implication, we can tweak the branch-and-bound procedure when
we optimize over S∗(l, d, t): whenever a node of the search-tree has m bounds of the
form xi ≥ li , we can fix the production of the remaining suppliers to 0. However, our
experimental experience indicates that a standard branch-and-cut solver does not need
to branch that many times, rendering this approach inapplicable for practical purposes.

On the other hand, we can construct relaxations of S∗ by considering the subsystem
defined by a few customers, say two, and taking h = 0. By Theorem 21 and an
argument similar to Proposition 17, a compact extended formulation is available for
its convex hull from which strong valid inequalities for conv(S∗) may be devised.

123



Semi-continuous network flow problems 593

6 Computation

We test the performance of the inequalities presented in Sects. 3 and 4 on instances
of the semi-continuous transportation problem described in Sect. 5. We address the
effectivity of the cuts used alone or combined with CPLEX cuts, and the differences
between semi-continuous and binary formulations.

Each instance is formulated in CPLEX either declaring all variables as semi-
continuous or using auxiliary binary variables to enforce semi-continuity. In the latter
case, we introduce constraints of the form lz ≤ x ≤ Mz, where z is a binary vari-
able and M > 0 is a valid upper bound that yields an equivalent problem. Letting
d̄ := ∑

j∈M d j , l̄ := maxi∈N {li }, h̄ := maxi∈N , j∈M {hi j }, and t̄ := maxi∈N {ti }, we

set M = max{d̄, l̄, h̄} + t̄ .
Also, we consider the cases t = 0 and t > 0 separately. In the first case, we ignore

the initial capacities and therefore cuts of the form (14) may be generated. In the
second case, valid cuts may be generated using the extended formulation (30). In both
cases, to separate a fractional solution (x̄, ȳ), we consider the inflow set corresponding
to each customer j ∈ M and we try to find a cut violated by (x̄, ȳ j ). Thus, we may
add up to m cuts in a single round. For simplicity, cuts are added only at the root node.
In addition, when t = 0, we also test an extended formulation where a vector π j is
appended for each j ∈ M . Adding the constraints that define W in Corollary 9 for
each j ∈ M , we obtain an extended formulation where all the inequalities describing
the inflow relaxation for each customer are already implied, and therefore there is no
need to generate cuts on-the-fly. Even though an extended formulation is also available
when t > 0, its size becomes a bottleneck even when solving the root relaxation, and
thus it is not considered in our experimental setup.

In our experiments, we use n ∈ {30, 50, 80} and m ∈ {30, 50, 80}. For each combi-
nation of these parameters, with the exception of (n, m) = (80, 80) due to time limits,
we generate 10 instances as follows:

• li ∼ U[100, 500] ∀ i ∈ N
• hi j ∼ U

[
0, 2

m li
] ∀ i ∈ N , ∀ j ∈ M

• ti ∼ U[10, 50] ∀ i ∈ N
• d j ∼ U

[
10 n

m , 50 n
m

] ∀ j ∈ M

• ci ∼ U
[
40, 40 + 1000

li

]
∀ i ∈ N

• αi j ∼ U [−10, 90] ∀i ∈ N , ∀ j ∈ M,

where X ∼ U[a, b] means that X is a random variable following a uniform distribution
on the interval [a, b]. Then, for each instance and for each formulation, we solve using
CPLEX 12.2 default branch-and-cut (C), using only our cuts within branch-and-cut
(U), using both CPLEX and user cuts (C+U), and solving the extended formulation
(E) in the case t = 0. All experiments were carried out on a personal computer on a
single thread running at 3.33 GHz with 4 GB of RAM under Linux environment. A
time limit of 1800 CPU seconds per instance is enforced.

123



594 G. Angulo et al.

Table 1 Number of solved instances when t = 0

n m Semi-continuous Binary

C U C+U E C U C+U E

30 30 10 10 10 10 10 10 10 10

30 50 10 10 10 10 10 10 10 10

30 80 10 10 10 8 10 10 10 10

50 30 10 10 10 10 10 10 10 10

50 50 10 10 10 9 9 10 10 10

50 80 4 10 5 10 1 10 4 10

80 30 5 10 4 10 10 10 10 10

80 50 0 5 0 10 4 10 2 10

Table 2 Number of nodes needed to prove optimality when t = 0

n m Semi-continuous Binary

C U C+U E C U C+U E

30 30 3936.2 3266.5 2919.2 72.8 313.3 808.4 268.1 32.7

30 50 6246.6 4940.7 3653.6 213.0 493.3 731.9 618.7 61.7

30 80 11764.3 9330.0 6232.5 930.3 1142.3 1042.6 840.3 206.1

50 30 24045.9 23725.8 20548.9 297.5 1501.4 4545.5 1248.5 84.8

50 50 49407.0 40399.5 54556.6 145.1 3433.0 7446.9 2382.6 135.1

50 80 81456.8 159338.0 55918.8 1019.9 2086.0 23129.2 2621.3 470.3

80 30 56262.8 210466.0 48761.0 192.8 4049.3 30828.1 4731.6 67.6

80 50 – 438369.0 – 332.3 12265.2 114003.0 17426.5 287.5

6.1 The case t = 0

Table 1 shows the number of instances solved within the time limit, Table 2 shows the
average number of explored nodes needed to reach optimality within CPLEX’s default
tolerance, and Table 3 shows the average time in CPU seconds required by such task.
In all cases, columns n and m denote the size of the problem, columns Semi-continuous
and Binary denote the type of formulation being considered, and columns C, U, C+U,
and E denote the procedure being used, as explained above. All the averages are with
respect to the number of instances that were solved. If no instance was solved for
a particular combination of n and m, a dash “–” appears in the corresponding cell.
Finally, in Tables 2 and 3 we use bold characters to indicate which method produced
the best results for each formulation.

Table 1 shows that not all instances were solved within the time limit. This may be
a bit surprising, as the underlying problem structure is fairly simple and the number
of variables does not exceed a few thousands. Adding our cuts alone and the extended
formulation have the best performance in this sense, specially in the binary formulation
where all instances where solved by both methods. As we can see from Table 2, the

123



Semi-continuous network flow problems 595

Table 3 CPU time needed to prove optimality when t = 0

n m Semi-continuous Binary

C U C+U E C U C+U E

30 30 17.1 4.0 17.7 3.4 23.6 2.0 22.9 4.8

30 50 54.7 12.9 45.2 16.9 98.7 4.6 126.2 20.3

30 80 129.7 33.9 117.8 126.5 409.4 9.3 332.0 89.1

50 30 256.1 28.9 244.0 10.0 148.1 11.3 151.9 12.1

50 50 609.0 59.6 724.1 13.6 597.4 21.7 586.0 37.6

50 80 1399.7 316.7 1155.6 135.5 578.2 98.5 1144.6 165.3

80 30 924.7 168.2 1018.3 8.2 264.5 48.1 234.2 8.2

80 50 – 746.4 – 28.5 1438.7 354.6 1409.4 45.7

Table 4 Number of cuts when t = 0

n m Semi-continuous Binary

U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl

30 30 96.0 24.3 96.0 76.4 60.0 15.9 51.0 10.3

30 50 154.6 69.4 154.6 132.8 100.0 45.7 70.0 29.1

30 80 262.0 137.0 262.0 218.3 128.0 69.9 120.0 79.3

50 30 87.4 7.4 87.4 49.6 67.0 6.7 102.6 37.9

50 50 147.6 18.8 147.6 101.9 123.4 15.7 180.5 98.5

50 80 239.9 45.5 239.8 181.2 231.9 43.9 316.5 178.5

80 30 88.3 5.9 87.0 42.8 58.8 4.7 94.0 23.2

80 50 147.2 9.0 – – 101.3 6.9 173.5 75.0

node count of the extended formulation is roughly one or two orders of magnitude
smaller when compared to the other procedures in both models.

Regarding time, from Table 3 we observe that the extended formulation is the
best method in most cases when the semi-continuous formulation is used, whereas
this approach is the best only in the largest instances when the binary formulation
is considered. Among cutting procedures, adding only user cuts performs better than
the rest in both formulations and is the only way to solve the largest instances within
the time limit, with time reductions of up to one order of magnitude. Again, this can
be somewhat surprising in the case of the binary formulation, as these cuts were not
developed with binary variables in mind, and in this case we expected the presolve
routines and flow covers to be particulary effective. On the other hand, combining
these and CPLEX cuts decreases the overall performance and is comparable to the
default solver.

Table 4 shows information regarding cuts. Column headers n, m, Semi-continuous,
Binary, U, and C+U have the same meaning as in the previous tables. In addition,
columns Gen denote the average number of user cuts that were generated, while
columns Appl denote the average number of cuts that were actually applied. As we let

123



596 G. Angulo et al.

Table 5 Number of solved instances when t > 0

n m Semi-continuous Binary

C U C+U C U C+U

30 30 10 10 10 10 10 10

30 50 7 10 8 10 10 10

30 80 2 9 8 10 10 10

50 30 0 10 3 10 10 10

50 50 0 9 1 9 10 8

50 80 0 0 0 1 10 4

80 30 0 5 0 4 10 6

80 50 0 0 0 0 10 0

Table 6 Number of nodes needed to prove optimality when t > 0

n m Semi-continuous Binary

C U C+U C U C+U

30 30 120194.0 17069.0 53748.7 603.1 852.3 433.5

30 50 137858.0 52383.7 40540.5 651.2 883.4 476.3

30 80 83006.5 112944.0 33035.1 1153.6 1103.7 901.6

50 30 – 106912.0 133777.0 3555.5 5927.4 2596.4

50 50 – 216427.0 121396.0 4991.4 10361.9 3013.5

50 80 – – – 7998.0 22166.4 2496.8

80 30 – 714998.0 – 17143.5 77894.5 16998.0

80 50 – – – – 104097.0 –

CPLEX decide whether or not to apply user cuts that are generated by our separation
routine, the numbers in these columns are different in general.

First, note that more cuts are generated and applied in the semi-continuous formu-
lation than in the binary formulation. Now, in both cases, the proportion of applied
cuts with respect to the number of generated cuts is smaller when CPLEX cuts are
turned off. Given the results in Table 3, just a few cuts are required to get a non-trivial
improvement over the default solver, and the generation of more user cuts than needed
seems to increase the running times.

6.2 The case t > 0

Tables 5, 6, and 7 are analogous to Tables 1, 2, and 3, respectively, with the difference
that there is no column E as no extended formulation was tested in this case.

From Table 5, we see that when t > 0, the instances become much harder than in
the case t = 0. The performance of the semi-continuous formulation is quite poor in
general. In contrast, the binary formulation is able to solve all small instances with
any procedure, but only when CPLEX cuts are turned off it is possible to solve all
large instances as well. Regarding explored nodes, Table 6 shows that the addition of
user cuts may reduce the size of the search tree.

123



Semi-continuous network flow problems 597

Table 7 CPU time needed to prove optimality when t > 0

n m Semi-continuous Binary

C U C+U C U C+U

30 30 343.5 22.1 211.7 26.6 5.3 26.1
30 50 759.3 116.5 311.0 74.0 9.1 66.4
30 80 945.6 413.5 488.8 224.4 18.6 202.4
50 30 – 126.4 962.1 168.8 38.7 157.5
50 50 – 406.2 1283.7 601.8 93.8 469.9
50 80 – – – 1427.6 256.6 872.4
80 30 – 838.1 – 542.2 295.8 804.0
80 50 – – – – 762.9 –

Table 8 Number of cuts when t > 0

n m Semi-continuous Binary

U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl

30 30 101.7 51.2 98.7 86.6 48.0 25.6 42.0 21.1

30 50 159.0 92.1 161.9 143.1 74.9 43.8 94.9 51.8

30 80 253.0 169.4 265.0 235.1 120.0 92.4 152.0 104.7

50 30 89.8 29.5 94.3 87.7 84.0 29.1 101.2 69.4

50 50 147.7 68.8 150.0 144.0 147.9 70.4 182.9 136.5

50 80 – – – – 239.3 102.2 308.8 222.5

80 30 86.4 30.0 – – 79.0 25.1 111.2 85.3

80 50 – – – – 130.6 37.9 – –

With respect to computation times, we have that user cuts alone in the binary
formulation outperforms all other methods, as shown in Table 7. This procedure is
also the best with the semi-continuous formulations. Once again, combining CPLEX
and user cuts is comparable to the default solver.

Finally, Table 8 shows information regarding cuts, and it is analogous to Table 4.
As in the case t = 0, when CPLEX and user cuts are combined, the solver attemps
to generate and apply more cuts than needed, decreasing the overall performance as
follows from Table 7.

As we have seen, the proposed valid inequalities, either in their original form or
through an extended formulation when possible, are quite useful in solving this class of
semi-continuous network flow problems. Although these cuts involve only the original
variables of the problem, the introduction of binary variables seems to improve the
overall performance.

7 Conclusions

In this work we have considered semi-continuous network flow problems. In partic-
ular, we introduced the semi-continuous inflow set with variable upper bounds as a

123



598 G. Angulo et al.

relaxation. Two particular cases of this set were considered, for which we presented
complete descriptions of the convex hull in terms of linear inequalities and extended
formulations. These inequalities proved to be quite efficient in solving a class of semi-
continuous transportation problems. In fact, applying these cuts to a binary formulation
of such problems turned out to be the most effective method.

We envision at least two possible venues of future research, mainly based on the
semi-continuous inflow set. The first one is to consider finite upper bounds on semi-
continuous variables. In this case, further connections with [4] may be established.
Another direction is to consider semi-continuous inflows and outflows simultaneously.
This would lead to a more general set that can be a better relaxation for appropriate
problems.

Acknowledgments The authors acknowledge ExxonMobil for support, and Myun-Seok Cheon and
Ahmet Keha for useful discussions. We also thank the referees for their valuable suggestions.

Appendix

Given an integer t ≥ 1, let T := {1, . . . , t}. For each r ∈ T , consider πr ∈ R
n

and πr
0 , πr

1 ∈ R. We are mainly interested in the case πr
0 < πr

1 , although this is not
required in what follows. Given a closed convex set C ⊆ R

n , for each Q ∈ T := 2T ,
consider the set

C Q := {x ∈ C : πr x ≤ πr
0 ∀ r ∈ Q, πr x ≥ πr

1 ∀ r /∈ Q}.

We call the set ∪Q∈T C Q a t-branch split disjunction as defined in [10]. Let

Cπ,π0,π1 := conv
(
∪Q∈T C Q

)
.

When t = 1, the closedness of Cπ,π0,π1 was addressed in [3]. We extend this result
for any t ≥ 1.

Proposition 23 Cπ,π0,π1 is a closed convex set. Moreover, if C is a polyhedron, so is
Cπ,π0,π1 .

Proof Let C∞ be the recession cone of C , and for each Q ∈ T , let C Q∞ := C Q +C∞.
Also, let T ∗ := {Q ∈ T : C Q �= ∅}. If T ∗ is empty, then the result holds. Thus,
assume T ∗ is nonempty.

Claim: Cπ,π0,π1 = conv
(
∪Q∈T ∗C Q∞

)
.

The forward inclusion is easy as ∪Q∈T C Q ⊆ ∪Q∈T ∗C Q∞.

For the reverse inclusion, consider x ∈ conv
(
∪Q∈T ∗C Q∞

)
. We can write x =

∑
Q∈T ∗ λQ(x Q + yQ), where x Q ∈ C Q , yQ ∈ C∞, and λQ ≥ 0 for each Q ∈ T ∗,

and
∑

Q∈T ∗ λQ = 1. If we show that for any Q ∈ T ∗, x Q + yQ belongs to Cπ,π0,π1 ,

123



Semi-continuous network flow problems 599

then the result follows. To that end, fix Q ∈ T ∗ and let

R− := {r ∈ T : πr yQ < 0},
R+ := {r ∈ T : πr yQ > 0},
R= := {r ∈ T : πr yQ = 0}.

Note that there exists finite λ ≥ 1 such that πr (x Q + λyQ) ≤ πr
0 for all r ∈ R− and

πr (x Q + λyQ) ≥ πr
1 for all r ∈ R+. Also, recall that x Q satisfies πr x Q ≤ πr

0 for
all r ∈ Q and πr x Q ≥ πr

1 for all r /∈ Q. Thus x Q + λyQ belongs to C Q′
, where

Q′ := R− ∪ (R= ∩ Q). Finally, note that x Q + yQ ∈ conv({x Q, x Q + λyQ}), which
implies x Q + yQ ∈ Cπ,π0,π1 as desired. ♦

By the claim, Cπ,π0,π1 is the convex hull of the union of nonempty closed convex
sets having the same recession cone. By Corollary 9.8.1 of [13], Cπ,π0,π1 is a closed
convex set. Moreover, if C is a polyhedron, then Cπ,π0,π1 is the convex hull of the
union of nonempty polyhedra having the same recession cone, which is a polyhedron
[1]. ��

References

1. Balas, E.: Disjunctive programming. In: Johnson, E.L., Hammer, P.L., Korte, B.H. (eds.) Annals of
Discrete Mathematics, Discrete Optimization II, vol. 5, pp. 3–51. Elsevier, Amsterdam (1979)

2. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems.
Math. Program. 74, 121–140 (1996)

3. Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Oper. Res. Lett. 39,
121–126 (2011)

4. de Farias, I.R.: Semi-continuous cuts for mixed-integer programming. In: Bienstock D., Nemhauser
G.L. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science,
vol. 3064, pp. 163–177. Springer, Berlin, Heidelberg (2004)

5. de Farias, I.R., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combinatorial optimization prob-
lems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25–39 (2001)

6. de Farias, I.R., Nemhauser, G.L.: A polyhedral study of the cardinality constrained knapsack problem.
Math. Program. 96, 439–467 (2003)

7. de Farias, I.R., Zhao, M.: A polyhedral study of the semi-continuous knapsack problem. Math. Program.
(2012). doi:10.1007/s10107-012-0566-3

8. Kallrath, J.: Mixed integer optimization in the chemical process industry: experience, potential and
future perspectives. Chem. Eng. Res. Des. 78, 809–822 (2000)

9. Kallrath, J.: Combined strategic and operational planning—an MILP success story in chemical industry.
OR Spectr. 24, 315–341 (2002)

10. Li, Y., Richard, J.-P.P.: Cook, Kannan and Schrijver’s example revisited. Discret. Optim. 5, 724–734
(2008)

11. Lovász, L.: Graph theory and integer programming. In: Johnson, E.L., Hammer, P.L., Korte, B.H. (eds.)
Annals of Discrete Mathematics, Discrete Optimization I, vol. 4, pp. 141–158. Elsevier, Amsterdam
(1979)

12. Perold, A.F.: Large-scale portfolio optimization. Manag. Sci. 30, 1143–1160 (1984)
13. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1996)
14. Timpe, C.H., Kallrath, J.: Optimal planning in large multi-site production networks. Eur. J. Oper. Res.

126, 422–435 (2000)

123

http://dx.doi.org/10.1007/s10107-012-0566-3


Copyright of Mathematical Programming is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


	Semi-continuous network flow problems
	Abstract
	1 Introduction
	2 The semi-continuous inflow set
	2.1 Complexity of optimization
	2.2 Basic polyhedral results

	3 The case t=0
	3.1 Inequality description of conv(S(0,h))
	3.2 Extreme points of conv(S(0,h))
	3.3 Extended formulation for conv(S(0,h))

	4 The case h=0
	4.1 Inequality description of conv(S(t,0))
	4.2 Extended formulation for conv(S(t,0))

	5 A semi-continuous transportation problem
	5.1 The problem and its complexity
	5.2 Analysis of a relaxation of S*

	6 Computation
	6.1 The case t=0
	6.2 The case t>0

	7 Conclusions
	Acknowledgments
	Appendix
	Appendix
	References


