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Abstract In this paper, we consider a primal-dual interior point method for solv-
ing nonlinear semidefinite programming problems. We propose primal-dual interior
point methods based on the unscaled and scaled Newton methods, which correspond
to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We
analyze local behavior of our proposed methods and show their local and superlinear
convergence properties.
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1 Introduction

We consider the following nonlinear semidefinite programming (SDP) problem:

minimize f (x), x ∈ Rn,

subject to g(x) = 0, X (x) � 0
(1)

where the functions f : Rn → R, g : Rn → Rm and X : Rn → Sp are sufficiently
smooth, and Sp denotes the set of p-th order real symmetric matrices. By X (x) � 0
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2 H. Yamashita, H. Yabe

and X (x) � 0, we mean that the matrix X (x) is positive semidefinite and positive
definite, respectively.

If all the functions f and g are linear and the matrix X (x) is defined by

X (x) =
n∑

i=1

xi Ai − B

with given matrices Ai ∈ Sp, i = 1, . . . , n, and B ∈ Sp, then problem (1) reduces
to the linear SDP problem. As numerical methods for linear SDP problems, interior
point methods have been studied extensively by many researchers, see for example
[25,28] and the references therein.

On the other hand, researches on theoretical properties and numerical methods for
nonlinear SDP are much more recent. Nonlinear SDP problems have been attracting
a great deal of research attention as well as linear SDP problems, because such prob-
lems arise in many application fields, which include robust control theory, statistics,
eigenvalue problems, finance and so forth. Thus it is desired to develop a numerical
method for solving nonlinear SDP problems. Fares, Apkarian and Noll [6], Kocvara
and Stingl [11] and Stingl [22] studied the augmented Lagrangian method for non-
linear SDP problems. Kocvara and Stingl also developed a computer code PENNON.
Fares, Noll and Apkarian [7], Correa and Ramirez [5], Freund, Jarre and Vogelbusch
[8] dealt with algorithms which used the sequential linear SDP method. Kanzow,
Nagel, Kato and Fukushima [10] presented a successive linearization method with
a trust region-type globalization strategy. These methods are extensions of the SLP
and SQP methods for nonlinear programming to nonlinear SDP problems. Recently
Yamashita, Yabe and Harada [29] proposed a primal-dual interior point method for
solving problem (1) and proved its global convergence. Their computational experi-
ments show that the proposed method performs well in practice.

Researches on the rate of convergence of the primal-dual interior point methods
for linear SDP problems can be found in [12–15,19]. However, in our knowledge,
there are few researches on local behavior of interior point methods for nonlinear SDP
problems. Existing literatures on local convergence properties include [7] and [8] for
the superlinear and quadratic convergence properties of SQP type methods, and Sun,
Sun and Zhang [24] for the linear convergence property of the augmented Lagrangian
method. Stingl [22] also discussed the local behavior of the augmented Lagrangian
method. In this paper, we analyze local behavior of primal-dual interior point methods
based on the unscaled and scaled Newton methods, which correspond to the AHO
direction [1], the HRVW/KSH/M direction [9,14,16] and the NT direction [17,18] in
the linear SDP problems.

The present paper is organized as follows. In Sect. 2, the optimality conditions
for problem (1) and some notations are described. In Sect. 3, we briefly review the
primal-dual interior point method proposed by Yamashita et al. [29], and introduce
the AHO, HRVW/KSH/M and NT directions. In Sect. 4, we present some definitions
that are necessary for analysis in the subsequent sections. Sections 5 and 6 are devoted
to showing local and superlinear convergence properties of our proposed methods.
Specifically, in Sect. 5, we prove local and superlinear convergence of the primal-dual
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Local and superlinear convergence of a primal-dual interior point method 3

interior point method based on the unscaled Newton method, which corresponds to
the AHO search direction. In Sections 6.1 and 6.2, we prove local and two-step super-
linear convergence properties of the primal-dual interior point methods based on the
scaled Newton methods, which correspond to the HRVW/KSH/M and the NT search
directions, respectively.

2 Optimality conditions and notations

In this section, we define some notations used in this paper, and we give optimality
conditions for problem (1).

We first define the inner product 〈X, Z〉 by 〈X, Z〉 = tr(X Z) for any matrices
X and Z in Sp, where tr(M) denotes the trace of the matrix M . Let the Lagrangian
function of problem (1) be defined by

L(w) = f (x) − yT g(x) − 〈X (x), Z〉,

where w = (x, y, Z), and y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector
and matrix which correspond to the equality and positive semidefiniteness constraints,
respectively. We also define matrices

Ai (x) = ∂ X

∂xi

for i = 1, . . . , n. Then Karush–Kuhn–Tucker (KKT) conditions for optimality of
problem (1) are given by the following (see [4]):

r0(w) ≡
⎛

⎝
∇x L(w)

g(x)

X (x)Z

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (2)

and

X (x) � 0, Z � 0. (3)

Here ∇x L(w) is given by

∇x L(w) = ∇ f (x) − ∇g(x)y − A∗(x)Z ,

∇g(x) = (∇g1(x), . . . ,∇gm(x)) ∈ Rn×m

and A∗(x) is the adjoint operator of A(x) : A(x)v = ∑n
i=1 vi Ai (x) for v ∈ Rn ,

which yields

A∗(x)Z =
⎛

⎜⎝
〈A1(x), Z〉

...

〈An(x), Z〉

⎞

⎟⎠ .
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4 H. Yamashita, H. Yabe

We call w = (x, y, Z) satisfying X (x) � 0 and Z � 0 the interior point. The algo-
rithm of this paper will generate such interior points. To construct an interior point
algorithm, we introduce a positive parameter μ, and replace the complementarity con-
dition X (x)Z = 0 by X (x)Z = μI , where I denotes the identity matrix. Then we try
to find a point that satisfies the barrier KKT (BKKT) conditions:

r(w,μ) ≡
⎛

⎝
∇x L(w)

g(x)

X (x)Z − μI

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (4)

and

X (x) � 0, Z � 0. (5)

To obtain a symmetrized form, we use the multiplication X (x) ◦ Z as follows

X (x) ◦ Z = X (x)Z + Z X (x)

2
,

which will be used in the Newton method discussed later. It is known that if X � 0 or
Z � 0, then X (x) ◦ Z = μI is equivalent to the relation X (x)Z = Z X (x) = μI . By
using this multiplication, we also define the notation rS(w,μ) by

rS(w,μ) =
⎛

⎝
∇x L(w)

g(x)

X (x) ◦ Z − μI

⎞

⎠ , (6)

and we denote rS(w, 0) by r0S(w).
For U ∈ Sp, nonsingular P ∈ R p×p and Q ∈ R p×p, we define the operator

(P � Q)U = 1

2

(
PU QT + QU PT

)

and the symmetrized Kronecker product

(P ⊗S Q) svec(U ) = svec((P � Q)U ),

where the operator svec is defined by

svec(U ) =
(

U11,
√

2U21, . . . ,
√

2Up1, U22,
√

2U32, . . . ,
√

2Up2, U33, . . . , Upp

)T

∈ Rp(p+1)/2.

We note that, for any U, V ∈ Sp,

〈U, V 〉 = tr(U V ) = svec(U )T svec(V )
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Local and superlinear convergence of a primal-dual interior point method 5

and

‖U‖F = ‖ svec(U )‖2

hold, where ‖ · ‖2 denotes the l2 norm for vectors and ‖ · ‖F denotes the Frobenius
norm for matrices.

In the following, (v)i denotes the i-th element of the vector v. Let {ak} and {bk}
be sequences of vectors or matrices. If there exists a positive constant ξ0 such that
‖ak‖ ≤ ξ0‖bk‖ for all k and for some vector norm or some matrix norm, then we
write ak = O(‖bk‖). If there exist positive constants ξ1 and ξ2 such that ξ1‖bk‖ ≤
‖ak‖ ≤ ξ2‖bk‖ for all k, then we write ak = �(‖bk‖). If ‖ak‖ → 0, ‖bk‖ → 0
and ‖ak‖/‖bk‖ → 0, we write ak = o(‖bk‖). For vectors v, v1, v2 and matrices
G, G1, G2, if v = v1 + v2 with ‖v2‖ = O(h) or G = G1 + G2 with ‖G2‖ = O(h),
we write v = v1 + O(h) or G = G1 + O(h) respectively.

3 Algorithm for finding a KKT point

In this section, we briefly describe a procedure for finding a KKT point by using the
BKKT conditions (4) and (5). We define the norms ‖r(w,μ)‖ and ‖rS(w,μ)‖ by

‖r(w,μ)‖ =
√∥∥∥∥

(∇x L(w)

g(x)

)∥∥∥∥
2

2
+ ‖X (x)Z − μI‖2

F

and

‖rS(w,μ)‖ =
√∥∥∥∥

(∇x L(w)

g(x)

)∥∥∥∥
2

2
+ ‖X (x) ◦ Z − μI‖2

F ,

respectively. We note that ‖rS(w,μ)‖ ≤ ‖r(w,μ)‖ is satisfied because of ‖X (x) ◦
Z − μI‖F ≤ ‖X (x)Z − μI‖F . In what follows, we denote X (x) simply by X if it is
not confusing.

In the paper [29], the authors used the following algorithm SDPIP as an outer iter-
ation for solving the nonlinear SDP problem (1 ).

Algorithm SDPIP

Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {μk} , μk ↓
0 be given.

Step 1. (Termination) If ‖r0(wk)‖ ≤ ε, then stop.
Step 2. (Approximate BKKT point) Find an interior point wk+1 that satisfies the

approximate BKKT condition

‖r(wk+1, μk)‖ ≤ Mcμk .

Step 3. (Update) Set k := k + 1 and go to Step 1. ��
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6 H. Yamashita, H. Yabe

In Step 2 of Algorithm SDPIP, an approximate BKKT point can be found by apply-
ing the Newton-like method to the nonlinear Eq. (4). As in the case of linear SDP prob-
lems, we define a scaling matrix T ∈ Rp×p and scale the primal-dual pair (X (x), Z)

by

X̃ = T XT T and Z̃ = T −T Z T −1

respectively. At the point w, let �x ∈ Rn and �Z ∈ Sp be search directions for the
primal and dual variables, respectively. We define �X = ∑n

i=1 �xi Ai (x) and note
that �X ∈ Sp. We also scale �X and �Z by

�X̃ = T �XT T and �Z̃ = T −T �Z T −1.

Following [29], we consider the scaled Newton equations

∇2
x L(w)�x − ∇g(x)�y − A∗(x)�Z = −∇x L(w) (7)

∇g(x)T �x = −g(x) (8)
1

2
(�X̃ Z̃ + Z̃�X̃ + X̃�Z̃ + �Z̃ X̃) = μI − 1

2
(X̃ Z̃ + Z̃ X̃). (9)

We denote the Newton equations above by

J̃S(w)�w = −r̃S(w,μ), (10)

where �w = (�x,�y,�Z) ∈ Rn × Rm × Sp, J̃S(w) is a linear operator from
Rn ×Rm ×Sp to Rn ×Rm ×Sp and r̃S(w,μ) is obtained from (6) by replacing X ◦ Z
by X̃ ◦ Z̃ . If we choose T = I , we call the above equations the unscaled Newton
equations and use JS(w) instead of J̃S(w) in this case.

By using the operator � defined in Sect. 2, the matrices X̃ , Z̃ ,�X̃ and �Z̃ can be
represented by

X̃ = (T � T )X, Z̃ = (T −T � T −T )Z ,

�X̃ = (T � T )�X and �Z̃ = (T −T � T −T )�Z .

We note that Eq. (9) can be also rewritten by the expression

(Z̃ � I )�X̃ + (X̃ � I )�Z̃ = μI − X̃ ◦ Z̃ .

Thus, by using the operator svec and the symmetrized Kronecker product, the Newton
equations (7–9) are represented by the form
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Local and superlinear convergence of a primal-dual interior point method 7

⎛

⎝
∇2

x L(w) −∇g(x) −A(x)T

∇g(x)T 0 0
(Z̃ ⊗S I )(T ⊗S T )A(x) 0 (X̃ ⊗S I )(T −T ⊗S T −T )

⎞

⎠

⎛

⎝
�x
�y

svec(�Z)

⎞

⎠

=
⎛

⎝
−∇x L(x, y, Z)

−g(x)

svec(μI − X̃ ◦ Z̃)

⎞

⎠ , (11)

where

A(x) = [ svec(A1(x)), . . . , svec(An(x))] ∈ Rp(p+1)/2×n .

We use the same notation J̃S(w) for the coefficient matrix in (11) for convenience. In
particular, we denote J̃S(w) by JS(w) in case of T = I .

In [29], it is shown that the direction �Z̃ ∈ Sp is given by the form

�Z̃ = μX̃−1 − Z̃ − (X̃ � I )−1(Z̃ � I )�X̃ ,

or equivalently

�Z = μX−1 − Z − (T T � T T )(X̃ � I )−1(Z̃ � I )(T � T )�X, (12)

and the directions (�x,�y) ∈ Rn × Rm satisfy

(∇2
x L(w) + H −∇g(x)

−∇g(x)T 0

) (
�x
�y

)
= −

(∇ f (x) − ∇g(x)y − μA∗(x)X−1

−g(x)

)
,

where the elements of the matrix H are represented by the form

Hi j =
〈
Ãi (x), (X̃ � I )−1(Z̃ � I ) Ã j (x)

〉
(13)

with Ãi (x) = T Ai (x)T T .
In [29], the authors also proposed the primal-dual merit function

F(x, Z) = FB P(x) + νFP D(x, Z)

with

FB P (x) = f (x) − μ log( detX) + ρ‖g(x)‖1,

FP D(x, Z) = 〈X, Z〉 − μ log( detX detZ),

where ν and ρ are positive parameters and ‖g(x)‖1 denotes the l1-norm of g(x), and
they proved the global convergence property within the line search strategy under the
assumption that the scaling matrix T was chosen so that X̃ Z̃ = Z̃ X̃ was satisfied.

In this paper, we will analyze the local behavior of the above Newton method. For
this purpose, we specifically consider the following scaling matrices T :
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8 H. Yamashita, H. Yabe

Choices of T

(i) We first consider the choice T = I , which corresponds to the AHO direction for
linear SDP problems [1]. We will discuss its superlinear convergence property
in Sect. 5.

(ii) If we set T = X−1/2, then we have X̃ = I and Z̃ = X1/2 Z X1/2, which corre-
sponds to the HRVW/KSH/M direction for linear SDP problems [9,14,16]. We
will discuss its two-step superlinear convergence property in Sect. 6.1.

(iii) If we set T = W −1/2 with W = X1/2(X1/2 Z X1/2)−1/2 X1/2, then we have
X̃ = W −1/2 X W −1/2 = W 1/2 Z W 1/2 = Z̃ , which corresponds to the NT direc-
tion for linear SDP problems [17,18]. We will discuss its two-step superlinear
convergence property in Sect. 6.2.

4 Preliminaries for analysis of local behavior

In this section, we briefly present some definitions that are necessary for analysis of
local behavior of our proposed methods.

First we introduce the definitions of the stationary point, the Mangasarian-Fromo-
vitz constraint qualification condition, the quadratic growth condition, the strict com-
plementarity condition and the nondegeneracy condition, and then we give the second
order necessary / sufficient conditions for optimality. More comprehensive description
can be found in [2,20,21].

A point x∗ is said to be a stationary point of problem (1) if there exist Lagrange mul-
tipliers (y, Z) such that (x∗, y, Z) satisfies the KKT conditions (2) and (3). Let 	(x∗)
denote the set of Lagrange multipliers (y, Z) such that (x∗, y, Z) satisfies the KKT
conditions. We say that the Mangasarian-Fromovitz constraint qualification (MFCQ)
condition holds at a point x∗ if the matrix ∇g(x∗) is of full rank and there exists a
nonzero vector v ∈ Rn such that

∇g(x∗)T v = 0 and X (x∗) +
n∑

i=1

vi Ai (x∗) � 0.

The second order necessary condition for local optimality of x∗ under the MFCQ
condition is given by

sup
(y,Z)∈	(x∗)

hT (∇2
x L(x∗, y, Z) + Ĥ(x∗, Z))h ≥ 0

for all h ∈ C(x∗). Here Ĥ(x, Z) is a matrix whose (i, j) -th element is

(Ĥ(x, Z))i j = 2 tr(Ai (x)X (x)† A j (x)Z) (14)

and † denotes the Moore-Penrose generalized inverse, and C(x∗) denotes the critical
cone of (1) at x∗, which is defined by
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Local and superlinear convergence of a primal-dual interior point method 9

C(x∗) =
{

h | ∇g(x∗)T h = 0,

n∑

i=1

hi Ai (x∗) ∈ TSp
+(X (x∗)), ∇ f (x∗)T h = 0

}
,

and TSp
+(X (x∗)) denotes the tangent cone of Sp at X (x∗), which is defined by

TSp (X (x∗)) = {D | dist
(
X (x∗) + t D, Sp

+
) = o(t), t ≥ 0},

where dist(P, Sp
+) = inf{‖P − Q‖F , Q ∈ Sp

+}, and Sp
+ denotes the set of p-th order

symmetric positive semidefinite matrices.
It is said that the quadratic growth condition holds at a feasible point x∗ of problem

(1) if there exists c > 0 such that the following inequality holds

f (x) ≥ f (x∗) + c‖x − x∗‖2
2

for any feasible point x in a neighborhood of x∗. The quadratic growth condition
implies that x∗ is a strict local optimal solution of problem (1). Suppose that the
MFCQ condition holds. Then the quadratic growth condition holds if and only if the
following second order sufficient conditions for optimality are satisfied

sup
(y,Z)∈	(x∗)

hT (∇2
x L(x∗, y, Z) + Ĥ(x∗, Z))h > 0 (15)

for all h ∈ C(x∗)\{0}.
We say that the strict complementarity condition holds at x∗ if there exists

(y∗, Z∗) ∈ 	(x∗) such that

rank(X (x∗)) + rank(Z∗) = p

is satisfied. Since the matrices X (x∗) and Z∗ commute, they can be simultaneously
diagonalized. Thus if the strict complementarity condition holds at x∗, we can assume
without loss of generality that the matrix X (x∗) and Z∗ are represented by

X (x∗) =
(

X∗
B 0

0 0

)
and Z∗ =

(
0 0
0 Z∗

N

)
(16)

respectively, where X∗
B and Z∗

N are diagonal and positive definite matrices with
rank(X∗

B) + rank(Z∗
N ) = p. Corresponding to (16), we partition the matrices X (x)

and Z as

X (x) =
(

X B XU

X T
U X N

)
and Z =

(
Z B ZU

Z T
U Z N

)

in the neighborhood of w∗ = (x∗, y∗, Z∗). Similarly, we partition the matrix Ai (x)

as

Ai (x) =
(

ABi (x) AUi (x)

AUi (x)T ANi (x)

)
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10 H. Yamashita, H. Yabe

for i = 1, . . . , n. Then the critical cone at x∗ can be specifically represented by

C(x∗) =
{

h | ∇g(x∗)T h = 0,

n∑

i=1

hi ANi (x∗) = 0

}
.

We say that the nondegeneracy condition holds at x∗ if the n dimensional vectors

∇gi (x∗), i = 1, . . . , m and

⎛

⎜⎝
(AN1(x∗))i j

...

(ANn(x∗))i j

⎞

⎟⎠ , i, j = 1, . . . , |N |

are linearly independent, where |N | denotes the size of Z∗
N . If the strict complemen-

tarity condition holds at x∗, then 	(x∗) is a singleton if and only if the nondegeneracy
condition is satisfied. It is known that the nondegeneracy condition is stronger than
the MFCQ condition, i.e., if the nondegeneracy condition holds at x∗, then the MFCQ
condition also holds at x∗.

Throughout this paper, we make the following assumptions.

Assumptions

(A1) The second derivatives of the functions f, gi , i = 1, . . . , m, and X are Lipschitz
continuous at x∗.

(A2) The second order sufficient condition (15) for optimality of problem (1) holds
at x∗.

(A3) The strict complementarity condition holds at x∗.
(A4) The nondegeneracy condition is satisfied at x∗. ��

We note that the set 	(x∗) becomes a singleton, i.e., 	(x∗) = {(y∗, Z∗)}, under
assumptions (A3) and (A4). In the following, we denote a KKT point (x∗, y∗, Z∗) by
w∗.

Under assumptions (A1)–(A4), we can show the nonsingularity of the matrix JS(w)

at w∗ as follows.

Theorem 1 Suppose that assumptions (A1)–(A4) hold. Then the matrix JS(w∗) is
nonsingular.

Proof We prove this theorem by showing that JS(w∗)�w = 0 implies �w = 0 for
�w = (�x,�y,�Z) ∈ Rn × Rm × Sp, i.e., we show that

JS(w∗)

⎛

⎝
�x
�y

svec(�Z)

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠
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Local and superlinear convergence of a primal-dual interior point method 11

implies (�x,�y, svec(�Z))T = (0, 0, 0)T . For this purpose, we consider the linear
system of equations

∇2
x L(w∗)�x − ∇g(x∗)�y − A∗(x∗)�Z = 0 (17)

∇g(x∗)T �x = 0 (18)

�X Z∗ + Z∗�X + X∗�Z + �Z X∗ = 0, (19)

where �X = ∑n
i=1(�x)i Ai (x∗). Following (16), we define diagonal and positive

definite matrices X∗
B and Z∗

N , and we denote �X and �Z by

�X =
(

�X B �XU

�X T
U �X N

)
and �Z =

(
�Z B �ZU

�Z T
U �Z N

)
.

Then Eq. (19) can be written by the form

(
X∗

B�Z B + �Z B X∗
B �XU Z∗

N + X∗
B�ZU

Z∗
N �X T

U + �Z T
U X∗

B �X N Z∗
N + Z∗

N �X N

)
= 0. (20)

Since

(X∗
B)−1�Z B X∗

B = −�Z B = −�Z T
B = X∗

B�Z B(X∗
B)−1,

we have

�Z B(X∗
B)2 = (X∗

B)2�Z B,

which implies �Z B X∗
B = X∗

B�Z B . Thus the (1,1) block of Eq. (20) yields
�Z B = 0. Similarly we have �X N = 0 from the (2,2) block of (20), which implies∑n

i=1(�x)i ANi (x∗) = 0. Since ∇g(x∗)T �x = 0 is satisfied, we have �x ∈ C(x∗).
Furthermore by the (1,2) block of (20), we obtain

�ZU = −(X∗
B)−1�XU Z∗

N . (21)

By premultiplying (17) by �xT and using (18), we have

�xT ∇2
x L(w∗)�x − �xT A∗(x∗)�Z = 0. (22)

Since the following relations hold

�xT A∗(x∗)�Z = tr(�X�Z)

= tr

(
�X B �XU

�X T
U 0

) (
0 �ZU

�Z T
U �Z N

)

= 2 tr(�XU �Z T
U ),
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12 H. Yamashita, H. Yabe

Eq. (21) implies

�xT A∗(x∗)�Z = −2 tr(�XU Z∗
N �X T

U (X∗
B)−1).

On the other hand, the definition of Ĥ(x, Z) in (14) gives

�xT Ĥ(x∗, Z∗)�x = 2
n∑

i=1

n∑

j=1

tr(Ai (x∗)X (x∗)† A j (x∗)Z∗)(�x)i (�x) j

= 2 tr(�X X (x∗)†�X Z∗)

= 2 tr

(
0 �X B(X∗

B)−1�XU Z∗
N

0 �X T
U (X∗

B)−1�XU Z∗
N

)

= 2 tr(�XU Z∗
N �X T

U (X∗
B)−1).

Then Eq. (22) yields

�xT
(
∇2

x L(w∗) + Ĥ(x∗, Z∗)
)

�x = 0.

Since �x ∈ C(x∗), the second order sufficient condition (15) yields �x = 0, which
implies �ZU = 0. By (17), we have

∇g(x∗)�y + A∗(x∗)
(

0 0
0 �Z N

)
= 0,

which implies

m∑

i=1

(�y)i∇gi (x∗) +
|N |∑

i, j=1

(�Z N ) j i

⎛

⎜⎝
(AN1(x∗))i j

...

(ANn(x∗))i j

⎞

⎟⎠ = 0,

because the l -th element of the vector A∗(x∗)
(

0 0
0 �Z N

)
is given by

tr(ANl(x∗)�Z N ) = ∑|N |
i, j=1(ANl(x∗))i j (�Z N ) j i . Thus the nondegeneracy condi-

tion yields �y = 0 and �Z N = 0. Therefore we obtain (�x,�y,�Z) = (0, 0, 0),
and then we prove the theorem. ��

In the following, we will discuss local behavior of the unsymmetric residual r0(w)

in (2) or r(w,μ) in (4). For this purpose, we define a linear operator J : Rn × Rm ×
Sp → Rn × Rm × Rp×p at w by

J (w)�w =
⎛

⎝
∇2

x L(w)�x − ∇g(x)�y − A∗(x)�Z
∇g(x)T �x

�X Z + X�Z

⎞

⎠
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Local and superlinear convergence of a primal-dual interior point method 13

for �w = (�x,�y,�Z) ∈ Rn × Rm × Sp, which is an estimate of the first order
change of r0(w + �w) or r(w + �w,μ). We note that J (w)�w can be represented
by the matrix-vector form:

J (w)�w =
⎛

⎝
∇2

x L(w) −∇g(x) −A(x)T

∇g(x)T 0 0
(Z ⊗ I )MT A(x) 0 (X ⊗ I )MT

⎞

⎠

⎛

⎝
�x
�y

svec(�Z)

⎞

⎠ , (23)

where Z ⊗ I ∈ Rp2×p2
and X ⊗ I ∈ R p2×p2

denote the Kronecker products of
Z and I , and X and I , respectively, and M is an p(p + 1) × p2 matrix such that
M vec(U ) = svec(U ) and MT svec(U ) = vec(U ) hold for all U ∈ Sp (see Appen-
dix of [26]). Here the operator vec is defined by

vec(U ) = (U11, U21, . . . , Up1, U12, . . . , Upp)
T ∈ R p2

.

We also use the same notation J (w) for the rectangular coefficient matrix in (23) for
convenience.

In the same way as the proof of the preceding theorem, we can show the nonsingu-
larity of the linear operator J (w) at w∗.

Corollary 1 Suppose that assumptions (A1)–(A4) hold. Then the matrix J (w∗) is left
invertible.

We note that the related analysis can be found in [3] and [23].
The following lemma will be a useful tool in the subsequent sections.

Lemma 1 Suppose that assumptions (A1)–(A4) hold and that w is sufficiently close
to w∗. Let μ be zero or a sufficiently small positive number. Then there exists a con-
tinuously differentiable function w̄(μ) = (x̄(μ), ȳ(μ), Z̄(μ)) such that

w̄(0) = w∗, r(w̄(μ), μ) = rS(w̄(μ), μ) = 0 for μ ≥ 0, (24)

and

X̄(μ) � 0 and Z̄(μ) � 0 for μ > 0, (25)

where X̄(μ) = ∑n
i=1(x̄(μ))i Ai (x̄(μ)).

Furthermore, if w is sufficiently close to w̄(μ), then the following relations hold

r(w,μ) = �(‖w − w̄(μ)‖) and rS(w,μ) = �(‖w − w̄(μ)‖) for μ ≥ 0.

(26)

Proof Since JS(w∗) is nonsingular by Theorem 1, the implicit function theorem and
assumption (A1) guarantee ( 24), and JS(w̄(μ)) is nonsingular. Furthermore, the facts
X̄(μ)Z̄(μ) = μI, X̄(0) = X (x∗) and Z̄(0) = Z∗ guarantee (25), where X (x∗) and
Z∗ are defined in (16).
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14 H. Yamashita, H. Yabe

It follows that

rS(w,μ) = rS(w̄(μ), μ) + JS(w̄(μ))(w − w̄(μ)) + O(‖w − w̄(μ)‖2)

= JS(w̄(μ))(w − w̄(μ)) + O(‖w − w̄(μ)‖2),

and then the nonsingularity of JS(w̄(μ)) guarantees rS(w,μ) = �(‖w − w̄(μ)‖).
Similarly we obtain r(w,μ) = �(‖w − w̄(μ)‖).

Therefore the proof is complete. ��
We note that the preceding lemma also implies r0(w) = �(‖r0S(w)‖).

5 Superlinear convergence of unscaled Newton method

In this section, we analyze the local behavior of the unscaled Newton method, which
is the case Tk = I . Then the Newton equations (10) can be represented by

JS(w)�w = −rS(w,μ). (27)

In the following, we present our algorithm and show its superlinear convergence
property.

Algorithm unscaledSDPIP

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 = (x0, y0, Z0) ∈ Rn ×
Rm × Sp (X (x0) � 0, Z0 � 0). Set k = 0.

Step 1. (Termination) If ‖r0(wk)‖ ≤ ε, then stop.
Step 2. (Newton step) Choose a barrier parameter μk such that

μk = ξk‖r0(wk)‖1+τ (28)

with ξk = �(1). Calculate the direction �wk by solving the Newton equa-
tions (27). Set wk+1 = wk + �wk .

Step 3. (Update) Set k := k + 1 and go to Step 1.

By Theorem 1, if the iterate wk is sufficiently close to w∗, the Jacobian matrix
JS(wk) is nonsingular and its inverse is uniformly bounded. Thus the Newton equa-
tions have a unique solution and the following relations hold

�wk = �(‖rS(wk, μk)‖) = O(‖r0S(wk)‖) + O(μk) = O(‖r0(wk)‖), (29)

where the last equality can be obtained by Eq. (28).
We give a lemma which plays an important role in showing superlinear convergence

property of Algorithm unscaledSDPIP.

Lemma 2 Suppose that assumptions (A1)–(A4) hold. Let Mc and τ be given constants
satisfying 0 < Mc < 1 and 0 < τ < 1. Let μ− be a sufficiently small positive num-
ber. Assume that w is an interior point which is sufficiently close to w∗ and satisfies
the approximate BKKT condition ‖r(w,μ−)‖ ≤ Mcμ−. Let μ be a positive number
defined by

123



Local and superlinear convergence of a primal-dual interior point method 15

μ = ξ‖r0(w)‖1+τ

with ξ = �(1). If �w satisfies the Newton equations (27), then the new iterate w +
�w satisfies

‖r(w + �w,μ)‖ ≤ Mcμ, X (x + �x) � 0 and Z + �Z � 0. (30)

Proof Let the eigenvalues of the matrix X (x +α�x) ◦ (Z +α�Z) be λ1(α) ≤ · · · ≤
λp(α) for any α ∈ [0, 1]. Since �X = O(‖r0(w)‖) and �Z = O(‖r0(w)‖) hold by
(29), we have

X (x + α�x) ◦ (Z + α�Z) = (X (x) + α�X + α2 O(‖r0(w)‖2)) ◦ (Z + α�Z)

= X (x)◦Z +α(�X ◦Z +X (x)◦�Z)+α2 O(‖r0(w)‖2)

= X (x) ◦ Z + α(μI − X (x) ◦ Z) + α2 O(‖r0(w)‖2)

= (1 − α)X (x) ◦ Z + αμI + α2 O(‖r0(w)‖2).

Thus we have that

‖X (x + α�x) ◦ (Z + α�Z) − ((1 − α)μ− + αμ)I‖F

≤ (1 − α)‖X (x) ◦ Z − μ− I‖F + α2 O(‖r0(w)‖2)

≤ (1 − α)‖X (x)Z − μ− I‖F + α2 O(‖r0(w)‖2)

≤ (1 − α)Mcμ− + α2 O(‖r0(w)‖2)

≤ Mc((1 − α)μ− + αμ). (31)

The last inequality follows from the definition of μ. By combining (31) and the fol-
lowing relation

‖X (x + α�x) ◦ (Z + α�Z) − ((1 − α)μ− + αμ)I‖2
F

=
p∑

i=1

(λi (α) − ((1 − α)μ− + αμ))2,

we have

(λi (α) − ((1 − α)μ− + αμ))2 ≤ M2
c ((1 − α)μ− + αμ)2 for i = 1, . . . , p.

Then we obtain

0 < (1 − Mc)((1 − α)μ− + αμ) ≤ λi (α) for i = 1, . . . , p.

Thus the matrix X (x + α�x) ◦ (Z + α�Z) is symmetric positive definite for all
α ∈ [0, 1]. Since the matrices X (x) and Z are symmetric positive definite, the above
results imply that the matrices X (x +α�x) and Z +α�Z are also symmetric positive
definite for all α ∈ [0, 1]. This guarantees that w + �w is an interior point.
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16 H. Yamashita, H. Yabe

It follows from the Newton equation and Eq. (29) that

‖rS(w + �w,μ)‖ = �(‖rS(w,μ) + JS(w)�w + O(‖�w‖2)‖)
= O(‖�w‖2)

= O(‖r0(w)‖2).

Thus Lemma 1 yields

‖r(w + �w,μ)‖ = O(‖r0(w)‖2)

= o(‖r0(w)‖1+τ )

= o(μ)

≤ Mcμ,

which proves (30).
Therefore the proof of this theorem is complete. ��
Now we show the superlinear convergence of Algorithm unscaledSDPIP in the

following theorem.

Theorem 2 Suppose that assumptions (A1)–(A4) hold. Let Mc and τ be given
constants satisfying 0 < Mc < 1 and 0 < τ < 1. Let μ−1 be a sufficiently small
positive number. Assume that an initial interior point w0 is sufficiently close to w∗
and satisfies the approximate BKKT condition ‖r(w0, μ−1)‖ ≤ Mcμ−1. Then the
sequence {wk} generated by Algorithm unscaledSDPIP satisfies

‖r(wk, μk−1)‖ ≤ Mcμk−1, X (xk) � 0 and Zk � 0 (32)

for all k ≥ 0 and converges locally and superlinearly to w∗.

Proof To prove this theorem by the mathematical induction, we assume that (32) holds
at wk . Then it follows directly from Lemma 2 that the next point wk+1 also satisfies
(32). Thus we have

‖r0(wk+1)‖ =
∥∥∥∥∥∥

r(wk+1, μk) +
⎛

⎝
0
0

μk I

⎞

⎠

∥∥∥∥∥∥
≤ (Mc + √

n)μk .

Similarly we have

‖r0(wk+1)‖ ≥
∥∥∥∥∥∥

⎛

⎝
0
0

μk I

⎞

⎠

∥∥∥∥∥∥
− ‖r(wk+1, μk)‖ ≥ (

√
n − Mc)μk .

The above two inequalities and (28) imply

‖r0(wk+1)‖ = �(‖r0(wk)‖1+τ ).
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Local and superlinear convergence of a primal-dual interior point method 17

It follows from (26) and (29) that if wk is sufficiently close to w∗, then the following
hold

‖wk+1 − w∗‖ ≤ ‖wk − w∗‖ + ‖�wk‖
= ‖wk − w∗‖ + O(‖r0(wk)‖)
= O(‖wk − w∗‖).

Thus wk+1 is also sufficiently close to w∗, and we obtain by (26)

‖wk+1 − w∗‖ = �(‖r0(wk+1)‖) = �(‖r0(wk)‖1+τ ) = �(‖wk − w∗‖1+τ ).

Therefore the local and superlinear convergence property is proved. ��

6 Two-step superlinear convergence of scaled Newton method

In this section, we analyze the local behavior of interior point methods that use the
scaled Newton equations. Specifically we show local and two-step superlinear con-
vergence properties of two kinds of primal-dual interior point methods which use the
HRVW/KSH/M and the NT directions.

We first prove the following lemma that estimates the inverse matrices of X (x)

and Z .

Lemma 3 Suppose that assumptions (A1)–(A4) hold. Let μ be a sufficiently small
positive number. Assume that w is an interior point which is sufficiently close to w∗
and satisfies ‖r(w,μ)‖ = o(μ). Then the following relations hold

X (x) =
(

X B XU

X T
U X N

)
=

(
�(1) O(μ)

O(μ) �(μ)

)
,

Z =
(

Z B ZU

Z T
U Z N

)
=

(
�(μ) O(μ)

O(μ) �(1)

)
, (33)

X (x)−1=
(

�(1) O(1)

O(1) �(μ−1)

)
= O(μ−1) and Z−1=

(
�(μ−1) O(1)

O(1) �(1)

)
= O(μ−1).

Proof Since X (x) and Z are sufficiently close to X (x∗) =
(

X∗
B 0

0 0

)
and

Z∗ =
(

0 0
0 Z∗

N

)
, respectively, it is clear that X B = �(1) and Z N = �(1). Since

the following hold

w − w∗ = J (w∗)−1r0(w) + O(‖w − w∗‖2)

= O(‖r(w,μ)‖) + O(μ) + O(‖w − w∗‖2)

= O(μ) + O(‖w − w∗‖2),
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18 H. Yamashita, H. Yabe

we have

w − w∗ = O(μ),

and then we obtain

X (x) =
(

�(1) O(μ)

O(μ) O(μ)

)
and Z =

(
O(μ) O(μ)

O(μ) �(1)

)
.

It follows from the relation r(w,μ) = o(μ) that

X B Z B + XU Z T
U − μI = o(μ),

which yields

X B Z B = μI + o(μ).

Thus we obtain

Z B = μX−1
B + o(μ) = �(μ).

Similarly we have

X N = �(μ).

Therefore we obtain

X (x) =
(

�(1) O(μ)

O(μ) �(μ)

)
and Z =

(
�(μ) O(μ)

O(μ) �(1)

)
.

Next we estimate the inverse matrices X (x)−1 and Z−1. Setting

R = X N − X T
U X−1

B XU ,

we have

X (x)−1 =
(

X−1
B + X−1

B XU R−1 X T
U X−1

B −X−1
B XU R−1

−R−1 X T
U X−1

B R−1

)
. (34)

Since X (x)Z − μI = o(μ) implies X (x)Z = �(μ), Eqs. (33) and (34) yield Z N =
�(μ)R−1 = �(1), which means R−1 = �(μ−1). Thus we obtain

X (x)−1 =
(
�(1) + O(μ2)�(μ−1) �(μ−1) O(μ)

�(μ−1) O(μ) �(μ−1)

)
=

(
�(1) O(1)

O(1) �(μ−1)

)
= O(μ−1).
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Local and superlinear convergence of a primal-dual interior point method 19

Similarly we have

Z−1 =
(

�(μ−1) O(1)

O(1) �(1)

)
= O(μ−1).

Therefore the proof is complete. ��
In the following, we present the algorithm called scaledSDPIP which calculates a

KKT point by using the scaled Newton method.

Algorithm scaledSDPIP

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 = (x0, y0, Z0) ∈ Rn ×
Rm × Sp (X (x0) � 0, Z0 � 0). Set k = 0.

Step 1. (Termination) If ‖r0(wk)‖ ≤ ε, then stop.
Step 2. (Scaled Newton steps)

Step 2.1 Choose μk = ξk‖r0(wk)‖1+τ with ξk = �(1).
Step 2.2 Calculate the direction �wk by solving the scaled Newton equa-

tions J̃S(wk)�wk = −r̃S(wk, μk) at wk . Set wk+ 1
2

= wk +�wk .
Step 2.3 Calculate the direction �wk+ 1

2
by solving the scaled Newton equa-

tions J̃S(wk+ 1
2
)�wk+ 1

2
= −r̃S(wk+ 1

2
, μk) at wk+ 1

2
. Set wk+1 =

wk+ 1
2

+ �wk+ 1
2
.

Step 3. (Update) Set k := k + 1 and go to Step 1.

Now we prove two-step superlinear convergence of Algorithm scaledSDPIP. In the
following, we will consider two kinds of scaled Newton methods. In Sect. 6.1, we first
deal with the scaled Newton method with Tk = X−1/2

k (HRVW/KSH/M direction),

and then in Sect. 6.2, we deal with the scaled Newton method with Tk = W −1/2
k (NT

direction).

6.1 Scaled Newton method with Tk = X−1/2
k

For the choice of Tk = X−1/2
k , we have

X̃k = I, Z̃k = X1/2
k Zk X1/2

k

and (12) and (13) reduce to

�Zk = μk X−1
k − Zk − 1

2
(X−1

k �Xk Zk + Zk�Xk X−1
k ). (35)

and

(Hk)i j = tr
(

Ai (xk)X−1
k A j (xk)Zk

)
.

The following lemma estimates the Newton step �wk near the solution w∗.
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20 H. Yamashita, H. Yabe

Lemma 4 Suppose that assumptions (A1)–(A4) hold. Let τ ′ be a positive constant
and let μ− be a sufficiently small positive number. Assume that w is an interior point
which is sufficiently close to w∗ and satisfies r(w,μ−) = O(μ1+τ ′

− ). Then the Newton
step from J̃S(w)�w = −r̃S(w,μ) satisfies

�w = O(‖r(w,μ)‖)

for a given positive number μ.

Proof By letting E = X Z − μ− I , we have

X Z�X X−1 = �X Z + E�X X−1 − �X X−1 E .

Thus Eq. (35) yields

X�Z = μI − X Z − 1

2
(�X Z + X Z�X X−1)

= μI − X Z − �X Z − 1

2
(E�X X−1 − �X X−1 E),

which implies

X�Z + �X Z = μI − X Z − 1

2
(E�X X−1 − �X X−1 E). (36)

By transposing the matrices in the both sides above, we have

Z�X + �Z X = μI − Z X − 1

2
(X−1�X ET − (X−1 E)T �X).

By adding the above two equations, we obtain

X�Z + �X Z + Z�X + �Z X = 2μI − (X Z + Z X)

−1

2
(E�X X−1 + X−1�X ET ) + 1

2
(�X X−1 E + (X−1 E)T �X),

which implies

X�Z + �X Z + Z�X + �Z X + (E � X−1)�X − (I � X−1 E)�X

= 2μI − (X Z + Z X). (37)

We write Eqs. (7), (8) and (37) by

J ′
S(w)�w = −rS(w,μ). (38)

We note that any solution to the Newton equations J̃S(w)�w = −r̃S(w,μ) satisfies
the linear system of Eq. (38).
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Local and superlinear convergence of a primal-dual interior point method 21

Now we prove the nonsingularity of J ′
S(w). Since Eq. (37) implies

J ′
S(w) − JS(w) =

⎛

⎝
0 0 0
0 0 0

(E ⊗S X−1 − I ⊗S X−1 E)A(x) 0 0

⎞

⎠ ,

we have

‖J ′
S(w) − JS(w)‖F ≤ ‖(E ⊗S X−1)A(x)‖F + ‖(I ⊗S X−1 E)A(x)‖F .

Since Lemma 3 and the definition of E imply X−1 = O(μ−1− ) and E = O(μ1+τ ′
− ),

and each Ai (x) is bounded, we have

‖(E ⊗S X−1)A(x)‖F ≤ ‖E ⊗S X−1‖F‖A(x)‖F

= O(‖E ⊗ X−1 + X−1 ⊗ E‖F )

= O(‖E‖F )‖ O(‖X−1‖F )

= O(μ1+τ ′
− ) O(μ−1− )

= O(μτ ′
−).

Similarly we have

‖(I ⊗S X−1 E)A(x)‖F = O(μτ ′
−).

Thus it follows from the inequalities above that

‖J ′
S(w) − JS(w)‖F = O(μτ ′

−).

Since w is sufficiently close to w∗, the matrix JS(w) is nonsingular and its inverse
matrix is uniformly bounded, so is the matrix J ′

S(w). Thus Eq. (38) guarantees that
�w = �(‖rS(w,μ)‖) = O(‖r(w,μ)‖) hold. Therefore the lemma is proved. ��

We give the following lemma, which plays an important role in showing super-
linear convergence property of Algorithm scaledSDPIP.

Lemma 5 Suppose that assumptions (A1)–(A4) hold. Let Mc be a positive constant,
and let τ and τ ′ be positive constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let μ− be a sufficiently small positive number and satisfies

(
1

2Mc

)1/τ ′

≥ μ−. (39)
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Assume that w is an interior point which is sufficiently close to w∗ and satisfies the
approximate BKKT condition

‖r(w,μ−)‖ ≤ Mcμ
1+τ ′
− . (40)

Let μ be a positive number defined by

μ = ξ‖r0(w)‖1+τ (41)

with ξ = �(1). If �w is obtained by solving the scaled Newton equations J̃S(w)�w

= −r̃S(w,μ), then the iterate w 1
2

= w + �w satisfies

r(w 1
2
, μ) = O(μ1+ τ ′−τ

1+τ ), X (x 1
2
) � 0 and Z 1

2
� 0.

Furthermore, if �w 1
2

is obtained by solving the scaled Newton equations J̃S(w 1
2
)

�w 1
2

= −r̃S(w 1
2
, μ), then the iterate w+ = w 1

2
+ �w 1

2
satisfies

‖r(w+, μ)‖ ≤ Mcμ
1+τ ′

, X (w+) � 0 and Z+ � 0. (42)

Proof We first note that condition (40) yields r0(w) = �(μ−). We let the eigenvalues
of the matrix X (x +α�x) ◦ (Z +α�Z) be λ1(α) ≤ · · · ≤ λp(α) for each α ∈ [0, 1].
Since ‖X ◦ Z − μ− I‖F ≤ ‖X Z − μ− I‖F ≤ Mcμ

1+τ ′
− , we have

(λi (0) − μ−)2 ≤
p∑

j=1

(λ j (0) − μ−)2 ≤ (Mcμ
1+τ ′
− )2,

which implies by (39)

λi (0) ≥ μ− − Mcμ
1+τ ′
− ≥ 1

2
μ− > 0, i = 1, . . . , p. (43)

Let E = X Z − μ− I . Then condition (40) and Lemma 3 guarantee

E = O(μ1+τ ′
− ), X−1 = O(μ−1− )

and Lemma 4 and (41) imply

�X = O(‖r(w,μ)‖) = O(‖r0(w)‖) + O(μ) = O(‖r0(w)‖) = O(μ−).

Similarly we have

�Z = O(μ−).
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Since Eq. (36) yields

X (x + α�x)(Z + α�Z)

= (X (x) + α�X + α2O(μ2−))(Z + α�Z)

= X (x)Z + α(�X Z + X (x)�Z) + α2 O(μ2−)

= X (x)Z +α(μI −X (x)Z)+α O(‖E‖F ) O(‖X−1‖F ) O(‖�X‖F )+α2 O(μ2−)

= (1 − α)X (x)Z + αμI + α O(μ1+τ ′
− ) + α2 O(μ2−)

= (1 − α)X (x)Z + αμI + α O(μ1+τ ′
− ), (44)

we have

‖X (x + α�x) ◦ (Z + α�Z) − (1 − α)X ◦ Z − αμI‖F = α O(μ1+τ ′
− ).

By considering the eigenvalues λ1(α) ≤ · · · ≤ λp(α) of the matrix X (x + α�x) ◦
(Z + α�Z) and the eigenvalues (1 − α)λ1(0) + αμ ≤ · · · ≤ (1 − α)λp(0) + αμ of
the matrix (1 − α)X ◦ Z + αμI , we obtain the following inequality

p∑

i=1

|λi (α) − (1 − α)λi (0) − αμ|2

≤ ‖X (x + α�x) ◦ (Z + α�Z) − (1 − α)X ◦ Z − αμI‖2
F

by the Hoffman and Wielandt theorem (see p.104 of [27] for example). The above
relations yield

(1 − α)λi (0) + αμ − |λi (α)| ≤ |λi (α) − (1 − α)λi (0) − αμ|
≤ ‖X (x+α�x)◦(Z +α�Z)−(1 − α)X ◦Z −αμI‖F

= α O(μ1+τ ′
− ) (45)

for i = 1, . . . , p. In order to prove λ1(α) > 0 for all α ∈ (0, 1], we suppose that there
exists α̂ satisfying λ1(α̂) = 0 and α̂ ∈ (0, 1]. Then by (43), we have

1

2
(1 − α̂)μ− + α̂μ ≤ (1 − α̂)λ1(0) + α̂μ − |λ1(α̂)| ≤ α̂ O(μ1+τ ′

− ),

which yields a contradiction because of μ = �(‖r0(w)‖1+τ ) = �(μ1+τ− ) and 1 >

τ ′ > τ . Thus we obtain X (x + α�x) ◦ (Z + α�Z) � 0, and then X (x + α�x) � 0
and Z + α�Z � 0 for all α ∈ [0, 1]. By setting α = 1 in (44), we have

‖X 1
2

Z 1
2

− μI‖F = O(μ1+τ ′
− ) = O(μ1+ τ ′−τ

1+τ ), (46)
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where X 1
2

= X (x 1
2
). Furthermore, the Newton equations yield

∇x L(w + �w) = O(‖�w‖2) and g(w + �w) = O(‖�w‖2). (47)

On the other hand, it follows from Lemma 4 and the definition of μ that �w =
O(‖r(w,μ)‖) = O(‖r0(w)‖). Thus Eqs. (46) and (47) imply that the following

relation holds

r(w 1
2
, μ) = O(μ1+ τ ′−τ

1+τ ), (48)

which proves the first part of this lemma.
Next we show that (42) is satisfied. In the same way as above, we can show the

second part of this lemma. In fact, μ and τ ′−τ
1+τ

in (48) correspond to μ− and τ ′ in (40),
respectively. Let the eigenvalues of the matrix X (x 1

2
+ α�x 1

2
) ◦ (Z 1

2
+ α�Z 1

2
) be

λ′
1(α) ≤ · · · ≤ λ′

p(α) for each α ∈ [0, 1]. Since ‖X 1
2

◦ Z 1
2

− μI‖F ≤ ‖X 1
2

Z 1
2

−
μI‖F ≤ ημ1+ τ ′−τ

1+τ for some positive number η, we have

λ′
i (0) ≥ 1

2
μ > 0, i = 1, . . . , p (49)

as described in (43). Let E 1
2

= X 1
2

Z 1
2

− μI . Equation (46) and Lemma 3 imply

E 1
2

= O(μ1+ τ ′−τ
1+τ ) and X−1

1
2

= O(μ−1), and Lemma 4 and Eq. (48) imply

�w 1
2

= O(‖r(w 1
2
, μ)‖) = O(μ1+ τ ′−τ

1+τ ).

Thus Eq. (36) yields

X (x 1
2

+ α�x 1
2
)(Z 1

2
+ α�Z 1

2
)

= X (x 1
2
)Z 1

2
+ α(μI − X (x 1

2
)Z 1

2
) + α O(‖E 1

2
‖F ) O(‖X−1

1
2

‖F ) O(‖�X 1
2
‖F )

+α2 O(μ2(1+ τ ′−τ
1+τ

))

= (1 − α)X (x 1
2
)Z 1

2
+ αμI + α O(μ1+2 τ ′−τ

1+τ ) + α2 O (μ2(1+ τ ′−τ
1+τ

))

= (1 − α)X (x 1
2
)Z 1

2
+ αμI + α O(μ1+2 τ ′−τ

1+τ ), (50)

which corresponds to (44). Thus as in (45), we have

(1 − α)λ′
i (0) + αμ − |λ′

i (α)| = α O(μ1+2 τ ′−τ
1+τ )

for i = 1, . . . , p. In order to prove λ′
1(α) > 0 for all α ∈ (0, 1], we suppose that there

exists α̂ satisfying λ′
1(α̂) = 0 and α̂ ∈ (0, 1]. Then by (49), we have
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1

2
(1 − α̂)μ + α̂μ = O(μ1+2 τ ′−τ

1+τ ),

which yields a contradiction. Thus the fact X (x 1
2

+ α�x 1
2
) ◦ (Z 1

2
+ α�Z 1

2
) � 0

implies X (x 1
2
+α�x 1

2
) � 0 and Z 1

2
+α�Z 1

2
� 0 for all α ∈ [0, 1], which means that

w+ is an interior point. Setting α = 1 in (50) and using the condition τ ′ > 2τ/(1 − τ)

yield

‖X (x 1
2

+ �x 1
2
)(Z 1

2
+ �Z 1

2
) − μI‖F = O(μ1+2 τ ′−τ

1+τ ) = o(μ1+τ ′
) ≤ Mcμ

1+τ ′
.

(51)

Furthermore, it follows from the Newton equations that

∇x L(w 1
2

+ �w 1
2
) = O(‖�w 1

2
)‖2) = O(μ2(1+ τ ′−τ

1+τ
)) (52)

and

g(w 1
2

+ �w 1
2
) = O(‖�w 1

2
)‖2) = O(μ2(1+ τ ′−τ

1+τ
)). (53)

Thus Eqs. (51)–(53) imply that the following relation holds

‖r(w+, μ)‖ ≤ Mcμ
1+τ ′

,

which proves the second part of this lemma.
Therefore the proof of this lemma is complete. ��
Now we show the two-step superlinear convergence of Algorithm scaledSDPIP in

the following theorem.

Theorem 3 Suppose that assumptions (A1)–(A4) hold. Let Mc be a positive constant,
and let τ and τ ′ be positive constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let μ−1 be a sufficiently small positive number and satisfies

(
1

2Mc

)1/τ ′

≥ μ−1.

Assume that an initial interior point w0 is sufficiently close to w∗ and satisfies the
approximate BKKT condition ‖r(w0, μ−1)‖ ≤ Mcμ

1+τ ′
−1 . Then the sequence {wk}

generated by Algorithm scaledSDPIP with Tk = X−1/2
k satisfies

‖r(wk, μk−1)‖ ≤ Mcμ
1+τ ′
k−1 , X (xk) � 0 and Zk � 0

123



26 H. Yamashita, H. Yabe

for all k ≥ 0 and converges two-step superlinearly to w∗ in the sense that

‖wk + �wk + �wk+ 1
2

− w∗‖ = O(‖wk − w∗‖1+τ ′
) for all k.

We can prove this theorem in the same way as the proof of Theorem 2, so we omit it.

6.2 Scaled Newton method with Tk = W −1/2
k

Next we consider the case Tk = W −1/2
k given in Sect. 3, where the matrix Wk is

defined by

Wk = X1/2
k (X1/2

k Zk X1/2
k )−1/2 X1/2

k .

We will also show that the point wk+1 = wk + �wk + �wk+ 1
2

satisfies

‖r(wk+1, μk)‖ ≤ Mcμ
1+τ ′
k if ‖r(wk, μk−1)‖ ≤ Mcμ

1+τ ′
k−1 holds. This implies the

two-step superlinear convergence.
For the choice of Tk , we have

X̃k = Z̃k ( i.e. W −1
k Xk W −1

k = Zk)

and (12) and (13) reduce to

�Zk = μk X−1
k − Zk − W −1

k �Xk W −1
k (54)

and

(Hk)i j = tr
{

Ai (xk)W −1
k A j (xk)W −1

k

}
.

The following lemma estimates the Newton step �wk near the solution w∗.

Lemma 6 Suppose that assumptions (A1)–(A4) hold. Let τ ′ be a positive constant
and let μ− be a sufficiently small positive number. Assume that w is an interior point
which is sufficiently close to w∗ and satisfies r(w,μ−) = O(μ1+τ ′

− ). Then the Newton
step from J̃S(w)�w = −r̃S(w,μ) satisfies the following relation

�w = O(‖r(w,μ)‖)

for a given positive number μ.

Proof By letting E = X Z − μ− I , we have

X−1 = μ−1− (Z − X−1 E). (55)
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It follows from the definition of W that

W −1 = X−1/2(X1/2 Z X1/2)1/2 X−1/2

= μ
1/2
− X−1/2(I + μ−1− X−1/2 E X1/2)1/2 X−1/2

= μ
1/2
− X−1/2

(
I + 1

2
μ−1− X−1/2 E X1/2 + M

)
X−1/2

= μ
1/2
− X−1 + 1

2
μ

−1/2
− X−1 E + μ

1/2
− X−1/2 M X−1/2, (56)

where

M = O(μ−2− ‖X−1/2 E X1/2‖2
F ) = O(μ−2− ‖E‖2

F ).

The last equality can be obtained from the fact ‖X−1/2 E X1/2‖F = ‖E‖F . Substitut-
ing (55) into (56) yields

W −1 = μ
−1/2
− Z − 1

2
μ

−1/2
− X−1 E + μ

1/2
− X−1/2 M X−1/2. (57)

Since we have by (56) and (57)

X W −1�X W −1 =
(

μ−�X + 1

2
E�X + μ− X1/2 M X−1/2�X

)

×
(

μ−1− Z − 1

2
μ−1− X−1 E + X−1/2 M X−1/2

)
,

Eq. (54) yields

X�Z = μI − X Z − X W −1�X W −1

= μI − X Z −
{
�X Z − 1

2
�X X−1 E + μ−�X (X−1/2 M X1/2)X−1

+1

2
μ−1− E�X Z − 1

4
μ−1− E�X X−1 E + 1

2
E�X (X−1/2 M X1/2)X−1

+(X1/2 M X−1/2)�X Z − 1

2
(X1/2 M X−1/2)�X X−1 E

+ μ−(X1/2 M X−1/2)�X (X−1/2 M X1/2)X−1
}

= μI − X Z − �X Z + O(μτ ′
−)O(‖�X‖F ),

because Lemma 3 implies X−1 = O(μ−1− ), and we have E = O(μ1+τ ′
− ) and M =

O(μ2τ ′
− ). This implies

X�Z + �X Z = μI − X Z + O(μτ ′
−)O(‖�X‖F ).
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Thus we obtain

X�Z + �X Z + Z�X + �Z X = 2μI − (X Z + Z X) + O(μτ ′
−)O(‖�X‖F ).

(58)

We write Eqs. (7), (8) and (58 ) by

J ′
S(w)�w = −rS(w,μ),

which corresponds to (38). Therefore the lemma can be proved in the same way as the
proof of Lemma 4. ��

Since we obtain the same lemma as Lemma 5, we can show the following theorem
in the same way as Theorem 3.

Theorem 4 Suppose that assumptions (A1)–(A4) hold. Let Mc be a positive constant,
and let τ and τ ′ be positive constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let μ−1 be a sufficiently small positive number and satisfies

(
1

2Mc

)1/τ ′

≥ μ−1.

Assume that an initial interior point w0 is sufficiently close to w∗ and satisfies the
approximate BKKT condition ‖r(w0, μ−1)‖ ≤ Mcμ

1+τ ′
−1 . Then the sequence {wk}

generated by Algorithm scaledSDPIP with Tk = W −1/2
k satisfies

‖r(wk, μk−1)‖ ≤ Mcμ
1+τ ′
k−1 , X (xk) � 0 and Zk � 0

for all k ≥ 0 and converges two-step superlinearly to w∗ in the sense that

‖wk + �wk + �wk+ 1
2

− w∗‖ = O(‖wk − w∗‖1+τ ′
) for all k.

7 Concluding remarks

In this paper, we have analyzed local behavior of primal-dual interior point meth-
ods for solving nonlinear semidefinite programming problems. We have first con-
sidered a primal-dual interior point method based on the unscaled Newton method
(which corresponds to the AHO direction for linear SDP problems), called Algorithm
unscaledSDPIP, and have shown its local and superlinear convergence. Next we have
considered two kinds of primal-dual interior point methods based on the scaled Newton
method (which correspond to the HRVW/KSH/M and the NT directions for linear SDP
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problems), called Algorithm scaledSDPIP, and have proved their local and two-step
superlinear convergence properties.

We note that it is not difficult to obtain a globally and superlinearly convergent
method by combining Algorithm SDPIP described in Sect. 3 and the proposed meth-
ods in Sects. 5 and 6.
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