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Abstract The edge formulation of the stable set problem is defined by two-variable
constraints, one for each edge of a graph G, expressing the simple condition that
two adjacent nodes cannot belong to a stable set. We study the fractional stable set
polytope, i.e. the polytope defined by the linear relaxation of the edge formulation.
Even if this polytope is a weak approximation of the stable set polytope, its simple
geometrical structure provides deep theoretical insight as well as interesting algorith-
mic opportunities. Exploiting a graphic characterization of the bases, we first redefine
pivots in terms of simple graphic operations, that turn a given basis into an adjacent
one. These results lead us to prove that the combinatorial diameter of the fractional
stable set polytope is at most the number of nodes of the given graph. As a corollary,
the Hirsch bound holds for this class of polytopes.
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1 Introduction

The combinatorial diameter of a polyhedron is the smallest natural number that bounds
the length of a shortest path connecting two arbitrary vertices (i.e. 0-dimensional faces)
of the polyhedron along its edges (i.e. 1-dimesional faces). The Hirsch Conjecture
(1957) states that a d-dimensional polyhedron with f facets cannot have combinator-
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310 C. Michini, A. Sassano

ial diameter greater than f − d. The importance of the Hirsch Conjecture is related to
its connection with the performance of the simplex method for linear programming,
because the diameter of a polyhedron is a lower bound on the number of pivots needed
by the algorithm to reach an optimal vertex from an arbitrary one. The Hirsch Con-
jecture has been disproved first for unbounded polyhedra [10], and recently also for
bounded ones [15]. Although we know that it does not hold in general, it is still interest-
ing to investigate families of polyhedra that satisfy the Hirsch bound. For example, it
has been proven by Naddef [12] that the diameter of a d-dimensional (0, 1)-polytope is
at most d, and that (0, 1)-polytopes satisfy the Hirsch bound. The diameter of various
polyhedra arising from network problems has also been object of research. In many
cases the special structure of these polyhedra allows to establish specific characteriza-
tions of the vertices, and easier conditions for their adjacency. Such properties can be
exploited to bound the diameter of these polyhedra. Examples of network polyhedra
satisfying the Hirsch bound are the assignment polytope [3], signature polytopes [4]
and the dual of the transportation polyhedron [2]. Serious efforts have also been made
to tighten the bounds on the diameter of the transportation polytope [5]. The present
paper is an example of this approach. In this work we study the fractional stable set
polytope FSTAB(G), i.e. the polytope defined by the linear relaxation of the edge
formulation for the stable set problem on graph G. Unlike the polyhedra mentioned
above, the fractional stable set polytope is not integral and it is generally a weak relax-
ation of the stable set polytope. Even if the stable set polytope is a (0, 1)-polytope
and thus it satisfies the Hirsch bound, the number of its facets is exponential and, in
practice, the linear program given by its facet-description is intractable. This motivates
our interest in the fractional stable set polytope, that has reasonably many facets, but
is not a (0, 1)-polytope anymore, and may or may not satisfy the Hirsch bound. Our
main result is that the combinatorial diameter of the fractional stable set polytope is
at most the cardinality of the node set of the graph. As a corollary, the Hirsch bound
holds for this class of polytopes. In order to prove our result, we use a graphic char-
acterization of the bases of the fractional stable set polytope, and we derive graphic
conditions for the adjacency of two bases. Moreover, it is known that the fractional
stable set polytope has the Trubin property [16], i.e. two integer vertices are adjacent
on this fractional polytope if and only if they are adjacent on the stable set polytope.
As a consequence, the characterization of bases and pivots that we present opens new
algorithmic opportunities for the solution of the stable set problem.

We denote the node set and the edge set of a graph G as V (G) and E(G), respec-
tively. We call singleton or isolated node the graph consisting of a single node. Let
G = (V, E) and U ⊆ V . We denote the neighbors of U by N (U ) = {v ∈ V : uv ∈
E, u ∈ U, v ∈ V \U }. We write G[U ] to indicate the subgraph of G induced by
nodes of U ⊆ V . Moreover, for a vector x ∈ R

|V |, we denote by xU the subvec-
tor of x indexed by U . For a cut (U, V \U ), we indicate the corresponding cutset as
δ(U ) = {uv ∈ E : u ∈ U, v ∈ V \U }. We denote the union of two graphs G and G ′
as G ∪ G ′, where V (G ∪ G ′) = V (G) ∪ V (G ′) and E(G ∪ G ′) = E(G) ∪ E(G ′).

The paper is organized as follows. In Sect. 2 we present a graphic characterization
of bases of FSTAB(G); in Sect. 3 we introduce a graphic interpretation of pivots;
in Sect. 4 we characterize the adjacency between fractional and integer vertices; in
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Sect. 5 we prove the bound of |V (G)| for the combinatorial diameter of FSTAB(G),
and we then show that the Hirsch bound is valid for FSTAB(G).

2 The fractional stable set polytope

Let G = (V, E) be a simple, undirected graph, where V and E are the sets of n nodes
and m edges of G, respectively, and let c : V → Q+ be any weighting of the nodes of
G. A stable set is a subset S of the node set V such that no two vertices of S are adja-
cent. The stable set problem (STAB) asks for the stable set of maximum weight and it
is a well known NP-hard problem. The stable set polytope, denoted by STAB(G) is the
convex hull of the incidence vectors of stable sets in G. A straightforward formulation
of the stable set problem is the so-called edge formulation:

max cx

s.t. xu + xv ≤ 1 ∀ uv ∈ E (1)

0 ≤ xu ≤ 1 ∀ u ∈ V
xu ∈ {0, 1} ∀ u ∈ V

(2)

where constraints (1) express the simple condition that the endpoints of an edge cannot
both belong to a stable set. The fractional stable set polytope, denoted by FSTAB(G),
is the polytope defined by inequalities (1) and (2). We denote by (FSTAB) the linear
relaxation of the edge formulation, i.e. max{cx : x ∈ FSTAB(G)}. It is well known
that FSTAB(G) coincides with STAB(G) if and only if G is bipartite. It was origi-
nally proven by Balinski that vertices of FSTAB(G) are (0, 1

2 , 1)-valued [1,13,14].
Moreover, variables that are integer valued in an optimal solution to (FSTAB) can be
fixed to solve (STAB) [13].

Let Z ⊆ V be the set of isolated nodes of G. Note that the constraints xu ≤ 1 are
redundant for each node u ∈ V \Z . It is easy to verify that the nonnegativity constraints
xu ≥ 0, u ∈ V , and the constraints xu ≤ 1, u ∈ Z , are facets of FSTAB(G). To show
that inequalities (1) are facet defining, let uv ∈ E and for each w ∈ V define vector
xw as follows: for w /∈ {u, v}, xw

u = xw
v = xw

w = 1
2 and xw

z = 0 ∀ z /∈ {u, v, w}; for
w = u, xu

u = 1 and xu
z = 0 ∀ z 
= u; for w = v, xv

v = 1 and xv
z = 0 ∀ z 
= v. For all

w ∈ V, xw ∈ FSTAB(G) and xw
u + xw

v = 1. It is not hard to check that this is a set
of |V | vectors that are affinely independent. This implies, since P is full-dimensional,
that the Hirsch bound equals |E | + |Z |.

Suppose that G consists of k connected components G1, . . . , Gk and observe that
FSTAB(G) = FSTAB(G1) × · · · × FSTAB(Gk). We denote by d(FSTAB(G)) the
diameter of FSTAB(G) and by d(FSTAB(Gi )) the diameter of FSTAB(Gi ), i =
1, . . . , k. We next remark that, in order to bound the diameter of FSTAB(G), we can
bound the diameter of each polytope FSTAB(Gi ), i = 1, . . . , k.

Remark 1 Let x and y be two vertices of FSTAB(G), and express them as

x =
⎛
⎜⎝

x1

...

xk

⎞
⎟⎠ , y =

⎛
⎜⎝

y1

...

yk

⎞
⎟⎠ ,
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where xi , yi ∈ FSTAB(Gi ), i = 1, . . . , k. Then, x and y are adjacent on FSTAB(G)

if and only if x j and y j are adjacent on FSTAB(G j ) for some j ∈ {1, . . . , k} and
xi = yi for all i 
= j . Therefore d(FSTAB(G)) = ∑k

i=1 d(FSTAB(Gi )).

If Gi is an isolated node, then FSTAB(Gi ) = {x ∈ R : 0 ≤ x ≤ 1}, and
d(FSTAB(Gi )) = 1.

Let Gi be a connected component of G that has at least an edge. If Gi is bipartite,
FSTAB(Gi ) = STAB(Gi ), and d(FSTAB(Gi )) ≤ min{|V (Gi )|, |E(Gi )|} [12]. Note
that, in this case, |E(Gi )| < |V (Gi )| if and only if Gi is a tree. If Gi is nonbipartite,
we prove that d(FSTAB(Gi )) ≤ |V (Gi )|. Note that, in this case, |V (Gi )| ≤ |E(Gi )|.

In order to prove that the diameter of FSTAB(G) is bounded by |V (G)| from now
on, unless explicitly stated, we assume the following.

Assumption 2.1 G = (V, E) is a connected graph with at least one edge.

We will show that, from an arbitrary vertex x of FSTAB(G), it is possible to reach
any other vertex x ′ through a sequence of adjacent vertices {xt }t=0,...,T , such that
x0 = x, xT = x ′ and T ≤ |V |. For each vertex xt of the sequence {xt }, we define the
set V ′(t) = {u ∈ V : xt

u = x ′
u}. Our sequence will satisfy the following conditions:

V ′(t + 1) ⊇ V ′(t) for all t = 0, . . . , T − 1 and V ′(T ) = V , i.e. xT = x ′.
To prove our results, we heavily exploit a graphic characterization of the bases

of FSTAB(G), presented in Campêlo and Cornuéjols [6], Cornuéjols et al. [7]. The
graphic characterization, independently investigated by Michini in [11], is based upon
a slight rewriting of FSTAB(G), that is obtained by converting (FSTAB) to standard
form [8]: a nonnegative slack variable is introduced for each edge constraint, i.e.
FSTAB(G) = {(x, y) ∈ R

n+ × R
m+ : xu + xv + yuv = 1 ∀ uv ∈ E}. Clearly, every

node of G corresponds to an x variable of FSTAB(G) and each edge of G corresponds
to a y slack variable of FSTAB(G). Therefore, in the rest of the paper, we will call
the x and y variables node and edge variables, respectively. We will say that a node
(resp. an edge) is 0, 1

2 or 1 valued if the corresponding node (resp. edge) variable is
0, 1

2 or 1 valued, respectively.
Let A be the edge-node incidence matrix of G, with m rows, indexed by the edges

of G and n columns, indexed by the nodes of G. Denote by B the set of all bases of the
constraint matrix [A Im]. Since the rows of the constraint matrix defining FSTAB(G)

are linearly independent, any basis consists of m columns. We say that two bases are
adjacent if they share m − 1 columns. Moreover, we define a basis to be integral if
its associated basic solution is integral. For every basis, we denote by B and N the
corresponding basic and nonbasic submatrices, respectively. For conciseness, we will
also use B and N to denote the associated index sets. For classical terminology on
linear programming we refer to [8].

Let B ∈ B be a basis, feasible or infeasible, of [A Im]. Partition the nodes of G
according to B into VB and VN , indexing the basic and nonbasic node variables xB and
xN , respectively. Similarly, partition the edges into EB and EN and the corresponding
edge variables into yB and yN . In order to characterize the structure of the basis,
consider the basic subgraph G B = (V, EN ), which is obtained from G by removing
the basic edges. Let Ci = (Vi , Ei ), i = 1, . . . , k, be the connected components
of G B .
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The Hirsch Conjecture for the fractional stable set polytope 313

Recall that a graph is a 1-tree if it is connected and the number of its nodes equals
the number of its edges. A 1-tree contains a unique cycle. We call 1-pseudoforest a
subgraph composed by rooted trees and 1-trees with an odd cycle. We remark that
every singleton of G B can be seen as a trivial tree, containing only one node and no
edges.

Theorem 1 (Campêlo and Cornuéjols [6]) For every B ∈ B, G B is a 1-pseudoforest
of G. The root of each tree is the only nonbasic node of the tree. The nodes of every
1-tree are all basic.

The converse of Theorem 1 also holds [7]. This implies that there is a one-to-one
correspondence between 1-pseudoforests of G and bases of FSTAB(G).

Theorem 2 (Cornuéjols, Michini and Nannicini [7]) Let F be a 1-pseudoforest of G
with V (F) = V and denote by R ⊆ V the subset of roots of F. Let VB = V \R, EB =
E\E(F). Then B = VB ∪ EB is a basis of FSTAB(G) and G B = F.

Theorems 1 and 2 establish a precise correspondence between bases of FSTAB(G)

and 1-pseudoforests of G. Given a basis B ∈ B and the associated 1-pseudoforest
G B , define I0(B) and I1(B) as the subsets of {1, . . . , k} indexing the tree and 1-
tree components of G B , respectively. For every rooted tree of G B , i.e. for each Ci

with i ∈ I0(B), we denote by τ(Ci ) the root of the tree. Similarly, for every 1-tree
component C j , j ∈ I1(B), of G B , we denote by κ(C j ) its unique (odd) cycle.

The next theorem highlights the connection between the variables that are 1
2 -valued

in a basic solution of FSTAB(G) and the nodes belonging to the 1-tree components
of the associated basic subgraph.

Theorem 3 (Cornuéjols, Michini and Nannicini [7]) Let B ∈ B be a basis of
FSTAB(G). Denote by x̄ the basic solution associated to B. Then:

(i) all nodes in 1-tree components of G B index 1
2 -valued components of x̄;

(ii) all nodes of tree components of G B index (0, 1)-valued components of x̄ . In each
tree component, nodes that are at even distance from the root are 0-valued, while
those that are at odd distance from the root are 1-valued.

Graphically, we will represent zero, one and half valued nodes by white, black and half
colored circles, respectively. For each tree, the node corresponding to its root will be
circled. Nonbasic edges will be represented by solid lines, and basic edges by dashed
lines. As an example, Fig. 1 represents two degenerate bases of a fractional vertex and
their corresponding basic subgraphs.

3 A graphic characterization of pivots

In this section we present a graphic characterization for the adjacency of two bases.
The operation of moving from a basis to an adjacent basis is called a pivot [8]. The
characterization of bases of FSTAB(G) presented in Sect. 2 allows us to graphically
describe pivots as well. A similar task was tackled by Ikura and Nemhauser for bipartite
graphs [9]. Given a basis B ∈ B, pivots on FSTAB(G) can be characterized in terms
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Fig. 1 EDGE-OUT + EDGE-IN operations. The pivot in the example is degenerate

Fig. 2 EDGE-OUT + ROOT-IN operations. The pivot in the example is nondegenerate and feasible.
Moreover, the pivot “pushes” integrality

of elementary transformations of G B into G B′ , where B ′ ∈ B is adjacent to B in
FSTAB(G). In Michini [11] an overview of all possible transformations of G B into
G B′ is presented. Between all possible pivots, degenerate and nondegenerate ones are
characterized, as well as those leading to an integer or to a fractional vertex.

In the following, we provide an essential and intuitive description of such results,
by defining the pivots on FSTAB(G) in general terms.

Definition 1 Given a 1-pseudoforest G B , we define the following OUT-operations:

(i) EDGE-OUT : remove edge uv ∈ EN (i.e. the edge variable yuv enters the basis);
(ii) ROOT-OUT : unroot a tree component Ck (i.e. the node variable indexed by

τ(Ck) ∈ VN enters the basis);

When we perform an EDGE-OUT operation on G B , we either open an odd cycle of
the 1-pseudoforest (Figs. 1 and 2), or we break one of its connected components (Fig.
3). In any case, the operation yields an unrooted tree. Similarly, when we perform a
ROOT-OUT operation, we obtain an unrooted tree.

Definition 2 Let G ′
B be the subgraph obtained from a 1-pseudoforest G B by applying

a OUT-operation, and let C ′
k be its unique unrooted tree. We define the following IN-

operations:
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Fig. 3 EDGE-OUT + EDGE-IN operations. The pivot in the example is nondegenerate and feasible.
Moreover, the pivot “relaxes” integrality

(i) EDGE-IN : add edge uv ∈ EB , such that either uv is in δ(V (C ′
k)) or it closes an

odd cycle in C ′
k (i.e. the edge variable yuv leaves the basis);

(ii) ROOT-IN : root C ′
k at node u ∈ V (C ′

k) ∩ VB (i.e. the node variable xu leaves the
basis).

Because any OUT-operation yields an unrooted tree C ′
k , to obtain a new 1-pseudoforest,

we can perform a ROOT-IN operation to root C ′
k (Fig. 2). Alternatively, an EDGE-IN

operation can be applied; in this case the edge that is added to the current subgraph
can either close an odd cycle in C ′

k (Fig. 1) or it can connect C ′
k to another tree or

1-tree component of G ′
B (Fig. 3).

Definition 3 An elementary transformation on a 1-pseudoforest G B is defined as a
sequential application of an OUT-operation and an IN-operation.

Definition 4 Two 1-pseudoforests G B and G B′ are said to be adjacent if B and B ′
are adjacent bases.

Theorem 4 Let B and B ′ be two bases of FSTAB(G), and let G B and G B′ be the
associated 1-pseudoforests. A pivot from B to B′ is an elementary transformation that
turns G B into G B′ . Moreover, any elementary transformation on G B is a pivot from
B to an adjacent basis.

Proof B and B ′ have m − 1 variables in common. Let h ∈ B\B ′ and k ∈ B ′\B. A
pivot from B to B ′ consists in the elementary transformation where an OUT-operation
is performed on k and an IN-operation is performed on h. Depending on k (resp. h)
being a node or an edge variable, we have a ROOT-OUT or an EDGE-OUT (resp. a
ROOT-IN or an EDGE-IN) operation.

Suppose now to perform an elementary transformation on G B . We obtain a new 1-
pseudoforest F with V (F) = V . Let R ⊆ V denote the subset of roots of F . Then, by
Theorem 2, (V \R)∪(E\E(F)) = B ′ ∈ B and G B′ = F . Moreover, as an elementary
transformation consists only of an OUT-operation and an IN-operation, it follows that
B and B ′ have m − 1 variables in common, i.e. they are adjacent. �

When we perform a pivot, the only (node) variables involved in the transformation
are those belonging to the unrooted tree arising from the EDGE-OUT or ROOT-OUT
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operation. If the pivot is nondegenerate, these are the only variables whose value will
change in the new basic solution (Figs. 2 and 3). Note that a pivot is degenerate if
and only if, in the elementary transformation corresponding to the pivot, the variable
involved in the IN-operation (i.e. the variable leaving the basis) is 0-valued (Fig. 1).

A nondegenerate pivot is feasible if it yields a new basic feasible solution, i.e. a basic
solution whose (basic) edge variables are all nonnegative. Between nondegenerate
pivots, there are some “pushing” and some “relaxing” integralities. Consider the pivot
from B to B ′ and let C ′

k be the unrooted tree yielded by the OUT-operation performed
on G B . If the IN-operation is such that the nodes in V (C ′

k) belong to a tree in G B and
to a 1-tree in G B′ , then the node variables associated to V (C ′

k), that were originally
integer valued, become fractional (Fig. 3). Vice versa, if the nodes of V (C ′

k) were in
a 1-tree in G B and become part of a tree in G B′ , then integrality is achieved on the
corresponding node variables (Fig. 2).

4 Adjacency of integer and fractional vertices

Theorems 1, 2 and 3 immediately imply that FSTAB(G) admits fractional vertices if
and only if G = (V, E) is nonbipartite. In this section, we characterize the adjacency
between fractional and integer vertices of the fractional stable set polytope.

Two vertices x and x ′ of FSTAB(G) are adjacent if there exist two adjacent bases
B, B ′ ∈ B associated to x and x ′, respectively. Equivalently, x and x ′ are adjacent if
there exist two adjacent 1-pseudoforests G B and G B′ associated to x and x ′, respec-
tively. In [14] Padberg gave a characterization of the fractional vertices of FSTAB(G)

that are adjacent to a given integer vertex, by proving that for each vertex of this type
there exists a suitably structured basic matrix. In the next Lemma, we restate the result
of Padberg in terms of our graphic characterization of bases.

Lemma 1 If B is a non-integral basis adjacent to an integral basis, then G B contains
exactly one 1-tree component.

Given a vector x ∈ {
0, 1

2 , 1
}|V |

, define H(x) = {
u ∈ V : xu = 1

2

}
and I (x) =

{u ∈ V : xu ∈ {0, 1}}.
Lemma 2 Let x be a fractional vertex of FSTAB(G) and x ′ be the incidence vector
of a stable set S of G. Then x and x ′ are adjacent on FSTAB(G) if and only if
xu = x ′

u ∀ u ∈ I (x) and there exists a spanning tree T of G[H(x)] such that for each
uv ∈ E(T ), uv ∈ δ(S).

Proof Suppose that xu = x ′
u ∀ u ∈ I (x) and that there exists a spanning tree T of

G[H(x)] with each edge connecting a node in S and a node in V \S. We will show
that x and x ′ are adjacent by defining a suitable basis of x ′ such that, in one pivot, we
can reach a basis associated to x . Consider an arbitrary basis B associated to x and let
Ci = (Vi , Ei ), i = 1, . . . , r , be the trees of G B . Note that I (x) = ⋃r

i=1 Vi and that if
r = 0 then I (x) = ∅. Define the rooted tree Cr+1 = T , by setting τ(Cr+1) = z, with
z ∈ H(x)\S. By Theorems 2 and 3, the 1-pseudoforest F = ⋃r+1

i=1 Ci defines a basis
B ′ associated to x ′ such that G B′ = F . Recall that, since x is a vertex of FSTAB(G), it
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Fig. 4 An integer and a fractional adjacent vertices. Note that the integer vertex is not adjacent to the
solution x∗

i = 1
2 for all i = 1, . . . , n, because it admits no spanning tree satisfying the conditions of

Lemma 2

follows that the induced subgraph G[H(x)] is not bipartite. Therefore, there exists an
edge hj such that h, j ∈ H(x)\S. Note that x ′

h = x ′
j = 0, i.e. hj /∈ E(G B′). We can

then perform the following elementary transformation on G B′ : a ROOT-OUT operation
on z and an EDGE-IN operation on hj . This yields a 1-pseudoforest G B̄ associated to
basis B̄ = B ′\hj ∪{z}. Precisely, G B̄ is composed by the trees C̄i = Ci , i = 1, . . . , r ,
and the 1-tree component C̄r+1 = T ∪ hj . By Theorem 3, the basic feasible solution
associated to B̄ is x , i.e. B̄ is a basis associated to x that is adjacent to B ′.

Suppose now that x ′ is adjacent to x on FSTAB(G). By Lemma 1, there exist
two adjacent bases B ′ and B, associated to x ′ and x , respectively, such that G B

contains only a 1-tree component. Let Ci , i = 1, . . . , r , be the tree components of
G B and let Cr+1(H(x), W ) be its unique 1-tree. By Theorem 4, the pivot leading to
B ′ corresponds to an elementary transformation that turns G B into G B′ . As the node
variables in H(x) are binary in x ′, by Theorem 3, in G B′ such variables belong to tree
components. As a consequence, in the elementary transformation turning G B into G B′ ,
the OUT-operation is an EDGE-OUT operation on some edge hj ∈ κ(Cr+1). After
the EDGE-OUT operation on hj we obtain the unrooted tree T = (H(x), W\hj),
implying that the only variables changing value in x ′ are those indexed by H(x), i.e.
xu = x ′

u ∀u ∈ I (x). In the IN-operation that, together with the EDGE-OUT operation
on hj , defines the pivot from B to B ′, T will be either rooted at a node z ∈ H(x)\S
through a ROOT-IN operation, becoming a rooted tree of G B′ , or it will be merged
to a rooted tree Ci , i ∈ {1, . . . , r} through an EDGE-IN operation on some edge of
δ(H(x)). Because all the edges of G B′ are nonbasic, and therefore 0-valued, it follows
that each edge in T connects a node in S and a node in V \S. �
An illustration of the condition of Lemma 2 is depicted in Fig. 4.

In the following definition we introduce minimal bases, a crucial property to pre-
serve feasibility when we perform a ROOT-OUT plus an EDGE-IN elementary trans-
formation that merges two trees of a 1-pseudoforest.

Definition 5 A basis B is called minimal if any two tree components of G B are only
connected by 1-valued (basic) edges.

A basis B ∈ B is trivially minimal if G B has at most one tree component, i.e. if
|I0(B)| ≤ 1.

Lemma 3 Let x be a vertex of FSTAB(G), and let B be a basis of x with |I0(B)| ≥ 2.
There always exists a minimal basis B ′ of x that can be reached from B in at most
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|I0(B)|−1 degenerate pivots. Moreover, if k is the number of pivots required to reach
B ′, |I0(B ′)| = |I0(B)| − k.

Proof The proof is constructive. If B is minimal, then trivially B ′ = B and k = 0.
Suppose that B is not minimal. To gain minimality, the basic step consists in performing
a degenerate pivot that merges two trees of the current basic subgraph through a 0-
valued edge. Let uv be a (basic) 0-valued edge connecting two trees Ci and C j of
G B . Note that i, j ∈ I0(B) and xu + xv = 1 imply either xu = 1 and xv = 0 or
xu = 0 and xv = 1. We can perform the degenerate pivot defined by a ROOT-OUT
operation on τ(Ci ) and an EDGE-IN operation on uv, in order to merge Ci and C j

into a unique tree rooted at τ(C j ). Clearly, in the new basic subgraph the number of
trees decreases by one and, as the variable leaving the basis is 0-valued, the pivot is
degenerate. We can iterate this step until, after k pivots, we reach a minimal basis B ′ of
x . Note that k = |E(G B′)\E(G B)|, and |I0(B ′)| = |I0(B)|−k. As I (x) 
= ∅ we have
|I0(B ′)| ≥ 1 and it follows that k ≤ |I0(B)| − 1. In fact, if we perform |I0(B)| − 1
degenerate pivots, we obtain a 1-pseudoforest that contains only one rooted tree, i.e.
the basic subgraph of a minimal basis. �

Figure 5(i) shows a non-minimal basis whose basic subgraph consists of five
trees. The basis is not minimal because two tree components are linked by some 0-
valued edges. Unrooting one of the two trees and merging them through an EDGE-IN

Fig. 5 It is possible to reach x∗
i = 1

2 ∀ i ∈ V from the integer solution represented in (i) in 5 pivots.
The first step consists in a degenerate pivot, in order to reach a minimal basis (i i). The second step is a
nondegenerate pivot leading to a new integer vertex that saturates an odd cycle of the graph (i i i). The basis
associated to the new vertex is not minimal, and a degenerate pivot is required, in order to regain minimality
(iv). In the new minimal basis all the edges of a saturated 7-cycle are nonbasic. Therefore, in one pivot we
can move to a fractional vertex (v). Finally, in the last pivot, we reach x∗ (vi). In each pivot the number of
rooted trees has decreased by one, therefore 5 pivots are necessary. However, the length of the path to x∗
is 3, because we have performed two degenerate pivots
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operation on a 0-valued edge is a degenerate pivot. The new basis, that is represented
in Figure 5(i i), is minimal and consists of four trees.

We next present a necessary and sufficient condition for a given integer vertex to
be adjacent to a fractional one.

Definition 6 A cycle κ is saturated by a stable set S if it contains at most two con-
secutive nodes that do not belong to S. Equivalently, κ contains at most one 1-valued
edge.

With a slight abuse of terminology, we say that a cycle is saturated by an integer vertex
x of FSTAB(G) if it is saturated by the corresponding stable set S = {u ∈ V : xu = 1}.
Lemma 4 Let x be an integer vertex of FSTAB(G) and B be a minimal basis asso-
ciated to x. If G admits an odd cycle κ saturated by x, then it admits an odd cycle κ ′
saturated by x, with the property that all the 0-valued edges of κ ′ are nonbasic.

Proof First, note that since x is integer G B is a rooted forest, i.e. it has no 1-
tree component. Let wz be the only 1-valued edge of the saturated odd cycle κ

and let ρ(κ) be the set of 0-valued edges of κ that do not belong to G B , i.e.
ρ(κ) = {uv ∈ E : xu + xv = 1, uv ∈ κ ∩ B}. Assume, without loss of generality, that
κ is a saturated odd cycle of G with minimum |ρ(κ)|. If ρ(κ) is empty the theorem
follows (κ ′ ≡ κ).

By contradiction, assume ρ(κ) 
= ∅ and let uv ∈ ρ(κ). By minimality of B, it
follows that u, v ∈ V (Ci ) for some tree Ci of G B . Let Puv be the path connecting u
and v on Ci . Puv has odd length because xu = 1 − xv and each edge of Puv links a
1-valued and a 0-valued node. Let Quv = κ\uv. Note that Quv has even length, and
that wz ∈ Quv\Puv . Consider the symmetric difference PuvΔQuv .

If Puv ∩ Quv = ∅, then κ ′ = Puv ∪ Quv is a saturated cycle of odd length such
that uv /∈ κ ′, thus |ρ(κ ′)| ≤ |ρ(κ)| − 1, a contradiction.

If Puv ∩ Quv 
= ∅, then PuvΔQuv is a collection of two or more cycles. Let κ ′′
be the cycle of PuvΔQuv containing wz. If the path κ ′′ ∩ Quv has odd length, then
its terminal nodes have the same value, and consequently κ ′′ ∩ Puv has even length.
Otherwise, if the path κ ′′ ∩ Quv has even length, then its terminal nodes have different
values, implying that κ ′′ ∩ Puv has odd length. This shows that κ ′′ is an odd cycle.
Moreover, κ ′′ is saturated by x , since the only two consecutive nodes of κ ′′ that are
0-valued are w and z. In addition, since uv /∈ Puv ∪ Quv , then uv /∈ κ ′′, and it follows
that |ρ(κ ′′)| ≤ |ρ(κ)| − 1, a contradiction. �
The condition of Lemma 4 is illustrated in Fig. 5(iv). An integral vertex and an
associated minimal basis are represented. In the corresponding basic subgraph, there
exists a saturated 5-cycle containing a 0-valued basic edge. Nevertheless, a saturated
7-cycle exists, such that all its 0-valued edges are nonbasic.

Lemma 5 Let x be the incidence vector of a stable set S of G. Then x is adjacent to a
fractional vertex of FSTAB(G) if and only if there exists an odd cycle of G saturated
by S.

Proof Suppose that there exists an odd cycle of G saturated by S. Consider a minimal
basis B of x . Note that, by Lemma 3, such basis always exists. Then, by Lemma 4, there
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exists an odd cycle κ saturated by x , and such that all 0-valued edges of κ are nonbasic,
implying that they belong to the same tree component Ci of G B . Denote by wz the only
1-valued edge of κ . Performing a ROOT-OUT operation on τ(Ci ) and an EDGE-IN
operation on wz corresponds to a nondegenerate pivot relaxing integrality, because all
nodes of Ci become 1

2 -valued in the new basic solution. Moreover, minimality of B
implies that the new basic solution is feasible, i.e. it is a vertex: no infeasibility can
occur, because each edge uv ∈ E with u ∈ V (Ci ), v /∈ V (Ci ) and xu = 0 is such
that xv ≤ 1

2 .
Conversely, suppose that x is adjacent to a fractional vertex x ′. Then, by Lemma 2,

there exists a spanning tree T of G[H(x ′)], such that for each uv ∈ E(T ), uv ∈ δ(S).
Recalling that G[H(x ′)] is nonbipartite, it follows that there are two nodes w, z ∈
H(x ′)\S such that wz ∈ E . Therefore T ∪ wz contains an odd cycle with only two
consecutive nodes in V \S. �
The condition of Lemma 5 is illustrated in Fig. 5. In Fig. 5(i) an integral vertex is
represented, such that no odd cycle of the graph is saturated by the vertex. Such vertex
does not admit any fractional neighbor. Figure 5(iv) shows another integral vertex,
that saturates a 7-cycle of the graph. From this vertex, in one pivot, it’s in fact possible
to reach an adjacent fractional vertex (Fig. 5(v)).

Theorem 5 Let G = (V, E) be a nonbipartite graph. Let x be a vertex of FSTAB(G)

and x∗ be the full-fractional solution (defined by x∗
u = 1

2 ∀ u ∈ V ). Then there exists
a sequence B0, B1, . . . , Bp of adjacent bases such that:

(i) the basic solutions xk = B−1
k 1, k = 0, . . . , p, are all feasible and I (x0) ⊇

I (x1) ⊇ . . . ⊇ I (x p) = ∅;
(ii) B0 is a basis of x and Bp is a basis of x∗;

(iii) p is the number of nonbasic nodes of G B0 .

Proof Let xk be a vertex of FSTAB(G) and Bk be a minimal basis of xk such that
G Bk has pk ≥ 0 rooted trees. If pk = 0, then xk = x∗. We have the following claims.

Claim (1). If xk is fractional and pk ≥ 1, then there exists a minimal basis Bk+1
adjacent to Bk and such that: xk+1 ∈ FSTAB(G); I (xk+1) ⊂ I (xk); G Bk+1 has
pk − 1 rooted trees.

G is connected and hence there exists a (basic) 1
2 -valued edge wz linking a 1-tree

Ci to a tree C j of G Bk . We can perform a ROOT-OUT operation on τ(C j ) and an
EDGE-IN operation on wz. This corresponds to a nondegenerate pivot from Bk to
Bk+1 such that xk+1

u = 1
2 for all u ∈ V (C j ) and xk+1

u = xk
u for all u /∈ V (C j ),

hence I (xk+1) ⊂ I (xk). By minimality of Bk, Bk+1 is also minimal. Moreover, xk+1

is feasible: for each uv ∈ E with u ∈ V (C j ) and xk
u = 0, either v ∈ V (C j ) and

xk+1
u = xk+1

v = 1
2 , or v /∈ V (C j ), implying, by minimality of Bk, xk+1

v = xk
v ≤ 1

2
and xk+1

u + xk+1
v ≤ 1. Moreover, by merging Ci and C j , we decrease the number of

rooted trees in G Bk+1 . End of Claim (1).

Claim (2). If xk is integer and G admits an odd cycle saturated by xk , then there exists
a minimal basis Bk+1 adjacent to Bk and such that: xk+1 ∈ FSTAB(G); I (xk+1) ⊂
I (xk), i.e. xk+1 is fractional; G Bk+1 has pk − 1 rooted trees.
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Consider the minimal basis Bk associated to xk . By Lemma 5, xk is adjacent to a
fractional solution. More precisely, by Lemma 4, xk admits a saturated odd cycle κ

with all 0-valued edges belonging to a tree Ci of G Bk . Consider the only 1-valued edge
of κ and denote it by wz. The elementary transformation defined by a ROOT-OUT
operation on τ(Ci ) and an EDGE-IN operation on wz is a pivot from Bk to Bk+1,
such that xk+1

u = 1
2 for all u ∈ V (Ci ) and xk+1

u = xk
u for all u /∈ V (Ci ), hence

I (xk+1) ⊂ I (xk). Moreover, xk+1 is feasible: for each uv ∈ E with u ∈ V (Ci )

and xk
u = 0, either v ∈ V (Ci ) and xk+1

u = xk+1
v = 1

2 , or v /∈ V (Ci ), implying,
by minimality of Bk, xk+1

v = xk
v = 0 and xk+1

u + xk+1
v ≤ 1. This proves that the

new basis Bk+1 is a feasible basis, meaning that xk+1 is a vertex of FSTAB(G). By
construction Bk+1 is minimal and G Bk+1 has pk − 1 rooted trees. End of Claim (2).

Claim (3). If xk is integer and no odd cycle of G is saturated by xk , then there exists
a sequence of adjacent bases Bk, . . . , Bk+q , q ≥ 1, such that for each j = 1, . . . , q:
xk+ j ∈ FSTAB(G); xk+ j 
= xk ; I (xk+ j ) = I (xk), i.e. xk+ j is integer; G Bk+ j has
pk − j rooted trees; Bk+q is minimal.

Consider the minimal basis Bk associated to xk . First, note that pk ≥ 2. In fact,
if pk = 1, G Bk would be itself a tree and, since G is nonbipartite, it would contain
a saturated odd cycle. Let Ci and C j be two rooted trees of G Bk that are linked
by a 1-valued edge wz. We can perform a ROOT-OUT operation on τ(C j ) and an
EDGE-IN operation on wz. This results in a nondegenerate pivot from Bk to Bk+1
such that xk+1

u = 1 − xk
u for all u ∈ V (C j ) and xk+1

u = xk
u for all u /∈ V (C j ). By

minimality of Bk , for each uv ∈ E with u ∈ V (C j ), v /∈ V (C j ) and xk
u = 0, we have

xk+1
v = xk

v = 0, thus xk+1
u +xk+1

v = 1. Moreover, because no odd cycle is saturated by
xk , we have that G[V (C j )] is bipartite. Therefore, for each uv ∈ E with u, v ∈ V (C j )

and xk
u = 0, we have xk

v = 1. This implies xk+1
u +xk+1

v = (1−xk
u )+(1−xk

v ) = 1. Thus
Bk+1 is feasible, i.e. xk+1 is a vertex of FSTAB(G), and xk+1 
= xk . By construction,
I (xk+1) = I (xk) and G Bk+1 has pk − 1 rooted trees. If Bk+1 is minimal, q = 1.
Otherwise, by Lemma 3, we can reach in h ≥ 1 degenerate pivots a minimal basis
Bk+1+h such that xk+1+h = xk+1 and G Bk+1+h has pk − 1 − h rooted trees. In this
case, q = 1 + h. End of Claim (3).

Let B be a basis of x and p = |I0(B)|. We set B0 = B. If B is not minimal, by
Lemma 3, there exists a sequence of d degenerate pivots leading to a minimal basis
Bd of xd = x , whose basic subgraph G Bd has p − d rooted trees (Fig. 5(i)–(i i)).
As such d pivots are degenerate, x1 = · · · = xd = x , implying that the sequence
{x0, · · · , xd} trivially satisfies (i). If B is minimal, then d = 0.

Consider now Bd , with d ≥ 0, and the associated vertex xd = x .
Suppose that x is integer and that there is no odd cycle of G saturated by x .

We can apply Claim (3) t ≥ 1 times to generate t sequences of adjacent bases
{Bd+ j } j=qi ,qi +1,...,qi+1 ,i = 0, . . . , t − 1, with q0 = 0 and qi+1 > qi . The

sequence xd , . . . , xd+qt
satisfies (i): by Claim (3), for each i = 0, . . . , t − 1 and

qi < j ≤ qi+1, Bd+ j is feasible,xd+ j 
= xd+qi
, I (xd+ j ) = I (xd+qi

),G Bd+ j has

p − d − j rooted trees,and Bd+qi+1 is minimal. Moreover, for qt ≤ p − d − 1, xd+qt

is an integer vertex of FSTAB(G) that saturates an odd cycle of G (Fig. 5(i i)–(iv)).
In fact, if qt = p −d −1, then G Bd+qt has only 1 rooted tree and, as G is nonbipartite,
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xd+qt
saturates an odd cycle of G. If x is integer and G contains an odd cycle saturated

by x then, trivially, t = 0.
Consider now Bd+qt and xd+qt

, with d, qt ≥ 0. By construction, G has an odd

cycle saturated by the integer vertex xd+qt
. By Claim (2), we can reach an adjacent

basis Bd+qt +1 that is minimal, feasible, such that G Bd+qt +1
has p − d − qt − 1 rooted

trees and with I (xd+qt
) ⊃ I (xd+qt +1). This implies that Bd+qt +1 satisfies (i) and

that xd+qt +1 is fractional (Fig. 5(iv)–(v)). Let b ∈ {0, 1} be such that b = 1 if x is
integer and b = 0 if x is fractional. Note that, if x is fractional, qt = b = 0.

Consider now Bd+qt +b and xd+qt +b, with d, qt ≥ 0 and b ∈ {0, 1}. By construc-

tion, xd+qt +b is a fractional vertex of FSTAB(G) and Bd+qt +b is minimal. Moreover,
G Bd+qt +b

has p −d −qt −b rooted trees. Then, we can apply Claim (1) p −d −qt −b
times, and generate a sequence of feasible bases Bd+qt +b, . . . , Bp satisfying (i). This
proves that the entire sequence of bases B0, . . . , Bp satisfies (i). Furthermore, G Bp

contains no rooted trees and therefore, by Theorem 3, x p = x∗ and (i i) is also proven
(Fig. 5(v)-(vi)). Finally, as p is defined as the number of rooted trees of G B0 , p equals
the number of nonbasic nodes of G B0 . This proves (i i i). �
Corollary 1 Let G be a nonbipartite graph and let x be a vertex of FSTAB(G). Denote
by x∗ the full-fractional vertex. There exists a path from x to x∗ along the edges of
FSTAB(G) of length at most p, where p is the number of nonbasic nodes in a basic
subgraph G B of x.

5 The diameter of the fractional stable set polytope

The Hirsch Conjecture (1957) states that a d-dimensional polytope with f facets
cannot have combinatorial diameter greater than f − d, i.e. any two vertices of the
polytope are connected through a path of at most f −d edges. For the fractional stable
set polytope FSTAB(G), under Assumption 2.1, the Hirsch bound equals |E(G)|. We
first show that, under Assumption 2.1, the diameter of FSTAB(G) is at most |V (G)|.
Note that, in the nonbipartite case, |V (G)| ≤ |E(G)| and the Hirsch bound trivially
holds. This observation, together with the result of Naddef on the diameter of (0,1)-
polytopes and Remark 1, allows us to show that the Hirsch bound is valid for the
fractional stable set polytope of any undirected simple graph.

Let G = (V, E) be a graph satisfying Assumption 2.1. We prove that, from an
arbitrary vertex x of FSTAB(G), it is possible to reach any other vertex x ′ through a
sequence of adjacent vertices {xt }t=0,...,T , such that x0 = x, xT = x ′ and T ≤ n =
|V |. Our proof is constructive: each step defines a transition from the current vertex
to an adjacent one. A transition may include several degerate pivots, and it always
includes one nondegenerate pivot.

We partition the node set V into subsets V i j = {
u ∈ V : xu = i, x ′

u = j
}
, with

i, j ∈ {
0, 1

2 , 1
}
. Note that, if u ∈ V i j and v ∈ V hk such that i + h > 1 or j + k > 1,

then uv /∈ E . Moreover, V 01, V 10, V
1
2 1, V 1 1

2 and V 11 are stable sets, because the
nodes of each subset are 1-valued in x or in x ′. In Fig. 6 we represent the edges that can
potentially occur in G, according to the partition of V into subsets V i j , i, j ∈ {0, 1

2 , 1}:
each edge (V i j , V hk) expresses the possibility that a node u ∈ V i j and a node v ∈ V hk
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Fig. 6 The edges that can potentially occur in G, according to the partition of V into subsets V i j , i, j ∈{
0, 1

2 , 1
}

. Each subset V i j is labeled as ‘i → j’. Subsets into squares are stable, while subsets into circles

need not be

are linked in G. If two subsets V i j and V hk are not connected by an edge, then no
edge exists in G, that links two nodes u ∈ V i j , v ∈ V hk . The subsets represented into
squares are stable, while those into circles need not be.

Recall that, for each vertex xt of the sequence {xt }, we have defined the notation
V ′(t) = {u ∈ V : xt

u = x ′
u}. Our sequence will be such that V ′(t + 1) ⊇ V ′(t) for all

t = 0, . . . , T − 1 and V ′(T ) = V , i.e. xT = x ′. Note that V ′(0) = V 00 ∪ V 11 ∪ V
1
2

1
2 .

Each vector xt of our sequence must be a vertex, i.e. a basic feasible solution
associated to some basis Bt . To achieve this, each transition from a vertex xt to xt+1

corresponds to a block of pivots such that only one among them is nondegenerate.
This guarantees that xt+1 is a basic solution adjacent to xt . To guarantee that xt+1 is
feasible, i.e. that it is a vertex of FSTAB(G), we also need to show that xt+1

u +xt+1
v ≤ 1

for each uv ∈ E .
Let us first introduce some intermediate results.

Lemma 6 Let x be a vertex of FSTAB(G). Then each node indexing a 1
2 -valued

component of x is connected in G to another node indexing a 1
2 -valued component

of x.

Proof By contradiction, assume that there is a node v ∈ V such that xv = 1
2 and each

edge uv ∈ E is such that xu = 0. Then, in any basic subgraph associated to a basis of
x, v does not belong to any 1-tree component, which contradicts the hypothesis that
x is a basic feasible solution of FSTAB(G). �
Lemma 7 Let x ∈ FSTAB(G) and U ⊂ V . Suppose that G[U ] does not contain
isolated nodes and that xu = 0 for all u ∈ N (U ). Then, x is a vertex of FSTAB(G) if
and only if xU is a vertex of FSTAB(G[U ]) and xV \U is a vertex of FSTAB(G[V \U ]).
Proof Suppose that x is a vertex of FSTAB(G). We show that there always exists a
basis B of x such that δ(U ) ⊆ EB , i.e. all the edges in the cutset δ(U ) don’t belong to
G B . Indeed, in every basic subgraph of x , each 1-tree is such that all its nodes belong
either to U or to V \U . In fact, if there exists a 1-tree with an edge uv ∈ δ(U ), then
xv = xu = 1

2 , contradicting the hypothesis that every node in N (U ) is 0-valued. Thus,
we only need to prove that there exists a basic subgraph of x such that each rooted tree
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has no edge in δ(U ). To this purpose, it is sufficient to show that G[U ] and G[V \U ]
do not contain any isolated node that is 1-valued in x . If this is the case, we can define
two rooted forests, spanning the (0, 1)-valued nodes of U and V \U , respectively, as
follows: we link each 1-valued node of U (resp. of V \U ) to an adjacent 0-valued
node of U (resp. of V \U ), and we set the remaining 0-valued nodes of U (resp. of
V \U ) as singletons of the rooted forest. By hypothesis, we know that G[U ] does not
contain isolated nodes. Suppose by contradiction that G[V \U ] contains a 1-valued
isolated node w. Recall that, by Assumption 2.1, G is a connected graph with at least
an edge. It follows that w has a neighbor in U , that contradicts xw = 0. We have
shown the existence of a basis B associated to x such that G B has no edge in δ(U ).
This directly implies that G B[U ] and G B[V \U ] define 1-pseudoforests of G[U ] and
G[V \U ], respectively, proving that xU is a vertex of FSTAB(G[U ]) and xV \U is a
vertex of FSTAB(G[V \U ]).

To prove the converse, consider any two basic subgraphs G B1 and G B2 associated
to bases B1 and B2 of xU and xV \U , respectively. Clearly, G B = G B1 ∪ G B2 is a
1-pseudoforest of G associated to a basis B of x . Moreover, by hypothesis, xu = 0
for all u ∈ N (U ), implying that no constraint indexed by an edge in δ(U ) is violated.
This proves that B is feasible, i.e. that x is a vertex of FSTAB(G). �
Lemma 8 Let x1 be a vertex of FSTAB(G) and U ⊂ V be such that G[U ] does not
contain isolated nodes and x1

u = 0 for all u ∈ N (U ). Let x2 be such that x2
V \U = x1

V \U .

If x2
U is a vertex of FSTAB(G[U ]), then x2 is a vertex of FSTAB(G). Moreover, if x1

U
and x2

U are adjacent on FSTAB(G[U ]), then x1 and x2 are adjacent on FSTAB(G).

Proof By Lemma 7, x1
V \U is a vertex of FSTAB(G[V \U ]). As, by hypothesis, x2

U is

a vertex of FSTAB(G[U ]), by Lemma 7 it follows that x2 is a vertex of FSTAB(G).
Suppose now that x1

U and x2
U are adjacent vertices of FSTAB(G[U ]), i.e. that

there exist two adjacent bases B1 and B2 of FSTAB(G[U ]) associated to x1
U and x2

U ,
respectively. Let B ′

1 be a basis of FSTAB(G[V \U ]) associated to x1
V \U . It follows that

B1 = B1 ∪ B ′
1 and B2 = B2 ∪ B ′

1 are adjacent bases of FSTAB(G) associated to x1

and x2, respectively. �
Theorem 6 The combinatorial diameter of FSTAB(G) is at most |V (G)|.
Proof Let n = |V (G)|. Let x and x ′ be two vertices of FSTAB(G). Our goal is to define
a sequence of adjacent vertices {xt }t=0,...,T , such that x0 = x, xT = x ′ and T ≤ n.
We will perform four blocks of transitions and, correspondingly, we will define four
vertices xt1

, xt2
, xt3

, xt4
with t1 ≤ t2 ≤ t3 ≤ t4 = T . Each transition consists in a

sequence of pivots, such that exactly one among these pivots is nondegenerate. We will
show that the four blocks of transitions are such that: V ′(t1)\V ′(0) = V 10 and t1 =
|V 10|, V ′(t2)\V ′(t1) = V 1 1

2 ∪V 0 1
2 and t2−t1 ≤ |V 0 1

2 |, V ′(t3)\V ′(t2) = V
1
2 1∪V

1
2 0

and t3 − t2 ≤ |V 1
2 0|, V ′(t4)\V ′(t3) = V 01 and t4 − t3 = |V 01|. As a consequence

T = t4 = (t4 − t3) + (t3 − t2) + (t2 − t1) + t1

≤ |V 01| + |V 1
2 0| + |V 0 1

2 | + |V 10| ≤ |V |.

We remark that, if G is bipartite, V
1
2 0 = V 0 1

2 = V
1
2 1 = V 1 1

2 = V
1
2

1
2 = ∅.
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In the first block of transitions we set to zero, one by one, nodes of V 10, i.e. for t =
0, . . . , t1−1 and u ∈ V 10\V ′(t), we set xt+1

u = 0 and xt+1
v = xt

v for all v 
= u. Clearly,
no edge constraint (1) can be violated by xt+1, therefore xt+1 is feasible. To show that
each vector of the sequence is a basic solution, we associate to it a 1-pseudoforest, that
univocally defines a basis. Let B ∈ B be a basis associated to x = x0 and let G B be the
corresponding basic subgraph. Suppose that in G B a node u ∈ V 10 has degree greater
than one and let Ci , i ∈ I0(B), be the tree such that u ∈ V (Ci ). Let uv ∈ E(G B) be
an edge of Ci that does not belong to the path between u and τ(Ci ) on Ci . This implies
v ∈ VB . Because nonbasic edges are 0-valued, we have xv = 0. Then we can per-
form the degenerate pivot defined by an EDGE-OUT operation on uv and a ROOT-IN
operation on v, to define a new 1-pseudoforest where the degree of u has decreased
by one. Therefore, we can always define a 1-pseudoforest of x where each u ∈ V 10

has degree one. Assume w.l.o.g. that B defines a 1-pseudoforest G B satisfying this
condition.

For t = 0, . . . , t1 − 1, let Bt be a basis associated to xt , and suppose that in
G Bt each node of V 10\V ′(t) has degree one. Let u ∈ V 10\V ′(t) and uv be the only
nonbasic edge incident on u. Then, we can perform an EDGE-OUT operation on
uv and a ROOT-IN operation on u, that corresponds to a nondegenerate pivot yield-
ing a new basis Bt+1 and a basic feasible solution xt+1. In the new 1-pseudoforest
G Bt+1 , every node in V 10\V ′(t + 1) has degree one and V ′(t + 1) = V ′(t) ∪ {u}. In
other words, xt+1

u = 0 and xt+1
v = xt

v for all v 
= u. We have shown that xt+1

is a vertex adjacent to xt for t = 0, . . . , t1 − 1. Vertex xt1
is defined, for each

v ∈ V , as:

xt1

v =
{

0 v ∈ V 10,

xv v ∈ V \V 10,

(see Fig. 7). This shows that x0, . . . , xt1
is a sequence of adjacent vertices of

FSTAB(G) of length |V 10| and such that V ′(t1) = V ′(0) ∪ V 10.

In the second block of transitions we change the values of nodes of V 1 1
2 ∪ V 0 1

2 . Let
U = H(x)∪ H(x ′). Our goal is to define a sequence xt1

, . . . , xt2
of adjacent vertices

such that, for each v ∈ V

Fig. 7 The first block of transitions yields vertex xt1
. For each subset V i j with i 
= j , in the label ‘i → j’

either i or j is highlighted, depending on the value of the corresponding variables in xt1
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Fig. 8 The second block of transitions yields vertex xt2
. For each subset V i j with i 
= j , in the label

‘i → j’ either i or j is highlighted, depending on the value of the corresponding variables in xt2

xt2

v =
{

1
2 v ∈ U,

xt1

v v ∈ V \U,

i.e. V ′(t2) = V ′(t1)∪V 1 1
2 ∪V 0 1

2 and H(xt2
) = U (see Fig. 8). If V 0 1

2 ∪V 1 1
2 = ∅, then

t2 = t1. Suppose V 1 1
2 ∪ V 0 1

2 
= ∅. By Lemma 6, the induced subgraph G[U ] does not
contain isolated nodes. Moreover, for each v ∈ N (U ) we have that xt1

v = 0 (see Fig. 7).

Thus, by Lemma 7, xt1

U and xt1

V \U are vertices of FSTAB(G[U ]) and FSTAB(G[V \U ]),
respectively. By Corollary 1, we can generate a sequence {xt

U }t=t1,...,t2 of adjacent ver-

tices of FSTAB(G[U ]), where xt2
is full-fractional on U , and t2−t1 is at most the num-

ber of nonbasic nodes in a basic subgraph associated to xt1

U , implying t2 − t1 ≤ |V 0 1
2 |.

By Lemma 8, for each t1 < t ≤ t2, we can lift vertex xt
U of FSTAB(G[U ]) to a

vertex xt of FSTAB(G) by setting

xt =
(

xt
U

xt1

V \U

)
.

Lemma 8 also implies that xt and xt+1 are adjacent for all t1 ≤ t < t2. This shows
that x0, . . . , xt1

, . . . , xt2
is a sequence of adjacent vertices of FSTAB(G) of length at

most |V 10| + |V 0 1
2 | and such that V ′(t2) = V ′(0) ∪ V 10 ∪ V 0 1

2 ∪ V 1 1
2 .

In the third block of transitions we change the values of nodes of V
1
2 1 ∪ V

1
2 0. Our

goal is to define a sequence xt2
, dots, xt3

of adjacent vertices such that, for each v ∈ V

xt3

v =
{

x ′
v v ∈ U,

xt1

v v ∈ V \U,

i.e. V ′(t3) = V ′(t2) ∪ V
1
2 1 ∪ V

1
2 0 (see Fig. 9). If V

1
2 1 ∪ V

1
2 0 = ∅, then t3 = t2. In

particular, if G is bipartite, t3 = t1. Suppose V
1
2 1 ∪ V

1
2 0 
= ∅.
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Fig. 9 The third block of transitions yields vertex xt3
. For each subset V i j with i 
= j , in the label ‘i → j’

either i or j is highlighted, depending on the value of the corresponding variables in xt3

We first show that x ′
U is a vertex of FSTAB(G[U ]). Let B ′ be a basis of x ′. Then

G B′ [H(x ′)] is a collection of 1-trees spanning the nodes of V 1 1
2 ∪ V 0 1

2 ∪ V
1
2

1
2 . More-

over, by applying Lemma 6 to x , it follows that in G each node of V
1
2 1 is linked

to a node in V
1
2 0. Therefore, we can define a rooted forest F that spans the nodes

of V
1
2 1 ∪ V

1
2 0 as follows: we link each node of V

1
2 1 to a node in V

1
2 0, and we set

the remaining nodes of V
1
2 0 as singletons of F . We then set all the nodes in V

1
2 0 as

the roots of F . It follows that G B′ [H(x ′)] ∪ F is a 1-pseudoforest associated to x ′
U ,

proving that x ′
U is a vertex of FSTAB(G[U ]).

As xt2
is full-fractional on U , by Corollary 1 there exists a path between x ′

U and xt2

U
along edges of FSTAB(G[U ]), whose length is bounded by the number of nonbasic

nodes in a basic subgraph associated to x ′
U . As this number cannot exceed |V 1

2 0|, we
can generate a sequence {xt

U }t=t2,...,t3 of adjacent vertices of FSTAB(G[U ]), where

xt3

U = x ′
U and t3 − t2 ≤ |V 1

2 0|.
Recall that xt1

V \U is a vertex of FSTAB(G[V \U ]). Then, by Lemma 8, for each t2 <

t ≤ t3, we can lift vertex xt
U of FSTAB(G[U ]) to a vertex xt of FSTAB(G) by setting

xt =
(

xt
U

xt1

V \U

)
.

Lemma 8 also implies that xt and xt+1 are adjacent for all t2 ≤ t < t3. This shows
that x0, . . . , xt1

, . . . , xt2
, . . . , xt3

is a sequence of adjacent vertices of FSTAB(G) of

length at most |V 10| + |V 0 1
2 | + |V 1

2 0| and such that V ′(t3) = V ′(0) ∪ V 10 ∪ V 0 1
2 ∪

V 1 1
2 ∪ V

1
2 0 ∪ V

1
2 1.

Finally, in the fourth block of transitions we set to 1, one by one, nodes of V 01, i.e. for
t = t3, . . . , t4−1 and u ∈ V 01\V ′(t), we set xt+1

u = 1 and xt+1
v = xt

v for allv 
= u. No
edge constraint (1) can be violated by xt+1, because for each u ∈ V 01 and uv ∈ E, v ∈
V 00 ∪ V

1
2 0 ∪ V 10, therefore xt+1

v = xt3

v = 0. To show that each vector of the sequence
is a basic solution, we associate to it a 1-pseudoforest, that univocally defines a basis.
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Fig. 10 The fourth block of transitions yields vertex xt4 = x ′. For each subset V i j with i 
= j , in the label

‘i → j’ either i or j is highlighted, depending on the value of the corresponding variables in xt4
.

For t = t3, . . . , t4−1, suppose that xt is a vertex of FSTAB(G), and let Bt be a basis
associated to xt . In G Bt each node u ∈ V 01\V ′(t) is a singleton, i.e. a trivial rooted
tree, because all edges in δ(u) are 1-valued, therefore basic (see Fig. 9). On the other
hand, by Assumption 2.1, |δ(u)| ≥ 1. Let uv ∈ E be an edge incident on u in G. We
have xt

u = xt
v = 0. We can perform a ROOT-OUT operation on u and and an EDGE-

IN operation on uv, i.e. a nondegenerate pivot yielding a new basis Bt+1 and a basic
feasible solution xt+1. We have V ′(t + 1) = V ′(t)∪ {u}, i.e. xt+1

u = 1 and xt+1
v = xt

v

for all v 
= u. We have shown that xt+1 is a vertex adjacent to xt for t = t3, . . . , t4 −1.
Moreover, t4−t3 = |V 01| and V ′(t4) = V , i.e. xt4 = x ′. (see Fig. 10). This shows that
x = x0, . . . , xt1

, . . . , xt2
, . . . , xt3

, . . . , xt4 = x ′ is a sequence of adjacent vertices

of FSTAB(G) of length at most |V 10| + |V 0 1
2 | + |V 1

2 0| + |V 01| ≤ |V |. An example
of the procedure to build the sequence {xt }t=0,...,T that we have described above is
presented in Fig. 11. �

We can now discard Assumption 2.1, and state a more general result.

Corollary 2 Let G = (V, E) be a simple, undirected graph and denote by Z the
subset of isolated nodes of G. The combinatorial diameter of FSTAB(G) is at most
|Z | + min{|V \Z |, |E |}.

Proof Suppose that G consists of k connected components G1, . . . , Gk . By Remark 1,
d(FSTAB(G))=∑k

i=1 d(FSTAB(Gi )). If Gi is an isolated node, then d(FSTAB(Gi ))

= 1. If Gi is bipartite and |V (Gi )| ≥ 2, then FSTAB(Gi ) = STAB(Gi ) and
d(FSTAB(Gi )) ≤ min{|V (Gi )|, |E(Gi )|} [12]. If Gi is nonbipartite, by Theorem
6, d(FSTAB(Gi )) ≤ |V (Gi )| ≤ |E(Gi )|. Therefore

d(FSTAB(G)) =
k∑

i=1

d(FSTAB(Gi )) ≤ |Z | +
∑

i :|V (Gi )|>1

min{|V (Gi )|, |E(Gi )|}

≤ |Z | + min{|V \Z |, |E |}.

�

123



The Hirsch Conjecture for the fractional stable set polytope 329

Fig. 11 A graph G with 9 nodes and 14 edges. Given two vertices x and x ′, a sequence x =
x0, x1, x2, x3, x4 = x ′ of adjacent vertices of FSTAB(G) is constructed, according to the constructive
proof of Theorem 6. In this example we can reach x ′ from x in four pivots, with one pivot per block of
transitions.

Corollary 3 Let G = (V, E) be a simple, undirected graph. The combinatorial diam-
eter of FSTAB(G) is at most |V |.
Corollary 4 Let G = (V, E) be a simple, undirected graph and denote by Z the
subset of isolated nodes of G. The combinatorial diameter of FSTAB(G) is at most
|E | + |Z |, i.e. the Hirsch bound is valid for FSTAB(G).
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