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Abstract In this paper, we study the existence of optimal solutions to a constrained
polynomial optimization problem. More precisely, let f0 and f1, . . . , f p : R

n → R

be convenient polynomial functions, and let S := {x ∈ R
n : fi (x) ≤ 0, i =

1, . . . , p} �= ∅. Under the assumption that the map ( f0, f1, . . . , f p) : R
n → R

p+1 is
non-degenerate at infinity, we show that if f0 is bounded from below on S, then f0
attains its infimum on S.
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1 Introduction

Unboundedness and existence of solutions are important issues in optimization theory;
the reader is invited to see [2] for an extensive survey. In this paper, we are interested in
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520 S. T. Dinh et al.

the question of existence of optimal solutions to a constrained polynomial optimization
problem. More precisely, let f0 and f1, . . . , f p : R

n → R be polynomial functions
in the variable x ∈ R

n . Denote by S the basic closed semi-algebraic set generated by
f1, . . . , f p, i.e.,

S := {x ∈ R
n : f1(x) ≤ 0, . . . , f p(x) ≤ 0},

and suppose throughout that S is nonempty. We consider the following constrained
optimization problem

f ∗ := inf f0(x) such that x ∈ S (1)

of minimizing the polynomial f0 over S.
In the case when all fi , i = 0, . . . , p, are linear, it is well known that the set

of optimal solutions is nonempty, provided that the problem is bounded from below.
In 1956, Frank and Wolfe [15] proved that if fi remain affine linear functions for
i = 1, . . . , p, and f0 is an arbitrary quadratic polynomial, then the condition of
f0 being bounded from below on S implies that an optimal solution exists. If the
statement holds for another class of polynomial functions f0, . . . , f p, we will speak
of a Frank–Wolfe type theorem.

Many other authors generalized the Frank–Wolfe theorem to broader classes of
functions. For example, Perold [40] generalized the Frank–Wolfe theorem for a class of
non-quadratic objective functions and linear constraints. Andronov et al. [1] extended
the Frank–Wolfe theorem to the case of a cubic polynomial objective function f0
under linear constraints. Luo and Zhang [28] (see also [45]) also extended the Frank–
Wolfe theorem to various classes of general convex or non-convex quadratic constraint
systems. Belousov and Klatte [5] (see also [3,4,7,35]) showed that an optimal solution
always exists if f0, f1, . . . , f p are convex polynomials of arbitrary degree. These
results do not hold in general if we remove both assumptions on the convexity and on
the degree (see, for example, [5,15,18,19,28,44]).

In this paper, we consider the class of polynomial maps which are (Newton) non-
degenerate at infinity. This notion extends the definitions of non-degenerate for ana-
lytic functions, in the (local and at infinity) complex setting [23,24]. It is worth paying
attention to the fact that non-degenerate at infinity polynomial maps have a number of
remarkable properties which make them an attractive domain for various applications.
Further, the class of polynomial maps (with fixed Newton polyhedra), which are non-
degenerate at infinity, is generic in the sense that it is an open and dense semi-algebraic
set.

The purpose of this paper is to establish a Frank–Wolfe type theorem for polynomial
maps that are non-degenerate at infinity. Precisely, with the definitions in the next
section, the main result of this paper is as follows.

Theorem 1.1 Assume that the polynomial map F := ( f0, f1, . . . , f p) : R
n → R

p+1

is convenient and non-degenerate at infinity. If f0 is bounded from below on S, then
f0 attains its infimum on S.

It should be emphasized that we do not require the polynomials fi to be convex,
and their degrees can be arbitrary. Although Theorem 1.1 does not imply the previous
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versions of the Frank–Wolfe theorem, however, by genericity of the condition of non-
degeneracy at infinity, we conclude that Problem (1) has an optimal solution for almost
all polynomial functions f0, f1, . . . , f p. In connection to this fact, we would like to
mention that the second and third authors [20] have shown that almost every linear
function, which is bounded from below on S, attains its infimum on S, and if, in
addition, S is convex and compact, then there is a unique optimal solution, as shown
recently by Bolte et al. [10].

As an application of Theorem 1.1, let us consider the problem of computing numer-
ically the global infimum f ∗ of Problem (1). This is an NP-hard problem, even if f0 is
quadratic and the fi are linear. For instance, the Maximum-Cut problem for graphs is
of this form, and it is NP-hard [17]. Alternatively, Problem (1) contains the partition
problem (see Example 4.1 below), which is known to be NP-complete [17]. A standard
approach for solving Problem (1) is the hierarchy of semidefinite programming (SDP)
relaxations proposed by Lasserre [25] (see also [37,38,43]). It is based on results about
moment sequences and (the dual theory of) representations of nonnegative polyno-
mials as sums of squares. For details about these methods and their applications, see
[12,18–20,22,25–27,29,30,34,39,44].

In the papers [12,20,30,34], the authors have proposed semidefinite programming
relaxations for finding the global infimum f ∗, under the assumption that the objective
function f0 attains its infimum on the constrained set S. This assumption is non-trivial
and the question of how to verify if a given polynomial on a given semi-algebraic
set has this property is important and difficult (confer [34, Section 7]). Theorem 1.1
provides clearly a large class of polynomial optimization problems for which these
methods can be applied.

The result presented in the paper, together with Hölder-type global error bound
theorems in [21], suggests that the class of polynomial maps, which is non-degenerate
at infinity, may offer an appropriate domain on which the machinery of polynomial
optimization works with full efficiency.

The proof of the main theorem involves the theory of Newton polyhedra and
semi-algebraic geometry, and relies heavily on Curve Selection Lemma at infinity
(Lemma 3.3).

The paper is structured as follows. Section 2 introduces some basic notions and
results of Newton polyhedra and non-degeneracy at infinity in the context of real
polynomial maps. Section 3 contains some basic ingredients necessary for the proofs
of the main theorem quoted above. Section 4 is devoted to prove Theorems 1.1. Finally,
the proofs of the technical ingredients will be given in Sect. 5.

2 Newton polyhedra and non-degeneracy conditions

2.1 Newton polyhedra

Throughout this paper, R
n denotes the Euclidean space of dimension n, the canon-

ical basis of R
n is denoted by {e1, . . . , en}. The corresponding inner product (resp.,

norm) in R
n is defined by 〈x, y〉 for any x, y ∈ R

n (resp., ‖x‖ := √〈x, x〉 for any
x ∈ R

n).
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Throughout the text, we consider a fixed coordinate system x1, . . . , xn ∈ R
n . Let

J ⊂ {1, . . . , n}, then we define

R
J := {x ∈ R

n : x j = 0, for all j �∈ J }.

We denote by R+ the set of non-negative real numbers. We also set Z+ := R+ ∩ Z.

If κ = (κ1, . . . , κn) ∈ Z
n+, we denote by xκ the monomial xκ1

1 . . . xκn
n and by |κ| the

sum κ1 + · · · + κn .

Definition 2.1 A subset � ⊂ R
n+ is said to be a Newton polyhedron at infinity, if there

exists some finite subset A ⊂ Z
n+ such that � is equal to the convex hull in R

n of
A ∪ {0}. Hence we say that � is the Newton polyhedron at infinity determined by A
and we write � = �(A). We say that a Newton polyhedron at infinity � ⊂ R

n+ is
convenient if it intersects each coordinate axis in a point different from the origin, that
is, if for any i ∈ {1, . . . , n} there exists some integer m j > 0 such that m j e j ∈ �.

Given a Newton polyhedron at infinity � ⊂ R
n+ and a vector q ∈ R

n, we define

d(q, �) := min{〈q, κ〉 : κ ∈ �},
�(q, �) := {κ ∈ � : 〈q, κ〉 = d(q, �)}.

We say that a subset � of � is a face of � if there exists a vector q ∈ R
n such that

� = �(q, �).The dimension of a face� is defined as the minimum of the dimensions
of the affine subspaces containing �. The faces of � of dimension 0 are called the
vertices of �. We denote by �∞ the set of faces of � which do not contain the origin
0 in R

n .

Let �1, . . . , �p be a collection of p Newton polyhedra at infinity in R
n+, for some

p ≥ 1. The Minkowski sum of �1, . . . , �p is defined as the set

�1 + · · · + �p =
{
κ1 + · · · + κ p : κ i ∈ �i , for all i = 1, . . . , p

}
.

By definition, �1 + · · · + �p is again a Newton polyhedron at infinity. Moreover, by
applying the definitions given above, it is easy to check that

d(q, �1 + · · · + �p) = d(q, �1)+ · · · + d(q, �p), (2)

�(q, �1 + · · · + �p) = �(q, �1)+ · · · +�(q, �p), (3)

for all q ∈ R
n . The following result will be useful in the sequel.

Lemma 2.1 (i) Assume that � is a convenient Newton polyhedron at infinity. Let �
be a face of � and let q = (q1, . . . , qn) ∈ R

n be such that � = �(q, �). Then the
following conditions are equivalent:

(i1) � ∈ �∞;
(i2) d(q, �) < 0;
(i3) min j=1,...,n q j < 0.
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(ii) Assume that �1, . . . , �p are some Newton polyhedra at infinity. Let� be a face of
the Minkowski sum � := �1 + · · · + �p. Then the following statements hold.

(ii1) There exists a unique collection of faces �1, . . . , �p of �1, . . . , �p, respec-
tively, such that

� = �1 + · · · +�p.

(ii2) If �1, . . . , �p are convenient, then �∞ ⊂ �1,∞ + · · · + �p,∞.

Proof (i) First of all, suppose that � ∈ �∞. By definition, �(q, �) = {κ ∈ � :
〈q, κ〉 = d(q, �)} and 〈q, κ〉 > d(q, �) for κ ∈ �\�(q, �). Since 0 �∈ � = �(q, �),
it follows that 0 = 〈q, 0〉 > d(q, �). Let κ ∈ �, then 〈q, κ〉 = d(q, �) < 0. Note
that all the coordinates of κ are not negative, so at least one of the coordinates of q
must be negative.

Now assume that d(q, �) < 0. By contradiction, suppose that � �∈ �∞. Hence
0 ∈ �, so by definition, d(q, �) = 0. This is a contradiction.

Finally, assume that q j∗ := min j=1,...,n q j < 0. Since � is convenient, there exists
an integer m j∗ > 0 such that m j∗e j∗ ∈ �. So 〈q, e j∗ 〉 = q j∗ · m j∗ < 0, which implies
that d(q, �) < 0.

(ii1) By definition and the relation (3), there exists a vector q ∈ R
n such that

� = �(q, �1 + · · · + �p) = �(q, �1)+ · · · +�(q, �p).

It is clear that �i := �(q, �i ) is a face of �i for i = 1, . . . , p.
(ii2) Let � ∈ �∞ and let q = (q1, . . . , qn) ∈ R

n such that � = �(q, �). Then by
(i), min j=1,...,n q j < 0. By the relation (3),� = �(q, �1)+· · ·+�(q, �p). We need
to prove that �(q, �i ) ∈ �i,∞ for i = 1, . . . , p. By contradiction, suppose that there
exists an index i0 such that�(q, �i0) �∈ �i0,∞. Hence 0 ∈ �(q, �i0), so by definition,
d(q, �i0) = 0. On the other side, by (i) and by the fact that min j=1,...,n q j < 0, it
follows that d(q, �i0) < 0. This contradiction ends the proof of the lemma. ��

2.2 Non-degeneracy at infinity

In [23] (see also [24]), Khovanskii introduced a condition of non-degeneracy for
complex analytic maps F : (Cn, 0) → (Zp, 0) in terms of Newton polyhedra of the
component functions of F. This notion has been applied extensively to the study
of several questions concerning isolated complete intersection singularities (see, for
instance, [8,11,16,36]). We will apply this condition for real polynomial maps. First
we need to introduce some notations and definitions.

Let f : R
n → R be a polynomial function. Suppose that f is written as f =∑

κ aκ xκ . Then the support of f, denoted by supp( f ), is defined as the set of those
κ ∈ Z

n+ such that aκ �= 0. We denote the set �(supp( f )) by �( f ). This set is called
the Newton polyhedron at infinity of f. The polynomial f is said to be convenient if
�( f ) is convenient. If f ≡ 0, then we set �( f ) = ∅. Note that, if f is convenient,
then for each nonempty subset J of {1, . . . , n}, we have �( f )∩ R

J = �( f |RJ ). The
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Newton boundary at infinity of f , denoted by �∞( f ), is defined as the union of the
faces of �( f ) which do not contain the origin 0 in R

n . For each face � of �∞( f ),
we define the principal part of f at infinity with respect to �, denoted by f�, as the
sum of the terms aκ xκ such that κ ∈ �.

Let F := ( f1, . . . , f p) : R
n → R

p, 1 ≤ p ≤ n, be a polynomial map. We say
that F is convenient if all its components fi are convenient. Let �(F) denote the
Minkowski sum �( f1) + · · · + �( f p), and we denote by �∞(F) the union of faces
of �(F) which do not contain the origin 0 in R

n . Let � be a face of the �(F).
According to Lemma 2.1, we have the unique decomposition � = �1 + · · · + �p,

where �i is a face of �( fi ), for all i = 1, . . . , p. We denote by F� the polynomial
map ( f1,�1 , . . . , f p,�p ) : R

n → R
p.

Definition 2.2 We say that F is Khovanskii non-degenerate at infinity if and only if
for any face � of �∞(F) and for all x ∈ (R\{0})n ∩ F−1

� (0), we have

rank

⎛
⎜⎜⎝

x1
∂ f1,�1
∂x1

(x) · · · xn
∂ f1,�1
∂xn

(x)
... · · · ...

x1
∂ f p,�p
∂x1

(x) · · · xn
∂ f p,�p
∂xn

(x)

⎞
⎟⎟⎠ = p.

Definition 2.3 We say that F is non-degenerate at infinity if and only if for any face
� of �∞(F) and for all x ∈ (R\{0})n, we have

rank

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
∂ f1,�1
∂x1

(x) · · · xn
∂ f1,�1
∂xn

(x) f1,�1(x) 0 · · · 0

x1
∂ f2,�2
∂x1

(x) · · · xn
∂ f2,�2
∂xn

(x) 0 f2,�2(x) · · · 0
... · · · ...

...
...

. . .
...

x1
∂ f p,�p
∂x1

(x) · · · xn
∂ f p,�p
∂xn

(x) 0 0 · · · f p,�p (x)

⎞
⎟⎟⎟⎟⎟⎟⎠

= p.

For each subset I := {i1, . . . , iq} ⊂ {1, . . . , p}, we define the polynomial map
FI : R

n → R
q by FI (x) = ( fi1(x), . . . , fiq (x)).

The connection between non-degeneracy conditions is given by the following result.

Lemma 2.2 Let F := ( f1, . . . , f p) : R
n → R

p, 1 ≤ p ≤ n, be a polynomial map.
Then F is non-degenerate at infinity if and only if FI is Khovanskii non-degenerate at
infinity, for all subset I ⊂ {1, . . . , p}.
Proof The statement is straightforward from the definitions. ��
Remark 2.1 The above lemma implies that if F is non-degenerate at infinity then F
is Khovanskii non-degenerate at infinity. The converse does not hold. However, both
conditions constitute generic conditions in the sense that the class of polynomial maps
(with fixed Newton polyhedra), which is non-degenerate at infinity, is an open and
dense semi-algebraic set. The proof of this genericity is skipped since it is quite long
and is not the goal of the paper; the interested reader may find a proof in [13] (see also
[24,36]).
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3 Some technical ingredients

In this section, we present some important ingredients necessary to prove Theorem
1.1. The reader can find the proofs of these results in Sect. 5.

3.1 Semi-algebraic geometry

In this subsection, we recall some notions and results of semi-algebraic geometry,
which can be found in [6,9,14].

Definition 3.1 (i) A subset of R
n is called semi-algebraic if it is a finite union of

sets of the form

{
x ∈ R

n : fi (x) = 0, i = 1, . . . , k; fi (x) > 0, i = k + 1, . . . , p
}
,

where all fi are polynomials.
(ii) Let A ⊂ R

n and B ⊂ R
p be semi-algebraic sets. A map F : A → B is said to be

semi-algebraic if its graph

{(x, y) ∈ A × B : y = F(x)}

is a semi-algebraic subset in R
n × R

p.

Semi-algebraic sets and functions have a number of remarkable properties as follows.

• The class of semi-algebraic sets is closed with respect to Boolean operators; a
Cartesian product of semi-algebraic sets is a semi-algebraic set;

• The closure and the interior of a semi-algebraic set is a semi-algebraic set;
• A composition of semi-algebraic maps is a semi-algebraic map.

A major fact concerning the class of semi-algebraic sets is its stability under linear
projections (see, for example, [6, Theorem 2.3.4], [9, Theorem 2.2.1 and Proposition
2.2.7]).

Theorem 3.1 (Tarski–Seidenberg Theorem) Let F : A → B be a semi-algebraic
map. Then the image F(A) ⊂ B is a semi-algebraic subset.

Remark 3.1 As an immediate consequence of Tarski–Seidenberg Theorem, we get the
semi-algebraicity of any set of the form {x ∈ A : ∃y ∈ B, (x, y) ∈ S}, provided that
A, B, and S are semi-algebraic sets in the corresponding spaces. It follows also that
{x ∈ A : ∀y ∈ B, (x, y) ∈ S} is a semi-algebraic set as its complement is the union
of the complement of A and the set {x ∈ A : ∃y ∈ B, (x, y) �∈ S}. Thus, if we have
a finite collection of semi-algebraic sets, then any set obtained from them by a finite
chain of quantifiers is also semi-algebraic.

In the sequel, we will need the following results (see, for example, [6,9,14,31]).

Lemma 3.1 (Monotonicity Lemma) Let a < b in R. If f : (a, b) → R is a semi-
algebraic function, then there is a partition t0 := a < t1 < · · · < tl+1 := b of (a, b)
such that f |(ti ,ti+1) is C1, and either constant or strictly monotone, for i ∈ {0, . . . , l}.
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Lemma 3.2 (Growth Dichotomy Lemma) Let f : (0, ε) → R be a semi-algebraic
function with f (t) �= 0 for all t ∈ (0, ε). Then there exist some constants c �= 0 and
q ∈ Q such that f (t) = ctq + o(tq) as t → 0+.

Let us give a version of Curve Selection Lemma which will be used frequently in the
paper. Milnor [32] has proved this lemma at points of the closure of a semi-algebraic
set. Némethi and Zaharia [33] showed how to extend the result at infinity at some
fiber of a polynomial map. We give here a more general statement, and for the sake of
completeness we include a proof of this fact in Sect. 5.

Lemma 3.3 (Curve Selection Lemma at infinity) Let A ⊂ R
n be a semi-algebraic

set, and let F := ( f1, . . . , f p) : R
n → R

p be a semi-algebraic map. Assume that
there exists a sequence xk ∈ A such that limk→∞ ‖xk‖ = ∞ and limk→∞ F(xk) =
y ∈ (R)p, where R := R ∪ {±∞}. Then there exists a smooth semi-algebraic curve
ϕ : (0, ε) → R

n such that ϕ(t) ∈ A for all t ∈ (0, ε), limt→0 ‖ϕ(t)‖ = ∞, and
limt→0 F(ϕ(t)) = y.

3.2 The set of asymptotic critical values

Let F = ( f1, . . . , f p) : R
n → R

p be a C1-map, and define the Rabier function
νF : R

n → R by

νF (x) := min∑p
i=1 |λi |=1

∥∥∥∥∥
p∑

i=1

λi∇ fi (x)

∥∥∥∥∥ .

Remark 3.2 (i) By definition, νF (x) = 0 if and only if the gradient vectors
∇ f1(x), . . . ,∇ f p(x) are linearly dependent.

(ii) If the map F is semi-algebraic then so is νF .

Definition 3.2 [41] We define the set of asymptotic critical values of F as

K̃∞(F) :=
{

y ∈ R
p : ∃{xk}k∈N ⊂ R

nsuch that

lim
k→∞ ‖xk‖ = ∞, lim

k→∞ F
(

xk
)

= y, and lim
k→∞ νF

(
xk

)
= 0

}
.

Clearly the set K̃∞(F) is closed, and K̃∞(F) = ∅ if F is a proper map in the sense
that

lim‖x‖→∞ ‖F(x)‖ = ∞.

The following result will be useful for our later analysis. We include its proof in
Sect. 5.

Theorem 3.2 Let F = ( f1, . . . , f p) : R
n → R

p, 1 ≤ p ≤ n,be a convenient polyno-
mial map. Suppose that F is Khovanskii non-degenerate at infinity. Then K̃∞(F) = ∅.
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Corollary 3.1 Let F := ( f1, . . . , f p) : R
n → R

p, 1 ≤ p ≤ n, be a convenient
polynomial map. If F is non-degenerate at infinity then K̃ (FI ) = ∅ for all nonempty
subset I ⊂ {1, . . . , p}.
Proof The statement follows immediately from Lemma 2.2 and Theorem 3.2. ��

3.3 Regularity at infinity

Let us consider the optimization problem (1) from the introduction:

f ∗ := inf f0(x) such that x ∈ S := {x ∈ R
n : f1(x) ≤ 0, . . . , f p(x) ≤ 0}.

As is known that most numerical optimization methods targeting local (including
global) minimizers are often based on one optimality condition which is the Karush–
Kuhn–Tucker (KKT) system. Sometimes the KKT system fails to hold at some min-
imizers. Hence, we usually make an assumption called a constraint qualification to
ensure that the KKT system holds. Since the restriction f0|S may attain its infimum
“at infinity”, a constraint qualification “at infinity” is needed and defined as follows.

Definition 3.3 For each x ∈ S := {x ∈ R
n : f1(x) ≤ 0, . . . , f p(x) ≤ 0}, let I (x)

be the set of indices i for which fi vanishes at x . The set S is called regular at infinity
if there exists a real number R0 > 0 such that for each x ∈ S, ‖x‖ ≥ R0, the gradient
vectors ∇ fi (x), i ∈ I (x), are linearly independent.

The following lemmas follow from Curve Selection Lemma at infinity. The reader
may find the proofs in Sect. 5.

Lemma 3.4 Suppose that the closed semi-algebraic set

S := {x ∈ R
n : f1(x) ≤ 0, . . . , f p(x) ≤ 0}

is unbounded and regular at infinity. Then there exists a real number R0 > 0 such that
for all R ≥ R0, the set

SR :=
{

x ∈ S : ‖x‖2 = R2
}

is a nonempty compact set. Moreover SR is regular, i.e., for each x ∈ SR, the vectors
x and ∇ fi (x), i ∈ I (x), are linearly independent.

Lemma 3.5 Assume that the polynomial map F := ( f1, . . . , f p) : R
n → R

p is
convenient and non-degenerate at infinity. Then the set S := {x ∈ R

n : f1(x) ≤
0, . . . , f p(x) ≤ 0} is regular at infinity.

4 Proof of the main result

Now we are ready to prove the Frank–Wolfe type Theorem 1.1. The intuition behind
the proof is as follows. By assumption, the restriction f0|S is bounded from below, so
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it attains its infimum at some points in S or “at infinity” (see, for example, [18,19,44]).
If f0|S attains its infimum at infinity, it means that f0|S has “singularities at infinity”,
so this possibility is eliminated by the condition of non-degeneracy at infinity (see
Theorem 3.2).

Proof of Theorem 1.1 First of all, we prove that f0 is coercive on S in the sense
that

lim
r→∞ min

x∈S,‖x‖2=r2
f0(x) = +∞.

Suppose that it is not so; i.e., there exists a sequence {xk}k∈N ⊂ S such that

(a1) limk→∞ ‖xk‖ = ∞, limk→∞ f0(xk) = y ∈ R; and
(a2) xk is a solution of the following constrained polynomial optimization problem:

min
x∈S, ‖x‖2=r2

k

f0(x),

where {rk}k∈N is strictly increasing with rk ≥ k.

By Lemma 3.5, the set S is regular at infinity, so the set Sk := S∩{‖x‖2 = k2}, k � 1,
is regular, in view of Lemma 3.4. It follows from Lagrange’s multipliers theorem that
there exist some real numbers λk

i , i = 1, . . . , p, and μk such that

(a3) ∇ f0(xk)+ ∑p
i=1 λ

k
i ∇ fi (xk)+ μk xk = 0; and

(a4) λk
i fi (xk) = 0 for i = 1, . . . , p.

Let

A :=
{
(x, λ0, . . . , λp, μ) ∈ R

n × R
p+2 | x ∈ S, λ0 > 0, ‖(λ0, . . . , λp, μ)‖ = 1,

λ0∇ f0(x)+
p∑

i=1

λi∇ fi (x)+ μx = 0,

λi fi (x) = 0, for i = 1, . . . , p
}
.

Then A is a semi-algebraic set and the sequence (xk, 1, λk
1, . . . , λ

k
p, μk) ∈ A tends to

infinity as k → ∞. By applying Curve Selection Lemma at infinity (Lemma 3.3) for
the semi-algebraic function A → R, (x, λ0, . . . , λp, μ) �→ f0(x), we get a smooth
semi-algebraic curve

(ϕ, λ0, . . . , λp, μ) : (0, ε) → R
n × R

p+2, t �→ (ϕ(t), λ0(t), . . . , λp(t), μ(t)),

satisfying the following conditions

(a5) ϕ(t) ∈ S, λ0(t) > 0 for t ∈ (0, ε), and ‖(λ0(t), . . . , λp(t), μ(t))‖ ≡ 1;
(a6) limt→0 ‖ϕ(t)‖ = ∞ and limt→0 f0(ϕ(t)) = y;
(a7) λ0(t)∇ f0(ϕ(t))+ ∑p

i=1 λi (t)∇ fi (ϕ(t))+ μ(t)ϕ(t) ≡ 0; and
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(a8) λi (t) fi (ϕ(t)) ≡ 0, for i = 1, . . . , p.

Since the (smooth) functions λi and fi ◦ϕ are semi-algebraic, for ε > 0 small enough,
these functions are either constant or strictly monotone (see Monotonicity Lemma
3.1). Then, by Condition (a8), we can see that either λi (t) ≡ 0 or fi ◦ ϕ(t) ≡ 0; in
particular,

λi (t)
d

dt
( fi ◦ ϕ)(t) ≡ 0, i = 1, . . . , p.

Replacing λ1(t), . . . , λp(t), and μ(t) by λ1(t)/λ0(t), . . . , λp(t)/λ0(t), and
μ(t)/λ0(t), respectively, we may assume that λ0(t) ≡ 1. Let I := {i ∈ {1, . . . , p} :
fi ◦ ϕ(t) ≡ 0}. Then λi (t) ≡ 0 for i �∈ I. It follows from Condition (a7)
that

μ(t)

2

d‖ϕ(t)‖2

dt
= μ(t)

〈
ϕ(t),

dϕ

dt

〉

= −
〈
∇ f0(ϕ(t)),

dϕ

dt

〉
−

∑
i∈I

λi (t)

〈
∇ fi (ϕ(t)),

dϕ

dt

〉

= − d

dt
( f0 ◦ ϕ)(t)−

∑
i∈I

λi (t)
d

dt
( fi ◦ ϕ)(t) = − d

dt
( f0 ◦ ϕ)(t).

Therefore, by Condition (a7) again,

∣∣∣∣
d

dt
( f0 ◦ ϕ)(t)

∣∣∣∣ =
∣∣∣∣
μ(t)

2

d‖ϕ(t)‖2

dt

∣∣∣∣ (4)

= ‖∇ f0(ϕ(t))+ ∑
i∈I λi (t)∇ fi (ϕ(t))‖

2‖ϕ(t)‖
∣∣∣∣
d‖ϕ(t)‖2

dt

∣∣∣∣ . (5)

Note that f0 ◦ϕ(t) �≡ 0 since otherwise we have μ(t) ≡ 0, and by Condition (a7), the
constrained set S is not regular at infinity, which is a contradiction. Now, by Growth
Dichotomy Lemma 3.2, we may write

‖ϕ(t)‖ = c1tα + higher order terms in t,

f0(ϕ(t)) = c2tβ + higher order terms in t,

where c1 �= 0, c2 �= 0. By Condition (a6), α < 0, β ≥ 0. Then it follows from the
relations (4) and (5) that

∥∥∥∥∥∇ f0(ϕ(t))+
∑
i∈I

λi (t)∇ fi (ϕ(t))

∥∥∥∥∥ = ctβ−α + higher order terms in t,
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for some constant c �= 0. Consequently, we get

lim
t→0

∥∥∥∥∥∇ f0(ϕ(t))+
∑
i∈I

λi (t)∇ fi (ϕ(t))

∥∥∥∥∥ = 0.

Hence, limt→0 νFI (ϕ(t)) = 0. Therefore, if we write I = {i1, . . . , iq} ⊂ {1, . . . , p},
then (y, 0, . . . , 0) ∈ K̃ ( f0, fi1 , . . . , fiq ),which contradicts Corollary 3.1. So we have
proved that

lim
r→∞ min

x∈S,‖x‖2=r2
f0(x) = +∞.

Set

lr := min
x∈S,‖x‖2=r2

f0(x).

Let r0 ≥ 0 be such that {x ∈ S : ‖x‖2 = r2
0 } �= ∅. Since f0 is coercive on S, there

exists r1 > r0 such that lr > lr0 ≥ inf x∈S f0(x) for r > r1. Thus

inf
x∈S

f0(x) = inf
r≥0

min
x∈S,‖x‖2=r2

f0(x) = inf
r≥0

lr = inf
r1≥r≥0

lr = inf
x∈S,r2

1 ≥‖x‖2
f0(x).

It is clear that the set {x ∈ S : r2
1 ≥ ‖x‖2} is compact, so f0 attains its infimum on S.

The Theorem 1.1 is proved. ��
Remark 4.1 The assumption in the Frank–Wolfe type Theorem that the polyno-
mial map ( f0, f1, . . . , f p) are convenient cannot be removed. A counterexample is
f0(x1, x2) := x2

1 + (x1x2 − 1)2 and S := R
2. It is easy to check that f0 is non-

degenerate at infinity. However, f0 has 0 as unattainable infimum.

Remark 4.2 Let F := ( f0, . . . , f p) : R
n → R

p+1 satisfy the assumptions of Theo-
rem 1.1 and let M be a real number such that M ≥ f0(x0) for some x0 ∈ S. Then the
restriction f0|S is coercive, and so the semi-algebraic set

SM := {
x ∈ R

n : M − f0(x) ≥ 0, f1(x) ≤ 0, . . . , f p(x) ≤ 0
}

is compact. Moreover, it is clear that

inf
x∈S

f0(x) = inf
x∈SM

f0(x).

Therefore we may construct a sequence of semidefinite programmings whose optimal
values tend to the minimum of f0 on S. Indeed it suffices to replace S by SM and apply
the associated standard hierarchy of semidefinite relaxations defined for the compact
case [25].

In the rest of this section we give some illustrative examples of Theorem 1.1.
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Example 4.1 Let us consider the problem of deciding whether an integer sequence
a1, . . . , an can be partitioned, which is known to be NP-complete [17], with a1, . . . , an

being partitionable if there exists x ∈ {±1}n such that
∑n

j=1 a j x j = 0. Equiva-
lently, the sequence can be partitioned if the infimum f ∗ of the polynomial f0 :=
(
∑n

j=1 a j x j )
2 + ∑n

j=1(x
2
j − 1)2 on R

n is equal to 0, in this case, a global minimizer
is ±1-valued and thus provides a partition of the sequence.

By the definition, the Newton polyhedron at infinity �( f0) of f0 is the convex hull
of the origin and the vertices (4, 0, . . . , 0), . . . , (0, . . . , 4), and hence is convenient.
For any face � of �∞( f0), the principal part of f0 at infinity with respect to � is of
the form

f0,� =
∑
j∈J

x4
j ,

for some nonempty subset J ⊂ {1, . . . , n}. It is clear that

rank

(
x1
∂ f0,�

∂x1
(x), . . . , xn

∂ f0,�

∂xn
(x)

)
= 1

for all x ∈ (R\{0})n . So the condition of non-degeneracy at infinity is satisfied. In
view of Theorem 1.1, f0 attains its infimum on R

n . Further, thanks to Remark 4.2, the
global infimum f ∗ can be approximated as close as desired by solving a hierarchy of
semidefinite programmings defined for the compact case [25]. Confer [22, Example
10].

Example 4.2 Let n = 3 and consider the polynomial

f0(x, y, z) := x8 + y8 + z8 + M(x, y, z),

where M(x, y, z) := x4 y2 + x2 y4 + z6 − 3x2 y2z2 is the Motzkin polynomial, which
is nonnegative but not sum of squares [29,42]. Set f1(x, y, z) := 1 − x2 − 2y2 − 3z2.

The Newton polyhedra at infinity of f0 and f1 are, respectively, the tetrahedra

�( f0) = �{(8, 0, 0), (0, 8, 0), (0, 0, 8)},
�( f1) = �{(2, 0, 0), (0, 2, 0), (0, 0, 2)}.

Hence, f0 and f1 are convenient. Let us check that the polynomial map F := ( f0, f1)

is non-degenerate at infinity. The Minkowski sum

�(F) = �( f0)+ �( f1) = �{(10, 0, 0), (0, 10, 0), (0, 0, 10)}

is again a tetrahedron. For simplicity, denote the convex hull of a set of points
a1, . . . , am ∈ R

n by [a1, . . . , am]. Then �∞(F) has seven faces which are

�1 := [(10, 0, 0), (0, 10, 0), (0, 0, 10)] = [(8, 0, 0), (0, 8, 0), (0, 0, 8)]
+[(2, 0, 0), (0, 2, 0), (0, 0, 2)],
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�2 := [(10, 0, 0), (0, 10, 0)] = [(8, 0, 0), (0, 8, 0)] + [(2, 0, 0), (0, 2, 0)],
�3 := [(10, 0, 0), (0, 0, 10)] = [(8, 0, 0), (0, 0, 8)] + [(2, 0, 0), (0, 0, 2)],
�4 := [(0, 10, 0), (0, 0, 10)] = [(0, 8, 0), (0, 0, 8)] + [(0, 2, 0), (0, 0, 2)],
�5 := [(10, 0, 0)] = [(8, 0, 0)] + [(2, 0, 0)],
�6 := [(0, 10, 0)] = [(0, 8, 0)] + [(0, 2, 0)],
�7 := [(0, 0, 10)] = [(0, 0, 8)] + [(0, 0, 2)].

It is clear that the following corresponding matrices have rank 2 on (R\{0})3:

A�1 :=
(

8x8 8y8 8z8 x8 + y8 + z8 0
−2x2 −4y2 −6z2 0 −x2 − 2y2 − 3z2

)
,

A�2 :=
(

8x8 8y8 0 x8 + y8 0
−2x2 −4y2 0 0 −x2 − 2y2

)
,

A�3 :=
(

8x8 0 8z8 x8 + z8 0
−2x2 0 −6z2 0 −x2 − 3z2

)
,

A�4 :=
(

0 8y8 8z8 y8 + z8 0
0 −4y2 −6z2 0 −2y2 − 3z2

)
,

A�5 :=
(

8x8 0 0 x8 0
−2x2 0 0 0 −x2

)
,

A�6 :=
(

0 8y8 0 y8 0
0 −4y2 0 0 −2y2

)
,

A�7 :=
(

0 0 8z8 z8 0
0 0 −6z2 0 −3z2

)
.

Hence the map F is non-degenerate at infinity. By Theorem 1.1, f0 attains its infimum
on the semi-algebraic set { f1(x, y, z) ≤ 0} ⊂ R

3. Further, thanks to Remark 4.2, the
global infimum f ∗ can be approximated as close as desired by solving a hierarchy of
semidefinite programmings defined for the compact case [25].

5 Proof of the technical ingredients

In the rest of the paper, we give the proofs of the results stated in Sect. 3. Let us begin
with the following.

Proof of Lemma 3.3 By replacing if necessary fi by ±1
1+( fi (x))2

, there is no loss of

generality to assume that y ∈ R
p.

We consider the semi-algebraic map � : R
n → R

n+1 × R
p given by

�(x) :=
(

x1√
1 + ‖x‖2

, . . . ,
xn√

1 + ‖x‖2
,

1√
1 + ‖x‖2

, F(x)

)
.
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Without loss of generality, we can suppose that the sequence �(xk) is convergent
to some point (u, y) ∈ S

n × R
p. By Tarski–Seidenberg Theorem 3.1, B := �(A)

is a semi-algebraic set. Thus we can apply Curve Selection Lemma from [6, Propo-
sition 2.6.19] for the point (u, y) ∈ B. There exists a continuous semi-algebraic
curve

ψ(t) : [0, ε) → R
n+1 × R

p, t �→ (ψ1(t), . . . , ψn(t), ψn+1(t), . . . , ψn+1+p(t)),

such that

(b1) ψ(0) = (u, y);
(b2) ψ |(0,ε) is analytic; and
(b3) ψ(t) ∈ B for all t ∈ (0, ε).
Note that ψn+1(t) > 0 for all t ∈ (0, ε). Define the curve ϕ : (0, ε) → R

n, t �→ ϕ(t),
by

ϕ(t) :=
(
ψ1(t)

ψn+1(t)
, . . . ,

ψn(t)

ψn+1(t)

)
.

Then it is clear that ϕ has the required properties. ��
Proof of Theorem 3.2 By contradiction, suppose that K̃∞(F) �= ∅; i.e., there exist a
point y ∈ R

p and a sequence {xk}k∈N ⊂ R
n such that

lim
k→∞ ‖xk‖ = ∞, lim

k→∞ F(xk) = y, and lim
k→∞ νF (x

k) = 0.

By definition, there exists a sequence λk := (λk
1, . . . , λ

k
p) ∈ R

p,with
∑p

i=1 |λk
i | = 1,

such that we have for all k ≥ 1,

νF

(
xk

)
=

∥∥∥∥∥
p∑

i=1

λk
i ∇ fi

(
xk

)∥∥∥∥∥ .

By applying Curve Selection Lemma at infinity (Lemma 3.3) with the following setup:
the set A := {(x, λ) ∈ R

n × R
p : ∑p

i=1 |λi | = 1, νF (x) = ‖∑p
i=1 λi∇ fi (x)‖}

which is clearly semi-algebraic, the sequence (xk, λk) ∈ A which tends to infinity as
k → ∞, and the semi-algebraic map G : A → R

p+1, (x, λ) �→ (F(x), νF (x)), it
follows that there exist a positive constant ε and some smooth semi-algebraic curves
ϕ(t) := (ϕ1(t), . . . , ϕn(t)) and λ(t) := (λ1(t), . . . , λp(t)), 0 < t < ε, such that

(c1) limt→0 ‖ϕ(t)‖ = ∞;
(c2) limt→0 F(ϕ(t)) = y ∈ R

p;
(c3)

∑p
i=1 |λi (t)| = 1; and

(c4) limt→0 ‖∑p
i=1 λi (t)∇ fi (ϕ(t))‖ = 0.

Let J := { j : ϕ j �≡ 0}. By Condition (c1), J �= ∅. By Growth Dichotomy Lemma
(Lemma 3.2), for each j ∈ J, we can expand the coordinate ϕ j as follows

ϕ j (t) = x0
j tq j + higher order terms in t,
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where x0
j �= 0 and q j ∈ Q. From Condition (c1), we get min j∈J q j < 0.

Recall that R
J := {κ := (κ1, κ2, . . . , κn) ∈ R

n : κ j = 0 for j �∈ J }. Since the
map F = ( f1, . . . , f p) is convenient, �( fi ) ∩ R

J �= ∅ for all i = 1, . . . , p. Let di

be the minimal value of the linear function
∑

j∈J q jκ j on �( fi ) ∩ R
J , and let �i be

the (unique) maximal face of �( fi ) ∩ R
J where the linear function takes this value.

Since fi is convenient and min j∈J q j < 0, by Lemma 2.1(i), we have di < 0 and �i

is a face of �∞( fi ).Note that fi,�i does not depend on x j for all j �∈ J.Now suppose
that fi is written as fi = ∑

κ ai,κ xκ . Then

fi (ϕ(t)) =
∑

κ∈�( fi )∩RJ

ai,κ (ϕ(t))
κ

=
∑

κ∈�( fi )∩RJ

ai,κ (ϕ1(t))
κ1 . . . (ϕn(t))

κn

=
∑

κ∈�( fi )∩RJ

(
ai,κ (x

0
1 tq1)κ1 . . .

(
x0

n tqn
)κn + higher order terms in t

)

=
∑

κ∈�( fi )∩RJ

(
ai,κ (x

0)κ t
∑

j∈J q jκ j + higher order terms in t
)

=
∑
κ∈�i

ai,κ (x
0)κ tdi + higher order terms in t

= fi,�i (x
0)tdi + higher order terms in t,

where x0 := (x0
1 , . . . , x0

n ) with x0
j := 1 for j �∈ J. By Condition (c2) and di < 0, we

have

fi,�i

(
x0

)
= 0, for all i = 1, . . . , p. (6)

Let I := {i : λi �≡ 0}. It follows from Condition (c3) that I �= ∅. For i ∈ I, expand
the coordinate λi in terms of the parameter (cf. Lemma 3.2) as follows

λi (t) = λ0
i tθi + higher order terms in t,

where λ0
i �= 0 and θi ∈ Q.

For i ∈ I and j ∈ J , by some similar calculations as with fi (ϕ(t)), we have

∂ fi

∂x j
(ϕ(t)) = ∂ fi,�i

∂x j
(x0)tdi −q j + higher order terms in t.
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It implies that

∑
i∈I

λi (t)
∂ fi

∂x j
(ϕ(t)) =

∑
i∈I

(
λ0

i
∂ fi,�i

∂x j
(x0)tdi +θi −q j + higher order terms in t

)

=
( ∑

i∈I ′
λ0

i
∂ fi,�i

∂x j
(x0)

)
t�−q j + higher order terms in t,

where � := mini∈I (di + θi ) and I ′ := {i ∈ I : di + θi = �} �= ∅. We note, by
Condition (c4), that for all j ∈ J,

∥∥∥∥∥
∑
i∈I

λi (t)
∂ fi

∂x j
(ϕ(t))

∥∥∥∥∥ =
∥∥∥∥∥

p∑
i=1

λi (t)
∂ fi

∂x j
(ϕ(t))

∥∥∥∥∥ → 0, as t → 0.

There are two cases to be considered.

Case 1 � ≤ q j∗ := min j∈J q j We have for all j ∈ J,

∑
i∈I ′

λ0
i
∂ fi,�i

∂x j

(
x0

)
= 0.

On the other hand, for each j �∈ J, the polynomial fi,�i does not depend on the

variable x j , so
∂ fi,�i
∂x j

≡ 0. Therefore

∑
i∈I ′

λ0
i
∂ fi,�i

∂x j

(
x0

)
= 0, for all j = 1, . . . , n.

Consequently, we obtain

rank

⎛
⎜⎜⎝

x0
1
∂ f1,�1
∂x1

(x0) · · · x0
n
∂ f1,�1
∂xn

(x0)

... · · · ...

x0
1
∂ f p,�p
∂x1

(x0) · · · x0
n
∂ f p,�p
∂xn

(x0)

⎞
⎟⎟⎠ < p

since the matrix has #I ′ linearly dependent rows. This, together with (6), contradicts the
assumption that the polynomial map F = ( f1, . . . , f p) is Khovanskii non-degenerate
at infinity.

Case 2 � > q j∗ := min j∈J q j . It follows from Condition (c3) that θi ≥ 0 for all i ∈ I
and θi = 0 for some i ∈ I. Without lost of generality, we may assume that 1 ∈ I and
θ1 = 0. Since f1 is convenient, for any j = 1, . . . , n, there exists a natural number
m j ≥ 1 such that m j e j ∈ �∞( f1). Then, by definition, it is clear that

q j m j ≥ d1, for all j ∈ J.
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On the other hand, we have

d1 = d1 + θ1 ≥ min
i∈I
(di + θi ) = �.

Therefore

q j∗m j∗ ≥ d1 ≥ � > q j∗ .

Since q j∗ = min j∈J q j < 0, it implies that m j∗ < 1, which is a contradiction. ��

Proof of Lemma 3.4 It suffices to show that the semi-algebraic set SR is regular for
R large enough. Indeed, by contradiction and by Curve Selection Lemma at infinity
(Lemma 3.3), there exist a smooth semi-algebraic curve ϕ(t) and some smooth semi-
algebraic functions λi (t), μ(t), t ∈ (0, ε), such that

(d1) ϕ(t) ∈ S for t ∈ (0, ε);
(d2) limt→0 ‖ϕ(t)‖ = ∞;
(d3)

∑p
i=1 λi (t)∇ fi (ϕ(t))+ μ(t)ϕ(t) = 0; and

(d4) λi (t) fi (ϕ(t)) ≡ 0, for i = 1, . . . , p.

Since the functions λi and fi ◦ϕ are semi-algebraic, for ε > 0 small enough, these
functions are either constant or strictly monotone (see Monotonicity Lemma 3.1).
Then, by Condition (d4), we can see that either λi (t) ≡ 0 or fi ◦ ϕ(t) ≡ 0; in
particular,

λi (t)
d

dt
( fi ◦ ϕ)(t) ≡ 0, i = 1, . . . , p.

Hence, it follows from Condition (d3) that

0 =
p∑

i=1

λi (t)

〈
∇ fi (ϕ(t)),

dϕ(t)

dt

〉
+ μ(t)

〈
ϕ(t),

dϕ(t)

dt

〉

=
p∑

i=1

λi (t)
d

dt
( fi ◦ ϕ)(t)+ μ(t)

2

d‖ϕ(t)‖2

dt

= μ(t)

2

d‖ϕ(t)‖2

dt
.

So μ(t) ≡ 0, which contradicts the regularity of the set S. ��

Proof of Lemma 3.5 Suppose that the lemma does not hold. Then the set

S′ := {x ∈ S : I (x) �= ∅,
the gradient vectors ∇ fi (x), i ∈ I (x), are linearly dependent}
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is not bounded. Since the number of subsets of {1, . . . , p} is finite, there exists a non
empty subset I := {i1, . . . , iq} ⊂ {1, . . . , p} such that

S′′ := {x ∈ S : I (x) = I,

the gradient vectors ∇ fi (x), i ∈ I, are linearly dependent}
is unbounded. It is clear that the set S′′ is semi-algebraic. By Curve Selection Lemma
at infinity (Lemma 3.3), there exist a positive number ε and a smooth semi-algebraic
curve ϕ(t) := (ϕ1(t), . . . , ϕn(t)) ∈ S′′, 0 < t < ε, such that

(e1) limt→0 ‖ϕ(t)‖ = ∞;
(e2) fi (ϕ(t)) ≡ 0 for i ∈ I and fi (ϕ(t)) < 0 for i �∈ I ;
(e3) The gradient vectors ∇ fi (ϕ(t)), i ∈ I, are linearly dependent.

Then, by definition, νFI (ϕ(t)) ≡ 0 for 0 < t < ε,where FI stands for the polynomial
map x �→ ( fi1(x), . . . , fiq (x)).Consequently, we have 0 ∈ K̃ (FI ),which contradicts
Corollary 3.1. ��
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