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Anew optimization method is proposed for solving an inverse problem concerning
the shape and topology of the inductors used in the electromagnetic casting
technique of the metallurgical industry. The method is based on an sparse convex
quadratic programming version of a recently proposed topology optimization
formulation of the inverse electromagnetic casting problem. Regular 0–1 solu-
tions are found by adding to the original Kohn–Vogelius objective function an
appropriate penalty term that preserves the quadratic programming structure of
the problem, allowing the use of efficient interior-point algorithms. Results for
some numerical examples are presented, showing that the technique proposed is
effective and can successfully find inductors of optimal shape and topology.
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1. Introduction

This paper concerns the numerical solution of an inverse problem regarding electromagnetic
casting (EMC) of molten metals. The EMC is an industrial technique that allows for
contactless heating, shaping and controlling of chemically aggressive hot melts. It makes
use of the repulsive forces that an electromagnetic field produces on the surface of a mass of
liquid metal. Under suitable assumptions, the equilibrium configurations are described by
a set equations expressing an equilibrium relation on the liquid metal surface between the
electromagnetic pressure and the surface tension forces. The equilibrium relation involves
the curvature of the surface and the solution of an elliptic exterior boundary value problem.

The inverse EMC problem considered in this paper consists of determining the electric
currents that induce the exterior magnetic field for which the liquid metal takes on a given
desired shape. In previous works, we studied the inverse EMC problem in the case that
the inductors are single solid-core wires of negligible cross-sectional area, and the more
realistic case where they are made of a set of bounded insulated strands.[1–3] In both cases
the number of inductors was fixed in advance. In a later article, we overcame this limitation
and looked for optimal configurations of inductors considering a topology optimization
formulation based on the Kohn–Vogelius criterion, which was solved by means of a topology
optimization technique based on the topological derivative concept.[4]
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In the present paper, we consider the topology optimization formulation proposed in
[4] and state a simultaneous design and optimization (SAND) formulation of the inverse
EMC problem. In this formulation, we add a penalty term to the Kohn–Vogelius criterion
with the purpose of obtaining regular 0–1 solutions. We show that the discrete version
of the penalized SAND formulation is a convex quadratic programming problem that can
be efficiently solved by using interior-point optimization algorithms. In addition to the
interior-point algorithm, a simple variable mesh approach is proposed to further reduce the
computational costs of solution.

The remaining contents of this paper are organized as follows. Section 2 briefly describes
the mathematical model of the EMC problem. Section 3 introduces the inverse EMC problem
and describes the penalized SAND topology optimization formulation and the variable
mesh approach. Some numerical examples of two-dimensional exterior and interior EMC
problems are studied in Section 4. Finally, the concluding remarks are given in Section 5.

2. The mathematical model of the EMC problem

In several EMC applications, the electromagnetic field is induced by an alternating current,
and the resulting Lorentz forces cause hydrodynamics effects in the liquid metal, see [5–12].
The penetration of the electromagnetic field into the metal is governed by an induction
equation depending on the fluid velocity and the magnetic diffusivity. By increasing the
frequency, while keeping the field scale fixed, the magnetic Reynolds number becomes
small, and Sneyd and Moffatt [13,14] have shown that we can neglect the velocity term in
the calculation of the induced field. Hence, we are faced with a standard problem of field
penetration into a solid conductor. This results in an exponential decay of the field inside
the conductor which is known as the skin effect. Therefore, for a sufficient high frequency,
the Lorentz forces are concentrated on a thin layer on the metal surface, and the penetration
of the field inside the metal can be neglected.

The simplified model of the EMC problem studied here concerns the case of a vertical
column of liquid metal falling down into an electromagnetic field created by vertical
inductors. We consider the quasi-static model and assume that the frequency of the imposed
electric current is very high, so that we rely on the skin effect. Moreover, we assume that
a stationary horizontal section is reached so that the two-dimensional model is valid. The
equilibrium of the system is ensured by the static balance on the surface of the metal between
the surface tension and the electromagnetic forces. This problem and other similar ones have
been considered by several authors, we refer the reader to the papers [5,6,15–20] for the
physical analysis of the simplifying assumptions of the model.

Let � ⊂ R
2 be the exterior of the domain ω occupied by the cross-section of the metal

column, which is assumed closed, simply connected and with a non-void interior. Under
these assumptions, the equilibrium surface � of the molten metal column is characterized
by the following Equations [20–24]:

∇ × B = μ0 J in �, (1)

∇ · B = 0 in �, (2)

B · ν = 0 on �, (3)
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‖B(x)‖ = O(‖x‖−1) as ‖x‖ → ∞ in �, (4)

1

2μ0
‖B‖2 + σC = p0 on �. (5)

Here, the fields J = (0, 0, j0) and B = (B1, B2, 0) represent the mean square values
of the electric current density vector and the total magnetic field, respectively. The constant
μ0 is the vacuum permeability, ν is the unit normal vector to the boundary � and ‖ · ‖
denotes the Euclidean norm. In (5) C is the curvature of � seen from the metal, σ is the
surface tension of the liquid and the constant p0 is an unknown of the problem. Physically,
p0 represents the difference between the internal and external pressures. Equations (1)–(5)
correspond to the exterior EMC problem. In the interior EMC problem� is assumed open,
bounded an simply connected, and (4) is discarded. In both cases, we assume that j0 has a
compact support in � and that the total electric current is zero:∫

�

j0 dx = 0. (6)

In the exterior EMC problem we assume that the cross-sectional area of the liquid metal
column is known and equal to S0: ∫

ω

dx = S0, (7)

while, in the case of the interior problem, � replaces ω in (7).
Equations (1)–(6), with the function j0 compactly supported in �, imply the existence

of the flux function ϕ : � → R such that B = (
∂ϕ
∂x2
,− ∂ϕ

∂x1
, 0). Then, the boundary value

problem regarding the inverse EMC problem in terms of the flux function is:⎧⎨
⎩

−	ϕ = μ0 j0 in �,
ϕ = 0 on � ,

ϕ(x) = c + o(1) as ‖x‖ → ∞ ,

(8)

where the constant c is the value at infinity of the solution ϕ in the case of the exterior
problem, which is also an unknown of (8) [1,2,4], while the condition at infinity is not
considered in the interior EMC problem. Equivalent formulations of the condition at infinity
are ϕ(x) = O(1) and ϕ(x) = c + O(‖x‖−1).[25] The form used in (8) is convenient in the
development of numerical methods of solution.

Problem (8) has unique solutions ϕ ∈ W 1
0 (�) and c ∈ R [25,26], where W 1

0 (�) is
defined as:

W 1
0 (�) = {u : β u ∈ L2(�) and ∇u ∈ L2(�)} , (9)

with β(x) = [√1 + ‖x‖2 log(2 + ‖x‖2)]−1 in the exterior EMC problem and β = 1 in the
interior one. The equilibrium of the liquid metal surface in terms of the flux function is:

1

2μ0

∣∣∣∣∂ϕ∂n

∣∣∣∣
2

+ σC = p0 on � . (10)

In the direct EMC problem the electric current density j0 and the cross-sectional
area S0 are given, and one has to find the shape of ω satisfying (7) such that the flux
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function ϕ solution to (8) satisfies also the equilibrium Equation (10) for a real constant
p0. Alternatively, the equilibrium shape can be found as a stationary state of a total energy
functional under the constraint that the cross-sectional area is prescribed, see [16,17].

3. The inverse EMC problem

For clarity of exposition, we restrict the description of the inverse problem formulation to
the case of the exterior EMC problem. The formulation of the interior problem is deduced
following the same steps. The goal of the inverse problem is to find a distribution of electric
current around the liquid metal column so that it attains a given target shape ω, limited by
a smooth boundary � and with exterior �. Therefore, we have to determine the electric
current density j0 satisfying (6) such that the solution ϕ of (8) satisfies also the equilibrium
Equation (10). Note the different role of the shape ω in the inverse problem: it is not an
unknown, it is the data of the problem.

There are a few papers about the existence of exact solutions to the inverse problem,
see [18,27]. Although these above-mentioned references constitute an important insight on
the existence issue, we are also interested in obtaining approximate solutions in situations
where the existence of solutions cannot be ensured. If the inverse problem has an exact
solution, we say that the target shape is shapable, if it does not, we say that it is not
shapable. Even considering a shapable shape, the inverse problem is inherently ill-posed:
small variations of the liquid surface may cause dramatic variations in the solution j0 of the
inverse problem.[18,27] In addition, the uniqueness of the solution in terms of j0 cannot
be ensured.[4] Hence, we follow the approach proposed in [4], where the inverse problem
is formulated as an optimization problem, in order to look for a solution (maybe just an
approximate solution) minimizing an appropriate functional.

There are, however, some known facts about the exact solutions of the inverse problem
that are of main importance in what follows. From (5) and (10), we realize that p0 must
satisfy

p0 ≥ max
�
σC , (11)

to have the field ‖B‖ well determined on � by conditions (3) and (5).[4,18] In addition,
(3) requires that � be an analytic curve, and the existence of j0 satisfying (6) requires
that p0 = max� σC. In that case, the curvature C of a shapable domain ω must reach its
maximum value at an even number of points.[18]

Given p0 by the equality in (11), the equilibrium equation reads

∂ϕ

∂n
= κ p̄ on �, (12)

where p̄ = √
2μ0(p0 − σC), and κ = ±1, with the changes of sign located at the points

where the curvature of � is a global maximum. The two possible ways of defining κ lead
to the same solution j0 but with the opposite sign.[4] Therefore, we assume from now on
that κ p̄ is a known function defined on �.

It is also possible to introduce some constraints in the position of the inductors to have
realizable solutions. Considering a shapableω, Henrot and Pierre [18] proved that a solution
with the electric current concentrated on a closed curve located at a small enough distance
of � can always be found.
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3.1. Problem Formulation

The considerations made in Section 3 allow us to formulate the inverse problem as follows:
for the target shape ω, limited by a smooth boundary � and with exterior �, determine an
electric current density j0 satisfying (6) with compact support spt( j0) ⊂ �, where � is a
given compact in �,[18] and a real constant c such that the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	ϕ = μ0 j0 in �,
ϕ = 0 on � ,
∂ϕ

∂n
= κ p̄ on � ,

ϕ(x) = c + o(1) as ‖x‖ → ∞ ,

(13)

has a solution ϕ ∈ W 1
0 (�). Therefore, a necessary condition for the existence of a solution

to the inverse problem is the following [4]:

∫
�

κ p̄ ds = 0 . (14)

Let us introduce a shape functional based on the Kohn–Vogelius criterion, namely

J (φ) = 1

2
‖φ‖2

L2(�)
= 1

2

∫
�

φ2 ds, (15)

where the auxiliary function φ depends implicitly on j0 and c by solving the following
boundary value problem:

⎧⎪⎨
⎪⎩

−	φ = μ0 j0 in �,
∂φ

∂n
= κ p̄ on �,

φ(x) = c + o(1) as ‖x‖ → ∞ .

(16)

Note that (16) has a unique solution in W 1
0 (�) if and only if the compatibility condition

(14) is satisfied.[25,28]
The approach proposed in [4] to deal with (13) is the following: determine the electric

current density j0 and the constant c such that the solution φ of (16) minimizes the shape
functional (15). We note that the minimum of the shape functional (15) is attained when
φ ≡ 0 on �. This means that in this situation, from the well-posedness of problems (8) and
(16), we have φ ≡ ϕ in �.

A SAND approach for the previous problem can be obtained considering j0 and φ
as independent variables of the optimization problem, and (16) as an equality constraint,
see [1,2,29] and references therein given. Let ψ( j0) be the total absolute electric current
function given by

ψ( j0) = ‖ j0‖L1(�) =
∫
�

| j0| dx . (17)



424 A. Canelas and J.R. Roche

We propose the following penalized SAND formulation of the inverse EMC problem:
min
j0,φ,c

J (φ)+ ρψ( j0) ,

s.t.

⎧⎪⎨
⎪⎩

−	φ = μ0 j0 in �,
∂φ

∂n
= κ p̄ on �,

φ(x) = c + o(1) as ‖x‖ → ∞,∫
�

j0 dx = 0 ,

| j0| ≤ I,

(18)

where I is a given bound for the electric current density, and ρψ( j0) acts as a penalty
term depending on the penalty parameter ρ. Formulation (18) relaxes the one considered
in [4], where j0 was required to be a 0–1 solution, i.e. to satisfy j0(x) ∈ {−I, 0, I } at
each x ∈ �. However, we will show numerically that the addition of the penalty term
produces three important beneficial effects on the solution: (i) it produces regularization
of the solution, (ii) it penalizes solutions with a high total absolute electric current and
(iii) it leads to 0–1 solutions in a natural manner, so avoiding intermediate values of j0
in the set (−I, 0) ∪ (0, I ). We will show also that in the discrete version, this penalty
term preserves the quadratic programming structure of the original problem. This is very
important and unusual in the topology optimization field, where the penalty approaches
used to obtain 0–1 solutions, for example when using the Solid Isotropic Microstructure
with Penalization method (SIMP),[30,31] usually lead to non-convex formulations with
multiple suboptimal local minima.[32,33] We stress again that ω is the known target shape
of the inverse problem, then we do not need to consider the area constraint (7) in the
formulation. The main advantage of this approach is the absence of shape variables, which
usually lead to highly non-linear and non-convex formulations. However, after solving (18),
the equilibrium shape for the optimized inductors must be computed, and we have to check
that it does not differ significantly from the target shape, see [1,2].

3.2. The discrete convex quadratic programming formulation

The solution to the inverse problem must consist of a simple configuration of inductors. In
the discrete version of (18) we look for an electric current density distribution j0 of the
form:

j0 = I
m∑

p=1

αpχ�p , (19)

where αp ∈ [−1, 1] for each 1 ≤ p ≤ m, the cells �p are fixed disjoint bounded domains
satisfying� = ∪m

p=1�p ⊂ �, and χ�p denotes the characteristic function of�p. Note that
the electric current density j0 is uniform on each �p. Inductors made of bundled insulated
strands allow the implementation of good approximations to such kind of distribution, see
[34] and references therein.

To deal with the exterior boundary value problem of (18), we rely on the following
integral equation for the solution φ [25,28,35,36]:

c(ξ)φ(ξ)+
∫
�

q∗φ ds −
∫
�

u∗
κ p̄ ds = c +

∫
�

u∗μ0 j0(x) dx, (20)
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where u∗ is the fundamental solution of the problem, u∗(ξ, x) = − log ‖ξ − x‖/(2π), q∗
is the normal derivative of u∗, the characteristic function c(ξ) = 1, for each interior point
ξ and c(ξ) = 	θ/(2π), for each point ξ ∈ �, where	θ is the angle, internal to�, formed
by the right and left tangents to � at ξ . The first integral on the left-hand side of (20) must
be understood in the Cauchy principal value sense.

The spatial discretization consists of approximating the boundary � into N linear
elements � j , 1 ≤ j ≤ N . The functions φ and κ p̄ are approximated inside each element
by piecewise linear polynomials in the form:

φ(x) = N(x)φ( j) , κ(x) p̄(x) = N(x) p̄( j) , in � j , (21)

where N ∈ R
1×2 is the matrix of the linear interpolation functions and φ( j) and p̄( j) are

the vectors that contain the nodal values corresponding to φ and κ p̄ in the element � j .
The collocation boundary element method,[35,36] builds a linear system imposing (20) at
each node ξi of the boundary mesh:

ciφi +
N∑

j=1

hi jφ
( j) −

N∑
j=1

gi j q
( j) = c + Aiα , 1 ≤ i ≤ N , (22)

where the element matrices hi j and gi j are:

hi j =
∫
� j

q∗(ξi , x)N(x) ds , gi j =
∫
� j

u∗(ξi , x)N(x) ds, (23)

α ∈ R
m is the vector with the values αp and the matrix A ∈ R

N×m is given by:

Ai j =
∫
� j

u∗(ξi , x)Iμ0 dx . (24)

The linear system (22) can be expressed in matrix form as:

Hφ − G p̄ = cd + Aα, (25)

where H ∈ R
N×N is assembled from the values of ci and hi j , G ∈ R

N×N is assembled
from the values of matrices gi j , the vectors φ ∈ R

N and p̄ ∈ R
N contain all the nodal

variables corresponding to φ and κ p̄, respectively, and d ∈ R
N is the vector with all

components equal to one. In addition, we have

J (φ) = 1

2

∫
�

φ2 ds = 1

2
φT Mφ, (26)

∫
�

j0 ds = eT α , ψ( j0) =
∫
�

| j0| ds = eT |α|, (27)

where the sparse matrix M ∈ R
N×N is obtained by integrating the interpolation functions

and e ∈ R
m is obtained from (19) and (27).

Finally, by defining the positive and negative parts α+ ∈ R
m , α− ∈ R

m of α by
α+

p = max{0,α p} and α−
p = max{0,−α p}, we have α = α+ − α−, and |α| = α+ + α−.

Therefore, from (25) and (26)–(27) we can formulate a discrete version of (18) as the
following convex quadratic programming problem:
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min
α+,α−,φ,c

1
2φT Mφ + ρeT

(
α+ + α−)

,

s.t. Hφ − G p̄ = cd + A
(
α+ − α−)

,

eT
(
α+ − α−) = 0,

0 ≤ α+ ≤ 1,
0 ≤ α− ≤ 1.

(28)

Note that the first N equality constraints are defined by the boundary element matrices
H , G and A that are full in the general case. However, if the number of cells is much
larger than the number of boundary elements, i.e. if m >> N , then Problem (28) is sparse.
The data of the problem are M, ρ, e, H , G, d and A, where H , G and A are obtained by
Gaussian quadrature, and M and e are integrated analytically.

3.2.1. A simple variable mesh approach

Even though (28) is a sparse convex quadratic programming problem for which there are
very efficient algorithms of solution for large-scale problems, the implementation of a
variable mesh approach can reduce the computational costs of solution dramatically. As we
will show in Section 4, the introduction of the penalty term leads to regular 0–1 solutions
having large regions of constant electric current density, whose geometric representation
can be improved by refining the mesh nearby their boundaries. Hence, the simple variable
mesh approach proposed is the following: start with a coarse mesh, solve Problem (28) and
refine the mesh subdividing those cells whose dimensionless electric current density αp

differs more than a specified tolerance of the corresponding value of any of the adjacent
cells, i.e. we subdivide in four smaller cells, each cell �p of the mesh having an adjacent
cell �q such that |αp − αq | > Tolα , where Tolα is the chosen tolerance. In addition, for
better representing the geometry of�, we also subdivide the cells adjacent to its boundary.

4. Numerical examples

To show the efficacy of the proposed approach we present results for five examples. In
physically compatible units, we have set σ = 1.0×10−4 andμ0 = 1.0 for all the examples.
When using the variable mesh approach, the value Tolα = 1.0 × 10−2 has been specified.
To solve the finite dimensional convex quadratic problems, we have used the quadprog
routine of the Optimization Toolbox™ of MATLAB®. The interior-point-convex option
with TolFun = 1.0 × 10−18 has been considered. The numerical experiments have been
carried out in a laptop PC with an Intel® Core™ i7 M620 2.67 GHz CPU and 6.0 GiB of
RAM. For all the examples we give a contour plot of the optimized solution I −1 j0, and
represent the corresponding equilibrium shape together with the target shape.

The target shape of the first example is the same as the example 2 of [4]. It is the
solution of a direct free-surface problem for a liquid metal column of cross-sectional area
S0 = π , with six distributed electric currents of density I = 0.4 as shown in Figure 1. Then,
the six inductors constitute an optimal solution for the inverse problem. However, from the
numerical point of view, this solution is not exactly optimal for the current formulation, since
the approaches used to solve the direct and the inverse problems are different. For example,
in the approach for the direct problem a weak formulation of the equilibrium equation was
considered, see [1,2]. In addition, there is numerical evidence indicating that the solution
to the inverse problem is not unique.[4] For these reasons, the optimized solutions are very
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Figure 1. Example 1 – (a) initial configuration of the direct free-surface problem, (b) target shape of
area S0 = π . Black area: positive inductors, grey area: negative inductors, dashed line: target shape,
thin solid line: boundary of the mesh of cells.
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Figure 2. Example 1 – contour plot of I−1 j0, (a) ρ = 0, (b) ρ = 1 × 10−7. Dashed line: target
shape, thin solid line: equilibrium shape obtained for the optimized inductors.

different from the configuration given in Figure 1. Figure 2(a) shows the solution obtained
for a penalty parameter ρ = 0 on a fixed mesh of cells of size 0.02. This solution has
three main characteristics that are highly undesired for manufacturing purposes: first, it
shows an irregular pattern with the electric current density varying from −1 to 1 in the
region near the liquid metal. Second, it is not a 0–1 solution, since outside the region near
the liquid metal, the values of αp vary continuously in the range [−1, 1]. Third, the total
absolute electric currentψ( j0) is high. Figure 2(b) shows the solution obtained for a penalty
parameter ρ = 1 × 10−7. It is a regular 0–1 solution for the inverse EMC problem, i.e.
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Figure 3. Example 1 – contour plot of I−1 j0, (a) inductors located to a distance d = 0.25 from the
liquid metal, (b) d = 0.35. Dashed line: target shape, thin solid line: equilibrium shape obtained for
the optimized inductors.
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Figure 4. Example 1 – contour plot of I−1 j0, (a) penalizing ‖ j0‖L1(�), (b) penalizing ‖ j0‖2
L2(�)

.
Dashed line: target shape, thin solid line: equilibrium shape obtained for the optimized inductors.

several regions with constant αp ∈ {−1, 0, 1} are clearly identifiable, and the union of
these regions is the entire set �. In addition, this solution highly reduces the total absolute
electric current. The price to pay is a small increment in the Kohn–Vogelius functional
from the value 1.34 × 10−11 to 3.50 × 10−10 which produces an imperceptible effect on
the equilibrium shape as shown in Figure 2(b). Figure 3 shows the effect of increasing the
distance between the inductors and the liquid metal. While in Figure 2(b) the inductors
are located to a distance d = 0.15 from the liquid metal, in Figure 3(a) d = 0.25 and in
Figure 3(b) d = 0.35, which is almost the distance of the know solution of Figure 1(b).
When the distance tends to the value d = 0.35, the solutions look more like the known
solution, with the total absolute electric current ψ( j0) = 0.222 in the case d = 0.15,
ψ( j0) = 0.274 for d = 0.25 and ψ( j0) = 0.349 for d = 0.35, which is still less than the
valueψ( j0) = 0.384 of the known solution. The solutions found are then more economical
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Figure 5. Example 2 – (a) initial configuration of the direct free-surface problem, (b) target shape of
area S0 = π . Black area: positive inductors, grey area: negative inductors, dashed line: target shape,
thin solid line: boundary of the mesh of cells.
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Figure 6. Example 2 – contour plot of I−1 j0, (a) solution obtained using a fixed mesh, (b) detail
of the solution obtained using a variable mesh. Dashed line: target shape, thin solid line: equilibrium
shape obtained for the optimized inductors.

than the known solution, and this fact is due to the addition of the penalty term. Figure 4
shows the importance of choosing an appropriate penalty functional. Figure 4(a) presents the
solution obtained by penalizing ψ( j0) = ‖ j0‖L1(�), while Figure 4(b) shows the solution
obtained by penalizing ‖ j0‖2

L2(�)
= ∫

�
| j0|2 dx for a penalty parameter that was chosen

to obtain a similar value of the Kohn–Vogelius functional. Note that the second functional
leads to a regular solution which is not 0–1. Moreover, the values of the electric current
density do not reach the bounds.

In the second example we have moved the inductors of the previous example to generate
the asymmetric target shape shown in Figure 5. Note that the initial shape ω in Figure 5(a)
does not have the prescribed area S0 = π . The algorithm used for solving the direct problem
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Figure 7. Example 3 – (a) initial configuration of the direct free-surface problem, (b) target shape of
area S0 = 1. Black area: positive inductors, grey area: negative inductors, dashed line: target shape,
thin solid line: boundary of the mesh of cells.
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Figure 8. Example 3 – contour plot of I−1 j0. Solution obtained using a variable mesh. Dashed line:
target shape, thin solid line: equilibrium shape obtained for the optimized inductors.

is a Newton-like iteration applied to a non-linear system containing the area constraint as
one of the non-linear equations. Therefore, the algorithm can obtain the correct equilibrium
shape, even starting with an infeasible initial ω of area different from S0; see more details
on the area constraint and on the equilibrium and state equations in [1,2]. The inverse
problem was solved for I = 0.4 and ρ = 1 × 10−7 using both a fixed mesh of cells of
size 0.0125 and the variable mesh approach, starting from a mesh of cells of size 0.4 and
performing successive mesh refinements until the smallest cells are of size 0.0125. The
solutions obtained by both approaches are almost the same, with the difference that the first
approach solved a problem of 75433 cells, taking 934 seconds to obtain the solution, while
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Figure 9. Example 3 – contour plot of I−1 j0. Result for a circular � of radius (a) r = 0.45,
(b) r = 0.42. Solution obtained using a variable mesh. Dashed line: target shape, thin solid line:
equilibrium shape obtained for the optimized inductors.
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Figure 10. Example 4 – (a) description of the problem geometry, (b) target shape. Dashed line: target
shape, thin solid line: boundary of the mesh of cells.

the second approach solved a problem with only 5728 cells in the final mesh, taking only
93 second to solve all the problems from the initial to the final mesh. For this reason, the
next examples are all solved using the variable mesh approach. Figure 6 shows the solutions
obtained by using the fixed mesh and the variable mesh approach.

The third example corresponds to the equilibrium shape of the interior problem shown
in Figure 7. In this case S0 = 1.0, I = 50.0 and ρ = 1 × 10−7. The problem was solved
by using the variable mesh approach and the solution is shown in Figure 8. This example
demonstrates the ability of the current approach to find an economical solution. The solution
obtained has a total absolute electric current ψ( j0) = 2.784, while the known solution of
Figure 7(a) has ψ( j0) = 4.0. However, unlike the previous exterior problems, the solution
j0 of this interior problem exhibits a spatial pattern of alternating sign. We have seen that
the spatial pattern cannot be removed by increasing the penalty parameter ρ, by refining the
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Figure 11. Example 4 – contour plot of I−1 j0. Solution obtained using a variable mesh. Dashed
line: target shape, thin solid line: equilibrium shape obtained for the optimized inductors.
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Figure 12. Example 5 – (a) description of the problem geometry, (b) target shape. Dashed line: target
shape, thin solid line: boundary of the mesh of cells.

boundary mesh of the liquid metal surface, or by refining the mesh of cells. It also remains
if we consider � as the circle shown in Figure 9 where we can see that the distance to
the liquid metal strongly influences the value of the total absolute electric current which is
ψ( j0) = 1.875 in Figure 9(a), and ψ( j0) = 6.103 in Figure 9(b). Further studies should
clarify the occurrence of a spatial pattern of alternating sign, which we have not observed
in the solution of exterior problems when using the penalty approach.

The fourth and the fifth examples are truly inverse problems defined by target shapes
that are not obtained as solutions of direct problems. The fourth example is an exterior
problem defined by the target shape depicted in Figure 10, which was also studied in [4].
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Figure 13. Example 5 – contour plot of I−1 j0. Solution obtained using a variable mesh. Dashed
line: target shape, thin solid line: equilibrium shape obtained for the optimized inductors.

Table 1. Summary of results.

Example NMRa Cellsb Iterationsb Wall time (s) J (φ) ψ( j0)

Figure 2(a) – 29520 21 75.3 1.34 × 10−11 2.206
Figure 2(b) – 29520 16 89.4 3.50 × 10−10 0.222
Figure 3(a) – 27584 15 93.7 7.13 × 10−10 0.274
Figure 3(b) – 25488 19 144.3 6.17 × 10−10 0.349
Figure 4(b) – 29520 10 26.0 3.50 × 10−10 0.405
Figure 6(a) – 75433 26 934.4 6.37 × 10−10 0.255
Figure 6(b) 5 5728 28 93.1 6.38 × 10−10 0.255

Figure 8 5 10072 18 79.0 6.41 × 10−8 2.786
Figure 9(a) 5 8456 16 66.5 5.87 × 10−8 1.875
Figure 9(b) 5 13116 24 127.1 1.91 × 10−7 6.103
Figure 11 5 12307 25 174.5 1.09 × 10−8 0.375
Figure 13 4 18413 24 364.8 8.07 × 10−8 1.321

aNumber of refinements of the mesh of cells.
bNumber of cells and iterations for the final mesh.

Here, we solved this problem for I = 0.2 and ρ = 1 × 10−7, by using the variable mesh
approach. Figure 11 shows the solution obtained.

The final example corresponds to the interior problem with the target shape of Figure 12.
For I = 4.0, ρ = 1 × 10−7 and by using the variable mesh approach, we have obtained the
result shown in Figure 13. Note that the solution j0 exhibits a spatial pattern of alternating
sign, which is very similar to the observed in the solutions of the interior problems of Figures
8 and 9.

Table 1 presents a summary of the results obtained for the examples considered.

5. Conclusions

A new topology optimization method for solving an inverse problem concerning the design
of the inductors used in EMC has been presented. We have adopted a recently proposed
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topology optimization formulation based on the Kohn–Vogelius criterion, and have refor-
mulated it using the SAND approach as an sparse convex quadratic programming problem.
The sparse convex quadratic programming nature of the discrete problems allows the use of
very efficient interior-point optimization algorithms, and a simple variable mesh approach
have been proposed to obtain an additional reduction of the computational costs of solution.

The results presented for some numerical examples show that the addition of an appro-
priate penalty term, which preserves the quadratic programming structure of the problem,
leads to regular 0–1 solutions with a low absolute total electric current. These characteristics
indicate that the present approach is optimal for the model considered of the inverse EMC
problem.
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