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Abstract We present a branch-and-bound algorithm for minimizing a convex qua-
dratic objective function over integer variables subject to convex constraints. In a given
node of the enumeration tree, corresponding to the fixing of a subset of the variables, a
lower bound is given by the continuous minimum of the restricted objective function.
We improve this bound by exploiting the integrality of the variables using suitably-
defined lattice-free ellipsoids. Experiments show that our approach is very fast on both
unconstrained problems and problems with box constraints. The main reason is that
all expensive calculations can be done in a preprocessing phase, while a single node
in the enumeration tree can be processed in linear time in the problem dimension.
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370 C. Buchheim et al.

1 Introduction

Nonlinear integer optimization has attracted a lot of attention recently. Besides its
practical importance, this class of problems is challenging from a theoretical and
methodological point of view. While intensive research has led to tremendous pro-
gress in the practical solution of integer linear programs in the last decades [13],
practical methods for the nonlinear case are still rare [11]. This is true even in special
cases, such as (Strictly) Convex Quadratic Integer Programming (CQIP):

min f (x) := x�Qx + L�x + c

s.t. x ∈ Z
n ∩ X, (1)

where Q is a positive definite n × n matrix, L ∈ R
n, c ∈ R, and X ⊆ R

n is a convex
set for which membership can be tested in polynomial time. Positive definiteness of
Q guarantees strict convexity of f .

1.1 The two applications considered

Our original motivating application is in Electronics and arises in the development
of pulse coders for actuation, signal synthesis and audio amplification. The aim is
to synthesize periodic waveforms by either bipolar or tripolar pulse codes. In Elec-
tronics, this problem is called Filtered Approximation (FA) and can be very shortly
(and very roughly) summarized as follows for the tripolar case, see [5] for a complete
description.

One is given a target signal f : [0, n�] → R to be approximated by generating a
ternary sequence xi ∈ {−1, 0,+1} for i = 1, . . . , n and filtering it through a linear
causal filter. Such a filter is represented by a function g̃ : R → R, which is the output
of the filter when it receives on input a rectangular function g. For instance, for a
second order Butterworth filter [19], we have

g̃(t) =
⎧
⎨

⎩

0 for t < 0
α(t) for 0 ≤ t ≤ �

α(t) − α(t − �) for t > �

where

α(t) = A

(

1 − √
2 exp

(

−ω0t√
2

)

cos

(
ω0t√

2
− π

4

))

for given parameters A and ω0. Note that g̃ is a continuous function, as α(0) = 0. The
function g̃ is illustrated in Fig. 1.

The whole process is shown in Figs. 2 and 3. The signal obtained from filtering the
step function

∑n
i=1 xi g(t − (i − 1)�) is given by

∑n
i=1 xi g̃(t − (i − 1)�). One aims

at minimizing the (square of the) standard deviation from f ,

n�∫

t=0

(
n∑

i=1

xi g̃(t − (i − 1)�) − f (t)

)2

dt = x�Qx + L�x + c,
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Fig. 1 The rectangular function
g is transformed into function g̃
by filtering, in this case through
a second-order Butterworth filter
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Fig. 2 Target signal f (left), step function corresponding to the optimal sequence xi for n = 40 (middle),
and corresponding approximation

∑n
i=1 xi g̃(t − (i − 1)Δ) of f (right)

where

qi j :=
n�∫

t=0

g̃(t − (i − 1)�) · g̃(t − ( j − 1)�)dt,

Li := −2

n�∫

t=0

g̃(t − (i − 1)�) · f (t)dt, and

c :=
n�∫

t=0

f 2(t)dt.
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Fig. 3 FA for n = 20 (left), n = 40 (middle), and n = 100 (right)

In other words, we have a CQIP for X = [−1, 1]n , where each variable can take
three different values, leading to a ternary CQIP. The physical meaning of x�Qx , rep-
resenting an energy, ensures that Q is positive definite. By increasing n and decreasing
Δ accordingly, so as to leave nΔ constant, the approximation gets better and better;
see Fig. 3.

Besides the original motivation, if Q is positive definite and X = R
n , CQIP is equiv-

alent to the Closest Vector Problem (CVP), which, given a basis b1, . . . , bn of R
n and

an additional vector v ∈ R
n , calls for an integer linear combination of the vectors of

the basis which is as close as possible (with respect to the Euclidean distance) to v.
Equivalently, the problem calls for scalars λ1, . . . , λn ∈ Z such that ‖∑n

i=1 λi bi −v‖2
2

is minimized. It is easy to check that this amounts to solving (1) for a positive defi-
nite matrix Q = B� B, where B is the n × n matrix whose columns are b1, . . . , bn .
Vice versa, given an instance of (1) in which Q is positive definite and symmetric,
a corresponding CVP instance is obtained by computing a Cholesky decomposition
Q = B� B, which yields the basis b1, . . . , bn , and by defining v accordingly. This
problem has a wide relevance from both the theoretical and practical viewpoints. Spe-
cifically, it is very hard to approximate and it is used in cryptosystems (see, e.g., [15]).

1.2 Literature review and state-of-the-art

It is clear that the ternary CQIP is closely related to at least two famous combinato-
rial optimization problems, namely Unconstrained Binary Quadratic Programming
(UBQP) and Maximum Cut (MC). More precisely, UBQP is the special case of CQIP
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in which X = [0, 1]n , while, given a graph G = (V, E) and edge weights c ∈ R
E ,

MC is the problem of finding a cut δ(W ) of G having maximum total weight c(δ(W )).
Although UBQP and MC have been treated in an almost separate way in the literature,
a well-known result in [7] shows that they have in fact the same polyhedral description.
Thus, one might be tempted to use the algorithmic technology (as well as the software)
available for MC and UBQP in order to solve the ternary case of CQIP as well. We
tried three different approaches.

– Rooted-semimetric MC relaxation. An early attempt [6] was based on the sim-
ple observation that the classical rooted-semimetric MC relaxation is half inte-
gral, i.e., has vertex entries in {0, 1

2 , 1}, and can be solved efficiently by max-flow
techniques [10]. It is not difficult to shift the ternary {−1, 0, 1} problem into an
equivalent ternary {0, 1

2 , 1} problem and use the rooted relaxation embedded within
a branch-and-bound algorithm. Of course, there are {0, 1

2 , 1} solutions which are
not feasible but they can be eliminated by branching, still maintaining the combi-
natorial structure that allows one to solve max-flow type problems. Unfortunately,
the results were disappointing because the bound is weak and (based on what we
will discuss later) still expensive to compute.

– Reduction to quadratic 0 – 1 programming. Replacing every variable xi ∈
{−1, 0, 1} by two variables x+

i , x−
i ∈ {0, 1} such that xi = x+

i − x−
i , the func-

tion f̂ (x+, x−) := f (x+
1 −x−

1 , . . . , x+
n −x−

n ) is again a quadratic function, defined
on 2n binary variables. In fact, it is easy to see that f̂ is again convex (though not
strictly convex). The result is a binary CQIP on 2n variables. All IP-based methods
we used to address this binary problem suffered from the fact that the matrix Q is
dense in our application. SDP-based approaches suffered from the large number
of variables and from the fact that the entries of Q are not integer in general, so
that subproblems cannot be pruned as quickly as in the integer case. Surprisingly,
the best results for all approaches exploiting this reduction are obtained by run-
ning CPLEX MIQP on the transformed instance, i.e., by an approach that does not
require convexity of the original objective function. In any case, this is far from
being competitive.

– Convex MINLP approaches. We also experimented with methods that can handle
the ternary problem directly, which in turn were not able to solve instances on 50
variables in time. In particular, we used the solver Bonmin [4] that can address the
problem with three different approaches: a classical branch-and-bound algorithm
B-BB, using at every node the continuous nonlinear relaxation, an outer approx-
imation algorithm B-OA, which iteratively constructs a linear relaxation of the
quadratic objective function, and a hybrid method B-Hyb, using simultaneously
both the linear and nonlinear relaxations. It turns out that B-BB is much faster than
B-OA or B-Hyb. Nevertheless, even B-BB is way slower than our approach.

Out of all the methods listed above, all of which we tried, the best one turns out to
be the direct application of the CPLEX MIQP solver [12] to the original problem,
which allows us to solve instances with n up to 50 for our real-world application in
Electronics. This is too slow to be of practical use to engineers.

Regarding the second application, besides CPLEX MIQP, we tried the software
SHVEC [20], which was designed for solving shortest and closest vector problems,
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implementing the Fincke-Pohst algorithm [9]. Both methods are able to solve instances
with n up to about 55.

1.3 Our contribution

In this paper, we present a branch-and-bound algorithm for CQIP that is very fast at
processing nodes but still computes reasonable lower bounds. The main observation
behind the method is that, in the unconstrained case X = R

n , strict convexity leads
to a unique continuous minimum x̄ of f over R

n which is easy to compute, yielding
a lower bound that is of course valid also for any X . This bound can be improved by
taking the integrality constraints into account, using lattice-free ellipsoids. Roughly
speaking, the general idea is to center a given ellipsoid E in x̄ and to compute the value
λ such that the scaled ellipsoid λE contains at least one integer point on its border and
no integer point in its interior. This can be done quickly if E is chosen appropriately.
Then we find the minimum of the function f over the border of λE , which yields an
improved lower bound on f .

Our enumeration strategy is depth-first, branching by fixing the value of one of
the n variables. A crucial property of our algorithm is that we restrict the order in
which variables are fixed. In other words, the set of variables fixed only depends on
the depth of the node in the tree. We thus lose the flexibility of choosing the best
branching variable, but this strategy allows us to process a single node in the tree
much faster. Our main observation is that all expensive calculations to be performed
in a node actually only depend on the depth d, i.e., on the set of variables fixed, but
not on the particular values to which variables are fixed. This allows us to move these
calculations to a preprocessing phase. We will show that, after this preprocessing, the
running time per node is only O(n −d), i.e., sublinear in the problem input size which
is Θ(n2).

Experimentally, we show that our approach leads to the solution of large CQIP
instances of Problem (1) for our real-world Filtered Approximation application in
Electronics, with n up to about 120, allowing engineers to validate their practical
approaches [3]. For the CVP we solve instances with n up to about 70. Even for the
largest instances we can solve, our algorithm is able to process around 400,000 nodes
per second.

1.4 Organization of the paper

In Sect. 2 we discuss our methods for computing lower bounds, explaining how to
incorporate constraints into our framework, whereas in Sect. 3 we present an outline of
the overall branch-and-bound algorithm, illustrating how to compute the lower bounds
in linear time. In Sect. 4 we present computational results for our algorithm. Some
final remarks are listed in Sect. 5.

1.5 Basic definitions and notation

We denote scalars by lower case letters, matrices by upper case letters, and vectors
by both lower and upper case letters. Given a (column) vector x ∈ R

n , we will let x�
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denote its transposed (row) vector and xi its i th component. When x is given by an
expression (e.g., a matrix product), we denote its i th component by (x)i . In some
cases it will be convenient to use superscripts to indicate vectors, such as xi , and in
this case we will denote the transposed vector by (xi )�. As customary, given a matrix
Q we will let qi j denote its entry in the i th row and j th column. Given a scalar a ∈ R,
we will let 
a� denote the integer value closest to a, which is uniquely defined if we
break ties (if a is half integer) in favor of the value closest to 0. Analogously, given
a vector x we will let 
x� denote the result of componentwise rounding of x to the
nearest integer.

Let X ⊆ R
n . Given α ∈ R+, we let αX := {αx : x ∈ X}. Moreover, given

t ∈ R
n , we let t� X := {t�x : x ∈ X} ⊆ R. A box X ⊆ R

n is a set of the form
X = {x ∈ R

n : l ≤ x ≤ u}, where l, u ∈ R
n, l ≤ u. Let Q′ be a positive semidefinite

matrix. For x ′ ∈ R
n we consider the corresponding ellipsoid

E(Q′, x ′) := {x ∈ R
n : (x − x ′)�Q′(x − x ′) ≤ 1},

which is the translation of E(Q′) := E(Q′, 0) by the vector x ′. Note that we allow Q′
to be singular, so that E(Q′, x ′) may be a degenerate ellipsoid. Moreover, for α ∈ R+,
we let αE(Q′, x ′) denote E(Q′, x ′) scaled by α with respect to the center x ′, i.e.,

αE(Q′, x ′) := x ′ + αE(Q′) = {x ′ + αx : x ∈ E(Q′)}.

Given a set X , we let conv(X) denote its convex hull. Given a closed convex set X ,
we let int(X) denote its interior and bd(X) denote its border.

2 Lower bounds

As anticipated, the main inspiring observation for our method is that the computa-
tion of the minimum of the objective function (neglecting all constraints including
integrality) simply requires solving a system of linear equations.

Remark 1 The minimum of f (x) = x�Qx + L�x + c in case Q is positive definite
is unique and attained at x̄ = − 1

2 Q−1L , and has value c − 1
4 L�Q−1L . Moreover, for

every x ∈ R
n, f (x) = f (x̄) + (x − x̄)�Q(x − x̄).

Our aim in this section is to get stronger bounds by exploiting the integrality of the
variables and possibly the structure of X .

2.1 The unconstrained case

For a given x ′ ∈ R
n , we let

μ(Q′, x ′) := sup{α : αE(Q′, x ′) ∩ Z
n = ∅} = min{α : αE(Q′, x ′) ∩ Z

n �= ∅}

be the scaling factor α such that the ellipsoid αE(Q′, x ′) contains some integer point
on its border but no integer point in its interior (see for instance the light grey ellipsoid
in Fig. 4).
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Fig. 4 Improving the lower
bounds: the light gray ellipsoid
is E(Q′, x̄) scaled by μ(Q′, x̄);
the dark gray ellipsoid is
E(Q, x̄) scaled by
λ(Q, Q′)μ(Q′, x̄)

x

Observation 1 μ(Q′, x ′) = min{√(x − x ′)�Q′(x − x ′) : x ∈ Z
n} = max{α :

(x − x ′)�Q′(x − x ′) ≥ α2 for all x ∈ Z
n}.

Note that, given our objective function f (x) = x�Qx +L�x +c and the associated
continuous minimum x̄ , the level sets of f (x) are precisely the borders of ellipsoids of
the form αE(Q, x̄). Given this, it is easy to visualize the fact that finding the integer
point that minimizes f is equivalent to scaling E(Q, x̄) by α starting from α = 0 and
stopping as soon as the border of αE(Q, x̄) contains an integer point. This is the same
as computing μ(Q, x̄). Since this is as hard as solving (1) when X = R

n , we rather
do the same scaling for some other ellipsoid E(Q′, x̄), and then scale E(Q, x̄) in turn
until it touches the border of the first ellipsoid, see Fig. 4. This requires one to be able
to compute μ(Q′, x̄) as well as the maximum α ∈ R+ such that αE(Q) is contained
in E(Q′):

λ(Q, Q′) := max{α : αE(Q) ⊆ E(Q′)},

noting that this latter value does not depend on x̄ . By the following observation,
λ(Q, Q′) can be computed by finding the largest α such that all eigenvalues of
Q − α2 Q′ are nonnegative.

Observation 2 λ(Q, Q′)=min{1/
√

x�Q′x : x ∈ E(Q)}=max{α : Q −α2 Q′ �0}.

Proof By definition, αE(Q) ⊆ E(Q′) is equivalent to the implication x�Qx ≤ 1 ⇒
α2x�Q′x ≤ 1. By positive semidefiniteness of Q and Q′, this implication is in turn
equivalent to the implication x�Qx = 1 ⇒ α2x�Q′x ≤ 1, showing the first equal-
ity, and to the inequality α2x�Q′x ≤ x�Qx for every x ∈ R

n , showing the second
equality.

Proposition 1 Given f (x) = x�Qx + L�x + c with Q positive definite and contin-
uous minimum x̄ and a positive semidefinite matrix Q′ of the same size as Q,

min{ f (x) : x ∈ Z
n} ≥ f (x̄) + λ2(Q, Q′)μ2(Q′, x̄).
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Proof For every x ∈ Z
n , using Remark 1 and Observations 1 and 2, we have

f (x) = f (x̄) + (x − x̄)�Q(x − x̄)

≥ f (x̄) + λ2(Q, Q′)(x − x̄)�Q′(x − x̄)

≥ f (x̄) + λ2(Q, Q′)μ2(Q′, x̄).

Note that, in order to find hopefully strong lower bounds, one would like to have
matrices Q′ such that on the one hand E(Q′) is as similar as possible to E(Q) and on
the other hand μ(Q′, x̄) is fast to compute. It is particularly fast to compute μ(Q′, x̄) if
Q′ is a split, i.e., if Q′ = t t� for some vector t ∈ Z

n\{0} with t1, . . . , tn coprime, as the
first integer point x ∈ Z

n touched when scaling E(Q′, x̄) is such that t�x = 
t� x̄�.
Formally, we have

Observation 3 μ(t t�, x ′) = |
t�x ′� − t�x ′|.
Proof Recalling Observation 1, for Q′ = t t� we have that (x − x ′)�Q′(x − x ′) ≥ α2

is equivalent to |t�(x − x ′)| ≥ α. The claim follows by noting that |t�(x − x ′)| =
|t�x − t�x ′| ≥ |
t�x ′� − t�x ′| for each x ∈ Z

n , and that there exists x ∈ Z
n such

that t�x = 
t�x ′� in case the entries of t are coprime.

In order to derive strong lower bounds, we aim at splits Q′ that yield large factors
λ(Q, Q′). To this end, we consider flat directions of the ellipsoid E(Q), i.e., vectors
t ∈ Z

n \{0} minimizing the width of E(Q) along t , defined as

max{t�x : x ∈ E(Q)} − min{t�x : x ∈ E(Q)} = 2 max{t�x : x ∈ E(Q)}.

Observation 4 t ∈ Z
n \{0} maximizes λ(Q, t t�) if and only if it is a flat direction of

E(Q).

Proof By Observation 2, λ(Q, t t�) = min{1/|t�x | : x ∈ E(Q)}. Thus

max
t∈Zn\{0}

λ(Q, t t�) = max
t∈Zn\{0}

min
x∈E(Q)

1

|t�x |
= max

t∈Zn\{0}
1

max
x∈E(Q)

t�x
= 1

min
t∈Zn\{0}

max
x∈E(Q)

t�x
,

so t maximizes λ(Q, t t�) if and only if it minimizes max{t�x : x ∈ E(Q)}.
The following remark is stated explicitly in, e.g., [8]. For the sake of completeness,
we report here an explicit proof.

Remark 2 If Q = B� B for a nonsingular n × n matrix B, then the width of E(Q)

along t is given by 2‖t�B−1‖2.

Proof The width is given by 2 max{t�x : ‖Bx‖2
2 ≤ 1}=2 max{t�B−1 y : ‖y‖2

2 ≤1},
where y := Bx . Since y ranges over the unit ball, the maximum is attained when y is
parallel to t�B−1, and has value 2‖t� B−1‖2.
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In other words, finding a flat direction of E(Q) is equivalent to finding the coef-
ficients t1, . . . , tn yielding a shortest non-zero vector in the lattice generated by the
columns of (B−1)�, which is well known to be NP-hard. A natural heuristic to com-
pute short vectors is obtained by taking as candidates the vectors in a reduced basis of
the lattice [17].

Let t1, . . . , tn ∈ Z
n\{0} be the columns of the corresponding transformation matrix

T , from the original basis to the reduced basis, such that (r i )� = (t i )�B−1, where r i

is the i th vector in the reduced basis. Recall that T is a unimodular integer matrix, i.e.,
det(T ) ∈ {−1, 1}, and therefore T −1 is integer as well. We use the splits Q′

i := t i (t i )�
and compute μ(Q′

i , x̄) = |(t i )� x̄ − 
(t i )� x̄�| as in Observation 3.
Moreover, we consider the matrix Q′

0 := ∑n
i=1 λ2(Q, Q′

i )Q′
i .

Observation 5 μ(Q′
0, x ′) =

√∑n
i=1 λ2(Q, Q′

i )μ
2(Q′

i , x ′).

Proof We apply a basis change with respect to T �. Since T −1 Q′
0(T

−1)� is a diag-
onal matrix, the transformed ellipsoid T �E(Q′

0, x ′) := E(T −1 Q′
0(T

−1)�, T �x ′) is
axis-parallel. Symmetry implies that the first integer point touched when scaling this
ellipsoid is 
T �x ′�. Hence, the first integer point touched when scaling E(Q′

0, x ′)
is z = (T �)−1
T �x ′�. This point is the unique (integer) solution to the equations
(t i )�z = 
(t i )�x ′� for i = 1, . . . , n. Thus, recalling Observation 1, we have

μ2(Q′
0, x ′) = (z − x ′)�Q′

0(z − x ′) =
n∑

i=1

(z − x ′)�λ2(Q, Q′
i )Q′

i (z − x ′)

=
n∑

i=1

λ2(Q, Q′
i )μ

2(Q′
i , x ′),

noting that, by Observation 3, we have μ(Q′
i , x ′) = |(t i )�z−(t i )�x ′| for i = 1, . . . , n,

since (t i )�z = 
(t i )�x ′�.

Note that λ(Q, Q′
0) can be strictly smaller than one, so that the lower bound derived

from Q′
0,

f (x̄) + λ2(Q, Q′
0)μ

2(Q′
0, x̄) = f (x̄) + λ2(Q, Q′

0)

n∑

i=1

λ2(Q, Q′
i )μ

2(Q′
i , x̄),

can be weaker than the bound f (x̄)+λ2(Q, Q′
i )μ

2(Q′
i , x̄) derived from Q′

i for some
i ≥ 1. In general, which Q′

i gives the strongest lower bound depends on the position
of x̄ ; see Fig. 5.

Example 1 We conclude this section by illustrating the above ideas by an example in
the plane. Let

Q =
(

1 −2
2 8

)

=
(

1 0
2 −2

)(
1 −2
0 −2

)

, B =
(

1 −2
0 −2

)

, B−1 =
(

1 −1
0 −1/2

)

.
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(a) (b)

(c)

x

(d)

Fig. 5 Depending on the position of x̄ , different ellipsoids E(Q′
i ) give rise to the strongest lower bound.

In a and c, the ellipsoid is the split defined by (1, 0)�; in b and d, it is the split defined by (1, −1)�

Fig. 6 The ellipse E(Q)

The ellipse E(Q) is shown in Fig. 6. Short vectors of the lattice generated by the rows
of B−1, the vectors (1,−1)� and (0,−1/2)�, are r1 = (0,−1/2)� and r2 = (1, 0)�.
These correspond to the following transformation matrix T :

T =
(

0 1
1 −2

)

, T −1 =
(−2 1

1 0

)

,

and hence to the (hopefully) flat directions t1 = (0, 1)� and t2 = (1,−2)�. Thus

Q′
1 =

(
0 0
0 1

)

, Q′
2 =

(
1 −2
2 4

)

and λ(Q, Q′
1) = 2, λ(Q, Q′

2) = 1. The ellipses E(Q′
1) and E(Q′

2) are illustrated in
Fig. 7. Finally, in this case we are lucky to obtain Q′

0 = 4Q′
1 + Q′

2 = Q, so that the
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(a) (b)

Fig. 7 The split E(Q′
1) given by (0, 1)� in (a); the split E(Q′

2) given by (1, −2)� in (b)

improved lower bound given by Q′
0 agrees with the optimal solution of the problem,

independently of L and c.
In case, for instance, x̄ = (1/2, 1/2)�, we have that μ(Q′

1, x̄) = μ(Q′
2, x̄) = 1/2

and μ(Q′
0, x̄) = √

5/2 and the first integer point touched when scaling E(Q′
0, x̄) is,

e.g., z = (0, 0)�.

We conclude this section by observing that, given x̄ , the axis-parallel ellipsoid yield-
ing the largest lower bound improvement according to Proposition 1 can be found by
solving an SDP. Although this does not fit nicely within our branch-and-bound frame-
work, in which we aim at computing bounds very quickly, we report the result due to
its simplicity. Recall that an axis-parallel ellipsoid E(Q′) arises when Q = Diag(t)
for some t ∈ R

n+.

Observation 6 Given x ′ ∈ R
n, the solution of the following SDP gives the vector

t ∈ R
n+ such that λ2(Q, Diag(t))μ2(Diag(t), x ′) is maximum:

max

{
n∑

i=1

ti (
x ′
i� − x ′

i )
2 : Q � Diag(t), t ≥ 0

}

.

Proof The SDP can be restated as

max

{

α2 :
n∑

i=1

ti (
x ′
i� − x ′

i )
2 = α2, Q � Diag(t), t ≥ 0

}

.

By applying the transformation s := t/α2, this is equivalent to

max

{

α2 :
n∑

i=1

si (
x ′
i� − x ′

i )
2 = 1, Q − α2Diag(s) � 0, s ≥ 0

}

.

Now, by Observation 2, Q − α2Diag(s) � 0 is equivalent to α ≤ λ(Q, Diag(s)).
Moreover, given that the first integer point touched when scaling any axis-parallel
ellipsoid centered in x ′ is 
x ′�, the constraint

∑n
i=1 si (
x ′

i� − x ′
i )

2 = 1 is equivalent
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to μ(Diag(s), x ′) = 1. This proves that the optimal value α2 of the SDP is such that
λ2(Q, Diag(s))μ2(Diag(s), x ′) = λ2(Q, Diag(t))μ2(Diag(t), x ′) is largest.

2.2 Dealing with constraints

Even if X is a box, determination of the continuous minimum of f over X is much more
complex than in the unconstrained case [16] and would not fit well into our method,
which is aimed at exploring branch-and-bound nodes quickly. On the other hand, even
if we stick to the computation of the unconstrained continuous minimum, we can take
into account the structure of X in the lower bound improvement of Sect. 2.1.

In particular, we can replace the definition of μ(Q′, x ′) by

μX (Q′, x ′) := sup{α : αE(Q′, x ′) ∩ X ∩ Z
n = ∅}.

In other words, we scale E(Q′, x ′) until it touches a feasible point, instead of simply
any integer point. The obvious counterpart of Observation 1 is:

Observation 7 μX (Q′, x ′) = min{√(x − x ′)�Q′(x − x ′) : x ∈ X ∩Z
n} = max{α :

(x − x ′)�Q′(x − x ′) ≥ α2 for all x ∈ X ∩ Z
n}.

In addition, the counterpart of Proposition 1 reads:

Proposition 2 Given f (x) = x�Qx + L�x + c with Q positive definite and contin-
uous minimum x̄ and a positive semidefinite matrix Q′ of the same size as Q,

min{ f (x) : x ∈ X ∩ Z
n} ≥ f (x̄) + λ2(Q, Q′)μ2

X (Q′, x̄).

For a split, computation of μX (t t�, x ′) amounts to solving min{|t�x − t�x ′| : x ∈
X ∩ Z

n}, whose objective function can be linearized yielding min{z : z ≥ t�x −
t�x ′, z ≥ t�x ′ − t�x, x ∈ X ∩ Z

n}. It is easy to see that calculation of μX (t t�, x ′)
is NP-hard even if X is a box (e.g., if X = R

n+). On the other hand, optimization
of t�x over X ∩ R

n is trivial in this case. This inspires the following lower bound
on μX (t t�, x ′), that can be applied to an arbitrary X whenever we are given a linear
optimization oracle for X ∩ Z

n .

Observation 8 Consider t ∈ Z
n and let tmin and tmax denote the minimum and

maximum of t�x over X ∩ Z
n, respectively. Then,

μX (t t�, x ′) ≥ max

⎧
⎨

⎩

|t�x ′ − 
t�x ′�|
t�x ′ − tmax

tmin − t�x ′
.

Proof By definition, we have μX (t t�, x ′) ≥ μ(t t�, x ′) = |t�x ′−
t�x ′�|. Moreover,

μX (t t�, x ′) ≥ min{t�(x − x ′) : x ∈ X ∩ Z
n} = t�x ′ − max{t�x : x ∈ X ∩ Z

n}
= t�x ′ − tmax.

Analogously, one can show μX (t t�, x ′) ≥ tmin − t�x ′.

123



382 C. Buchheim et al.

Note that we have equality in Observation 8 if the hyperplane t�x = t�x ′ does
not intersect int(conv(X ∩ Z

n)), in which case the bound is given by t�x ′ − tmax
or tmin − t�x ′. Letting Q′

i be defined as in the previous section for i = 0, . . . , n,
Observation 8 applies of course to Q′

i with i = 1, . . . , n. As to Q′
0, we have

Observation 9 μX (Q′
0, x ′) ≥

√∑n
i=1 λ2(Q, Q′

i )μ
2
X (Q′

i , x ′).

Proof Let z be the first point in X ∩ Z
n touched when scaling E(Q′

0, x ′). As in the
proof of Observation 5, we then have

μ2
X (Q′

0, x ′) =
n∑

i=1

λ2(Q, Q′
i )(z − x ′)�Q′

i (z − x ′),

and the claim follows since (z − x ′)�Q′
i (z − x ′) ≥ μ2

X (Q′
i , x ′) by Observation 7.

Observe that strict inequality may hold in Observation 9 as there may be a point
z′ ∈ X ∩ Z

n that is touched before z when scaling E(Q′
i , x ′).

Example 2 (continued) In the example of Sect. 2.1, if x̄ = (1/2, 1/2)� and
X = {(0, 1)} (a single point), we have μX (Q′

1, x̄) = 1/2, μX (Q′
2, x̄) = 1 and

μX (Q′
0, x̄) = √

13/2 >
√

4 · 1/4 + 1 · 1 = √
2.

Finally, note that the approach is still correct if the oracle optimizes over X instead
of X ∩ Z

n , or any set containing X ∩ Z
n , but this may lead to weaker bounds.

3 The branch-and-bound algorithm

Our branch-and-bound algorithm adopts a depth-first enumeration strategy. Branching
consists of fixing a single variable to an integer value, and is illustrated in detail in the
following.

Assume that the next variable to be fixed is xi . We consider the value x̄i of xi in
the continuous minimum computed in the current node. We fix xi to integer values by
increasing distance from x̄i . More precisely, if 
x̄i� = 
x̄i�, the variable xi is fixed to


x̄i�, �x̄i�, 
x̄i� − 1, �x̄i� + 1, . . . (2)

while otherwise it is fixed to

�x̄i�, 
x̄i�, �x̄i� + 1, 
x̄i� − 1, . . . (3)

By the convexity of f and its symmetry with respect to x̄ , the continuous minima with
respect to these fixings are non-decreasing, so that we can stop as soon as one of these
minima exceeds the current upper bound. In particular, we get a finite algorithm even
without bounds on the variables, since we assume that f is strictly convex.
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In order to enumerate subproblems as quickly as possible, our aim is to perform
the most time-consuming computations in a preprocessing phase. Specifically, having
fixed d variables, we get a reduced objective function f̄ : R

n−d → R of the form

f̄ (x) = x� Q̄d x + L̄�x + c̄.

If xi is fixed to ri for i = 1, . . . , d, we have c̄ = c +∑d
i=1 Liri +∑d

i=1
∑d

j=1 qi j ri r j

and L̄ j−d = L j + 2
∑d

i=1 qi j ri for j = d + 1, . . . , n. On the other hand, the matrix
Q̄d is obtained from Q by deleting the first d rows and columns, and therefore is
positive definite and does not depend on the values at which the first d variables are
fixed.

3.1 Achieving quadratic time per node

For Q̄d , we need the inverse matrix and all scaling factors λ(Q̄d , Q′) for the compu-
tation of lower bounds. For this reason, we do not change the order of fixing variables,
i.e., we always fix the first unfixed variable according to an order that is determined
before starting the enumeration. This implies that, in total, we only have to consider n
different matrices Q̄d , which we know in advance as soon as the fixing order is deter-
mined. If the variables to be fixed were chosen freely, the number of such matrices
would be exponential.

See Algorithm 1 for an outline of our method, for the case in which X = R
n and we

simply use the continuous lower bound. Clearly, the running time of this algorithm is
exponential in general. However, every node in the enumeration tree can be processed
in O(n2) time, the bottleneck being the computation of the continuous minimum given
the pre-computed inverse matrix Q̄−1

d . Note that Algorithm 1 can easily be adapted to
the constrained case where X �= R

n . In this case, we just prune all nodes with invalid
variable fixings.

For the computation of stronger lower bounds as explained in Sect. 2, at each node
we consider the matrices Q̄′

0, . . . , Q̄′
n derived from Q̄d . It is crucial that the val-

ues λ(Q̄d , Q̄′
i ) can be computed in the preprocessing phase for each depth d and for

i = 0, . . . , n. In the unconstrained case, the running time per node is then affected only
by the time needed to compute μ(Q̄′

i , x̄). This requires O(n) time for i = 1, . . . , n
by Observation 3 and an additional O(n) time for i = 0 by Observation 5, i.e., O(n2)

time in total.
The same applies to the constrained case, where in each node we compute the

stronger bounds given by Observations 8 and 9. For this, we determine all t i
min and

t i
max in the preprocessing phase by calling the linear optimization oracle 2n2 times in

total, namely 2n times for the t i vectors associated with each depth of the tree. After
that, we only need two additional comparisons for each t i in order to compute the
improved bounds.

The above discussion is summarized in the following proposition.

Proposition 3 The running time per node in Algorithm 1, with lower bounds improved
as illustrated in Sect. 2, is O(n2).
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Algorithm 1: Outline of the basic algorithm

Input: a strictly-convex function f : R
n → R, x �→ x� Qx + L�x + c

Output: a vector x ∈ Z
n minimizing f (x)

determine a variable order x1, . . . , xn ;
let Q̄d be the submatrix of Q given by rows and columns d + 1, . . . , n;

compute the inverse matrices Q̄−1
d for d = 1, . . . , n;

apply heuristics to compute an initial feasible solution r∗ ∈ Z
n ;

set ub := f (r∗);
set d := 0;
while d ≥ 0 do

define f̄ : R
n−d → R by f̄ (x) := f ((r1, . . . , rd , x1, . . . , xn−d ));

compute L̄ and c̄ such that f̄ (x) = x� Q̄d x + L̄�x + c̄;
// compute lower bound

compute the continuous minimum x̄ := − 1
2 (Q̄−1

d L̄) ∈ R
n−d of f̄ ;

set lb := f̄ (x̄);
// compute upper bound
if d = n then

// implies lb = f (r) < ub
set r∗ := r ;
set ub := lb;

end
// prepare next node
if lb < ub then

// branch on variable xd+1
set d := d + 1;
set rd := 
x̄1�;

else
// always holds if d = n
// prune current node
set d := d − 1;
if d > 0 then

// go to next node
increment rd according to (2) or (3);

end
end

end

3.2 Improvement to linear time per node

With some adjustments, the running time to process a node of depth d in our algorithm
can be decreased from O(n2) to O(n − d). For this, we have to improve the running
time of two different components: the computation of the continuous minima of f̄
and the lower bound improvement.

For the computation of the continuous minima, we can replace the O((n − d)2)

method by an incremental technique needing O(n − d) time only, which determines
the new continuous minimum from the old one in linear time whenever a new variable
is fixed. For this, we exploit the basic observation that in a given node, the continuous
minima according to all possible fixings of the next variable lie on a line. Moreover,
the direction of this line only depends on which variables have been fixed so far, but
not on the values to which they were fixed. This implies that, in our algorithm, the
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direction of this line is fully determined by the depth of the current node. Additional
care has to be taken for computing the objective function values of the continuous
minima, since a direct evaluation of the objective function would take quadratic time.

Formally, recall that by f̄ (x) = x� Q̄d x + L̄�x + c̄ we denote the function obtained
from f by fixing variable xi to ri for i = 1, . . . , d, and let x̄ ∈ R

n−d be the continuous
minimum of f̄ , noting that x̄1 corresponds to the value of the original variable xd+1.
Finally, let

zd := (1,−(qd+1,d+2, qd+1,d+3, . . . , qd+1,n) Q̄−1
d+1)

� ∈ R
n−d .

Observation 10 If we fix variable xd+1 to rd+1 and re-optimize f̄ , the resulting
continuous minimum is given by x̄ + (rd+1 − x̄1)zd .

Proof Let L̄(u) ∈ R
n−d−1 denote the linear term in the objective function after fix-

ing variable xd+1 to u and removing the associated component. Then L̄(u) j−d−1 =
L j + 2

∑d
i=1 qi, j ri + 2qd+1, j u for j = d + 2, . . . , n. Moreover, let ¯̄x ∈ R

n−d denote
the continuous minimum after fixing variable xd+1 to rd+1 and keeping the associated
component, i.e., ¯̄x1 = rd+1. By Remark 1, we have that ¯̄x = (rd+1,− 1

2 Q̄−1
d+1 L̄(rd+1)).

Now observe that, in case rd+1 = x̄1, i.e., in case variable xd+1 was fixed to its opti-
mal continuous value (putting aside the fact that this may not be integer), then ¯̄x = x̄ ,
i.e., the continuous minimum would not change. With the current notation, this reads
x̄ = (x̄1,− 1

2 Q̄−1
d+1 L̄(x̄1)). This implies ¯̄x − x̄ = (rd+1 − x̄1,− 1

2 Q̄−1
d+1(L̄(rd+1) −

L̄(x̄1))), from which the claim follows by elementary calculations.

The above discussion implies that, in order to find the continuous minimizer for the
nodes generated by branching from a given node, as well as the associated objective
function value, we simply have to compute x̄ +αzd and f̄ (x̄ +αzd) for a given α ∈ R.
As to the latter, if we define

vd := 2Q̄d zd ∈ R
n−d , sd := (zd)� Q̄d zd ∈ R,

then we get

f̄ (x̄ + αzd) = f̄ (x̄) + α(x̄�vd + L̄�zd) + α2sd .

Since L̄ can be computed incrementally in O(n − d) time, we get:

Proposition 4 If, in the preprocessing phase of Algorithm 1, we compute zd , vd , sd as
defined above for d = 0, . . . , n −1, then the computation of the continuous minimizer
and the associated lower bound can be carried out in O(n − d) time per node.

When improving lower bounds by ellipsoids as illustrated in Sect. 2, the follow-
ing natural restriction leads to linear time per node: if the splits in the root node are
defined by the columns of the transformation matrix T , then the splits on level d
are defined by the columns t̄1

d , . . . , t̄ n−d
d of the matrix T̄d arising from T by delet-

ing the first d rows and columns. Indeed, in this case, for the continuous mini-
mum ¯̄x = x̄ + (rd+1 − x̄1)zd obtained after having fixed variable xd+1 to rd+1,
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we have to compute T̄ �
d+1(

¯̄x2, . . . , ¯̄xn−d)� in order to determine the scaling factors
μ(Q̄′

i , (
¯̄x2, . . . , ¯̄xn−d)�) for i = 1, . . . , n − d − 1, where Q̄′

i := t̄ i
d+1(t̄

i
d+1)

�. If we
define

wd+1 := T̄ �
d+1(z

d
2 , . . . , zd

n−d)� ∈ R
n−d−1,

we have

T̄ �
d+1(

¯̄x2, . . . , ¯̄xn−d)� = T̄ �
d+1(x̄2, . . . , x̄n−d)� + T̄ �

d+1(rd+1 − x̄1)(z
d
2 , . . . , zd

n−d)�

= ((T̄ �
d x̄)2, . . . , (T̄

�
d x̄)n−d) − x̄1(td+1,d+2, . . . , td+1,n)�

+(rd+1 − x̄1)w
d+1.

Now T̄ �
d x̄ has already been determined, hence we can compute in O(n −d) time all of

the n −d −1 factors μ(Q̄′
i , (

¯̄x2, . . . , ¯̄xn−d)�). After that, we can compute in O(n −d)

time the last factor μ(Q̄′
0, (

¯̄x2, . . . , ¯̄xn−d)�), where Q̄′
0 := ∑n−d−1

i=1 λ2(Q̄d , Q̄′
i )Q′

i
by Observation 5. In the constrained case, we can determine improved bounds as
explained in Sect. 3.1.

In summary, we thus have

Proposition 5 If, in the preprocessing phase of Algorithm 1, we compute wd+1 and
all t i

min and ti
max for d = 0, . . . , n−1, then the lower bound improvement as illustrated

in Sect. 2 can be carried out in O(n − d) time per node.

3.3 Branching order

For the reasons explained above, our algorithm fixes variables in a predetermined
order. This order can be chosen arbitrarily before running the algorithm (or when
fixing on the d-th level for the first time). In our experiments for random instances,
however, it turned out that the choice of a branching order only had a minor effect
both in terms of the number of nodes being enumerated and in terms of running times.
In our implementation, we use the following rule, yielding slightly better results than
a random ordering: if the set I ⊆ {1, . . . , n} contains the indices of all variables fixed
so far, we next fix the variable xi such that |qii | + ∑

j∈I |qi j + q ji | is maximal.
Nevertheless, if the instances have a specific structure, appropriate branching orders

can further improve the performance of our algorithm. This is the case for our appli-
cation in electronics, where the best results are obtained using the natural order of the
variables. In the unconstrained case, we can apply basis reduction, and significantly
better performance is obtained by the resulting order of variables; see Sect. 4.

4 Computational results

In this section, we present experimental results for the two special cases of CQIP men-
tioned in the introduction, namely the cases X = [−1, 1]n (Sect. 4.1) and X = R

n

(Sect. 4.2). In all cases, we compare our algorithm with the CPLEX MIQP solver [12],
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which, as mentioned in the introduction, turned out to be by far the best method
among those available when we approached the problem. For our algorithm, we also
state results obtained without the lower bound improvements discussed in Sect. 2. We
implemented the version running in linear time per node, see Sect. 3.2. For compari-
son, in the ternary case we also state results for the version using quadratic time per
node, see Sect. 3.1.

In our algorithm, we use two primal heuristics based on the genetic algorithm for
quadratic 0–1 programming presented in [14]. For general X , we can apply this binary
heuristic locally: if x̄ is the current continuous minimum, we consider the box

B = {
x̄1�, 
x̄1� + 1} × · · · × {
x̄n�, 
x̄n� + 1}

and try to minimize f over B∩X . Moreover, following the discussion in Sect. 1.2, in the
special case X = [−1, 1]n , every binary heuristic also gives rise to a global heuristic
for minimizing f by replacing every variable xi by x+

i − x−
i , where x+, x− ∈ {0, 1}n .

Both heuristics are only applied once at the beginning.
All experiments were run on Intel Xeon processors running at 2.33 GHz. Our imple-

mentation uses BLAS [1] and LAPACK [2] for the main matrix and vector operations.
For computing short vectors, we use the Block Korkin-Zolotarev basis reduction algo-
rithm [17] implemented in NTL [18]. The runtime limit for all instances and solution
methods was 8 hours. Besides total running times, we investigated the time needed for
preprocessing and the time per node in the enumeration tree. Moreover, we state the
total number of nodes processed.

4.1 Convex quadratic ternary optimization

In this section, we present the experimental results for the first application illustrated
in Sect. 1.1 for instances corresponding to second-order Butterworth filters and a sinu-
soidal target signal f , whose amplitude is given by γ := max{ f (t) : t ∈ [0, n�]} =
− min{ f (t) : t ∈ [0, n�]}.

We start by reporting in Table 1 the values of the lower bounds found by computing
simply the continuous minimum (“trivial”), and improving the bound by, respectively,
taking as t i vectors the n unit vectors in R

n (“standard basis, improved”), finding
the best axis-parallel ellipsoid according to Observation 6 (“standard basis, best axis-
parallel”), taking as t i vectors the n columns of a transformation matrix T yielding a
reduced basis (“reduced basis, improved”), and finding the best axis-parallel ellipsoid
according to Observation 6 after having applied a basis change with respect to T �
(“reduced basis, best axis-par.”). Finally, in the last column we report the value “best
heur.” of the best solution we could find, marked with a “�” in case it is provably
optimal. Note that all values are numbers much smaller than 1.

The table shows that there is a notable improvement (a few orders of magnitude)
from the continuous lower bound by applying the tools in Sect. 2, which would be
more significant (sometimes one additional order of magnitude) by finding the best
axis-parallel ellipsoid, which is however too expensive to be done (outside the root
node) within our branch-and-bound algorithm. On the other hand, the bounds obtained
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Table 1 Lower bound values for second-order Butterworth filters

Instance Trivial Standard basis Reduced basis Best heur.

γ n Improved Best axis-par. Improved Best axis-par.

0.2 50 6.930943e−11 1.108101e−06 1.138748e−06 6.483600e−06 1.507646e−05 1.088225e−04�

0.2 100 5.657194e−13 6.909366e−08 7.038127e−08 1.124626e−07 6.040816e−07 9.677417e−06�

0.2 150 <1e−15 1.364557e−08 1.395173e−08 1.544313e−08 8.028670e−08 2.419792e−06

0.2 200 <1e−15 2.292244e−09 2.755499e−09 3.481464e−09 1.998845e−08 9.263187e−07

0.3 50 1.559461e−10 2.493226e−06 2.561368e−06 7.104197e−06 2.043416e−05 1.453055e−04�

0.3 100 1.272753e−12 1.554607e−07 1.570978e−07 1.279994e−07 6.829632e−07 9.448114e−06�

0.3 150 <1e−15 3.070253e−08 3.120370e−08 1.294113e−08 7.248821e−08 2.492522e−06

0.3 200 <1e−15 5.157549e−09 5.676386e−09 3.533325e−09 1.987283e−08 1.025988e−06

0.4 50 2.772375e−10 4.432402e−06 4.553818e−06 7.435790e−06 1.641745e−05 1.518196e−04�

0.4 100 2.262501e−12 2.763746e−07 2.787844e−07 1.113016e−07 4.776112e−07 1.167412e−05�

0.4 150 <1e−15 5.458228e−08 5.525709e−08 1.452634e−08 8.543101e−08 2.487505e−06

0.4 200 <1e−15 9.168976e−09 9.600037e−09 3.749173e−09 2.093379e−08 9.845103e−07

by either taking as T the identity or the transformation matrix of a reduced basis are
comparable, with the first one often dominating the second. This indicates that also
improving with respect to the standard basis is fine for these instances, which is what
we did within branch-and-bound. This leads to slightly better runtime results than
using a reduced basis, due to the fact that computing bounds from axis-parallel ellip-
soids is faster in practice although its asymptotic running time is the same, dominating
the negative effect of having (on average) slightly weaker lower bounds. Finally, and
unfortunately, all the lower bounds are a couple of orders of magnitude smaller than
the optimum, which makes them essentially useless to certify the quality of a heuristic
solution.

In Table 2, we present results for Algorithm 1 using only continuous minima (“triv.
bounds”), Algorithm 1 with the lower bound improvement when T is the identity
(“impr. bounds”), Algorithm 1 with the lower bound improvement when T is the
identity (“impr. bounds”) but with a running time of O(n2) per node, without the
improvement in Sect. 3.2, (“O(n2), impr. bounds”), and for CPLEX MIQP. In all
cases, we used the natural order of variables as branching order.

We report the total time in seconds needed to solve the instance to optimality (“tt/s”),
the time in seconds needed for the preprocessing (“pt/s”), and the total number of nodes
processed in the enumeration tree (“nodes”).

Table 2 shows that our algorithm outperforms CPLEX by several orders of magni-
tude. CPLEX could not solve instances with more than 50 variables within the time
limit of 8 hours, while our algorithm solves all instances up to 120 variables, both
with and without improved lower bounds. The method using only trivial bounds is
the fastest, but the method using improved lower bounds starts to catch up for larger
instances. This can also be observed in Fig. 8, where we plot the running times of both
methods on a logarithmic scale. Unfortunately, n = 120 appears to be the largest size
our method can solve, even if setting a much larger time limit. Finally, as expected,
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Fig. 8 Running times for the ternary case (γ = 0.2)

the O(n2) running time per node leads to much slower total times. However, even this
slower version clearly outperforms CPLEX.

By using the general branching order proposed in Sect. 3.3, we experienced an
increase of running times of about 20 % for the case with trivial bounds and of a
factor of 2 for the case with improved bounds, compared with the results shown in
Table 2. Using a random branching order, running times increased by several orders of
magnitude. This shows that our general branching order yields good results for these
instances, even though it is slightly outperformed by a problem-specific strategy.

4.2 Closest vector problem

We are not aware of any benchmark instances or any computational evaluation of
algorithms for CVP. Even for the practical applications arising in cryptography, we
could not find any public library of test problems.

Therefore, in this section, we present results for random instances of the problem
generated as follows. For given problem dimension n, an n × n matrix B is produced,
with all entries chosen uniformly at random in {−3, . . . , 3}. Moreover, we choose
λ ∈ R

n with entries uniformly at random in [−1, 1]. The problem is then to minimize
f (x) = ‖Bx − Bλ‖2

2 over all x ∈ Z
n .

The results for these instances are presented in Table 3, where 10 random instances
have been considered for each n. The first column for every solution method shows
the number of instances solved to optimality, the remaining figures are averages over
all solved instances. We used the branching order proposed in Sect. 3.3.

Again it turns out that Algorithm 1 is much faster than CPLEX, even if the difference
is smaller than in the ternary case. The same is true when comparing our algorithm to
SHVEC (mentioned in Sect. 1.1). Notice that the effect of the improvement of lower
bounds by ellipsoids (using as T the identity also in this case) is more apparent now.

In Table 4, we show results for the same instances when a basis reduction is applied
before starting the algorithm, and the resulting order of variables is not changed for
branching. Namely, according to Sect. 2, we re-define the problem at the beginning
by applying a basis change with respect to T . This guarantees that all ellipsoids used
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to improve bounds are axis-parallel. Moreover, we now branch along hyperplanes that
are parallel to flat directions, which improves the running time considerably. Note that
we could apply a basis change also in the ternary case, but with the effect that X would
not be a box any more. Basis reduction decreases running times by about one order of
magnitude for our algorithm, but also decreases running time for CPLEX (by a smaller
factor). Surprisingly, the running time of SHVEC often increases when applying it to
a reduced basis.

5 Final remarks

We presented an algorithm for solving strictly convex quadratic minimization prob-
lems over integer variables. The main limitation in applying our method to the case
in which the objective function f is convex but not strictly convex, i.e., Q has zero
eigenvalues, is the fact that the continuous minimum is computed without taking X
into account. While in the strictly convex case we always have a bounded relaxation,
this may not hold any more in the convex case (though one could verify that testing
unboundedness of the relaxation and, if this is not the case, deriving the minimum, sim-
ply requires additional linear algebra operations). Note that, if Q is a rational matrix,
then the relaxed problem is unbounded if and only if the problem with integrality
constraints is unbounded. However, our impression is that X should be considered in
the relaxation solved at every node.

Clearly, our algorithm can be extended to the mixed-integer case in a natural
way. Only two changes are necessary: the branching may be applied only to inte-
ger variables, and all ellipsoids used for improving lower bounds must be parallel to
the subspace spanned by the continuous variables.
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