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Abstract We consider N -fold 4-block decomposable integer programs, which
simultaneously generalize N -fold integer programs and two-stage stochastic integer
programs with N scenarios. In previous work (Hemmecke et al. in Integer program-
ming and combinatorial optimization. Springer, Berlin, 2010), it was proved that for
fixed blocks but variable N , these integer programs are polynomial-time solvable for
any linear objective. We extend this result to the minimization of separable convex
objective functions. Our algorithm combines Graver basis techniques with a proximity
result (Hochbaum and Shanthikumar in J. ACM 37:843–862,1990), which allows us
to use convex continuous optimization as a subroutine.
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1 Introduction

We consider a family of nonlinear integer minimization problems over block-
structured linear constraint systems in variable dimension. The objective is to minimize
a separable convex objective function f : R

n → R, defined as

f (x1, . . . , xn) =
n∑

i=1

fi (xi ),

with convex functions fi : R → R of one variable each.
Hochbaum and Shanthikumar [13] present a general technique for transforming

algorithms for linear integer minimization to algorithms for separable convex integer
minimization. The key ingredients of this transformation technique are scaling tech-
niques and proximity results between optimal integer solutions and optimal solutions
of the continous relaxation. This technique leads directly to polynomial time algo-
rithms if all the subdeterminants of the constraint matrix are bounded polynomially.

Of course, this is quite a restrictive hypothesis, but an important corollary of this
work is a polynomial time algorithm for minimizing a separable convex function
over systems of inequalities associated with a unimodular matrix. This generalizes, in
particular, earlier work of Minoux [14] on minimum cost flows with separable convex
cost functions.

An impossibility result on the existence of a strongly polynomial algorithm for
minimizing a general separable convex function over network flow constraints has
been shown in [12].

In the present paper, we study a certain family of block-structured separable convex
integer minimization problems over polyhedra, which does not satisfy the hypothesis
of polynomially bounded subdeterminants. The constraint matrix of these problems
is N -fold 4-block decomposable as follows:

(
C D
B A

)(N )

:=

⎛

⎜⎜⎜⎜⎜⎝

C D D · · · D
B A O O
B O A O
...

. . .

B O O A

⎞

⎟⎟⎟⎟⎟⎠

for some given N ∈ Z+ and N copies of A, B, and D. This problem type was studied
recently in [8].

N -fold 4-block decomposable matrices arise in many contexts and have been stud-
ied in various special cases, three of which are particularly relevant. We denote by O
a zero matrix of compatible dimensions and by · a matrix with no columns or no rows.
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Graver basis and proximity techniques 3

(i) For C = · and D = · we recover the problem matrix
( · ·

B A

)
(N ) of a two-stage

stochastic integer optimization problem. Then, B is the matrix associated with
the first stage decision variables and A is associated with the decision on stage 2.
The number of occurrences of blocks of the matrix A reflect all the possible
scenarios that pop up once a first stage decision has been made. We refer to [11]
for a survey on state of the art techniques to solve this problem.

(ii) For B = · and C = · we recover the problem matrix
( · D· A

)
(N ) of a so-called

N -fold integer problem. Here, if we let A be the node-edge incidence matrix of
the given network and set D to be the identity, then the resulting N -fold IP is
a multicommodity network flow problem. Separable convex N -fold IPs can be
solved in polynomial time, provided that the matrices A and D are fixed [2,10].

(iii) For totally unimodular matrices C, A their so-called 1-sum ( C O
O A ) is totally uni-

modular. Similarly, total unimodularity is preserved under the so-called 2-sum
and 3-sum composition [21,24]. For example, for matrices C and A, column
vector a and row vector bT of appropriate dimensions, the 2-sum of ( C a ) and(

bT

A

)
gives

(
C abT

O A

)
. The 2-sum of

(
C abT a
O A O

)
and

(
bT

B

)
creates the matrix

⎛

⎝
C abT abT

O A O
O O A

⎞

⎠ ,

which is the 2-fold 4-block decomposable matrix
(

C abT

O A

)(2)

. Repeated applica-

tion of certain 1-sum, 2-sum and 3-sum compositions leads to a particular family
of N -fold 4-block decomposable matrices with special structure regarding the
matrices B and D.

(iv) The general case appears in stochastic integer programs with second order dom-
inance relations [4] and stochastic integer multi-commodity flows. See [8] for
further details of the model as an N -fold 4-block decomposable problem. To
give one example consider a stochastic integer multi-commodity flow problem,
introduced in [15,20]. Let M integer (in contrast to continuous) commodities to
be transported over a given network. While we assume that supply and demands
are deterministic, we assume that the upper bounds for the capacities per edge
are uncertain and given initially only via some probability distribution. In a first
stage we have to decide how to transport the M commodities over the given net-
work without knowing the true capacities per edge. Then, after observing the true
capacities per edge, penalties have to be paid if the capacity is exceeded. Assum-
ing that we have knowledge about the probability distributions of the uncertain
upper bounds, we wish to minimize the costs for the integer multi-commodity
flow plus the expected penalties to be paid for exceeding capacities. To solve
this problem, we discretize as usual the probability distribution for the uncertain
upper bounds into N scenarios. Doing so, we obtain a (typically large-scale)
(two-stage stochastic) integer programming problem as shown in Fig. 1. Herein,
A is the node-edge incidence matrix of the given network, I is an identity matrix
of appropriate size, and the columns containing −I correspond to the penalty
variables.
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4 R. Hemmecke et al.

Fig. 1 Modeling a two-stage stochastic integer multi-commodity flow problem as an N -fold 4-block
decomposable problem. Without loss of generality, the number of commodities and the number of scenarios
are assumed to be equal

2 Main results and proof outline

In [8], the authors proved the following result.

Theorem 2.1 Let A ∈ Z
dA×n A , B ∈ Z

dA×nB , C ∈ Z
dC ×nB , D ∈ Z

dC ×n A be fixed
matrices. For given N ∈ Z+ let l ∈ (Z ∪ {−∞})nB+Nn A , u ∈ (Z ∪ {+∞})nB+Nn A ,

b ∈ Z
dC +NdA , and let f : R

nB+Nn A → R be a separable convex function that takes
integer values on Z

nB+Nn A and denote by f̂ an upper bound on the maximum of | f |
over the feasible region of the N-fold 4-block decomposable convex integer minimiza-
tion problem

(IP)N ,b,l,u, f : min
{

f (z) : ( C D
B A

)
(N )z = b, l ≤ z ≤ u, z ∈ Z

nB+Nn A
}

.

We assume that f is given only by a comparison oracle that, when queried on z and
z′ decides whether f (z) < f (z′), f (z) = f (z′) or f (z) > f (z′). Then the following
holds:

(a) There exists an algorithm with input N , l, u, b that computes a feasible solution
to (IP)N ,b,l,u, f or decides that no such solution exists and that runs in time
polynomial in N and in the binary encoding lengths 〈l, u, b〉.

(b) There exists an algorithm with input N , l, u, b and a feasible solution z0 to
(IP)N ,b,l,u, f that decides whether z0 is optimal or finds a better feasible solution z1
to the problem (IP)N ,b,l,u, f with f (z1) < f (z0) and that runs in time polynomial
in N and in the binary encoding lengths 〈l, u, b, f̂ 〉.

(c) For the restricted problem where f is linear, there exists an algorithm with input
N , l, u, b that finds an optimal solution to the problem (IP)N ,b,l,u, f or decides
that (IP)N ,b,l,u, f is infeasible or unbounded and that runs in time polynomial in
N and in the binary encoding lengths 〈l, u, b, f̂ 〉.

This theorem generalizes a similar statement for N -fold integer programming and
for two-stage stochastic integer programming. In these two special cases, one can even
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Graver basis and proximity techniques 5

prove claim (c) of Theorem 2.1 for all separable convex functions and for a certain
class of separable convex functions, respectively. In [8], it was posed as an open
question whether Theorem 2.1 can be extended, for the full class of N -fold 4-block
decomposable problems, from linear f to general separable convex functions f .

In the present paper, we settle this question, proving the following result for sepa-
rable convex functions f , for which we assume that the following approximate con-
tinuous convex optimization oracle is available:

Problem 2.2 (Approximate continuous convex optimization) Given the data A, B,

C, D, N , l, u, b and a number ε ∈ Q>0, find a feasible solution rε ∈ Q
nB+Nn A for

the continuous relaxation

(CP)N ,b,l,u, f : min
{

f (r) : ( C D
B A

)
(N )r = b, l ≤ r ≤ u, r ∈ R

nB+Nn A
}

.

such that there exists an optimal solution r̂ to (CP)N ,b,l,u, f with

‖r̂ − rε‖∞ ≤ ε,

or report Infeasible or Unbounded .

Under suitable assumptions on the function f , this oracle may be implemented
using the ellipsoid method or an interior point method.

Theorem 2.3 For the problem of Theorem 2.1, we assume that the objective function f
is given by an evaluation oracle and an approximate continuous convex optimization
oracle for (CP)N ,b,l,u, f .

Then there exists an algorithm that finds an optimal solution to (IP)N ,b,l,u, f or
decides that (IP)N ,b,l,u, f is infeasible or unbounded and that runs in time polynomial
in N and in the binary encoding lengths 〈l, u, b, f̂ 〉.

The main new technical contribution of the present paper is to combine Graver basis
techniques with a proximity result developed by Hochbaum and Shanthikumar [13]
in the context of their so-called proximity-scaling technique.

This allows us to first use the approximate continuous convex optimization oracle
to find a point, in whose proximity the optimal integer solution has to lie. The integer
problem restricted to this neighborhood is then efficiently solvable with primal (aug-
mentation) algorithms using Graver bases, which will find the optimal integer solution
in a polynomial number of steps.

We now briefly explain the Graver basis techniques; we refer the reader to the survey
paper [18] or the monograph [17] for more details. Let E ∈ Z

d×n be a matrix. We
associate with E a finite set G(E) of vectors with remarkable properties, the Graver
basis of E . The set G(E) consists of all nonzero vectors v ∈ ker(E) ∩ Z

n that cannot
be written as a sum v = v′ + v′′ of nonzero vectors v′, v′′ ∈ ker(E) ∩ Z

n that lie in
the same orthant (or equivalently, have the same sign pattern in {≥ 0,≤ 0}n) as v. The
set G(E) was introduced by Graver [5], who proved that it constitutes an optimality
certificate (test set) for the family of integer linear programs that share the same
problem matrix, E . By this we mean that G(E) provides an augmenting vector for any
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6 R. Hemmecke et al.

non-optimal feasible solution and hence allows the design of a simple augmentation
algorithm to solve the integer linear program in a finite number of augmentations.

The augmentation technique can also be used to efficiently construct a feasible
solution in the first place, in a procedure similar to phase I of the simplex algorithm [7].

More recently, it has been shown in [16] that G(E) constitutes an optimality certifi-
cate for a wider class of integer minimization problems, namely for those minimizing
a separable convex objective function over a feasible region of the form

{ z : Ez = b, l ≤ z ≤ u, z ∈ Z
n }.

Moreover, several techniques have been found to turn the augmentation algorithm
into an efficient algorithm, bounding the number of augmentation steps polynomially.
Three such speed-up techniques are known in the literature: For 0/1 integer linear
problems, a simple bit-scaling technique suffices [23]. For general integer linear prob-
lems, one can use the directed augmentation technique [22], in which one uses Graver
basis elements v ∈ G(E) that are improving directions for the nonlinear functions
cTv+ + dTv−, which are adjusted during the augmentation algorithm. For separa-
ble convex integer problems, one can use the Graver-best augmentation technique
[10], where one uses an augmentation vector v that is at least as good as the best
augmentation step of the form γ g with γ ∈ Z+ and g ∈ G(E).

In [8], the authors found a way to implement the directed augmentation technique
efficiently for N -fold 4-block decomposable integer programs, despite the exponential
size of the Graver basis. This gives an efficient optimization algorithm for the case of
linear objective functions, proving Theorem 2.1. It is still an open question whether
the Graver-best augmentation technique can be implemented efficiently. This would
give an alternative proof of Theorem 2.3.

The paper [8] and the present paper crucially rely on the following structural result
about G ((

C D
B A

)
(N )

)
, which was proved in [8].

Theorem 2.4 If A ∈ Z
dA×n A , B ∈ Z

dA×nB , C ∈ Z
dC ×nB , D ∈ Z

dC ×n A are fixed
matrices, then max

{ ‖v‖1 : v ∈ G ((
C D
B A

)
(N )

) }
is bounded by a polynomial in N.

We note that in the special case of N -fold IPs, the �1-norm is bounded by a constant
(depending only on the fixed problem matrices and not on N ), and in the special case
of two-stage stochastic IPs, the �1-norm is bounded linearly in N . This fact suggests
that N -fold 4-block IPs are much richer and more difficult to solve than the two special
cases.

3 Proof of the results

3.1 Aggregation technique

We will use an aggregation/disaggregation technique, which is based on the following
folklore fact on Graver bases (see, for example, Corollary 3.2 in [6]):
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Graver basis and proximity techniques 7

Lemma 3.1 (Aggregation) Let G = (F f f) be a matrix with two identical columns.
Then the Graver bases of (F f) and G are related as follows:

G(G) = {(u, v, w) : vw ≥ 0, (u, v + w) ∈ G((F f)) } ∪ {±(0, 1,−1)}.

Thus, the maximum �1-norm of Graver basis elements does not change if we repeat
columns.

Corollary 3.2 Let G be a matrix obtained from a matrix F by repeating columns.
Then

max{‖v‖1 : v ∈ G(G)} = max{2, max{ ‖v‖1 : v ∈ G(F) }}.

3.2 Bounds for Graver basis elements

Let us start by bounding the �1-norm of Graver basis elements of matrices. The fol-
lowing result can be found, for instance, in [17, Lemma 3.20].

Lemma 3.3 (Determinant bound) Let A ∈ Z
m×n be a matrix of rank r and let �(A)

denote the maximum absolute value of subdeterminants of A. Then max{ ‖v‖1 :
v ∈ G(A) } ≤ (n − r)(r + 1)�(A). Moreover, �(A) ≤ (

√
m M)m, where M is

the maximum absolute value of an entry of A.

As a corollary of Lemma 3.3 and the aggregation technique (Corollary 3.2), we
obtain the following result:

Corollary 3.4 ( Determinant bound, aggregated) Let A ∈ Z
m×n be a matrix of rank r

and let d be the number of different columns in A and M the maximum absolute value
of an entry of A. Then

max{ ‖v‖1 : v ∈ G(A) } ≤ (d − r)(r + 1)
(√

m M
)m

.

For matrices with only one row (m = r = 1), there are only 2M + 1 different
columns, and so this bound simplifies to 4M2. However, a tighter bound is known for
this special case. The following lemma is a straight-forward consequence of Theorem
2 in [3].

Lemma 3.5 (PPI bound) Let A ∈ Z
1×n be a matrix consisting of only one row and

let M be an upper bound on the absolute values of the entries of A. Then we have
max{ ‖v‖1 : v ∈ G(A) } ≤ 2M − 1.

Let us now prove some more general degree bounds on Graver bases that we will
use in the proof of the main theorem below.

Lemma 3.6 (Graver basis length bound for stacked matrices) Let L ∈ Z
d×n and let

F ∈ Z
m×n. Moreover, put E := (

F
L

)
. Then we have

max{‖v‖1 : v ∈ G(E)} ≤ max{‖λ‖1 : λ ∈ G(F · G(L))} · max{‖v‖1 : v ∈ G(L)}.
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8 R. Hemmecke et al.

Proof Let v ∈ G(E). Then v ∈ ker(L) implies that v can be written as a nonnegative
integer linear sign-compatible sum v = ∑

λi gi using Graver basis vectors gi ∈ G(L).
Adding zero components if necessary, we can write v = G(L)λ. We now claim that
v ∈ G(E) implies λ ∈ G(F · G(L)).

First, observe that v ∈ ker(F) implies Fv = F · (G(L)λ) = (F · G(L))λ = 0 and
thus, λ ∈ ker(F ·G(L)). If λ �∈ G(F ·G(L)), then it can be written as a sign-compatible
sum λ = μ + ν with μ, ν ∈ ker(F · G(L)). But then

v = (G(L)μ) + (G(L)ν)

gives a sign-compatible decomposition of v into vectors G(L)μ,G(L)ν ∈ ker(E),
contradicting the minimality property of v ∈ G(E). Hence, λ ∈ G(F · G(L)).

From v = ∑
λi gi with gi ∈ G(L) and λ ∈ G(F · G(L)), the desired estimate

follows. ��
We will employ the following simple corollary.

Corollary 3.7 Let L ∈ Z
d×n and let aT ∈ Z

n be a row vector. Moreover, put E :=(
aT

L

)
. Then we have

max{‖v‖1 : v ∈ G(E)} ≤
(

2 · max
{
|aTv| : v ∈ G(L)

}
− 1

)
· max{‖v‖1 : v ∈ G(L)}.

In particular, if M := max{|a(i)| : i = 1, . . . , n} then

max{‖v‖1 : v ∈ G(E)} ≤ 2nM (max{‖v‖1 : v ∈ G(L)})2 .

Proof By Lemma 3.6, we already get

max{‖v‖1 : v ∈ G(E)} ≤ max{‖λ‖1 : λ ∈ G(aT · G(L))} · max{‖v‖1 : v ∈ G(L)}.

Now, observe that aT ·G(L) is a 1×|G(L)|-matrix. Thus, the degree bound of primitive
partition identities, Lemma 3.5, applies, which gives

max{‖λ‖1 : λ ∈ G(aT · G(L))} ≤ 2 · max
{
|aTv| : v ∈ G(L)

}
− 1,

and thus, the first claim is proved. The second claim is a trivial consequence of the
first. ��

Let us now extend this corollary to a form that we need to prove Theorem 2.4.

Corollary 3.8 Let L ∈ Z
d×n and let F ∈ Z

m×n. Let the entries of F be bounded by
M in absolute value. Moreover, put E := (

F
L

)
. Then we have

max{‖v‖1 : v ∈ G(E)} ≤ (2nM)2m−1 (max{‖v‖1 : v ∈ G(L)})2m
.
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Graver basis and proximity techniques 9

Proof This claim follows by simple induction, adding one row of F at a time, and
by using the second inequality of Corollary 3.7 to bound the sizes of the interme-
diate Graver bases in comparison to the Graver basis of the matrix with one row of
F fewer. ��

In order to give a proof of Theorem 2.4, let us consider the submatrix
( · ·

B A

)
(N ). A

main result from [11] is the following.

Theorem 3.9 (Graver basis for stochastic IPs) Let A ∈ Z
dA×n A and B ∈ Z

dA×nB ,
and let G = G (( · ·

B A

)
(N )

)
. There exist numbers g, ξ, η ∈ Z+ depending only on A

and B but not on N such that the following holds:

(a) For every N ∈ Z+ and for every v ∈ G, we have ‖v‖∞ ≤ g, i.e., the components
of v are bounded by g in absolute value.

(b) As a corollary, ‖v‖1 ≤ (nB + Nn A)g for all v ∈ G.
(c) More precisely, there exists a finite set X ⊆ Z

nB of cardinality |X | ≤ ξ and for
each x ∈ X a finite set Yx ⊆ Z

n A of cardinality |Yx| ≤ η such that the elements
v ∈ G take the form v = (x, y1, . . . , yn), with x ∈ X and y1, . . . , yn ∈ Yx.

Remark 3.10 The finiteness of the numbers g, ξ, η comes from a saturation result
in commutative algebra. Concrete bounds on these numbers are unfortunately not
available. However, for given matrices A and B, the finite sets X and Yx for x ∈ X can
be computed using the Buchberger-type completion algorithm in [11, Section 3.3].
Thus, the numbers g, ξ, η are effectively computable.

Combining this result with Corollary 3.8, we get a bound for the �1-norms of the
Graver basis elements of

(
C D
B A

)
(N ).

Proposition 3.11 (Graver basis length bound for 4-block IPs) Let A ∈ Z
dA×n A ,

B ∈ Z
dA×nB , C ∈ Z

dC ×nB , D ∈ Z
dC ×n A be given matrices. Moreover, let M be

a bound on the absolute values of the entries in C and D, and let g ∈ Z+ be the
number from Theorem 3.9. Then for any N ∈ Z+ we have

max
{
‖v‖1 : v ∈ G

((
C D
B A

)
(N )

)}

≤ (2(nB + Nn A)M)2dC −1
(

max
{
‖v‖1 : v ∈ G

(( · ·
B A

)
(N )

)})2dC

≤ (2(nB + Nn A)M)2dC −1 ((nB + Nn A)g)2dC
.

If A, B, C, D are fixed matrices, then max
{‖v‖1 : v ∈ G ((

C D
B A

)
(N )

)}
is bounded

by O(N 2dC +1
), a polynomial in N.

Proof The first claim is a direct consequence of Theorem 3.9 and Corollary 3.8 with
L = ( · ·

B A

)
(N ), F = (

C D· ·
)

(N ), and E = (
C D
B A

)
(N ). The polynomial bound for fixed

matrices A, B, C, D and varying N follows by observing that n A, nB , dC , M, g are
constants as they depend only on the fixed matrices A, B, C, D. ��
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10 R. Hemmecke et al.

The above result has appeared before in [8]; we included the proof to make the
present paper more self-contained. We now complement it with a useful alternative
bound, which is given by the following new result.

Proposition 3.12 (Alternative length bound for 4-block IPs) Let A ∈ Z
dA×n A ,

B ∈ Z
dA×nB , C ∈ Z

dC ×nB , D ∈ Z
dC ×n A be given matrices. Moreover, let M be

a bound on the absolute values of the entries in C and D, and let g, ξ, η ∈ Z+ be the
numbers, depending on A and B, from Theorem 3.9. Then for any N ∈ Z+ we have

max
{
‖v‖1 : v ∈ G

((
C D
B A

)
(N )

)}

≤ ξ · (N + η)η · dC ·
(√

dC (nB + Nn A)Mg
)dC · (nB + Nn A)g.

If A, B, C, D are fixed matrices, then max
{‖v‖1 : v ∈ G ((

C D
B A

)
(N )

)}
is bounded

by O(N dC +η), a polynomial in N.

Either of the two results implies Theorem 2.4.

Remark 3.13 Comparing the two results is difficult because bounds for the finite num-
bers g, ξ , and, in particular, η (which appears in the exponent) are unknown. However,
one should expect that the bound of Proposition 3.12 is better for matrices with large
upper blocks

(
C D· ·

)
, whereas the bound of Proposition 3.11 is better for matrices with

large lower blocks
( · ·

B A

)
.

Proof of Proposition 3.12 Let L = ( · ·
B A

)
(N ) and F = (

C D· ·
)

(N ) = (C, D, . . . , D).
First of all, Theorem 3.9(b) gives the bound

‖v‖1 ≤ (nB + Nn A)g for v ∈ G(L), (3.1)

where g is a constant that only depends on A and B.
We now consider the matrix F · G(L). Each column of it is given by

Fv = Cx + D
N∑

i=1

yi with v =
(

x, y1, . . . , yN
)

∈ G(L).

By Theorem 3.9(c), there are at most ξ = O(1) different vectors x and for each x
at most η = O(1) different vectors yi . We now determine the number σ of different
sums s = ∑N

i=1 yi that can arise from these choices. This number is bounded by the
number of weak compositions of N into η non-negative integer parts: σ ≤ (N+η−1

η−1

) ≤
(N + η)η = O(Nη). Thus F · G(L) has at most d := ξ · σ ≤ ξ · (N + η)η = O(Nη)

different columns.
Using the bound on the entries of C and D, we find from (3.1) that the maximum

absolute value of the entries of F · G(L) is bounded by (nB + Nn A)Mg.
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Graver basis and proximity techniques 11

We now determine a length bound for the elements λ of G(F · G(L)). By Corol-
lary 3.4, we find that

‖λ‖1 ≤ d · dC ·
(√

dC (nB + Nn A)Mg
)dC

≤ ξ · (N + η)η · dC ·
(√

dC (nB + Nn A)Mg
)dC

. (3.2)

Combining the two bounds (3.1) and (3.2) using Lemma 3.6 then gives the result.
��

3.3 Constructing a feasible solution

For constructing a feasible solution to the problem (IP)N ,b,l,u, f , we will use the algo-
rithm of Theorem 2.1 (a), first introduced in [8]. For sake of completeness, we describe
the algorithm here and thus give the proof of Theorem 2.1(a).

Proof of Theorem 2.1(a) Let N ∈ Z+, l, u ∈ Z
nB+Nn A , b ∈ Z

dC +NdA . First, con-
struct an integer solution to the system

(
C D
B A

)
(N )z = b. This can be done in poly-

nomial time using the Hermite normal form of
(

C D
B A

)
(N ). Then we turn it into

a feasible solution (satisfying l ≤ z ≤ u) by a sequence of at most O(NdA)

many integer linear programs (with the same problem matrix
(

C D
B A

)
(N ), but with

bounds l̃, ũ adjusted so that the current solution is feasible) with auxiliary objec-
tive functions that move the components of z into the direction of the given original
bounds l, u, see [7]. This step is similar to phase I of the simplex method in linear
programming.

In order to solve these auxiliary integer linear programs with polynomially many
augmentation steps, we use the speed-up provided by the directed augmentation pro-
cedure [22]. This procedure requires us to repeatedly find, for certain vectors c and
d that it constructs, an augmentation vector v with respect to the (separable convex)
piecewise linear function h(v) = cTv+ + dTv−.

Consequently, we only need to show how to find, for a given solution z0 that is
feasible for (IP)N ,b,l̃,ũ,h , an augmenting Graver basis element v ∈ G ((

C D
B A

)
(N )

)
for

a separable convex piecewise linear function h(v) in polynomial time in N and in the
binary encoding lengths of z0 and of c, d.

Let us now assume that we are given a solution z0 = (x0, y1
0, . . . , yN

0 ) that is
feasible for (IP)N ,b,l̃,ũ,h and that we wish to decide whether there exists another
feasible solution z1 with h(z1 − z0) < 0. By [5,16], it suffices to decide whether there
exists some vector v = (x̄, ȳ1, . . . , ȳN ) in the Graver basis of

(
C D
B A

)
(N ) such that

z0 + v is feasible and h(v) < 0. By Propositions 3.11 or 3.12, the �1-norm of v is
bounded polynomially in N . Thus, since nB is constant, there is only a polynomial
number of candidates for the x̄-part of v. Since the bounds given by Propositions 3.11
and 3.12 are effectively computable (cf. Remark 3.10), we can actually list all possible
vectors x̄ that satisfy these bounds.

For each such candidate x̄, we can find a best possible choice for ȳ1, . . . , ȳN by
solving the following N -fold IP:
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12 R. Hemmecke et al.

min

⎧
⎨

⎩h (v) :
(

C D
B A

)
(N ) (z0 + v) = b,

l̃ ≤ (z0 + v) ≤ ũ,

v = (
x̄, ȳ1, . . . , ȳN

) ∈ Z
nB+Nn A

⎫
⎬

⎭

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h

⎛

⎜⎝

x̄
ȳ1

...
ȳN

⎞

⎟⎠ :

( · D· A

)
(N )

⎛

⎝
ȳ1

...
ȳN

⎞

⎠= b − (
C D
B A

)
(N )z0 − (

C ·
B ·

)
(N )x̄,

l̃ − z0 ≤
⎛

⎜⎝

x̄
ȳ1

...
ȳN

⎞

⎟⎠≤ ũ − z0,

ȳ1, . . . , ȳN∈ Z
n A

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for given z0 = (x0, y1
0, . . . , yN

0 ) and x̄. As shown in the second line, this problem
does indeed simplify to a separable convex N -fold IP with problem matrix

( · D· A

)
(N )

because z0 = (x0, y1
0, . . . , yN

0 ) and x̄ are fixed. Since the matrices A and D are fixed,
each such N -fold IP is solvable in polynomial time [10]. In fact, as shown in [9],
because the function h is “2-piecewise affine”, this problem can be solved in time
O(N 3L) by Graver-based dynamic programming, where L = 〈c, d, l̃, ũ, z0, x̄〉.

If the N -fold IP is infeasible, there does not exist an augmenting vector using the
particular choice of x̄. If it is feasible, let v = (x̄, ȳ1, . . . , ȳN ) be the optimal solution.
Now if we have h(v) ≥ 0, then no augmenting vector can be constructed using this
particular choice of x̄. If, on the other hand, we have h(v) < 0, then v is a desired
augmenting vector for z0 and we can stop.

As we solve polynomially many polynomially solvable N -fold IPs, one for each
choice of x̄, an optimality certificate or a desired augmentation step can be computed
in polynomial time and the claim follows. ��
3.4 Using Hochbaum–Shanthikumar’s proximity results

Hochbaum and Shanthikumar [13] present an algorithm for nonlinear separable con-
vex integer minimization problems for matrices with small subdeterminants. The algo-
rithm is based on the so-called proximity-scaling technique. It is pseudo-polynomial
in the sense that the running time depends polynomially on the absolute value of the
largest subdeterminant of the problem matrix. The results of the paper [13] cannot be
directly applied to our situation, since the subdeterminants of N -fold 4-block decom-
posable matrices typically grow exponentially in N . In the following we adapt a lemma
from [13] that establishes proximity of optimal solutions of the integer problem and
its continuous relaxation; we do not use the scaling technique, however.

We consider the separable convex integer minimization problem

min
{

f (z) : Ez = b, l ≤ z ≤ u, z ∈ Z
n} . (3.3)

Theorem 3.14 (Proximity) Let r̂ be an optimal solution of the continuous relaxation
of (3.3),

min
{

f (r) : Er = b, l ≤ r ≤ u, r ∈ R
n} . (3.4)
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Graver basis and proximity techniques 13

Then there exists an optimal solution z∗ of the integer optimization problem (3.3) with

‖r̂ − z∗‖∞ ≤ n · max {‖v‖∞ : v ∈ G(E)} .

We remark that we actually just need a bound on the circuits of E . A vector in
ker(E) is called a circuit of E if its support is inclusion minimal among all elements
in ker(E) and its components are integer and relatively prime. The set of circuits forms
a subset of the Graver basis of E .

Hochbaum and Shanthikumar [13] prove a version of this result where the maximum
of the absolute values of the subdeterminants of E appears on the right-hand side. Our
proof is almost identical, but we include it here for completeness.

Proof Let ẑ be an optimal solution of the integer optimization problem (3.3). Since ẑ
is a feasible solution to the continuous relaxation, there exists a conformal (orthant-
compatible) decomposition of r̂ − ẑ into rational multiples of the circuits of E ,

r̂ − ẑ =
n∑

i=1

αi ui , αi ≥ 0, ui ∈ C(E),

where, due to Carathéodory’s theorem, at most n circuits are needed. Then

r̂ − ẑ =
n∑

i=1

�αi�ui +
n∑

i=1

βi ui ,

setting βi = αi − �αi�. Now we define

r∗ = ẑ +
n∑

i=1

βi ui , and z∗ = ẑ +
n∑

i=1

�αi�ui .

Since the vectors ui lie in the kernel of matrix E , both z = z∗ and z = r∗ satisfy the
equation Ez = b. Moreover, since both r̂ and ẑ lie within the lower and upper bounds
and the vectors ui lie in the same orthant as r̂ − ẑ, also z∗ and r∗ lie within the lower
and upper bounds. Thus, r∗ is a feasible solution to the continuous relaxation of (3.3).
Since z∗ is also an integer vector, it is a feasible solution to the integer optimization
problem (3.3).

We can write

r̂ − ẑ = [r∗ − ẑ] + [z∗ − ẑ].

Then we use an important superadditivity property of separable convex functions (see
[13, Lemma 3.1] and [16]), which gives

f (r̂) − f (ẑ) ≥ [ f (r∗) − f (ẑ)] + [ f (z∗) − f (ẑ)], (3.5)
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14 R. Hemmecke et al.

or, equivalently,

f (r̂) − f (r∗) ≥ f (z∗) − f (ẑ). (3.6)

Since r̂ is an optimal solution to the continuous relaxation and r∗ is a feasible solution to
it, the left-hand side is nonpositive, and so f (z∗) ≤ f (ẑ). Thus, since z∗ is a feasible
solution to (3.3), it is, in fact, another optimal solution of the integer optimization
problem and f (z∗) = f (ẑ).

We now verify the proximity of z∗ to r̂. From the definition of z∗, we immediately
get

∥∥r̂ − z∗∥∥∞ = ∥∥[r̂ − ẑ] + [ẑ − z∗]∥∥∞

=
∥∥∥∥∥

n∑

i=1

αi ui −
n∑

i=1

�αi�ui

∥∥∥∥∥
∞

=
∥∥∥∥∥

n∑

i=1

βi ui

∥∥∥∥∥
∞

≤ n · max{ ‖u j‖∞ : j = 1, . . . , n }
≤ n · max { ‖v‖∞ : v ∈ G(E) } .

This concludes the proof. ��
As an immediate corollary, we obtain the following result.

Corollary 3.15 Let ε ≥ 0 and let r̂ be an optimal solution to the continuous relax-
ation (3.4). Setting

l′ = max{l, ⌊r̂ − (n · �)1
⌋},

u′ = min{u,
⌈

r̂ + (n · �)1
⌉},

where � = max {‖v‖∞ : v ∈ G(E)}, we have

min{f (z) : Ez = b, l ≤ z ≤ u, z ∈ Z
n}

= min{f (z) : Ez = b, l′ ≤ z ≤ u′, z ∈ Z
n}. (3.7)

Later we will use a simple modification of Corollary 3.15, using an ε-approximate
optimal solution to the continuous relaxation (3.4).

For E = (
C D
B A

)
(N ), we can control the size of � using Propositions 3.11 or 3.12

and thus obtain an equivalent IP with small (polynomial-sized) bounds.
We note that though the bounds are small, the dimension is still variable, and so

the problem cannot be solved efficiently with elementary techniques such as dynamic
programming. In the following subsections, we show how to solve this IP with Graver
basis techniques.

123
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3.5 Graver-best augmentation for the restricted problem

In the restricted problem, no long augmentation steps are possible, and therefore
it is possible to efficiently construct a Graver-best augmentation vector. Using this
observation, we prove the following theorem.

Theorem 3.16 Let A ∈ Z
dA×n A , B ∈ Z

dA×nB , C ∈ Z
dC ×nB , D ∈ Z

dC ×n A be
fixed matrices. Then there exists an algorithm that, given the input data
N ∈ Z+, b ∈ Z

dC +NdA , l′, u′ ∈ Z
nB+Nn A , a feasible solution z0, and a compar-

ison oracle for the function f : R
nB+Nn A → R, finds an optimal solution to

min
{

f (z) : ( C D
B A

)
(N )z = b, l′ ≤ z ≤ u′, z ∈ Z

nB+Nn A
}

and that runs in time that is polynomially bounded in N, in k := ‖u′ − l′‖∞, and in
the binary encoding lengths 〈b, f̂ 〉.
Proof By the Graver-best speed-up technique [10], it suffices to show that for a
given feasible solution z0, we can construct a vector γ g, where γ ∈ Z+ and
g ∈ G ((

C D
B A

)
(N )

)
, such that z0 + γ g is feasible, and γ and g minimize f (z0 + γ g)

among all possible choices. It actually suffices to construct any vector v such that
z0 + v is feasible and f (z0 + v) ≤ f (z0 + γ g).

Write z0 = (x0, y1
0, . . . , yN

0 ) and let v = (x̄, . . .) be any vector in the Graver basis
of

(
C D
B A

)
(N ). By Propositions 3.11 or 3.12, the �1-norm of v is bounded polynomially

in N . Thus, since nB is constant, there is only a polynomial number of candidates for
the x̄-part of v. Since the bounds given by Propositions 3.11 and 3.12 are effectively
computable (cf. Remark 3.10), we can actually list all possible vectors x̄ that satisfy
these bounds.

For each such vector x̄, we now consider all vectors of the form (γ x̄, ȳ1, . . . , ȳN )

as candidate augmentation vectors, not just multiples γ v of Graver basis elements.
In the special case x̄ = 0, this is equivalent to the construction of a Graver-best

augmentation vector for the N -fold IP with the problem matrix
( · D· A

)
(N ), which can

be done in polynomial time [10].
Otherwise, if x̄ �= 0, we determine the largest step length γ̂ ∈ Z+ such that x0 + γ̂ x̄

lies within the bounds l′, u′. Certainly γ̂ ≤ k. We now check each possible step length
γ = 1, 2, . . . , γ̂ separately. To find a best possible choice for ȳ1, . . . , ȳN , we solve
the following N -fold IP:

min

⎧
⎨

⎩ f (v) :
(

C D
B A

)
(N ) (z0 + v)= b,

l′ ≤ (z0 + v)≤ u′,
v = (

γ x̄, ȳ1, . . . , ȳN
)∈ Z

nB+Nn A

⎫
⎬

⎭ .

Since the matrices A and D are fixed, each such N -fold IP is solvable in polynomial
time [10].

If the N -fold IP is infeasible, there does not exist an augmenting vector using the
particular choice of x̄ and γ . If it is feasible, let v = (γ x̄, ȳ1, . . . , ȳN ) be an optimal
solution. Now if we have f (v) ≥ 0, then no augmenting vector can be constructed
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16 R. Hemmecke et al.

using this particular choice of x̄ and γ . If, on the other hand, we have f (v) < 0, then
v is a candidate for the Graver-best augmentation vector.

By iterating over all x̄ and all γ , we efficiently construct a Graver-best augmentation
vector. ��
Remark 3.17 A more precise complexity analysis is as follows.

(a) For the construction in the special case x̄ = 0: In fact, by [9, Lemma 3.4 and
proof of Theorem 4.2], for any of the possible step lengths γ = 1, 2, . . . , k, we
can find in linear time O(N ) an augmenting vector γ v that is at least as good as
the best Graver step γ g with g ∈ G( · D· A

)
(N ). Checking all step lengths, we get a

complexity of O(k N ).
(b) For the solution of the N -fold subproblem in the general case x̄ �= 0: This opti-

mization, in turn, uses another Graver-best augmentation technique. In Phase I,
the possible step lengths are large, but the auxiliary objective functions are lin-
ear, and so the running time is O(N 3L) by Graver-based dynamic programming
[9, Theorem 3.9], where L = 〈l′, u′, z0, x̄〉. In Phase II, there are few possible
step lengths, γ = 1, 2, . . . , k, so we can try them all. By [9, Lemma 3.4 and proof
of Theorem 4.2], we can find for a fixed γ in linear time O(N ) an augmenting
vector γ v that is at least as good as the best Graver step γ g with g ∈ G( · D· A

)
(N ).

Checking all step lengths, we get a complexity of O(k N ). Using the results of
[10] (modified with the optimality criterion of [16]), the number of Graver-best
augmentations is bounded by O(N 〈 f̂ 〉). Thus the complexity of this subproblem
is O(N 2k〈 f̂ 〉 + N 3L).

(c) The number of steps in the overall Graver-best augmentation algorithm for the
restricted 4-block decomposable problem is again bounded by O(N 〈 f̂ 〉).

Remark 3.18 Other augmentation techniques can be used to prove Theorem 3.16. For
example, following [13, Section 2], we can reformulate a separable convex integer
minimization problem with small bounds as a 0/1 linear integer minimization problem
in the straightforward way. Then we can apply the bit-scaling speed-up technique, for
instance; see [23].

3.6 Putting all together

For each set of fixed matrices A, B, C, D and for any function ε(N ) that is bounded
polynomially in N , we consider the following algorithm.

Algorithm 3.19 (Graver proximity algorithm)
1: input N ∈ Z+, bounds l, u ∈ Z

nB+Nn A , right-hand side b ∈ Z
dC +NdA , eval-

uation oracle for a separable convex function f : R
nB+Nn A → R, approximate

continuous convex optimization oracle.
2: output an optimal solution z∗ to (IP)N ,b,l,u, f or Infeasible or Unbounded .
3: Let n = nB + Nn A denote the dimension of the problem.
4: Call the approximate continuous convex optimization oracle with ε = ε(N ) to

find an approximate solution rε ∈ Q
nB+Nn A to the continuous relaxation

min
{

f (r) : ( C D
B A

)
(N )r = b, l ≤ r ≤ u, r ∈ R

nB+Nn A
}

.
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5: if oracle returns Infeasible then
6: return Infeasible.
7: else if oracle returns Unbounded then
8: return Unbounded .
9: else

10: Compute an upper bound � on the maximum �1-norm of the vectors in
G ((

C D
B A

)
(N )

)
, using Proposition 3.11 or Proposition 3.12.

11: Let l′ = max{l, �rε − (n · � + ε)1�} and u′ = min{u, �rε + (n · � + ε)1�}.
12: Let k = ‖u′ − l′‖∞.
13: Using the algorithm of Theorem 2.1 (a), find a feasible solution z0 for the

restricted convex integer minimization problem

min
{

f (z) : ( C D
B A

)
(N )z = b, l′ ≤ z ≤ u′, z ∈ Z

nB+Nn A
}

.

14: Solve the problem to optimality using the algorithm of Theorem 3.16.

By analyzing this algorithm, we now prove the main theorem of this paper.

Proof of Theorem 2.3 We first show that Algorithm 3.19 is correct. If the contin-
uous relaxation (CP)N ,b,l,u, f is infeasible or unbounded, then so is the problem
(IP)N ,b,l,u, f . In the following, assume that (CP)N ,b,l,u, f has an optimal solution.
Then there exists an optimal solution r̂ to (CP)N ,b,l,u, f with ‖r̂ − rε‖∞ ≤ ε. By
Theorem 3.14, there exists an optimal solution z∗ of the integer optimization prob-
lem (IP)N ,b,l,u, f with ‖r̂ − z∗‖∞ ≤ n · �. By the triangle inequality, this solution then
satisfies ‖z∗ − rε‖∞ ≤ n · �+ ε and is therefore a feasible solution to the restricted IP
with variable bounds l′ and u′. Thus it suffices to solve the restricted IP to optimality,
which is done with the algorithm of Theorem 3.16.

The algorithm has the claimed complexity because

k ≤ 2((nB + Nn A) · � + ε)

is bounded polynomially in N by Propositions 3.11 or 3.12. The complexity then
follows from Theorem 3.16. ��
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